
Algebra 2. Teorema di Lindemann-Weierstrass. Roma, gennaio 2010

In this note we present Baker’s proof of the Lindemann-Weierstrass Theorem. Let Q
denote the algebraic closure of Q inside C.

Theorem 1. Let S ⊂ Q be a finite set. If∑
α∈S

λαeα = 0, for certain λα ∈ Q,

then λα = 0 for all α ∈ S.

Before proving Theorem 1, we give two applications. The first one says that ‘transcendental
looking’ numbers like e, π, log 2, sin(1), cos(

√
2), e

3√2, . . . etc. are indeed all transcendental.

Corollary 2. For any non-zero α ∈ Q, the numbers eα, sinα and cos α are transcendental.
If α 6= 1, then log α is transcendental for any choice of a branch of the logarithm.

Proof. Suppose that α ∈ Q is not zero. Let S = {0, α}. If eα ∈ Q, the relation

eα · e0 + (−1) · eα = 0

contradicts Theorem 1. Therefore eα is transcendental. Applying this argument to iα, we
see that eiα and hence sinα and cos α are transcendental. Finally, if log α is a non-zero
element of Q, the argument shows that α is transcendental. Since this is not true, log α
must be transcendental when α 6= 1, as required.

The second application is often called the ‘Lindemann-Weierstrass Theorem.

Corollary 3. Let α1, . . . , αn ∈ Q and suppose that

F (eα1 , . . . , eαn) = 0, for a non-zero polynomial F ∈ Q[X1, . . . , Xn],

then
∑n

j=1 µjαj = 0 for certain µj ∈ Q not all of which are zero.

Proof. Let
S = {m1α1 + . . . + mnαn : m1, . . . ,mn ∈ Z≥0}.

Suppose that α1, . . . , αn are independent over Q. Then the numbers α = m1α1+. . .+mnαn

are all distinct. Therefore, for the polynomial F ∈ Q[X1, . . . , Xn] we have

F (eα1 , . . . , eαn) =
∑
α∈S

λαeα,

where for α = m1α1 + . . .+mnαn, the number λα is precisely the Xm1
1 · · ·Xmn

n -coefficient
of F . Since F (eα1 , . . . , eαn) = 0, Theorem 1 implies therefore that F = 0. Contradiction.
We conclude that α1, . . . , αn are dependent over Q as required.

The main step in the proof of Theorem 1 is the following result. We prove it and then
deduce Theorem 1 from it.
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Theorem 4. Let S ⊂ Q be a finite set that is stable under conjugation. For every α ∈ S
let nα ∈ Q and suppose that nα = nβ whenever α and β are conjugate. Then,

if
∑
α∈S

nαeα = 0, then nα = 0 for all α ∈ S.

Proof. By removing all α ∈ S for which nα = 0, we may assume that all coefficients nα

are different from zero. We now derive a contradiction from the assumption S 6= ∅ and the
relation

∑
α∈S nαeα = 0.

Let Φ ∈ Z[X] be a polynomial of which every α ∈ S is a simple zero. Let c ∈ Z>0 be
the leading coefficient of Φ and let d be its degree. Fix α ∈ S and let

f(X) =
Φ(X)n

X − α
.

Let F (t) = f(t)+f (1)(t)+f (2)(t)+ . . .. Since −e−xF (x) is a primitive function of e−xf(x),
we have ‘Hermite’s formula’

ezF (0)− F (z) = ez

∫ z

0

e−tf(t)dt = =
∫ 1

0

ez(1−t)f(zt)zdt, for all z ∈ C.

Since
∑

β∈S nβeβ = 0, taking the sum over z = β ∈ S we find

∑
β∈S

nβF (β) = −
∑
β∈S

nβ

∫ 1

0

eβ(1−t)f(βt)βdt.

The integral is O(Mn) for some M ∈ R>0 depending on S and the polynomial Φ.
If β ∈ S and β 6= α, the number F (β) is equal to n!/cdn−1 times an algebraic integer.

When β = α, the number F (α) is equal to (n− 1)!Φ(1)(α)n +
∑

k≥n f (k)(α) and the sum∑
k≥n f (k)(α) is equal to n!/cdn−1 times an algebraic integer.

There are infinitely many n for which the expression nαΦ(1)(α)n is not divisible by n.
For this choice of n we know that

∑
β∈S nβF (β) is a non-zero algebraic integer divisible

by (n− 1)!.
We can also find infinitely many n for which nαΦ(1)(α)n is not divisible by n for each

α ∈ S. Since S is stable under conjugation, taking the product over α of
∑

β∈S nβF (β),
we obtain a non-zero integer divisible by (n− 1)!d. This leads to the contradiction

(n− 1)!d = O(Mdn), for infinitely many n.

This completes the proof of the theorem.

Proof of Theorem 1. Let S 6= ∅ and suppose that λα 6= 0 for every α ∈ S. We derive
a contradiction from the assumption

∑
α∈S λαeα = 0. The coefficients λα are contained
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in some finite Galois extension F of Q. Let G = Gal(F/Q) have order n. We introduce
variables Xα and consider the polynomial∏

σ∈G

∑
α∈S

σ(λα)Xα.

By symmetry it has coefficients in Q. Next we substitute Xα = eα. Since
∑

α∈S λαeα = 0
we obtain 0. On the other hand, we expand the product. Each monomial becomes equal
to eβ where β is a sum of n not necessarily distinct elements of S. We collect monomials
that give rise to the same value of β. It may happen that certain monomials with the same
β cancel out. When we omit those, we obtain∑

β∈S′

µβeβ = 0,

with non-zero coefficients µβ ∈ Q. Note that not all terms on the left cancel out. For
instance, let α be the lexicographically first element of S ⊂ C. This means that it is an
element of S with maximal real part and among the elements with maximal real part it
has the largest imaginary part. Then β = nα is not equal to any other sum of n elements
of S and therefore the corresponding term certainly does not cancel out. So the set S′ is
not empty.

In conclusion, we obtain the same kind of sum as we started with, but this time
the coefficients λα are non-zero rational numbers. We denote this new sum again by∑

α∈S λαeα. We make the second step.
The set S is contained in some finite Galois extension K of Q. Let H = Gal(K/Q)

have order m. We consider the product∏
σ∈H

∑
α∈S

λαeσ(α).

Since
∑

α∈S λαeα = 0, it is zero. On the other hand, we expand the product and we obtain
a sum with rational coefficients of numbers of the form eβ where β is a sum of conjugates
of m not necessarily distinct elements of S. We collect the terms with the same β. Again
it may happen that certain terms with the same β cancel out. When we omit those, we
obtain ∑

β∈S′′

µβeβ = 0,

with all coefficients µβ 6= 0. By symmetry, the set S′′ is stable under the Galois group H
and we have µβ = µβ′ whenever β and β′ are conjugate. To see that S′′ 6= ∅, we denote
for each σ ∈ G by ασ ∈ C the lexicographically first element in {σ(α) : α ∈ S}. Then
β =

∑
σ∈H ασ is in S′′ because β is not equal to any other sum of conjugates of elements

of S. The coefficient of the corresponding exponential is
∏

σ∈H λασ
6= 0.

An application of Theorem 1 now leads to a contradiction. This proves the theorem.
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