Let K be a field. Every polynomial $f \in K[X]$ has a splitting field. It is unique up to isomorphism. A polynomial $f \in K[X]$ is called *separable*, if its zeroes in a splitting field are distinct.

Definition. Let $K \subset L$ be a finite extension.

- The extension is called *normal* over K if the minimal polinomial $f \in K[X]$ of any $x \in L$ splits into linear factors in L[X].
- The extension is called *separable*, if every $x \in L$ is separable over K. This means that its minimum polynomial $f \in K[X]$ is separable.
- The extension is called *Galois* if it is both normal and separable.

If the characteristic of K is zero, then any finite extension $K \subset L$ is separable. Indeed, if the minimum polynomial f of $x \in L$ has a double zero, then f divides its derivative f'. Since the degree of f' is strictly smaller than the one of f, the polynomial f' is zero, so that f is constant. This is impossible, since minimum polynomials have degree ≥ 1 .

Suppose $K \subset L$ is normal and let E be an intermediate extension $K \subset E \subset L$. Then L is also normal over E. Indeed, for any $x \in L$, its minimum polynomial over E divides the one over K.

Theorem/Criterion. Let $K \subset L$ be a finite extension. Then the following are equivalent.

- (1) The extension $K \subset L$ is normal.
- (2) The field L is the splitting field of some $f \in K[X]$.
- (3) For every extension $L \subset M$, the natural map

$$\operatorname{Aut}_K(L) \longrightarrow \operatorname{Hom}_K(L, M)$$

is a bijection.

- **Proof.** (1) \Rightarrow (2) We have L = K(A) for a finite subset $A \subset L$. Let f be the product of the minimum polynomials over K of the elements $a \in A$. Then f splits into a product of linear factors in L[X]. Since L is generated by A, this means that L is the splitting field of f.
- $(2) \Rightarrow (3)$ The map in (3) is always injective. To prove that it is surjective, let $\sigma: L \longrightarrow M$ be a K-automorphism and let $x \in L$ be a zero of f. Then $\sigma(x)$ is another zero of f in M. Since all zeroes of f are contained in L, this means $\sigma(x) \in L$. The fact that L is generated by the zeroes of f now implies that $\sigma(L) \subset L$, as required.
- $(3) \Rightarrow (1)$ Write L = K(A) for a certain finite subset $A \subset L$. Let $x \in L$ and let $f \in K[X]$ denote its minimum polynomial. We apply (3) to the splitting field M of the product of f and the minimum polynomials of the elements in A. Then we have $K \subset L \subset M$. Let $g \in M$ be a zero of f. The K-isomorphism $K(x) \cong K(g)$ that maps f to f extends to a f-automorphism f of the splitting field f. By (3) its restriction to f is induced by a f-automorphism of f. This means that f is contained in f as required.

Lemma. (Artin-Dedekind) Let $K \subset L$ be a finite extension and let $K \subset M$ be an arbitrary field extension. Then we have

$$\# \operatorname{Hom}_K(L, M) \leq [L:K].$$

Proof. Let n = [L:K] and let e_1, \ldots, e_n be a K-basis of L. Suppose that there are n+1 distinct homomorphisms $\sigma_0, \ldots, \sigma_n \in \operatorname{Hom}_K(L, M)$. Then the n+1 vectors

$$\begin{pmatrix} \sigma_i(e_1) \\ \vdots \\ \sigma_i(e_n) \end{pmatrix} \in M^n, \quad \text{for } i = 0, 1, \dots, n,$$

are M-linarly dependent. This means that there are $\lambda_0, \ldots, \lambda_n \in M$ not all zero, for which $\sum_{i=0}^n \lambda_i \sigma_i(e_k) = 0$ for $k = 1, \ldots, n$. Since each σ_i is K-linear, this means that the map $\sum_{i=0}^n \lambda_i \sigma_i$ is identically zero on L.

However, such an M-linear relation between field homomorphisms is necessarily trivial. Indeed, assume that

$$\sum_{i=0}^{n} \lambda_i \sigma_i \equiv 0, \quad \text{in } \operatorname{Hom}_K(L, L),$$

is such a relation with *minimal* number of non-zero coefficients $\lambda_i \in L$. There are at least two non-zero λ_i . We may assume they are λ_0 and λ_1 . Let $z \in L$ be such that $\sigma_0(z) \neq \sigma_1(z)$. Subtracting the relations

$$\sigma_0(z) \sum_{i \ge 0} \lambda_i \sigma_i(x) = 0,$$
 for all $x \in L$,
 $\sum_{i \ge 0} \lambda_i \sigma_i(zx) = 0,$ for all $x \in L$,

gives the relation

$$\sum_{i\geq 1} \lambda_i(\sigma_0(z) - \sigma_i(z))\sigma_i(x) = 0, \quad \text{for all } x \in L.$$

Since this relation has fewer non-zero coefficients, all coefficients must be zero. In particular $\lambda_1(\sigma_0(z) - \sigma_1(z)) = 0$. This implies $\lambda_1 = 0$. Contradiction.

This proves the lemma.

Definition. Let $K \subset L$ be finite. Then the separability degree of L over K is defined by

$$[L:K]_{\text{sep}} = \# \text{Hom}_K(L,M),$$
 for any normal extension $L \subset M$.

To see that this definition does not depend on the choice of the field M, we write L = K(A) for some finite set $A \subset L$. Then the product f of the minimum polynomials over K of $a \in A$ splits completely in M[X]. Let $E \subset M$ be the subfield generated by those zeroes. Then E is a splitting field of f over K. For every $a \in A$ and every $\sigma \in \operatorname{Hom}_K(L, M)$ the element $\sigma(a)$ is in E. Since L is generated over K by A, this means that $\sigma(L) \subset E$ for every $\sigma \in \operatorname{Hom}_K(L, M)$. It follows that $\operatorname{Hom}_K(L, M) = \operatorname{Hom}_K(L, E)$. This shows that $[L:K]_{\text{sep}}$ only depends on the splitting field E and not on the choice of M.

The separability degree satisfies $[L:K]_{\text{sep}} \leq [L:K]$. This follows from the Artin-Dedekind Lemma. The separability degree is multiplicative in the sense that for finite extensions $K \subset E \subset L$ we have

$$[L:K]_{\text{sep}} = [L:E]_{\text{sep}} \cdot [E:K]_{\text{sep}}.$$

To see this, write L = K(A) and let M be a splitting field of the product of the minimum polynomials over K of the elements $a \in A$. Then M is normal over K and hence also over E and E. For every E and E is the isomorphism E is the individual content of E individual content of E is the individual content of E individual content of E is the individual content of E individual content of E is the individual content of E is the individual content of E is the individual content of E is t

$$\operatorname{Aut}_K(M) \longrightarrow \operatorname{Hom}_K(L, M)$$

is surjective. Two automorphisms in $\operatorname{Aut}_K(L)$ have the same image if and only if their quotient fixes L. Therefore we have

$$\#\operatorname{Hom}_K(L, M) = \#\operatorname{Aut}_K(M)/\#\operatorname{Aut}_L(M).$$

There are similar formulas for $\#\text{Hom}_K(E, M)$ and $\#\text{Hom}_E(L, M)$. Multiplying the together, the cardinalities of the automorphism groups cancel out and the result follows.

Theorem/Criterion. Let $K \subset L$ be a finite extension. The following are equivalent.

- (1) The extension $K \subset L$ is separable.
- (2) We have L = K(A) for some finite set of separable elements $A \subset L$.
- (3) We have $[L:K]_{sep} = [L:K]$.

Proof. $(1) \Rightarrow (2)$ This is trivial.

 $(2) \Rightarrow (3)$ If L is of the form K(a) for some separable element a, then the minimum polynomial $f \in K[X]$ of a has deg f zeroes in any normal extension $L \subset M$. This means that $[L:K]_{\text{sep}} = \#\text{Hom}_K(L,M) = [L:K]$ as required.

In general, we write L as a successive extension, adjoining one separable element at the time. Since each element is separable over K, it is also separable over any larger field $K \subset E \subset L$. Therefore we can invoke the result for extensions generated by one single element. The fact that both the degree and the separability degree are multiplicative, implies the result in general.

 $(3) \Rightarrow (1)$ Let $a \in L$. Then we have

$$K \subset K(a) \subset L$$

By Artin we have $[K(a):K]_{\text{sep}} \leq [K(a):K]$ and $[L:K(a)]_{\text{sep}} \leq [L:K(a)]$. Since both the degree and the separability degree are multiplicative, the hypothesis $[L:K]_{\text{sep}} = [L:K]$ implies $[K(a):K]_{\text{sep}} = [K(a):K]$. So, for every normal extension $L \subset M$ there are as many K-homomorphism $K(a) \longrightarrow M$ as the degree of the minimum polynomial f of a. This is only possible if all zeroes of f in M are distinct. So f is separable, as required.

It follows that an extension of the form $K \subset E \subset L$ is separable if and only if both $K \subset E$ and $E \subset L$ are separable.

Theorem/Criterion. Let $K \subset L$ be a finite extension. The following are equivalent:

- (1) The extension $K \subset L$ is Galois;
- (2) The field K is the fixed field of $Aut_K(L)$;
- (3) There a subgroup $G \subset \operatorname{Aut}(L)$ whose fixed field is K;
- (4) The field L is the splitting field of some separable polynomial in K[X].

Proof. (1) \Rightarrow (2) We put $G = \operatorname{Aut}_K(L)$. The group G is also equal to $\operatorname{Aut}_{L^G}(L)$. Therefore we have

$$\#G = \#\operatorname{Hom}_{L^G}(L, L) \le [L : L^G] \le [L : K] \stackrel{(*)}{=} [L : K]_{\operatorname{sep}} \stackrel{(*)}{=} \#\operatorname{Hom}_K(L, L) = \#G.$$

The equalities (*) follow from the fact that $K \subset L$ is normal and separable. It follows that we have equality everywhere. In particular, we obtain the equalities $L^G = K$ and #G = [L:K].

The implication $(2) \Rightarrow (3)$ is trivial. For $(3) \Rightarrow (4)$ we write L = K(A) for some finite set $A \subset L$. By adding more elements to A, we may assume it to be G-stable. Then the polynomial $\prod_{a \in A} (X - a)$ has coefficients in $L^G = K$ and its splitting field is equal to L. It has distinct zeroes in L, so it is separable.

 $(4) \Rightarrow (1)$ The field L is a splitting field. So it is normal by the criterion for normality. Since f is separable, so are the minimum polynomials of its zeroes. It follows by the separability criterion that $K \subset L$ is also separable. Therefore $K \subset L$ is Galois, as required.

The group $\operatorname{Aut}_K(L)$ is the Galois group of L over K and is denoted by $\operatorname{Gal}(L/K)$.

Theorem. (Main Theorem of Galois theory). Let $K \subset L$ be a finite Galois extension with Galois group G. Then the following two maps

are inverse to one another. Moreover,

- (a) for each subgroup H we have $[L:L^H]=\#H$;
- (b) for each subfield E we have $\#Aut_E(L) = [L:E]$.
- (c) for any subfield E the extension $E \subset L$ is Galois with Galois group $\operatorname{Aut}_E(L)$. The extension $K \subset E$ is Galois if and only if $\operatorname{Aut}_E(L) \subset G$ is a normal subgroup. In this case $\operatorname{Gal}(E/K) = G/\operatorname{Aut}_E(L)$.

Proof. We have $H \subset \operatorname{Aut}_{L^H}(L)$ and $E \subset L^{\operatorname{Aut}_E(L)}$. Since we have

$$[L:L^{\operatorname{Aut}_E(L)}] \stackrel{(a)}{=} \#\operatorname{Aut}_E(L) \stackrel{(b)}{=} [L:E],$$

$$\#\operatorname{Aut}_{L^H}(L) \stackrel{(b)}{=} [L:L^H] \stackrel{(a)}{=} \#H,$$

it suffices to prove the statements (a), (b) to establish the Galois correspondence

By the criterion $L^H \subset L$ is Galois with Galois group H. Therefore $[L:L^H]=\#H$ and (a) follows. Part (b) and the first statement in (c) follow from the fact that the extension $E \subset L$ is normal and separable and therefore Galois. If the subgroup $H = \operatorname{Aut}_E(L)$ in very last statement is normal in G, then G/H acts on $E = L^H$ and its field of invariants is K. By the criterion E is Galois over K with Galois group G/H. Conversely, suppose that $E = L^H$ and that $K \subset E$ is Galois. By the criterion of normality, any $\sigma \in \operatorname{Aut}_K(L)$ restricts to an automorphism of E. This means that $\sigma^{-1}H\sigma$ fixes E, so that $\sigma^{-1}H\sigma \subset H$ and E is normal in E. The natural homomorphism E and E is an isomorphism.

This proves the theorem.