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1. We consider a finite group G, satisfying the following con-

dition (W):

(W) The centralizer of any element 9*1 of G is abelian.

L. Weisner [8] has studied finite groups with this condition (W),

and proved that such groups are either solvable or simple. The prob-

lem of determining the possible types of simple groups satisfying the

condition (W) has not been attacked until quite recently. A few years

ago working independently G. E. Wall and the author proved that a

nonabelian simple group of even order satisfying the condition (W) is

isomorphic with the linear fractional group LF(2, 2") over a finite

field of characteristic 2. The proof of this theorem will be given else-

where (see Brauer-Suzuki-Wall [2]).

The purpose of this note is to show that the order of a nonabelian

simple group satisfying (W) must be even. Hence the linear fractional

groups LF(2, 2") are the only simple groups which satisfy the condi-

tion (W).

As a corollary to this result, we can show the nonexistence of the

Redei group of odd order (cf. Redei [6]). Here by a Redei group we

shall mean a nonabelian simple group G such that every proper sub-

group of a maximal subgroup of G is abelian. Together with the result

by Redei, we can now conclude that the only Redei group is the alter-

nating group on 5 letters. A generalization of Redei's theorem will be

considered in the final section.

2. If A is a maximal abelian subgroup of a group satisfying the

condition (W) of the preceding section, then A satisfies the following

property:

A is the centralizer of every element 9*1 of A.

This section will be devoted to a general study of an abelian subgroup

of any finite group satisfying the above property. Brauer and Fowler

have considered such an abelian subgroup and obtained most of the

results in this section (cf. [l]).
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Let N be the normalizer of A and

m = [A:e]    and    I = [N:A].

If a conjugate subgroup <tAo~1 of A contains an element p 5^1 of A,

then the centralizer N(p) of p contains both A and crAa~l. From the

assumption on A, N(p) =A. Hence ffAa~lCzA. In particular we con-

clude the following proposition. Two elements of A are conjugate to

each other in G if and only if they are conjugate in N. Since each ele-

ment 9^1 of A has exactly I conjugate elements in iV, / is a divisor of

m — 1. Thus

w = (n — l)/l

is an integer and G has exactly w conjugate classes Ci, C2, • • • , Cw

which contain an element ?■-1 of A. It is easy to see that N has exactly

w irreducible characters Oi, ■ ■ • , 0W of degree /. They are the induced

characters induced by nonprincipal linear characters of A and hence

vanish on elements of N not in A. Since conjugate classes d(~\A of

N are special (cf. [7, Lemmas 4 and 5]), we may consider the "excep-

tional" characters @i, •••,©„ of G associated with Bi, • • • , 6W in

case w^2 [7, Lemma 5]. In fact these exceptional characters are de-

fined by the following property:

If we consider the induced characters 6* of G, the decomposition

of 6* into irreducible components takes the form

di* = «©< + A

where e= +1, A is a (generally reducible) character of G (or A = 0

identically) and e, A are independent of i.

We call these characters ©i, • • • , ©„, the exceptional characters

associated with A, or simply A -characters. The exceptional characters

are defined only when w^ 2. Hence we assume w^ 2 in the rest of this

section.

Exceptional characters satisfy the following properties. Let D be

the set of elements in G not conjugate to any element 9^1 of A.

(I) @,(a) = ©,(a) on aEL> for any pair (i, j). In particular A-

characters have the same degree.

This may be proved by using the fact that Q?(g) =d?(a) on oED.

(II) The   exceptional   characters   are   linearly   independent   on

Li, ,  Ltp.

If S"-i a<0j(a) =0 for aGCy (j=l, 2, ■ ■ ■ , w), then using (I) we
conclude

( S «<©<) (©* - ©i) = 0
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on G for any pair k, I (l^k, l^w). The orthogonality relations for

group characters yield now ak = ai. Hence XX1 ©«(flO —0 for oECj.

On the other hand we have

w w

E ©iM = « E 0?(a) - ewA(ff).
>-i »-i

Hence E?-i ®«(<r) =0 implies wA(o) + l =0 which is impossible (A(or)

is an algebraic integer and w3:2).

(III) If 73 is another abelian subgroup of G satisfying the same

condition as A, namely satisfying the condition that 73 is the central-

izer of any element 9*1 of 73, and if 73 is not conjugate to A in G,

then 0i, •••,©» are nonexceptional for 73.

This is an easy consequence of (I) and (II). If 0,- is a 73-character,

every 0* (k = l, 2, • ■ • , w) is also a 23-character, since ©< = ©* on 23

by (I). This gives a contradiction to (II) ((II) applied to B).

Let do be the character of the regular representation of N/A. Then

do is the induced character of N induced by the principal character of

A. If 6* is the induced character of G induced by do, then 0*(o)

=do(o) for a 9*1 of A. Hence

E 0oV)(©.(O - ©a"*-1))
#60

= e[G:N] E eo(o-)(6i(o-') - 0y(o-')) = 0.
aeA

This implies the following proposition.

(IV) 0* contains ©i, •••,©«, with the same multiplicity.

6* and $t take the same value on er£7?. Hence using (IV) we see

that

(*) e* - e* = l - t@i + a 22 ®k + 22 *jc*
k—l M

is a linear relation of irreducible characters, which vanishes on every

<rED. Here 1 is the principal character and the X's are the nonprin-

cipal, nonexceptional characters of G. It follows from the definition of

the induced characters da* and 6* that

(l/«) E   I 0o*(<r) - 6*(„) |2 = 1 + /.
ceo

Hence using the orthogonality relations we conclude that

(**) I = a\w - 1) + (a - e)2 + E *l
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This relation is essential in the proof of our main result.

The coefficients a and x„ in the relation (*) can be obtained in a

second manner. Consider a linear character £ of A. Then the character

£* of G induced by £ coincides with one of 6* (i = 0, 1, ■ ■ ■ , w). Sup-

pose X is a nonexceptional character of G, then X is contained in

all df (i>0) with the same multiplicity, say a. If the multiplicity of

X in 0* is p\ 0*—d* contains X with the multiplicity /3 — a. Hence

xM=/3—a if X = X„. By the reciprocity law of Frobenius (cf. [3, §246])

the restriction X/A of X to A satisfies the equation

X/A = jSf o + « S £

on .4, where £0 is the principal character of A and the summation of

the second term ranges over all nonprincipal irreducible characters.

Since A is abelian, every irreducible character of A is linear. Hence

comparing degrees in both sides we get

Dg(X) = 8 + a(n - 1) = 8 - a (mod n).

The orthogonality relation yields now £o+S£ = 0 for any element

<r?^l of A. Hence

X(o) = 6 - a    on    <r ?* 1 EA.

Thus we get the following proposition.

(V) If X is a nonexceptional character, then X takes a rational

integral value on &, • • • , Cw. Actually if X is contained in (*) with

the multiplicity x, then

X(a) = x   for   o-E Ci

and this multiplicity x is characterized by the relations

Dg(X) m x (mcd n)    and     | x |   ^ (n - l)/2.

In particular X vanishes on Ci, ■ ■ ■ , Cw if and only if the degree

Dg(X) is divisible by n.

The relation |x| ^(m —l)/2 is a consequence of the equation (**),

since |x| ^x2^/^(m —l)/2 (we have assumed w = 2).

In particular we have

(VI) If X and Y are nonexceptional characters of the same degree

then X and Y are contained in (*) with the same multiplicity.

A similar consideration may be applied to the A -characters. Let

0 = ©, be an A -character. The character 0,- is a sum of / linear char-

acters of A: 6,■— S'£'- If a linear character J of A is not in 0„ then the

induced character £* of G is one of 6*, • • • , but not 6*. Let a be the

multiplicity of © in 6? (j^i). Then a is independent of j and the
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multiplicity of 0 in Of is a + e. Hence if 8 is the multiplicity of 0 in

0*, then 0 is contained in 0* — 6* with the multiplicity 8~a~* and

Q/A = «0 + a E £ + * E' ?

where the third summation extends over / linear characters £' con-

tained in 0<. Hence if a 9*1 is an element of .4,

0*(ff) = 0 - a + €0;(<r).

We have now the following proposition.

(vii) E   I ©.(012 ^ /(» - /).

From the above consideration we get @,-(<r) = t8i(cr) +a for oEA,

09*1, where a is a rational integer. Hence

E   I ©.-(») I2 =   E (tfito + o)(^(«-!) +«)

= E 1*<(*) I2 +««E (*.-(*) + ftC*-1)) + «2(« - i)

= nl-l2 - 2ml + a2(n - 1) £ /(« - /),

since a2w — 2ea3:0 for w3:2 and any integer a.

3. Let G be a nonabelian simple group satisfying the condition (W)

of the first section. Then each maximal abelian subgroup of G is a

subgroup of the type discussed in the §2. If A and B are two maximal

abelian subgroups of G, and if A(~\B 9*e, then we can take an element

d^l of A(~\B. Then both A and B are contained in the centralizer

of a which has been assumed to be abelian. Hence by maximality of

A and 23 we conclude A =23. Thus two distinct maximal abelian sub-

groups have only the identity in common: in other words maximal

abelian subgroups make up a partition of G.

The totality of maximal abelian subgroups are divided into classes

of conjugate subgroups. Select one representative from each con-

jugate class and let Ai, A2, • • • , A,be the complete system of such

representatives. We shall denote by A,- the normalizer of Ai in G and

let

[Ai'.e] = m    and    [/W./L] = U (i = 1, 2, • ■ ■ , s).

Each A i is the centralizer of any element 9*1 of A,-, and hence

Wi = (ni — l)/k

is an integer.

Our object is to show that the order of G is even. By way of con-
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tradiction we shall assume that the order g of G is odd. The essential

consequence from this hypothesis is the following:

For each i, Wi is an even Integer; in particular Wi = 2.

We may apply the argument and results in the preceding section

for each At (i=l, 2, ■ ■ ■ , s). We have therefore exactly w{ excep-

tional characters associated with At for each i. By (III) of the §2,

exceptional characters associated with Ai are not exceptional for

Aj (jr^i). Hence we have S*-i w* characters of G which are excep-

tional for some of Ai, • • ■ , Aa. On the other hand, every element is

conjugate to some element of Ai, • • ■ , A, and each Ai contributes

exactly w,- conjugate classes of G. Hence G has exactly l + S«-i wt

conjugate classes. By a main theorem of group characters, the total

number of distinct irreducible characters of a finite group G is equal

to the number of conjugate classes in G. Hence we have obtained all

the irreducible character of G except the principal one by taking

exceptional characters for Ai, • ■ ■ , A,. This means that every non-

principal characters of G is exceptional for some A <.

Assume that the notation is so chosen that n, is the smallest integer

among the m.'s and in order to simplify the formula we write

m, = n,        l3 = I    and    w, = w.

Moreover we assume, in suitably chosen notations, that the degree d

of the A .-characters is divisible by m,' with i^t but not divisible by My

(s>t). The relation (*) of the preceding section is now written as

to

r = i - €©,- + a S©*+ S *,*,,
fc=i        ^

where the @k's are A .-characters and the X„'s are not. By (I) of the

§2 A j-characters (i<s) have the same degree and hence by (VI) they

are contained in T with the same multiplicity. Let {©j} be the totality

of .4,-characters (i = 1, • • • ,s — l;j=l, • ■ • , w,). Then we can write

T as

W 8—1 Wfi

r= l-e©i + aS©*+S^S©"-
*=i (i-i       )_i

Hence T will vanish on elements of Ai, • • • , ^4,_i. Suppose x< = 0 for

some i — t. Then T does not contain A .-characters. Since i^t, it fol-

lows from (V), that &k(cr) =0 and each ©j*(a) is an integer y„ for a^l

of Ai. Hence T(a)=0 is now read as

0 = 1 + S *(.y»w»
P9*i
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which is impossible, since x„, yM, w„ are integers and all the w/s are

even. Hence we conclude that x.-^O for i = l, • ■ ■ , t. The relation

(**) of the preceding section shows

2 2 ^-^      2

I = a (w — 1) + (a — t)   + E *mwm

^      23; 1 + 2^ XiWi.
i-l

Since each x, (t = l, • • • , /) is a nonvanishing rational integer we con-

clude

t

The orthogonality relation for @ = @» may be written as

g = E I ©w I2
ceo

= d2+J2 (g/nih)     E     I ©W I2-

If igt, we have by (V) ®(<r) =0 for 0-5^ 1 of A(. Thus

E      I @(<r) |2 = 0 for f = 1, 2, • • • , t.
cfti.ceA,

If t<i<s, then ©(c) is a nonvanishing rational integer by (V). Hence

E     I ©M I2 = »•• - 1 for f = / + 1, • • • , 5 - 1.
ff^l.o-Sil,

For i = 5, we have by (VII)

E      I ®W |2 31 /(» - /)•

Hence we conclude that

g 3t d2 + E («/»W(»< - 1) + (!/»)(« - 0.
i-(+i

On the other hand, every element of G is conjugate to some element

of Ai, ■ ■ ■ , A,. Hence

8

g = 1 + E (g/*Ji)(m ~ 1).
•-1

Hence
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1 + S (g/mli)(ni - 1) + (g/nl)(n - 1) ^ d2 + (g/n)(n - I).
t=i

It follows now

22 (m - l)/nih + (n - 1 + P)/jrf ^l + (d2- l)/g.
t-i

By definition (m,-—1 )//, = «>,•, «,^» for «=1, 2, • • • , t. Hence

(S^)/m^ S(Mi- l)/mli.
\ t=i     / ' »-i

We have already obtained the inequality

I - 1 = S «*
>-i

Using these estimations we get

(/ - l)/» + (» - 1 + F-)/m/ ̂  1 + (<Z2 - l)/g.

Since we have assumed that G is a nonabelian simple group, d is

greater than one as being the degree of a nonprincipal character.

Hence

(/ - 1)/m + (n - 1 + l2)/nl > 1

Since n — 1 = wl, we may write this strict inequality in the form

l-l + w+l>wl+l,       2(1 - 1) + w(l - I) > 0

(/ - 1)(2 - w) > 0.

This is however impossible, because l*zl and w — 2.

Thus we have shown the validity of the following theorem.

Theorem. If a nonsolvable group G satisfies the condition (W) of

the first section, then the order of G must be even.

Together with the result in [2], we may conclude the following:

Theorem. The nonsolvable group G satisfying the condition (W) is

one of the linear groups LF(2, 2").

4. In this section we shall consider a nonabelian simple group G

such that every maximal subgroup of G contains only nilpotent proper

subgroups. Our purpose is to show that such a group is isomorphic

with the alternating group on 5 letters.

First of all, we shall show that the Sylow subgroups of G are in-

dependent, i.e. their intersection is {e}. By way of contradiction, we
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shall assume the maximal ^-intersection D is not the unit subgroup.

The normalizer N(D) is not nilpotent. Hence N(D) is a maximal sub-

group, which is not nilpotent. By assumption, every proper subgroup

of N(D) is nilpotent. Hence by a theorem of Iwasawa [5], a £-Sylow

subgroup TP of N(D) is cyclic. Since N(D) is maximal, the normalizer

of Tp is contained in N(D). It follows now that Tp is a £-Sylow sub-

group of G, and is contained in the center of its normalizer. By a

theorem of Burnside ([3, p. 237]) G is not simple against our assump-

tion. Hence the Sylow subgroups of G are independent.

Next we shall show that any maximal subgroup of G is not nil-

potent. If a maximal subgroup M is nilpotent, then M is the normal-

izer of the center of Sylow subgroup of M. We have already shown

that Sylow subgroups are independent. Hence for all prime divisors

of the order of G, G is ^-normal in the sense of Griin (cf. [4]). By a

theorem of Griin we have an isomorphism between ^-commutator

factor groups G/G'(p) and N/N'(p), where N is the normalizer of the

center of a £-Sylow subgroup. We may therefore take M = N. Then

M/M'(p) 9*e for some p and this implies that the commutator sub-

group of G is a proper subgroup, which is not the case. Hence M is

not nilpotent.

Let M be any maximal subgroup of G. Then M is not nilpotent,

but all proper subgroups of M are nilpotent. Since Sylow subgroups

of G are independent, the order of 717 has the form paq where p and q

are distinct prime numbers. This follows from the result of Iwasawa

[5]. Furthermore the ^-Sylow subgroup Sp of M is a normal subgroup

of 217. If Tp is the commutator subgroup of Sp, then Tp and a g-Sylow

subgroup Tq of 217 generate a nilpotent subgroup 27. We want to show

Tp = e. By way of contradiction, assume Tp9*e. Let SQ be a a-Sylow

subgroup of Gcontaining Tq. If aETp, oSqo-~1^crTqo-~1. = Tq. Since the

Sylow subgroups of G are independent, crSacr-1 = Sq. Let A be a maxi-

mal subgroup of G containing the normalizer of Sq. Then N^>Sq^JTp.

If N=M, then Sq = Tq and Sq is contained in the center of the normal-

izer of Sq. This is impossible by a theorem of Burnside (loc. cit.).

Hence N9*M. N is again not nilpotent but every proper subgroup of

N is nilpotent. Hence by Iwasawa's theorem (loc. cit.) N=SqVJI p

and [Tp: e] =p; in particular, Sq9*Tq. 27= Tp\JTq is therefore a cyclic

group of order pq and U = MC\N. The normalizer of 27 is contained

in the normalizer of Tp which is M and at the same time is in the

normalizer of Tq which is N. Hence the normalizer of 27 coincides with

U = Mr\N. Denote by pa, 3" the orders of Sp and Sq respectively.

Then G contains (g/paq)(pa — l) elements with orders a power of p,

where   g=[G:e].   Similarly   conjugate   subgroups   of   Sq   contain
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(g/q0p)(q^ — l) elements other than the identity. Since conjugate sub-

groups of U contain (g/pq)(pq — p — q-\-l) elements of order pq, we

have an inequality:

i + (g/Paq)(Pa - i) + (I/VW - i) + (g/pq)(pq-p-q+i)£g,

or

(l/g) + (l/pq) ^ (f/Pq)((i/Pa-1) + (W^)).

Since oc — 2, 0 = 2, we get

1 < (1/p) + (1/q).

This inequality is however impossible. Hence Tp must be the unit

subgroup.

This shows that every maximal subgroup of G contains only abelian

proper subgroups. It is now easy to verify that the condition (W) of

the opening section is satisfied. By our main theorem the order of G

must be even. Hence by a theorem of Redei [6], G is isomorphic with

the alternating group on five letters.

Theorem. Let G be a nonabelian simple group. If every maximal sub-

group of G contains only nilpotent proper subgroups, then G is iso-

morphic with the alternating group on five letters.

References

1. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. vol. 62

(1955) pp. 565-583.
2. R. Brauer, M. Suzuki and G. E. Wall, (to appear).

3. W. Burnside, Theory of groups, 1911.

4. O. Griin, BeitrUge zur Gruppentheorie I, J. Reine Angew. Math. vol. 174 (1936)

pp. 1-14.
5. K. Iwasawa, Uber die Structur der endlichen Gruppen, deren echte Untergruppen

samtlich nilpotent sind, Proceedings of the Physics-Mathematical Society of Japan

vol. 23 (1941) pp. 1-1.
<5. L. Redei, Ein Satz uber die endlichen einfachen Gruppen, Acta. Math. vol. 84

(1950) pp. 129-153.
7. M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes,

Amer. J. Math. vol. 77 (1955) pp. 657-691.
8. L. Weisner, Groups in which the normaliser of every element except the identity is

abelian, Bull. Amer. Math. Soc. vol. 31 (1925) pp. 413^16.

University of Illinois

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


