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1. Split k-algebras.

Let k be a field. A finite k-algebra is called split if it isomorphic to km for some m ≥ 0.

Lemma 1.1. Let A be a split k-algebra. Then the set Homk(A, k) of k-algebra homo-
morphisms or k-points A −→ k has precisely m = dimk A elements. In addition, if a ∈ A
satisfies ϕ(a) = 0 for every ϕ ∈ Homk(A, k), we have a = 0.

Proof. We may assume that A = km for some m ≥ 0. The standard basis vectors ei of km

form a set of orthogonal idempotents. Therefore any ϕ ∈ Homk(A, k) maps precisely one
idempotent ei to 1 and all the others to 0. It follows that the k-algebra homomorphisms
km −→ k are precisely the m projections. The second statement is therefore also clear.

This proves the lemma.

Let C be the category of split k-algebras and let Sets be the category of finite sets.
Let F : C −→ Sets be the contravariant functor that maps an object A of C to the
set Homk(A, k) of its k-points. It maps a k-algebra morphism s : A −→ B to the map
Homk(B, k) to Homk(A, k) given by f 7→ f · s.

In the other direction, let G : Sets −→ C be the contravariant functor that sends a
finite set X to the algebra Map(X, k). It sends a map g : X −→ Y in Sets to the k-algebra
homomorphism Map(Y, k) −→ Map(X, k) given by ϕ 7→ ϕ · g.

For any split k-algebra A we have #F (A) = dimk(A) and for every finite set X we
have #X = dimkG(X).

Theorem 1.2. The functors F and G defined above induce an anti-equivalence of cate-
gories

C ∼= Sets.

Proof. In order to show that GF ∼= idC we observe that the evaluation map

A −→ GF (A) = Map(Homk(A, k), k)

given by a 7→ ga where ga(ϕ) = ϕ(a) is an isomorphism. Indeed, by Lemma 1.1 the map
is injective. Since both k-algebras have the same dimension, they are isomorphic.

Similarly, we have FG ∼= idSets. This follows from the fact that the evaluation map

X −→ FG(X) = Homk(Mapk(X, k), k)

is an isomorphism. This in turn follows from the fact that it is injective and the equality
dimk Mapk(X, k) = #X. Lemma 1.1 implies that both sides have the same cardinality.

The initial objects of the category C are isomorphic to k. In this equivalence of cate-
gories they correspond to the final objects of Sets which are the one point sets. Similarly,
the initial obeject ∅ of Sets corresponds to the final object of C. The latter is the zero
algebra.

1



Finite products and sums of the category C correspond to finite sums and products
respectively of the category Sets. This means that for two finite split k-algebras A and B
we have F (A×B) = F (A)∪F (B) and F (A⊗kB) = F (A)×F (B). Similarly for two finite
sets X and Y we have G(X ∪ Y ) = G(X)×G(Y ) and G(X × Y ) = G(X)⊗k G(Y ). Here
X ∪ Y denotes the disjoint union of X and Y . In a similar way, fibred sums and products
correspond to one another.

Quotients of split k-algebras are again split. Indeed, let A be quotient of Map(X, k).
Then the kernel of the morphism km → A is a product of ideals Ix of k. Then A ∼=
Map(Y, k), where Y is the set of x ∈ X for which Ix = 0. Subalgebras of split algebras are
also split. Indeed, let A be a subalgebra of Map(X, k). We write x ∼ y if f(x) = f(y) for
all f ∈ A. This is an equivalence relation. Let X ′ be the set of equivalence classes. Then
we have natural inclusions A ⊂ Map(X ′, k) ⊂ Map(X, k). For every x ∈ X let ex denote
the map X → k for which f(y) = 1 or 0 depending on whether y ∼ x or not. The maps
ex only depend on the equivalencee classes of x. They form a k-basis for Map(X ′, k). In
order to prove that A is equal to Map(X ′, k), it suffices to prove that ex ∈ A for all x ∈ X.

Let x ∈ X. For each y 6∼ x there exists a map fy ∈ A for which fy(x) 6= fy(y). Then
we have (Lagrange interpolation)

ex =
∏
y 6∼x

fy − fy(y)

fy(x)− fy(y)
.

Here the product runs over y up to equivalence.

2. Finite Galois extensions.

Let k be a field and let k ⊂ l be a finite extension of k. Put π = Homk(l, l) = Autk(l). We
have

π = Homk(l, l) = Homl(l ⊗k l, l).
If l ⊗k l is a split l-algebra, Lemma 1.1 implies that the rightmost set has cardinality
diml l ⊗k l = [l : k].

Lemma 2.1. Suppose that l ⊗k l is a split l-algebra. Then for every finite π-set X the
natural map

Mapπ(X, l)⊗k l −→ Map(X, l)

is injective.

Proof. Since Mapπ(−, l) and Map(−, l) map disjoint unions to direct products, we may
assume that X is transitive. This means that X is isomorphic to the set of cosets π/H for
some subgroup H of π.

Consider the following commutative diagram

Mapπ(π/H, l)⊗k l −→ Map(π/H, l)y y
Mapπ(π, l)⊗k l −→ Map(π, l)y∼= y∼=

l ⊗k l
∼=−→ l(π)
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Here the top horizontal maps are given by f ⊗ λ 7→ [σ 7→ λf(σ)]. The top vertical
arrows are both injective. The bottom vertical maps are given by f ⊗ λ 7→ λf(1) and
f 7→ (f(σ))σ respectively. Both are isomorphisms. Finally the bottom row sends x⊗ y to
the vector (yσ(x))σ in l(π).

To prove that the bottom row is an isomorphism, we oberve that both l⊗k l and l(π)

are split l-algebras and apply the functor of Theorem 1.2: it suffices to show that the map

Homl(l
(π), l) −→ Homl(l ⊗k l, l),

that maps the projection on the σ-coordinate to the homomorphism l ⊗k l → l given by
x ⊗ y 7→ yσ(x) is an isomorphism. This follows immediately from the fact that the map
from π = Homk(l, l) to Homl(l

(π), l) given by mapping σ ∈ π to the k-algebra morphism
given by x⊗ y 7→ yσ(x), is an isomorphism.

We conclude that the top row is injective, as required.

In this section, let C be the category of k-algebras A that are split over l, i.e. for
which A⊗k l is a split l-algebra. Let Setsπ be the category of finite π-sets. Let

F : C −→ Setsπ

be the contravariant functor that maps an object A of C to the set Homk(A, l) of its
l-points. In the other direction, let

G : Setsπ −→ C

be the contravariant functor that maps a finite π-set X to the k-algebra Mapπ(X, l).
The group π acts on the finite set F (A) = Homk(A, l) by composition. By Lemma 2.1

the algebra Mapπ(X, l)⊗k l is isomorphic to a subalgebra of the split l-algebra Map(X, l).
Therefore it is itself split. It follows that the F and G are well defined contravariant
functors.

Theorem 2.2. The functors F and G defined above induce an anti-equivalence of cate-
gories

C ∼= Setsπ.

Proof. Step 1. We show that GF ∼= idC . We consider the evaluation map

A −→ GF (A) = Mapπ(Homk(A, l), l)

given by a 7→ ga where ga(ϕ) = ϕ(a). We tensor this isomorphism with l over k and obtain
the following diagram

A⊗k l −→ Mapπ(Homk(A, l), l)⊗k ly
↘ Map(Homk(A, l), l)

‖

Map(Homl(A⊗k l, l), l)
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The diagonal map is the evaluation of section 1. SinceA⊗kl is a split l-algebra, Theorem 1.2
implies that it is an isomorphism. By Lemma 2.1 the vertical arrow is injective. It follows
that the horizontal map is an isomorphism, as required.

Step 2. As a byproduct we see that the vertical map in the diagram above is an isomor-
phism. This is important for the rest of the proof. We state this result explicitly for future
reference:

Corollary. Let X = Homk(A, l) for some k-algebra in the category C. Then the natural
map

Mapπ(X, l)⊗k l −→ Map(X, l)

is an isomorphism of k-algebras. In particular, this applies to π = Homk(A, l) with A = l
and hence to π-sets that are disjoint unions of copies of π.

Step 3. We show that the natural map

Mapπ(X, l)⊗k l −→ Map(X, l)

is an isomorphism for every finite π-set X.
It suffices to show this for transitive set X. Therefore, let X = π/H for some subgroup

H of π. The trick is to relate X to π-sets that are unions of copies of π and for which we
know the result already by Step 2. This can be done as follows. Consider the fiber product

π ×π/H π = {(σ, τ) ∈ π × π : σH = τH}

The map
π ×π/H π −→ π × (H)

given by (σ, τ) 7→ (σ, σ−1τ) is an isomorphism in the category Setsπ of π-sets. Here (H)
denotes the set H with trivial π-action. We see that the π-set π×π/H π is a union of copies
of π. Consider the following exact sequence of k-vector spaces

0 −→ Mapπ(π/H, l) −→ Mapπ(π, l)
r−→Mapπ(π ×π/H π, l).

Here the map r is the map that maps f to the map that sends (σ, τ) to the difference
f(σ)−f(τ). We tensor this sequence with l over k and consider the following commutative
diagram with exact rows

0 −→ Mapπ(π/H, l)⊗k l −→ Mapπ(π, l)⊗k l
r⊗1−→ Mapπ(π ×π/H π, l)⊗k ly y y

0 −→ Map(π/H, l) −→ Map(π, l)
r−→ Map(π ×π/H π, l)

By the corollary of the proof of Step 1, we see that the two rightmost vertical arrows are
bijections. Therefore the same is true for the leftmost vertical map. This completes Step 3.

Step 4. To see that FG ∼= idSets, we consider the evaluation map

X −→ FG(X) = Homk(Mapπ(X, l), l)
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It fits in the following commutative diagram

X −→ Homk(Mapπ(X, l), l)∥∥∥
↘ Homl(Mapπ(X, l)⊗k l, l)y∼=

Homl(Map(X, l), l)

The bottom vertical map is a bijection by Step 3. Since the diagonal map is an isomorphism
by Theorem 1.2, we conclude that the top horizontal map is an isomorphism, as required.

Remark. Let l be a field that is split over itself and let π = Autk(l). Under the functors
F and G, objects of C that are fields, correspond to transitive π-sets.

Indeed, any transitive π-set X is of the form π/H for some subgroup H ⊂ π that is
unique up to conjugation. The map from G(X) = Mapπ(X, l) to l given by φ 7→ φ(1) is an
injective k-algebra homomorphism that identifies G(X) with the subfield of H-invariants
of l.

Conversely, let A be a k-algebra that is a field and is split over l. Then F (A) is a
transitive π-set, because if F (A) is the disjoint union of two non-empty π-sets Y and Z,
then Theorem 2.2 implies that A ∼= G(Y ) × G(Z) and this is imposisble if A is a field.
Writing F (A) = π/H for some subgroup H of π and applying G to the epimorphism
π −→ π/H we see that A is actually isomorphic to a subfield of l that contains k.

3. The classical theory.

Let K be a field. An element of a finite extension of K is called separable over K if its
minimum polynomial over K has no multiple zeroes. A finite extension K ⊂ L is called
separable if every a ∈ L is separable. A finite extension K ⊂ L is called normal if the
minimum polynomial of any element a ∈ L is a product of linear factors in the ring L[X]. A
finite extension K ⊂ L is called Galois if it is both normal and separable. The Galois group
of L over K is the group of automorphisms of L that fix K. It is denoted by Gal(L/K).

Theorem 3.1. Let K ⊂ L be a finite Galois extension with Galois group G. Then the
maps f and g

{fields K ⊂ E ⊂ L}
f−→
←−
g

{subgroups H ⊂ G}

given by

f(E) = AutE(L) and g(H) = LH ,

are inclusion reversing bijections that are inverse to one another.

Proof. Since L is Galois overK, it is the splitting field of a separable polynomial h ∈ K[X].
This means that the K-algebra A = K[X]/(h) has the property that A ⊗K L is a split
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L-algebra. For each zero α ∈ L of h let φα : A −→ L denote the K-algebra morphism
given by X 7→ α. The morphism

⊗
h(α)=0

A −→ L

induces by the various morphisms φα, is a surjective morphism of K-algebras. Since any
tensor products of copies of A is split over L, so is the quotient L. Therefore Theorem 2.2
applies with π = G = Gal(L/K).

Let E be a field with K ⊂ E ⊂ L. Then the functor F maps the embedding E ⊂ L
of K-algebras to an epimorphism π = F (L) −→ F (E). This shows that the π-set F (E)
is isomorphic to π/H where H is the subgroup AutE(L) of π. It follows that F (E) =
AutE(L) = H.

Conversely, let H be a subgroup of π. Then the functor G maps the surjection
π −→ π/H to the K-algebra monomorphism LH ⊂ L. In particular we have K ⊂ LH .

It is easy to see that F andG reverse inclusions. Therefore the equivalence of categories
of Theorem 2.2 implies the theorem.

Remark 3.2. In the notation of Theorem 3.1, the field L is Galois over each subfield E
with Galois group AutE(L). On the other hand, the field LH is Galois over K if and only
if H is normal in G. In this case the natural map π/H −→ AutK(E) is an isomorphism
of groups.

Proof. If the K-algebra L splits over K, it certainly also splits over each subfield E.
Therefore L is Galois over E if it is Galois over K. This takes care of the first statement.
A subgroup H ⊂ π is normal if and only if τHτ−1 = H for all τ ∈ π. This shows that
τ(LH) = lH for all τ ∈ π. In other words, LH is Galois over K.

3. Finite étale algebras.

Let k be a field. Recall that a finite k-algebra A is called split if its isomorphic to kd for
some d. The algebra A is called potentially split if and only if it splits over an algebraic
closure k of k. It is easy to see that for any potentially split k-algebra A there actually
exists a finite extension k ⊂ l for which A⊗k l is split over l.

For any finite k-algebra A, we define the trace Tr(x) of x ∈ A as the trace of the
multiplication by x map. The discriminant ∆(A/k) of A is the determinant of the matrix
(Tr(eiej))1≤i,j≤d. Here e1, . . . , ed ∈ A denote a k-basis for A. Changing the basis, multi-
plies ∆(A/k) by a non-zero square in k. Therefore the discriminant is only well defined up
to multiplication by non-zero squares of k.

For any two finite k-algebra A, B we have ∆((A × B)/k) = ∆(A/k) · ∆(B/k). For
any extension field k ⊂ l, the discriminant ∆(A ⊗k l/l) is, up to squares in l∗, equal to
∆(A/k). Since the discriminant of the k-algebra is not zero, the same is true for any split
k-algebra and even for any potentially split k-algebra.

The pairing A×A −→ k given by (a, b) 7→ Tr(ab) is non-degenerate if and only if the
discriminant ∆(A/k) is not zero.

Definition 3.1. Let A be a k-algebra. The module of Kähler differentials ΩA/k of A is
the A-module generated by symbols dx for x ∈ A modulo the A-submodule generated by
elements that reflect the usual rules of differential calculus:
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(a) dλ = 0 for all λ ∈ k ⊂ A;
(b) d(x+ y)− dx− dy for all x, y ∈ A;
(c) d(xy)− xdy − ydx for all x, y ∈ A.

For any two finite k-algebra A, B we have Ω(A×B)/k = ΩA/k × ΩB/k. For any field
extension k ⊂ l we have Ω(A⊗kl)/l = ΩA/k ⊗k l, Since ΩA/k = 0 for A = k, the same is
true for any split k-algebra and any potentially split k-algebra. For every A-module M we
have Der(A,M) = Hom(ΩA/k,M). Here Der(A,M) denotes the A-module of derivations
A −→M .

Definition 3.2. A finite k-algebra A is called étale if it satisfies one of the four equivalent
conditions of the following proposition.

Proposition 3.2. Let A be a finite k-algebra. Then the following are equivalent.
(a) The discriminant ∆(A/k) is not zero.
(b) The module of Kähler differentials ΩA/k is zero.
(c) A is potentially split.
(d) A is potentially reduced

By what has been said above, we see that the product of two étale algebras is again
étale and that a k-algebra A is étale if and only if A⊗k l is an étale l-algebra for some, or
equivalently, every field l containing k. In particular, since k itself is étale, split k-algebras
are also étale.

Proof. We may assume that k is algebraically closed. If A is a product of two k-algebras
B and C then conditions (a), (b), (c) and (d) hold if and only if they hold for both B
and C.

We proceed by induction on the k-dimension of A. If A has dimension 1, then A = k
and all four conditions hold true. If dimkA > 1, it cannot be a field. If A has a proper ideal
I with I = I2, Lemma 3.4 below implies A ∼= A/I×A/Ann I. Since 0 < dimA/I < dimA,
we are done by induction. If there is no such ideal, choose a maximal ideal m ⊂ A and
consider the sequence of ideals m ⊃ m2 ⊃ m3 . . .. Since this sequence stabilizes, we have
mk = mk+1 for some k ≥ 1. It follows that mk = m2k and hence by assupmtion mk = 0
This implies that A contains non-zero nilpotents so that (a), (c) and (d) do not hold. To
see that (b) does not hold either, we define the derivation d : A −→ m/m2 by d(a) = a−a,
where a ∈ k ⊂ A denote is the unique element in k ⊂ A congruent to a modulo m. Since
d is surjective, it is not zero and hence ΩA/k is not zero, as required.

Lemma 3.4. Let A be a finite k-algebra and let I ⊂ A be an ideal satisfying I = I2. Let
J = Ann I. Then the natural map A −→ A/I ×A/J is a k-algebra isomorphism.

Proof. Let S be the multiplicative subset 1 + I of A and let AS denote the corresponding
localization of A. Then the AS-ideal generated by I is zero. Indeed, let e1, . . . , em be a
minimal set of generators. Since I = I2 we have e1 =

∑m
i=1 λiei for certain λi ∈ I. It

follows that

(1− λ1)e1 =

m∑
i=2

λiei,
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contradicting the minimality of the set e1, . . . , em.
The A-ideal I is finitely generated and for each of its generators there exists an element

in S that annihilates it. The product b of these elements annihilates the ideal I. Since
b ≡ 1 (mod I), we see that the ideals I and Ann(I) are coprime. The lemma now follows
from the Chinese Remainder Theorem.

4. Infinite Galois theory.

Let k be a field and let k be a separable closure of k. Let π denote the group Autk(k)
of k-automorphisms of k. Equipped with the Krull topology, it is a compact Hausdorff
topological group.

In this section, let C be the category of finite étale k-algebras A and let Setsπ be the
category of finite sets equipped with continuous action by π. Here the finite sets have the
discrete topology. The continuity of the action of π means that each point has an open
stabilizer.

Let F : C −→ Setsπ be the contravariant functor that maps an object A of C to the
set Homk(A, k) of its k-points. In the other direction, let Let G : Setsπ −→ C be the
contravariant functor that maps a finite π-set X to the k-algebra Mapπ(X, k). Since A is
étale, the k-algebra A⊗k k is split and the set

F (A) = Homk(A, k) = Hom
k

(A⊗k k, k)

is finite of cardinality dimk A. The group π acts on F (A) by composition. To see that
the action is continuous, let f ∈ Homk(A, k). Choose a k-basis e1, . . . , ed for A and put
Z = {f(e1), . . . , f(ed)}. Then Z is a finite subset of k and the open subgroup UZ = {σ ∈
π : σ fixes Z} of π acts trivially on Z and hence fixes f . We see that the stabilizer of f is
an open subgroup of π. Therefore the π-action is continuous.

It follows that the functor F is well defined. We have no direct proof of the fact that
the functor G is well defined. This will be established in the course of the proof of the
following theorem.

Theorem 4.1. The functors F and G induce an anti-equivalence of categories

C ∼= Setsπ.

Proof. We show that GF ∼= idC . We consider the evaluation map

A −→ GF (A) = Mapπ(Homk(A, k), k)

given by a 7→ ga where ga(ϕ) = ϕ(a). As in Sections 1 and 2, it is immediate that this map
is injective. Since A étale, it is a product of fields, each of which is a finite étale extension
of k. Since the functor F maps products in the category C to disjoint unions in Setsπ
and the functor G does the converse, it suffices to consider the case where A = l is a finite
field extension of k. In this case the π-set Homk(l, k) is transitive. This follows from the
fact that every field homomorphism l ↪→ k extends to a field automorphism k ↪→ k (?).
Therefore Homk(l, k) is isomorphic to π/H for some open subgroup H of π.
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