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In this note we present Baker’s proof of the Lindemann-Weierstrass Theorem [1]. Let Q
denote the algebraic closure of Q inside C.

Theorem 1. Let S ⊂ Q be a finite set. Then the numbers eα ∈ C are linearly independent
over Q. In other words, in any linear relation of the form∑

α∈S
λαe

α = 0, (with λα ∈ Q),

the coefficients necessarily satisfy λα = 0 for all α ∈ S.

Before proving Theorem 1, we give two applications. The first one says that ‘transcendental

looking’ numbers like e, π, log 2, sin(1), cos(
√

2), e
3√2, . . . etc. are indeed all transcendental.

Corollary 2. For any non-zero α ∈ Q, the numbers eα, sinα and cosα are transcenden-
tal. The number logα is either zero or transcendental for any choice of a branch of the
logarithm.

Proof. Suppose that α ∈ Q is not zero. Let S = {0, α}. If eα ∈ Q, the relation

eα · e0 + (−1) · eα = 0

contradicts Theorem 1. Therefore eα is transcendental. Applying this argument to iα, we
see that eiα and hence sinα and cosα are transcendental. Finally, if logα is a non-zero
element of Q, then we let S = {0, logα}. Since α ∈ Q, the relation

α · e0 + (−1) · elogα = 0

contradicts Theorem 1. Therefore logα must be transcendental when it is not zero.

The second application is often called the ‘Lindemann-Weierstrass Theorem.

Corollary 3. Let α1, . . . , αn ∈ Q and suppose that

F (eα1 , . . . , eαn) = 0, for a non-zero polynomial F ∈ Q[X1, . . . , Xn],

then
∑n
j=1 µjαj = 0 for certain µj ∈ Q not all of which are zero.

Proof. Let
S = {m1α1 + . . .+mnαn : m1, . . . ,mn ∈ Z≥0}.

Suppose that α1, . . . , αn are independent over Q. Then the numbers α = m1α1+. . .+mnαn
are all distinct. Therefore, the polynomial F ∈ Q[X1, . . . , Xn] can be written as

F (eα1 , . . . , eαn) =
∑
α∈S

λαe
α,

where for α = m1α1 + . . .+mnαn, the number λα is precisely the Xm1
1 · · ·Xmn

n -coefficient
of F . Since F (eα1 , . . . , eαn) = 0, Theorem 1 implies that F = 0. Contradiction. We
conclude that α1, . . . , αn are dependent over Q as required.

The first prove Theorem 1 in a special case. Recall that two numbers in Q are called
conjugate if their minimum polynomials over Q are the same. A number in Q is called
integral if it is a zero of a monic polynomial in Z[X]. This is equivalent to saying that its
minimum polynomial is in Z[X].

The following theorem deals with a particular symmetric case of Theorem 1.
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Theorem 4. Let S be a finite subset of Q containing all conjugates of each of its elements.
For every α ∈ S, let λα ∈ Q and suppose that λα = λβ whenever α and β are conjugate.
Then for any relation of the form ∑

α∈S
λαe

α = 0,

the coefficients λα are 0 for all α ∈ S.

Proof. By removing all α ∈ S for which λα = 0, we may assume that all coefficients λα
are different from zero. We now derive a contradiction from the assumption S 6= ∅ and the
relation

∑
α∈S λαe

α = 0.
Let Φ ∈ Z[X] be a polynomial having each alement of S as a simple zero. Let c ∈ Z>0

be the leading coefficient of Φ and let d be its degree. So, cβ is an algebraic integer for
every β ∈ S. Let n be a positive integer. Fix α ∈ S and let

fn(X) =
Φ(X)n

X − α
.

Then fn(X) is in Q[X]. Let Fn(t) = fn(t) + f
(1)
n (t) + f

(2)
n (t) + . . .. Here f

(k)
n denotes the

k-th derivative of fn. Both polynomials fn and Fn have degree nd− 1. Since −e−xFn(x)
is a primitive function of e−xfn(x), we have ‘Hermite’s formula’∫ 1

0

ez(1−t)fn(zt)zdt = ez
∫ z

0

e−tfn(t)dt = ezFn(0)− Fn(z), for all z ∈ C.

We apply this to z = β ∈ S. By hypothesis we have
∑
β∈S λβe

β = 0. It follows that

Σn =
∑
β∈S

λβFn(β)

is equal to

−
∑
β∈S

λβ

∫ 1

0

eβ(1−t)fn(βt)βdt.

Since fn(X) is a polynomial of degree nd− 1, the integrals are O(Mnd) and hence

Σn = O(Mnd).

Here M is a large positive real number that only depends on S and the polynomial Φ.

If β ∈ S and β 6= α, we compute f
(k)
n (β) by writing fn(X) = (X − β)nh(X) for a

certain polyomial h(X) ∈ Q[X] and applying Leibniz’s formula. We find that

f (k)n (β) =

{
0, for 0 ≤ k < n;
n!h(k−n)(β), for k ≥ n.
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Since deg h < deg fn = dn − 1, it follows easily that Fn(β) is equal to n!/cdn−1 times
an algebraic integer. Similarly, when β = α, we have fn(X) = (X − α)n−1g(X)n where
g(X) = Φ(X)/(X − α). We have

f (k)n (α) =


0, for 0 ≤ k < n− 1;
(n− 1)!Φ(1)(α)n, for k = n− 1;

(n− 1)!
(
k

n−1
)
G

(k−n+1)
n (α), for k ≥ n.

Here Gn(X) denotes the n-th power of g(X). In particular, the first derivative of Gn(X)

is equal to ng(X)n−1g(1)(X). It follows that for k 6= n− 1, the number f
(k)
n (α) is equal to

n!/cdn−1 times an algebraic integer. Therefore we have

Fn(α) = (n− 1)!Φ(1)(α)n +
ξn!

cdn−1

for some algebraic integer ξ. Since α is a simple zero of Φ, there are infinitely many n for
which the term λαΦ(1)(α)n is not divisible by n. For this choice of n we now know that∑

β∈S

λβFn(β) 6= 0.

In other words, Σn 6= 0. In addition, we know that cnd−1Σn is an algebraic integer divisible
by (n− 1)!.

Recall that the number Σ depends on our choice of α. To finish the proof, we take the
product over α of the corresponding numbers Σn. Since for every α ∈ S, all conjugates are
also in S, the product is of the form m/cd(dn−1), where m is an ordinary non-zero integer
divisible by (n− 1)!d. It follows that

(n− 1)!d = O((cdM)dn), for infinitely many n.

This contradicts Stirling’s formula for very large n! This completes the proof of the theo-
rem.

Proof of Theorem 1. Let S 6= ∅ and suppose that λα 6= 0 for every α ∈ S. We derive a
contradiction from the assumption

∑
α∈S λαe

α = 0.

Step 1. Let F be the extension of Q generated by the coefficients λα and their conjugates.
Let G = Aut(F ) and put N = #G. We introduce variables Xα for each α ∈ S and consider
the polynomial ∏

σ∈G

∑
α∈S

σ(λα)Xα.

By symmetry it has coefficients in Q. Next we substitute Xα = eα. Since
∑
α∈S λαe

α = 0
we obtain 0. On the other hand, we expand the product. Each monomial becomes equal
to eβ where β is a sum of N not necessarily distinct elements of S. We collect monomials
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that give rise to the same value of β. It may happen that certain monomials with the same
β cancel out. When we omit those, we obtain∑

β∈S′

µβe
β = 0,

with non-zero coefficients µβ ∈ Q. Note that not all terms on the left cancel out. For
instance, let α be the lexicographically first element of S ⊂ C. This means that it is an
element of S with maximal real part and among the elements with maximal real part it
has the largest imaginary part. Then β = Nα is not equal to any other sum of N elements
of S and therefore the corresponding term certainly does not cancel out. So the set S′ is
not empty. The conclusion is that we obtain the same kind of sum as we started with, but
this time the coefficients λα are non-zero rational numbers.

We denote this new sum again by
∑
α∈S λαe

α and we make the second step.

Step 2. As before, let F be the extension of Q generated by the coefficients λα and their
conjugates. Let G = Aut(F ) and put N = #G. We consider the product∏

σ∈G

∑
α∈S

λαe
σ(α).

Since
∑
α∈S λαe

α = 0, it is zero. On the other hand, we expand the product and we obtain

a sum with rational coefficients of numbers of the form eβ where β is a sum of conjugates
of n not necessarily distinct elements of S. We collect the terms with the same β. Again
it may happen that certain terms with the same β cancel out. When we omit those, we
obtain ∑

β∈S′′

µβe
β = 0,

with all coefficients µβ 6= 0. By symmetry, for every β ∈ S′′ also all conjugates of β are
in S′′ and we have µβ = µβ′ whenever β and β′ are conjugate. To see that S′′ 6= ∅, we
pick in each conjugacy class of elements in S the lexicographically first element. Then the
sum β of those elements is in S′′ because β is not equal to any other sum of conjugates of
elements of S. The coefficient of the corresponding exponential is the product of the λα
and therefore does not vanish.

An application of Theorem 4 now leads to a contradiction. This proves the theorem.
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