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Let K be a field. Every polynomial f ∈ K[X] has a splitting field. It is unique up to
isomorphism. A polynomial f ∈ K[X] is called separable, if its zeroes in a splitting field
are distinct.

Definition. Let K ⊂ L be a finite extension.
– The extension is called normal over K if the minimal polinomial f ∈ K[X] of any
x ∈ L splits into linear factors in L[X].

– The extension is called separable, if every x ∈ L is separable over K. This means that
its minimum polynomial f ∈ K[X] is separable.

– The extension is called Galois if it is both normal and separable.

If the characteristic of K is zero, then any finite extension K ⊂ L is separable. Indeed, if
the minimum polynomial f of x ∈ L has a double zero, then f divides its derivative f ′.
Since the degree of f ′ is strictly smaller than the one of f , the polynomial f ′ is zero, so
that f is constant. This is impossible, since minimum polynomials have degree ≥ 1.

Suppose K ⊂ L is normal and let E be an intermediate extension K ⊂ E ⊂ L. Then
L is also normal over E. Indeed, for any x ∈ L, its minimum polynomial over E divides
the one over K.

Theorem/Criterion. LetK ⊂ L be a finite extension. Then the following are equivalent.
(1) The extension K ⊂ L is normal.
(2) The field L is the splitting field of some f ∈ K[X].
(3) For every extension L ⊂M , the natural map

AutK(L) −→ HomK(L,M)

is a bijection.

Proof. (1) ⇒ (2) We have L = K(A) for a finite subset A ⊂ L. Let f be the product of
the minimum polynomials over K of the elements a ∈ A. Then f splits into a product of
linear factors in L[X]. Since L is generated by A, this means that L is the splitting field
of f .

(2) ⇒ (3) The map in (3) is always injective. To prove that it is surjective, let
σ : L −→ M be a K-automorphism and let x ∈ L be a zero of f . Then σ(x) is another
zero of f in M . Since all zeroes of f are contained in L, this means σ(x) ∈ L. The fact
that L is generated by the zeroes of f now implies that σ(L) ⊂ L, as required.

(3) ⇒ (1) Write L = K(A) for a certain finite subset A ⊂ L. Let x ∈ L and
let f ∈ K[X] denote its minimum polynomial. We apply (3) to the splitting field M
of the product of f and the minimum polynomials of the elements in A. Then we have
K ⊂ L ⊂ M . Let y ∈ M be a zero of f . The K-isomorphism K(x) ∼= K(y) that maps
x to y extends to a K-automorphism σ of the splitting field M . By (3) its restriction to
L is induced by a K-automorphism of L. This means that y = σ(x) is contained in L as
required.

Lemma. (Artin-Dedekind) Let K ⊂ L be a finite extension and let K ⊂ M be an
arbitrary field extension. Then we have

#HomK(L,M) ≤ [L : K].
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Proof. Let n = [L : K] and let e1, . . . , en be a K-basis of L. Suppose that there are n+ 1
distinct homomorphisms σ0, . . . , σn ∈ HomK(L,M). Then the n+ 1 vectors σi(e1)

...
σi(en)

 ∈ Mn, for i = 0, 1, . . . , n,

are M -linarly dependent. This means that there are λ0, . . . , λn ∈M not all zero, for which∑n
i=0 λiσi(ek) = 0 for k = 1, . . . , n. Since each σi is K-linear, this means that the map∑n
i=0 λiσi is identically zero on L.

However, such anM -linear relation between field homomorphisms is necessarily trivial.
Indeed, assume that

n∑
i=0

λiσi ≡ 0, in HomK(L,L),

is such a relation with minimal number of non-zero coefficients λi ∈ L. There are at least
two non-zero λi. We may assume they are λ0 and λ1. Let z ∈ L be such that σ0(z) 6= σ1(z).
Subtracting the relations

σ0(z)
∑
i≥0

λiσi(x) = 0, for all x ∈ L,

∑
i≥0

λiσi(zx) = 0, for all x ∈ L,

gives the relation ∑
i≥1

λi(σ0(z)− σi(z))σi(x) = 0, for all x ∈ L.

Since this relation has fewer non-zero coefficients, all coefficients must be zero. In particular
λ1(σ0(z)− σ1(z)) = 0. This implies λ1 = 0. Contradiction.

This proves the lemma.

Definition. Let K ⊂ L be finite. Then the separability degree of L over K is defined by

[L : K]sep = #HomK(L,M), for any normal extension L ⊂M .

To see that this definition does not depend on the choice of the field M , we write L = K(A)
for some finite set A ⊂ L. Then the product f of the minimum polynomials over K of
a ∈ A splits completely in M [X]. Let E ⊂ M be the subfield generated by those zeroes.
Then E is a splitting field of f over K. For every a ∈ A and every σ ∈ HomK(L,M) the
element σ(a) is in E. Since L is generated over K by A, this means that σ(L) ⊂ E for
every σ ∈ HomK(L,M). It follows that HomK(L,M) = HomK(L,E). This shows that
[L : K]sep only depends on the splitting field E and not on the choice of M .
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The separability degree satisfies [L : K]sep ≤ [L : K]. This follows from the Artin-
Dedekind Lemma. The separability degree is multiplicative in the sense that for finite
extensions K ⊂ E ⊂ L we have

[L : K]sep = [L : E]sep · [E : K]sep.

To see this, write L = K(A) and let M be a splitting field of the product of the minimum
polynomials over K of the elements a ∈ A. Then M is normal over K and hence also over
E and L. For every σ ∈ HomK(L,M), the isomorphism σ : L −→ σ(L) extends to an
automorphism M −→M . This shows that the natural map

AutK(M) −→ HomK(L,M)

is surjective. Two automorphisms in AutK(L) have the same image if and only if their
quotient fixes L. Therefore we have

#HomK(L,M) = #AutK(M)/#AutL(M).

There are similar formulas for #HomK(E,M) and #HomE(L,M). Multiplying the to-
gether, the cardinalities of the automorphism groups cancel out and the result follows.

Theorem/Criterion. Let K ⊂ L be a finite extension. The following are equivalent.
(1) The extension K ⊂ L is separable.
(2) We have L = K(A) for some finite set of separable elements A ⊂ L.
(3) We have [L : K]sep = [L : K].

Proof. (1) ⇒ (2) This is trivial.
(2) ⇒ (3) If L is of the form K(a) for some separable element a, then the minimum

polynomial f ∈ K[X] of a has deg f zeroes in any normal extension L ⊂ M . This means
that [L : K]sep = #HomK(L,M) = [L : K] as required.

In general, we write L as a successive extension, adjoining one separable element at
the time. Since each element is separable over K, it is also separable over any larger field
K ⊂ E ⊂ L. Therefore we can invoke the result for extensions generated by one single
element. The fact that both the degree and the separability degree are multiplicative,
implies the result in general.

(3) ⇒ (1) Let a ∈ L. Then we have

K ⊂ K(a) ⊂ L

By Artin we have [K(a) : K]sep ≤ [K(a) : K] and [L : K(a)]sep ≤ [L : K(a)]. Since both the
degree and the separaibility degree are multiplicative, the hypothesis [L : K]sep = [L : K]
implies [K(a) : K]sep = [K(a) : K]. So, for every normal extension L ⊂ M there are as
many K-homomorphism K(a) −→ M as the degree of the minimum polynomial f of a.
This is only possible if all zeroes of f in M are distinct. So f is separable, as required.

It follows that an extension of the form K ⊂ E ⊂ L is separable if and only if both
K ⊂ E and E ⊂ L are separable.
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Theorem/Criterion. Let K ⊂ L be a finite extension. The following are equivalent:
(1) The extension K ⊂ L is Galois;
(2) The field K is the fixed field of AutK(L);
(3) There a subgroup G ⊂ Aut(L) whose fixed field is K;
(4) The field L is the splitting field of some separable polynomial in K[X].

Proof. (1) ⇒ (2) We put G = AutK(L). The group G is also equal to AutLG(L).
Therefore we have

#G = #HomLG(L,L) ≤ [L : LG] ≤ [L : K]
(∗)
= [L : K]sep

(∗)
= #HomK(L,L) = #G.

The equalities (∗) follow from the fact that K ⊂ L is normal and separable. It follows
that we have equality everywhere. In particular, we obtain the equalities LG = K and
#G = [L : K].

The implication (2) ⇒ (3) is trivial. For (3) ⇒ (4) we write L = K(A) for some
finite set A ⊂ L. By adding more elements to A, we may assume it to be G-stable. Then
the polynomial

∏
a∈A(X − a) has coefficients in LG = K and its splitting field is equal

to L. It has distinct zeroes in L, so it is separable.
(4)⇒ (1) The field L is a splitting field. So it is normal by the criterion for normality.

Since f is separable, so are the minimum polynomials of its zeroes. It follows by the
separability criterion that K ⊂ L is also separable. Therefore K ⊂ L is Galois, as required.

The group AutK(L) is the Galois group of L over K and is denoted by Gal(L/K).

Theorem. (Main Theorem of Galois theory). Let K ⊂ L be a finite Galois extension
with Galois group G. Then the following two maps

{subfields K ⊂ E ⊂ L} ←→ {subgroups H ⊂ G}
E 7→ AutE(L),

LH ← H.

are inverse to one another. Moreover,
(a) for each subgroup H we have [L : LH ] = #H;
(b) for each subfield E we have #AutE(L) = [L : E].
(c) for any subfield E the extension E ⊂ L is Galois with Galois group AutE(L). The

extension K ⊂ E is Galois if and only if AutE(L) ⊂ G is a normal subgroup. In this
case Gal(E/K) = G/AutE(L).

Proof. We have H ⊂ AutLH (L) and E ⊂ LAutE(L). Since we have

[L : LAutE(L)]
(a)
= #AutE(L)

(b)
= [L : E],

#AutLH (L)
(b)
= [L : LH ]

(a)
= #H,

it suffices to prove the statements (a), (b) to establish. the Galois correspondence
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By the criterion LH ⊂ L is Galois with Galois group H. Therefore [L : LH ] = #H and
(a) follows. Part (b) and the first statement in (c) follow from the fact that the extension
E ⊂ L is normal and separable and therefore Galois. If the subgroup H = AutE(L) in
very last statement is normal in G, then G/H acts on E = LH and its field of invariants
is K. By the criterion E is Galois over K with Galois group G/H. Conversely, suppose
that E = LH and that K ⊂ E is Galois. By the criterion of normality, any σ ∈ AutK(L)
restricts to an automorphism of E. This means that σ−1Hσ fixes E, so that σ−1Hσ ⊂ H
and H is normal in G. The natural homomorphism G/H −→ AutK(E) is an isomorphism.

This proves the theorem.
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