
MATHEMATICS OF COMPUTATION
Volume 68, Number 225, January 1999, Pages 429–451
S 0025-5718(99)00992-8

FACTORIZATION OF THE TENTH FERMAT NUMBER

RICHARD P. BRENT

Abstract. We describe the complete factorization of the tenth Fermat num-
ber F10 by the elliptic curve method (ECM). F10 is a product of four prime
factors with 8, 10, 40 and 252 decimal digits. The 40-digit factor was found
after about 140 Mflop-years of computation. We also discuss the complete fac-
torization of other Fermat numbers by ECM, and summarize the factorizations
of F5, . . . , F11.

1. Introduction and historical summary

For a nonnegative integer n, the n-th Fermat number is Fn = 22n

+1. It is known
that Fn is prime for 0 ≤ n ≤ 4, and composite for 5 ≤ n ≤ 23. Also, for n ≥ 2, the
factors of Fn are of the form k2n+2 + 1. In 1732 Euler found that 641 = 5 · 27 + 1
is a factor of F5, thus disproving Fermat’s belief that all Fn are prime. No Fermat
primes larger than F4 are known, and a probabilistic argument makes it plausible
that only a finite number of Fn (perhaps only F0, . . . , F4) are prime.

The complete factorization of the Fermat numbers F6, F7, . . . has been a chal-
lenge since Euler’s time. Because the Fn grow rapidly in size, a method which
factors Fn may be inadequate for Fn+1. Historical details and references can be
found in [21, 35, 36, 44, 74], and some recent results are given in [17, 26, 27, 34].

In the following, pn denotes a prime number with n decimal digits (not necessarily
the same at each occurrence). Similarly, cn denotes a composite number with n
decimal digits.

Landry [41] factored F6 = 274177 · p14 in 1880, but significant further progress
was only possible with the development of the digital computer and more efficient
algorithms. In 1970, Morrison and Brillhart [55] factored

F7 = 59649589127497217 · p22

by the continued fraction method. Then, in 1980, Brent and Pollard [18] factored

F8 = 1238926361552897 · p62

by a modification of Pollard’s “rho” method [6, 58]. The larger factor p62 of F8 was
first proved prime by Williams [18, §4] using the method of Williams and Judd [75].

If it had been invented earlier, the rho method could have been used to factor
F7 (with a little more difficulty than F8, see [18, Table 2]). Similarly, the multiple-
polynomial quadratic sieve (MPQS) method [59, 70], which is currently the best

Received by the editor February 2, 1996 and, in revised form, May 20, 1997.
1991 Mathematics Subject Classification. Primary 11Y05, 11B83, 11Y55; Secondary 11–04,

11A51, 11Y11, 11Y16, 14H52, 65Y10, 68Q25.
Key words and phrases. Computational number theory, Cunningham project, ECM, elliptic

curve method, factorization, Fermat number, F9, F10, F11, integer factorization.

c©1999 American Mathematical Society

429

430 R. P. BRENT

“general-purpose” method for composite numbers of up to about 100 decimal digits,
could have been used to factor both F7 and F8, but it was not available in 1980.

Logically, the next challenge after the factorization of F8 was the factorization
of F9. It was known that F9 = 2424833 · c148. The 148-digit composite number
resisted attack by methods such as Pollard rho, Pollard p±1, and the elliptic curve
method (ECM), which would have found “small” factors. It was too large to factor
by the continued fraction method or its successor, MPQS. The difficulty was finally
overcome by the invention of the (special) number field sieve (SNFS), based on a
new idea of Pollard [43, 61]. In 1990, Lenstra, Lenstra, Manasse and Pollard, with
the assistance of many collaborators and approximately 700 workstations scattered
around the world, completely factored F9 by SNFS [44, 45]. The factorization is

F9 = 2424833 · 7455602825647884208337395736200454918783366342657 · p99 .

In §8 we show that it would have been possible (though more expensive) to complete
the factorization of F9 by ECM.
F10 was the “most wanted” number in various lists of composite numbers pub-

lished after the factorization of F9 (see, for example, the list in Update 2.9 of [21]).
F10 was proved composite in 1952 by Robinson [64], using Pépin’s test on the
SWAC. A small factor, 45592577, was found by Selfridge [65] in 1953 (also on the
SWAC). Another small factor, 6487031809, was found by Brillhart [20] in 1962 on
an IBM 704. Brillhart later found that the cofactor was a 291-digit composite.
Thus, it was known that F10 = 45592577 · 6487031809 · c291.

This paper describes the complete factorization of F10. Using ECM we found a
40-digit factor p40 = 4659775785220018543264560743076778192897 on October 20,
1995. The 252-digit cofactor c291/p40 = 13043 · · ·24577 was proved to be prime us-
ing the method of Atkin and Morain [1]. Later, a more elementary proof was found,
using Selfridge’s “Cube Root Theorem” (see §9). Thus, the complete factorization
is

F10 = 45592577 ·6487031809 ·4659775785220018543264560743076778192897 ·p252.

So far, this summary has been chronological, but now we backtrack, because F11

was completely factored in 1988, before the factorization of F9 and F10. In fact,

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · p564,

where p564 = 17346 · · ·34177. The two 6-digit factors were found by Cunning-
ham [21, 29] in 1899, and remaining factors were found by the present author in
May 1988.

The reason why F11 could be completely factored before F9 and F10 is that the
difficulty of completely factoring numbers by ECM is determined mainly by the size
of the second-largest prime factor of the number. The second-largest prime factor
of F11 has 22 digits and is much easier to find by ECM than the 40-digit factor
of F10.

A brief summary of the history of factorization of F5, . . . , F11 is given in Table 1.
For a similar history of F12, . . . , F22, see [25, p. 148].

In §§2–4 we describe some variants of ECM and their performance, and in §5 we
describe some implementations of ECM which were used in attempts to factor F10

and other composite numbers. Details of the factorization of F10 are given in §6.
As details of the factorization of F11 have not been published, apart from two brief

FACTORIZATION OF FERMAT NUMBERS BY ECM 431

Table 1. Complete factorization of Fn, n = 5, . . . , 11

n Factorization Method Date Comments
5 p3 · p7 Trial division 1732 Euler
6 p6 · p14 See [74] 1880 Landry
7 p17 · p22 CFRAC 1970 Morrison and Brillhart
8 p16 · p62 B-P rho 1980 Brent and Pollard (p16, p62)

See [18, 75] 1980 Williams (primality of p62)
9 p7 · p49 · p99 Trial division 1903 Western (p7)

SNFS 1990 Lenstra et al (p49, p99)
10 p8 · p10 · p40 · p252 Trial division 1953 Selfridge (p8)

Trial division 1962 Brillhart (p10)
ECM 1995 Brent (p40, p252)

11 p6 · p′6 · p21 · p22 · p564 Trial division 1899 Cunningham (p6, p
′
6)

ECM 1988 Brent (p21, p22, p564)
ECPP 1988 Morain (primality of p564)

announcements [9, 11], we describe the computation in §7. Further examples of
factorizations obtained by ECM are given in §8.

Rigorously proving primality of a number as large as the 564-digit factor of F11

is a nontrivial task. In §9 we discuss primality proofs and “certificates” of primality
for the factors of Fn, n ≤ 11.

Attempts to factor Fermat numbers by ECM are continuing. For example, 27-
digit factors of F13 and F16 have recently been found [13, 17]. The smallest Fermat
number which is not yet completely factored is F12. It is known that F12 has at
least seven prime factors, and

F12 = 114689 · 26017793 · 63766529 · 190274191361 · 1256132134125569 · c1187.

The prospects for further progress in factoring F12 are discussed in §10.
The reader who is interested in numerical results but not in details of the imple-

mentation and performance prediction of ECM can safely skip forward to §6.

1.1. Acknowledgements. Thanks are due to Hendrik Lenstra, Jr., for the ECM
algorithm which made the factorization of F10 and F11 possible; and to Peter Mont-
gomery and Hiromi Suyama for their practical improvements to ECM. John Pollard
provided some of the key ideas with his “p−1” and “rho” methods. John Brillhart,
Richard Crandall, Wilfrid Keller, Donald Knuth, John Selfridge and Daniel Shanks
provided historical information, references, and/or corrections to drafts of this pa-
per. Bruce Dodson, Arjen Lenstra, Peter Montgomery, Robert Silverman and Sam
Wagstaff, Jr. provided information about other attempts to factor F10. François
Morain proved the primality of the 564-digit factor of F11. An anonymous referee
provided valuable comments which helped to improve the exposition. John Can-
non provided access to the Magma package. Bob Gingold graciously volunteered
spare computer cycles on a SparcCenter 2000. The ANU Supercomputer Facility
provided computer time on Fujitsu VP100, VP2200/10, and VPP300 vector pro-
cessors. The ANU-Fujitsu CAP Project provided access to a Fujitsu AP1000, and
the ACSys Cooperative Research Centre provided access to eight DEC alphas.

432 R. P. BRENT

2. Variants of ECM

The elliptic curve method (ECM) was discovered by H. W. Lenstra, Jr. [46] in
1985. Practical refinements were suggested by various authors [8, 23, 50, 51, 72].
We refer to [45, 52, 62, 71] for a general description of ECM, and to [24, 69] for
relevant background.

Suppose we attempt to find a factor of a composite number N , which we can
assume not to be a perfect power [2], [44, §2.5]. Let p be the smallest prime factor
of N . In practice it is desirable to remove small factors (up to say 104) by trial
division before applying ECM, but we only need assume p > 3.

We describe the algorithms in terms of operations in the finite fieldK = GF (p) =
Z/pZ. In practice, when p is unknown, we usually work modulo N and occasionally
perform GCD computations which will detect any nontrivial factor of N (probably
p, though possibly a different factor of N). Because there is a natural ring ho-
momorphism from Z/NZ to Z/pZ, working modulo N can be regarded as using a
redundant representation for elements of Z/pZ.

Pollard’s p − 1 method [57] uses the multiplicative group of the finite field K.
ECM is analogous, but uses a group G defined on an elliptic curve. Although this
makes group operations more expensive, a crucial advantage of ECM is that several
different groups can be tried in an attempt to find a factor.

There is no loss of generality in assuming that the elliptic curve is given in
Weierstrass normal form

y2 = x3 + ax+ b,(1)

where a and b are constants such that

4a3 + 27b2 6= 0(2)

in K. G consists of the set of points (x, y) ∈ K ×K which lie on the curve, and a
“point at infinity” O. A commutative and associative group operation is defined in
a standard way [69]. In accordance with the usual convention we write the group
operation additively. The zero element of G is O.

Let g = |G| be the order of G. We have g = p+ 1 − t, where t satisfies Hasse’s
inequality t2 < 4p. The number of curves with given t can be expressed in terms
of the Kronecker class number of t2 − 4p (see [46]).

In practice, to avoid computation of square roots, we select a pseudo-random
parameter a and initial point (x1, y1) on the curve, and then compute b from (1).
If desired, the condition (2) can be checked by a GCD computation.

2.1. Other models. We use the words “model” and “form” interchangeably. The
Weierstrass form (1) is not the most efficient for computations involving group
operations. With (1) we have to perform divisions modulo N . These are expensive
because they involve an extended GCD computation. To avoid divisions modulo N ,
we can replace (x, y) by (x/z, y/z) in (1) to get a homogeneous Weierstrass equation

y2z = x3 + axz2 + bz3.(3)

The points (x, y, z) satisfying (3) are thought of as representatives of elements of
P 2(K), the projective plane over K, i.e. the points (x, y, z) and (cx, cy, cz) are
regarded as equivalent if c 6= 0 mod p. We write (x : y : z) for the equivalence class
containing (x, y, z). The additive zero element O is (0 : 1 : 0) and we can test for
it by computing GCD(N, z).

FACTORIZATION OF FERMAT NUMBERS BY ECM 433

Montgomery [50] suggested using the form

by2 = x3 + ax2 + x(4)

or, replacing (x, y) by (x/z, y/z) as above,

by2z = x3 + ax2z + xz2.(5)

Corresponding to the condition (2) we now have the condition b(a2 − 4) 6= 0.
Not every elliptic curve can be expressed in the form (4) or (5) by rational

transformations. However, by varying a in (4) or (5), we get a sufficiently large
class of pseudo-random curves. The exact value of b in (4) or (5) is not important,
but it is significant whether b is a quadratic residue (mod p) or not. In general we
get two different groups, of order p+ 1± t, by varying b.

Assume that we start with a point P1 = (x1 : y1 : z1) on (5). For positive integer
n, we write Pn = nP1 and suppose Pn = (xn : yn : zn). Montgomery [50, §10]
shows in a direct way that, for positive integer m,n such that Pm 6= ±Pn, we have
an addition formula

xm+n

zm+n
=
z|m−n|(xmxn − zmzn)2
x|m−n|(xmzn − zmxn)2(6)

and a duplication formula

x2n

z2n
=

(x2
n − z2

n)2

4xnzn(x2
n + axnzn + z2

n)
.(7)

An alternative derivation of (6)–(7), using addition and duplication formulas for
the Jacobian elliptic function sn2(u), is given in [23, p. 422]. This derivation makes
the reason for associativity clear.

Note that (6)–(7) do not specify the y-coordinate. Fortunately, it turns out that
the y-coordinate is not required for ECM, and we can save work by not computing
it. In this case we write Pn = (xn : : zn). Since (x : y : z) + (x : −y : z) = O,
ignoring y amounts to identifying P and −P .

Montgomery [50, §10] shows how (6) and (7) can be implemented to perform an
addition and a duplication with 11 multiplications (mod N).

2.2. The first phase. The first phase of ECM computes Pr for a large integer r.
Usually r is the product of all prime powers less than some bound B1. There is no
need to compute r explicitly. By the prime number theorem, log r ∼ B1 as B1 →∞.
(Here and below, “log” without a subscript denotes the natural logarithm.)

From (6)–(7), we can compute the x- and z-components of (P1, P2n, P2n+1) or
(P1, P2n+1, P2n+2) from the x- and z-components of (P1, Pn, Pn+1). Thus, from
the binary representation of the prime factors of r, we can compute (xr : : zr) in
O(log r) = O(B1) operations, where each operation is an addition or multiplication
mod N . In fact, (xr : : zr) can be computed with about K1B1 multiplications
mod N and a comparable number of additions mod N , where K1 = 11/ log 2. If
z1 = 1, then K1 can be reduced to 10/ log 2. For details, see Montgomery [50, §10].

At the end of the first phase of ECM we check if Pr = O by computing
GCD(zr, N) (note the comment above on ring homomorphisms). If the GCD is
nontrivial then the first phase of ECM has been successful in finding a factor of N .
Otherwise we may continue with a second phase (see §3) before trying again with
a different pseudo-random group G.

434 R. P. BRENT

2.3. The starting point. An advantage of using (4) or (5) over (1) or (3) is that
the group order is always a multiple of four (Suyama [72]; see [50, p. 262]). Also, it
is possible to ensure that the group order is divisible by 8, 12 or 16. For example,
if σ /∈ {0,±1, 5},

u/v = (σ2 − 5)/(4σ),
x1/z1 = u3/v3,(8)
a+ 2 = (v − u)3(3u+ v)/(4u3v),

then the curve (5) has group order divisible by 12. As a starting point we can take
(x1 : : z1).

3. The second phase

Montgomery and others [8, 50, 51, 54] have described several ways to improve
Lenstra’s original ECM algorithm by the addition of a second phase, analogous to
phase 2 of the Pollard p − 1 method. We outline some variations which we have
implemented. Phase 1 is the same in all cases, as described in §2.2.

We assume that the form (5) is used with starting point P1 = (x1 : : z1) given
by (8). Bounds B2 ≥ B1 > 0 are chosen in advance. For example, if our aim is
to find factors of up to about 35 decimal digits, we might choose B1 = 106 and
B2 = 100B1 (see §4.4). In the following we assume that B2 � B1, so B2−B1 ' B2.
We define B3 = π(B2) − π(B1) ' B2/ logB2. The time required for phase 2 is
approximately proportional to B3.

Suppose the group order g has prime factors g1 ≥ g2 ≥ · · · . Phase 1 will usually
be successful if g1 ≤ B1. We say “usually” because it is possible that a prime factor
of g occurs with higher multiplicity in g than in r, but this is unlikely and can be
neglected when considering the average behaviour of ECM. Phase 2 is designed to
be successful if g2 ≤ B1 < g1 ≤ B2. To a good approximation, phase 1 is successful
if all prime factors of g are at most B1, while phase 2 is successful if all but one
prime factors of g are at most B1, and that one factor is at most B2.

In §§3.1–3.4 we describe several different versions of phase 2 (also called “con-
tinuations” because they continue after phase 1). Some versions are difficult to
implement using only the formulae (6)–(7). For this reason, some programs use
Montgomery’s form (5) for phase 1 and convert back to Weierstrass form (1) or (3)
for phase 2. For details of the transformation see [4, §4.2].

3.1. The standard continuation. Suppose phase 1 has computed Q = Pr such
that Q 6= O. The “standard continuation” computes sQ = (xrs : : zrs) for each
prime s, B1 < s ≤ B2, and is successful if GCD(zrs, N) is nontrivial for some such s.
We can amortize the cost of a GCD by following a suggestion of Pollard [58]. We
compute

GCD

(∏
s

zrs mod N,N

)
where the product mod N is taken over a sufficiently large set of s, and backtrack
if the GCD is composite. This reduces the average cost of a GCD essentially to
that of a multiplication mod N .

There is no advantage in using phase 2 if sQ is computed using the standard
binary method, which takes O(log s) group operations. It is much more efficient to
precompute a small table of points 2dQ, where 0 < d ≤ D say. Then, given s1Q

FACTORIZATION OF FERMAT NUMBERS BY ECM 435

for some odd s1, we can compute min(s1 + 2D, s2)Q, where s2 is the next prime,
using only one group operation. Thus, we can compute sQ for a sequence of values
of s including all primes in (B1, B2] and possibly including some composites (if 2D
is smaller than the maximal gap between successive primes in the interval), with
one group operation per point. Provided D is at least of order logB2, the work for
phase 2 is reduced from O(B2) group operations to O(B3) group operations.

The standard continuation can be implemented efficiently in O(logN logB2) bits
of storage. It is not necessary to store a table of primes up to B2 as the odd primes
can be generated by sieving in blocks as required. Even storing the primes to

√
B2

is unnecessary, because we can sieve using odd integers 3, 5, 7, 9, The sieving
does not need to be very efficient, because most of the time is spent on multiple-
precision arithmetic to perform group operations. Sieving could be replaced by
a fast pseudo-prime test, because it does not hurt ECM if a few composites are
included in the numbers generated and treated as primes.

3.2. The improved standard continuation. The standard continuation can be
improved—Montgomery’s form (5) can be used throughout, and most group op-
erations can be replaced by a small number of multiplications mod N . The key
idea [50, §4] is that we can test if GCD(zrs, N) is nontrivial without comput-
ing sQ. We precompute 2dQ for 0 < d ≤ D as above, using O(D) group op-
erations. We can then compute mQ for m = 1, 2D + 1, 4D + 1, . . . , using one
application of (6) for each point after the first. The points mQ are updated as
necessary, so only require O(logN) storage. Suppose s = m + n is a prime,
where n is even and 0 < n ≤ 2D. Now sQ = O implies mQ = ±nQ. Since
mQ = (xmr : : zmr) and ±nQ = (xnr : : znr) are known, it is sufficient to test
if GCD(xmrznr − xnrzmr, N) is nontrivial. We can avoid most of the GCDs as
in §3.1, by computing

∏
(xmrznr − xnrzmr) mod N , where the product is taken

over several m and n. Thus, the work is reduced to about three multiplications
mod N per prime s. It can be reduced to two multiplications mod N by ensuring
that znr = 1, which involves a precomputation of order D. A reduction to one
multiplication mod N is possible, at the cost of one extended GCD computation
per point mQ. This is worthwhile if D is sufficiently large. Another reduction by
a factor of almost two can be achieved by rational preconditioning [56]. For future
reference, we assume K2 multiplications mod N per comparison of points, where
1/2 ≤ K2 ≤ 3, the exact value of K2 depending on the implementation.

There is an analogy with Shanks’s baby and giant steps [66, p. 419]: giant steps
involve a group operation (about 11 multiplications) and possibly an extended GCD
computation, but baby steps avoid the group operation and involve only K2 ≤ 3
multiplications.

To decide on the table size D, note that setting up the table and computation
of the points mQ requires about D + B2/(2D) applications of (6). If storage is
not a consideration, the optimal D is approximately

√
B2/2. However, provided√

B2 > D � logB2, the setting up cost is o(B3), and the overall cost of phase 2
is about K2B3 multiplications mod N . Thus, storage requirements for an efficient
implementation of the improved standard continuation are not much greater than
for the standard continuation.

3.3. The birthday paradox continuation. The “birthday paradox” continua-
tion is an alternative to the (improved) standard continuation. It was suggested

436 R. P. BRENT

in [8] and has been implemented in several of our programs (see §5) and in the
programs of A. Lenstra et al. [4, 31, 45].

There are several variations on the birthday paradox idea. We describe a ver-
sion which is easy to implement and whose efficiency is comparable to that of the
improved standard continuation. Following a suggestion of Suyama, we choose a
positive integer parameter e. The choice of e is considered below. For the moment
the reader can suppose that e = 1.

Suppose, as in §3.1, that Q is the output of phase 1. Select a table size T . If
storage permits, T should be about

√
B3; otherwise choose T as large as storage

constraints allow (for reasonable efficiency we only need T � e logB3). Generate
T pseudo-random multiples of Q, say Qj = qejQ for j = 1, . . . , T . There is some
advantage in choosing the qj to be linear in j, i.e., qj = k0 + k1j for some pseudo-
random k0, k1 (not too small). In this case the Qj can be computed by a “finite
difference” scheme with O(eT) group operations because the e-th differences of the
multipliers qej are constant. Another possibility is to choose qj to be a product of
small primes. For example, in our programs C–D (see §5) we use a set of 2dlog2 T e
odd primes and take qj to be a product of dlog2 T e odd primes from this set, the
choice depending on the bits in the binary representation of j − 1. This scheme
requires O(eT log logT) group operations and can be vectorized.

After generating the T points Qj, we generate bB3/T c further pseudo-random
points, say Qk = qekQ, where the qk are distinct from the qj . The choice qk = 2k

is satisfactory. For each such point Qk, we check if Qk = ±Qj for j = 1, . . . , T .
This can be done with K2T multiplications mod N , as in the description of the
improved standard continuation in §3.2. If T is sufficiently large, it is worthwhile
to make the z-coordinates of Qj and Qk unity by extended GCD computations,
which reduces K2 to 1. (To reduce the number of extended GCDs, we can generate
the points Qk in batches and reduce their z-coordinates to a common value before
performing one extended GCD.) Note that the points Qk do not need to be stored
as only one (or one batch) is needed at a time. We only need store O(T) points.

It is easy to see that most of the computation for the birthday paradox version of
phase 2 amounts to the evaluation (mod N) of a polynomial of degree T at bB3/T c
points. Thus, certain fast polynomial evaluation schemes can be used [8, 38, 56].

Both the improved standard continuation and the birthday paradox continuation
make approximately B3 comparisons of points which are multiples of Q, say nQ
and n′Q, and usually succeed if g2 ≤ B1 and n± n′ is a nontrivial multiple of g1.
The improved standard continuation ensures that |n−n′| is prime, but the birthday
paradox continuation merely takes pseudo-random n and n′. Since g1 is prime, it
would appear that the improved standard continuation is more efficient. However,
taking the parameter e > 1 may compensate for this. The number of solutions of

x2e = 1 mod g1(9)

is GCD(2e, g1 − 1). Thus, by choosing e as a product of small primes, we increase
the expected number of solutions of (9). In fact, if 2e = 2e13e25e3 · · · , it can be
shown that the expected value of GCD(2e, q − 1) for a random large prime q is
(e1 +1)(e2 +1)(e3 +1) · · · . Since g1 is the largest prime factor of the group order g,
it is reasonable to assume similar behaviour for GCD(2e, g1 − 1). The number of
solutions of equation (9) is relevant because we expect phase 2 to succeed if g2 ≤ B1

and (qj/qk)
2e = 1 mod g1.

FACTORIZATION OF FERMAT NUMBERS BY ECM 437

The parameter e should not be chosen too large, because the cost of generating
the points Qj and Qk is proportional to e. To ensure that this cost is negligible,
we need e � T . In practice, a reasonable strategy is to choose the largest e from
the set {1, 2, 3, 6, 12, 24, 30} subject to the constraint 32e < T .

3.4. The FFT continuation. Pollard suggested the use of the FFT to speed up
phase 2 for his p − 1 method, and Montgomery [51] has successfully implemented
the analogous phase 2 for ECM. The FFT continuation may be regarded as an
efficient generalisation of both the improved standard continuation and the birthday
paradox continuation. We have not implemented it because of its complexity and
large storage requirements.

3.5. Comparison of continuations. It is natural to ask which of the above ver-
sions of phase 2 is best. We initially implemented the birthday paradox continu-
ation because of its simplicity. Also, the asymptotic analysis in [8, §7] indicated
that it would be faster than the (improved) standard continuation. However, this
was on the assumption that an asymptotically fast polynomial evaluation scheme
would be used. In practice, the polynomial degrees are unlikely to be large enough
for such a scheme to be significantly faster than standard polynomial evaluation.
In our most recent implementation of ECM [13, Program G] we have used the
improved standard continuation because of its slightly lower storage requirements
and better (predicted) performance for factors of up to 40 decimal digits. If storage
requirements and program complexity are not major considerations, then the FFT
continuation is probably the best.

4. Performance of ECM

In order to predict the performance of ECM, we need some results on the distri-
bution of prime factors of random integers. These results and references to earlier
work may be found in [39, 73].

4.1. Prime factors of random integers. Let n1(N) ≥ n2(N) ≥ . . . be the
prime factors of a positive integer N . The nj(N) are not necessarily distinct. For
convenience we take nj(N) = 1 if N has less than j prime factors.

For k ≥ 1, suppose that 1 ≥ α1 ≥ . . . ≥ αk ≥ 0. Following Vershik [73], we
define Φk = Φk(α1, . . . , αk) by

Φk = lim
M→∞

{N : 1 ≤ N ≤M, nj(N) ≤ Nαj for j = 1, . . . , k}
M

.

Informally, Φk(α1, . . . , αk) is the probability that a large random integer N has
its j-th largest prime factor at most Nαj , for j = 1, . . . , k. The cases k = 1 and
k = 2 are relevant to ECM (see §§4.2–4.4). It is convenient to define Φ1(α1) = 1 if
α1 > 1, and Φ1(α1) = 0 if α1 < 0. Vershik [73, Theorem 1] shows that

Φk =
∫ αk

0

∫ αk−1

θk

· · ·
∫ α1

θ2

Φ1

(
θk

1− θ1 − · · · − θk

)
dθ1 . . . dθk−1dθk
θ1 . . . θk−1θk

.

(10)

Knuth and Trabb Pardo [39] observe an interesting connection with the distri-
bution of cycle lengths in a random permutation [33, 67]. In fact, the distribution
of the number of digits of the j-th largest prime factors of n-digit random integers
is asymptotically the same as the distribution of lengths of the j-th longest cycles
in random permutations of n objects.

438 R. P. BRENT

We define

ρ(α) = Φ1(1/α) for α > 0 ,
ρ2(α) = Φ2(1, 1/α) for α ≥ 1 ,(11)

µ(α, β) = Φ2(β/α, 1/α) for 1 ≤ β ≤ α .
Informally, ρ(α) is the probability that nα1 ≤ N , ρ2(α) is the probability that
nα2 ≤ N , and µ(α, β) is the probability that both nα2 ≤ N and nα1 ≤ Nβ, for a large
random integer N with largest prime factor n1 and second-largest prime factor n2.
Note that ρ(α) = µ(α, 1) and ρ2(α) = µ(α, α).

The function ρ is usually called Dickman’s function after Dickman [30], though
some authors refer to Φ1 as Dickman’s function, and Vershik [73] calls ϕ1 = Φ′1 the
Dickman-Goncharov function.

It is known (see [8]) that ρ satisfies a differential-difference equation

αρ′(α) + ρ(α − 1) = 0(12)

for α ≥ 1. Thus, ρ(α) may be computed by numerical integration from

ρ(α) =
1
α

∫ α

α−1

ρ(t) dt(13)

for α > 1. The function µ may be computed from [8, eqn. (3.3)]

µ(α, β) = ρ(α) +
∫ α−1

α−β

ρ(t)
α− t dt(14)

for 1 ≤ β ≤ α. The formula for µ given in [71, p. 447] is incorrect, as can be seen
by considering the limit as β → 1+.

The results (12)–(14) follow from Vershik’s general result (10), although it is
possible to derive them more directly, as in [8, 38, 39].

Sharp asymptotic results for ρ are given by de Bruijn [22, 48], and an asymptotic
result for µ is stated in [8]. To predict the performance of phase 1 of ECM it is
enough to know that

ρ(α− 1)
ρ(α)

∼ − log ρ(α) ∼ α logα(15)

as α→∞.

4.2. Heuristic analysis of phase 1. We first give a simple, heuristic explanation
of why phase 1 of ECM works. Assume that, so far as its largest prime factor
g1 is concerned, the group order g behaves like a random integer near p. This is
not quite correct, but is an accurate enough approximation to obtain asymptotic
results. In §4.4 we take known divisors of g into account.

Let α = log p/ logB1, so B1 = p1/α. The probability that one curve succeeds in
finding the factor p is close to the probability that g1 ≤ B1, and can be approxi-
mated by ρ(α). Thus, the expected number of curves for success is C1 = 1/ρ(α). As
each curve requires about K1B1 = K1p

1/α multiplications (mod N), the expected
number of multiplications (mod N) is

W (α) = K1p
1/α/ρ(α).(16)

Differentiating with respect to α, we see that the minimum W (α) occurs when
log p = −α2ρ′(α)/ρ(α). Using (12) and (15), we obtain asymptotic results for the

FACTORIZATION OF FERMAT NUMBERS BY ECM 439

optimal parameters:

log p =
αρ(α− 1)
ρ(α)

∼ α2 logα,(17)

logB1 =
ρ(α− 1)
ρ(α)

∼ α logα,(18)

logC1 = − log ρ(α) ∼ α logα,(19)

logW = logK1 − d

dα
(α log ρ(α)) ∼ 2α logα,(20)

log(B1/C1) = −α2 d

dα

(
log ρ(α)

α

)
∼ α.(21)

The result (21) is more delicate than the other asymptotic results because it involves
cancellation of the terms of order α logα in (18) and (19).

From (17) and (20) we obtain

logW ∼
√

2 log p log log p(22)

as p→∞. Thus, W = O(pε) for any ε > 0.

4.3. Lenstra’s analysis of phase 1. Modulo an unproved but plausible assump-
tion regarding the distribution of prime factors of random integers in “short” inter-
vals, Lenstra [46] has made the argument leading to (22) rigorous. He shows that
phase 1 of ECM, when applied to a composite integer N with smallest prime factor
p, will find p in an expected number

W1(p) = exp
(√

(2 + o(1)) log p log log p
)
,(23)

of multiplications (mod N), where the “o(1)” term tends to zero as p → ∞. The
expected running time is

T1(p,N) = M(N)W1(p),

where M(N) is the time required to multiply numbers modulo N .
The factor M(N) is important because we are interested in Fermat numbers

N = Fn = 22n

+ 1 which may be very large. In practice, ECM is only feasible on
Fn for moderate n: the limit is about the same as the limit of feasibility of Pépin’s
test (currently n ≤ 22, see [27]).

4.4. Heuristic analysis of phase 2. Lenstra’s result (23) applies only to phase 1
and assumes that the Weierstrass form is used. To predict the improvement derived
from phase 2 and the use of Montgomery’s form, we have to use heuristic arguments.
We assume that the group order g behaves (so far as the distribution of its largest
two prime factors are concerned) like a random integer near p/d, where d takes
account of known small divisors of g. If Montgomery’s form is used with the curve
chosen as in §2.3, then d = 12.

If ECM is used with parameters B1 and B2, and the (improved) standard con-
tinuation is applied, then we expect a factor to be found if g2 ≤ B1 and g1 ≤ B2.
If α = log(p/d)/ logB1 and β = logB2/ logB1, then (by our heuristic assumption)
the probability that this occurs for any one curve is µ(α, β). Thus, the expected
number of curves required by ECM is C(α, β) = 1/µ(α, β), and (assuming that µ
is small) the probability of success after at most t curves is

1− (1− µ(α, β))t ' 1− exp(−t/C).(24)

440 R. P. BRENT

If the birthday paradox continuation is used, the performance depends on the
exponent e, and it is possible for phase 2 to succeed with g1 > B2. From (10), the
probability of success for one curve is approximately

1
φ(2e)

∑∫ 1/α

0

∫ 1−ψ

ψ

(
1− exp

(−γB3(d/p)θ
))

Φ1

(
ψ

1− θ − ψ
)
dθdψ

θψ
,

where the sum is over the φ(2e) possible values of g1 mod 2e, γ ranges over the
corresponding values of GCD(2e, g1 − 1), and α = log(p/d)/ logB1 > 2. Assuming
close to the optimal choice of parameters for factors of 30 to 40 decimal digits,
numerical integration indicates that the expected cost of the birthday paradox
continuation (without fast polynomial evaluation) is 15% to 20% more than for
the (improved) standard continuation if e = 6, and 9% to 14% more if e = 12.
Because the analysis is simpler, in the following we assume the improved standard
continuation.

To choose optimal parameters, we note that the time to perform both phases
on one curve is proportional to K1B1 + K2B3, provided overheads such as table
initialization are negligible. The constants K1 and K2 depend on details of the
implementation (see §3).

If we knew p in advance, we could choose B1 and B2 to minimize the expected
run time, which is proportional to the expected number of multiplications mod N :

W = (K1B1 +K2B3)/µ(α, β).

Recall that α and β are functions of B1 and B2, so this is a simple problem of
minimization in two variables. Suppose that the minimum is Wopt. Tables of
optimal parameters are given in [4, 8, 45, 51, 71], with each paper making slightly
different assumptions. In Table 2 we give a small table of log10Wopt for factors of
D decimal digits. We assume that K1 = 11/ log 2, K2 = 1, and log10 p ' D − 0.5.
Some computed values of τ(p) are also shown in Table 2, where

τ(p) =
(logWopt)2

log p log log p
,

so

Wopt = exp
(√

τ(p) log p log log p
)
.

McKee [49] gives plausible reasons why the practical performance of ECM may
be slightly better than predicted in Table 2. A limited amount of experimental
data [8, 45, 51] supports McKee’s analysis. Thus, the table should be taken only
as a rough (and slightly conservative) guide.

Since the expected run time is insensitive to changes in B1 and B2 near the
optimal values, it is not important to choose them accurately. This is fortunate,
as in practice we do not usually know p in advance. Various strategies have been
suggested to overcome this difficulty. Our strategy has been to increase B1 as a
function of the number of curves t which have been tried, using the fact that for the
optimal choice we expect B1/t to be about 330 for 30-digit factors and to be fairly
insensitive to the size of the factor. Given B1, we choose B2 so the time for phase 2
is about half that for phase 1 (this choice is not far from optimal). If B1 ' 106 this
gives B2 ' 100B1.

Once a factor p has been found, we can compute the efficiency E, defined as the
ratio of the expected time to find p with optimal parameters to the expected time

FACTORIZATION OF FERMAT NUMBERS BY ECM 441

Table 2. Expected work for ECM

digits D log10Wopt τ
20 7.35 1.677
30 9.57 1.695
40 11.49 1.707
50 13.22 1.716
60 14.80 1.723

with the parameters actually used. For an example in which we started with B1

too small but gradually increased it to a value close to optimal, see Table 3.
From the asymptotic behaviour of the functions ρ(α) and µ(α, β), it can be shown

that the expected speedup S because of the use of phase 2 (standard continuation),
compared to just using phase 1, is of order log log p. It is argued in [8, §7] that
the birthday paradox continuation gives a speedup of order log p (though only
if asymptotically fast polynomial evaluation is used; for our implementations the
speedup is of order log log p). The speedup for the FFT continuation is probably
of order log p at most. Although these speedups are important in practice, they
are theoretically insignificant, because they can be absorbed into the o(1) term in
Lenstra’s result (23). Thus, we expect τ(p)→ 2 as p→∞, independent of whether
phase 2 is used. Table 2 shows that the convergence is very slow and that τ(p) ' 1.7
for p in the 25 to 45 digit range.

We note a consequence of (24) which may be of cryptographic interest [63]. If t is
much larger than C, say t = 100C, then the probability of failure is exp(−100), so
we are almost certain to find a factor. On the other hand, if t is much smaller than
C, say t = C/100, then 1−exp(−t/C) ' t/C ' 0.01 is small, but not exponentially
so. Thus, ECM has a non-negligible chance of finding factors which are much larger
than expected. For example, if the work performed is sufficient to find 30-digit
factors with probability 0.5, then with the same work there is about one chance in
100 of finding a factor of 40 digits and about one chance in 10,000 of finding a factor
of 50 digits (we do not attempt to be precise because the probabilities depend to
some extent on how the parameters B1 and B2 are chosen).

5. Some ECM implementations

For future reference, we describe several implementations of ECM. Further details
are given in [13, §5].

A. Our first implementation was written in 1985, mainly in Pascal, but with
some assembler to speed up large-integer multiplications. It used Montgomery’s
forms (4) and (5) for phase 1, and converted back to Weierstrass normal form (1) for
phase 2, which used the birthday paradox idea. Rational preconditioning [56] was
used to speed up polynomial evaluation in phase 2. The implementation achieved
K1 = 10/ log 2 and K2 = 1/2 (recall that, as in §2.2–§3.3, the number of multi-
plications mod N per curve is about K1B1 + K2B3). Program A ran on various
machines, including Sun 3 and VAX, and found many factors of up to 25 decimal
digits [19].

B. A simple Turbo Pascal implementation was written in 1986 for an IBM
PC [10]. The implementation of multiple-precision arithmetic is simple but in-
efficient. Program B is mainly used to generate tables [19], taking into account

442 R. P. BRENT

algebraic and Aurifeuillian factors [12], and accessing a database of over 230, 000
known factors. As a byproduct, program B can produce lists of composites which
are used as input to other programs.

C. When a vector processor1 became available early in 1988, a Fortran program
MVFAC was written (based on program A, with some improvements and simplifi-
cations). Vectorization is accomplished by working on a number of elliptic curves in
parallel during phase 1. Phase 2 implements the birthday paradox idea as in §3.3.
During phase 2 the program works on only one curve at a time, but takes advantage
of the vector units during polynomial evaluation. Unlike program A, both phases
use Montgomery’s form (5), with K1 = 11/ log 2 and K2 = 1. The initial point is
usually chosen to ensure that the group order is divisible by 12, as described in §2.3.
Multiple-precision arithmetic (with base 226) in the inner loops is performed using
double-precision floating-point operations (flops). INT and DFLOAT operations are
used to split a product into high and low-order parts. Operations which are not
time-critical, such as input and output, are performed using the MP package [5].
Program C found the factorization of F11 (see §7) and many factors, of size up to
40 decimal digits, needed for [16, 19]. Keller [37] used program C to find factors up
to 39 digits of Cullen numbers.

D. A modification of MVFAC also runs on other machines with Fortran compil-
ers, e.g., Sun 4 workstations. For machines using IEEE floating-point arithmetic,
the base must be reduced to 224. Although the workstations do not have vector
units, the vectorized code runs efficiently because of the effect of amortizing loop
startup overheads over several curves and keeping most memory accesses in a small
working set (and hence in the cache). Program D found the p40 factor of F10

(see §6).

5.1. The multiplication algorithm. Most of the cost of ECM is in performing
multiplications mod N . Our programs all use the classical O(w2) algorithm to
multiply w-bit numbers. Karatsuba’s algorithm [38, §4.3.3] or other “fast” algo-
rithms [26, 28] would be preferable for large w. The crossover point depends on
details of the implementation. Morain [54, Ch. 5] states that Karatsuba’s method
is worthwhile for w ≥ 800 on a 32-bit workstation. The crossover point on a 64-bit
vector processor is probably slightly larger.

Programs B–D do not take advantage of the special form of Fermat numbers
when doing arithmetic mod N . However, the mod operation is implemented effi-
ciently. For programs C and D the operation X ← Y × Z mod N is coded as a
single routine. As Y is multiplied by each digit di of Z (starting with the most
significant digit) and the sum accumulated in X , we also predict a quotient digit
qi, multiply N by qi, and subtract. The predicted quotient digit can differ from the
correct value by one, because a slightly redundant representation of the intermedi-
ate results allows a small error to be corrected at the next step (when working in
base B, digits in the range [0, B] are permitted). Also, the result of the operation is
only guaranteed to lie in the interval [0, 2N) and to be correct mod N . With these
refinements, the operation X ← Y × Z mod N can be performed almost as fast as
X ← Y × Z. For w-bit numbers, program C performs 9(w/26)2 + O(w) flops per
multiplication mod N ; this takes 4(w/26)2 +O(w) clock cycles on the VP2200/10.

1Initially a Fujitsu VP100 with 7.5 nsec clock cycle; this machine was upgraded in mid-1991
to a Fujitsu VP2200/10 with 4.0 nsec (later 3.2 nsec) clock cycle and theoretical peak speed of
1,000 Mflop (later 1,250 Mflop). Times quoted for the VP2200 are for the faster version.

FACTORIZATION OF FERMAT NUMBERS BY ECM 443

If the number N to be factored is a composite divisor of 2n ± 1, then the el-
liptic curve operations can be performed mod 2n ± 1 rather than mod N . At the
end of each phase we can compute a GCD with N . Because we can perform the
reductions mod 2n ± 1 using binary shift and add/subtract operations, which are
much faster (for large n) than multiply or divide operations, a significant speedup
may be possible. This idea was not implemented in programs B–D, but was used
successfully in programs which found factors of F13 and F16, see [13, 17].

6. Factorization of F10

When ECM was implemented on the Fujitsu VP100 in March 1988, some of the
first numbers which we attempted to factor were the Fermat numbers F9, F10, F11

and F12, using variants of program C. We were soon successful with F11 (see §7),
but not with the other Fermat numbers, apart from rediscovering known factors.
We continued attempts to factor F10 by ECM. The phase 1 limit B1 was gradually
increased. However, there were some constraints on B1. Batch jobs were limited
to at most two hours and, to make efficient use of the vector units, we had to
complete several curves in that time. The time for t curves done simultaneously
was proportional to t + t1/2, where t1/2 depended on the startup cost of vector
operations.

We ran about 2,000 curves with B1 = 60, 000 on the VP100 in the period March
1988 to late 1990. Each run on the VP100 took slightly less than two hours for 63
curves, with t1/2 ' 10. The VP100 was upgraded to a VP2200 in 1991, and we ran
about 17,360 curves with B1 = 200, 000 on the VP2200 in the period August 1991
to August 1995. Each run on the VP2200 took slightly less than two hours for 62
curves, with t1/2 ' 14. The improvement in speed over the VP100 was partly due
to rewriting the inner loop of program C to reduce memory references and improve
the use of vector registers.

In September 1994 we started running program D on one or two 60 Mhz Super-
Sparc processors. Usually we used one processor for F10 and one for F12. In July
1995 six more 60 Mhz SuperSparc processors became available for a limited period.
We attempted to factor F10 on all eight SuperSparcs using spare computer time.
Details are given in Table 3.

In Table 3, F is an estimate of the expected number of times that the factor
p40 should be found with the given B1 and number of curves (see §4.4). E is an
estimate of the efficiency compared to the optimal choice of B1 ' 3, 400, 000. The
programs used the birthday paradox continuation, but the estimates of E and F
assume the improved standard continuation with B2 = 100B1, so they are only
approximate (see §4.4). The last row of the table gives totals (for number of curves
and F) and weighted means (for B1 and E).

The p40 factor of F10 was found by a run which started on October 14 and
finished on October 20, 1995. The run tried 10 curves with B1 = 2, 000, 000 in
about 114 hours of CPU time, 148 hours elapsed wall-clock time.

From the factorizations of p40 ± 1 given in §9, it is easy to prove that p40 is
prime, and also to see why the Pollard p± 1 methods did not find p40.

The 252-digit cofactor c291/p40 was rigorously proved to be prime by two inde-
pendent methods (see §9).

6.1. In retrospect. From column F of Table 3, it appears that we were fortunate
to find p40 as soon as we did. The probability is about 1 − exp(−0.2434) ' 0.22.

444 R. P. BRENT

Table 3. ECM runs on F10

B1 curves F E machine(s) and dates

6× 104 2,000 0.0010 0.14 VP100, Mar 1988 – Nov 1990
2× 105 17,360 0.0910 0.42 VP2200, Aug 1991 – Aug 1995
5× 105 700 0.0152 0.69 Sparc × 2, Sep 1994 – Jul 1995

106 480 0.0262 0.87 Sparc × 8, Jul 1995 – Aug 1995
2× 106 900 0.1100 0.98 Sparc × 8, Aug 1995 – Oct 1995

2.9× 105 21,440 0.2434 0.63

We know of some other attempts. Bruce Dodson tried about 100 curves with
B1 = 2 × 106, Peter Montgomery tried about 1,000 curves with B1 ≤ 107 (mean
value unknown), Robert Silverman tried about 500 curves with B1 = 106, and
Samuel Wagstaff tried “a few dozen” curves with 150, 000 ≤ B1 ≤ 400, 000. There
were probably other attempts of which we are unaware, but the size of the known
composite factor of F10 (291 decimal digits) reduced the number of attempts. For
example, Montgomery’s Cray program was restricted to inputs of at most 255 digits,
and Wagstaff did not use the Maspar [31] because it would have required a special
“size 33” program.

From column E of the table, it is clear that the runs on the VP100 and VP2200
were inefficient. We should have implemented a form of checkpointing so that B1

could be increased to at least 106, allowing us to take more than two hours per set
of curves. At the time we did not know that the unknown factor had 40 decimal
digits, though by mid-1995 we were reasonably confident that it had at least 35
digits. Our general strategy was to increase B1 gradually, guided by estimates of
the optimal B1 and the expected number of curves for factors of 30–40 digits.

6.2. The computational work. Each curve on a 60 Mhz SuperSparc takes about
5.7× 10−6B1 hours of CPU time. If a 60 Mhz SuperSparc is counted as a 60-Mips
machine, then our computation took about 240 Mips-years. This is comparable to
the 340 Mips-years estimated for sieving to factor F9 by SNFS [44]. (SNFS has
since been improved, so the 340 Mips-years could now be reduced by an order of
magnitude, see [32, §10].)

Since the inner loops of programs C and D use floating-point arithmetic, Mflops
are a more appropriate measure than Mips. The VP2200/10 is rated at 1250 Mflop
(peak performance). If our factorization of F10 had been performed entirely on the
VP2200, it would have taken about 6 weeks of machine time, or 140 Mflop-years.
This is only 75 minutes on a 1 Teraflop machine.

The number of multiplications (mod N) is a machine-independent measure of
the work to factor N . Each curve takes about 22.9B1 such multiplications. Overall,
our factorization of F10 took 1.4× 1011 multiplications (mod N), where N = c291.
(Table 2 predicts 3.3× 1011 with the optimal choice of parameters.) Numbers mod
c291 were represented with 38 digits and base 226 (on the VP100/VP2200) or with
41 digits and base 224 (on the Sparc), so each multiplication (mod N) required
more than 104 floating-point operations.

6.3. The group order. The successful elliptic curve and starting point are defined
by (5) and (8), with σ = 14152267 (derived from the starting date and time October

FACTORIZATION OF FERMAT NUMBERS BY ECM 445

14, 15:22:54). Explicitly, we can take the elliptic curve in the form (4) as

by2 = x3 + 1597447308290318352284957343172858403618x2 + x mod p40.

This may also be written as by2 = x(x− k)(x − 1/k) mod p40, where

k = 1036822225513707746153523173517778785047.

b is any quadratic non-residue (mod p40), e.g. b = 5. The group order is

g = p40 + 1− 3674872259129499038
= 22 · 32 · 5 · 149 · 163 · 197 · 7187 · 18311 · 123677 · 226133 · 314263 · 4677853 .

The probability that a random integer near g/12 has largest prime factor at most
4677853 and second-largest prime factor at most 314263 is about 5.8 × 10−6. The
phase 1 limit for the successful run was B1 = 2×106, but program D finds p40 with
B1 as small as 314263 if the same curve and starting point are used.

7. Factorization of F11

After the factorization of F8 in 1980, no one predicted that F11 would be the
next Fermat number to be completely factored. Program C, described in §5, was
implemented on a Fujitsu VP 100 in March 1988. After failing to find any new
factors of F9 and F10, we compiled “large” versions of program C, suitable for F11

and F12, and checked them by finding the known prime factors of these numbers.
A large version of program C took slightly less than one hour for 20 curves with

B1 = 16, 000 on the number c606 = F11/(319489 · 974849). On May 13, 1988, a
22-decimal digit factor

p22 = 3560841906445833920513 = 213 · 7 · 677 · p14 + 1

was found by phase 2. We had previously tried 68 curves unsuccessfully with
B1 ' 15, 000. Overall it took about 2.8 × 107 multiplications (mod c606) and
slightly less than four hours of machine time to find p22. Dividing c606 by p22 gave
a 584-digit composite number c584.

The next run of program C, on May 17, 1988, found a 21-digit factor

p21 = 167988556341760475137 = 214 · 3 · 373 · 67003 · 136752547 + 1

of c584, again using 20 curves with B1 = 16, 000. It was surprising that a larger
factor (p22) had been found first, but because of the probabilistic nature of ECM
there is no guarantee that smaller factors will be found before larger ones. Overall,
it took about 3.6× 107 multiplications (mod c606 or c584) and less than five hours
of machine time to find both factors by ECM. It would have been feasible to find
p21 (but not p22) by the Pollard p− 1 method.

The quotient had 564 digits and it passed a probabilistic primality test [38, Algo-
rithm P]. If this test is applied to a composite number, the chance that it incorrectly
claims the number is prime is less than 1/4. We ran many independent trials, so
we were confident that the quotient was indeed prime and that the factorization of
F11 was complete. This was verified by Morain, as described in §9. The complete
factorization of F11 was announced in [9]:

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · p564.

446 R. P. BRENT

8. Additional examples

To show the capabilities of ECM, we give three further examples. Details and
other examples are available in [14]. These examples do not necessarily illustrate
typical behaviour of ECM.

In December 1995, using program C with B1 = 370, 000, D = 255, e = 6, we
found the 40-digit factor

p′40 = 9409853205696664168149671432955079744397

of p252− 1, where p252 is the largest prime factor of F10. See §9 for the application
to proving primality of p252. The curve is defined as in §2.3 with σ = 48998398,
and the group order is

g = 22 · 3 · 5 · 17 · 312 · 53 · 67 · 233 · 739 · 5563 · 7901 · 20201 · 57163 · 309335137.

The largest prime factor g1 of g is about 836B1, which illustrates the power of the
birthday paradox continuation. Note that GCD(2e, g1 − 1) = 12.

In November 1995, Montgomery [53] found the 47-digit factor

p47 = 12025702000065183805751513732616276516181800961

of 5256 + 1, using B1 = 3, 000, 000 with his FFT continuation. The group order is

g = 26 · 3 · 5 · 7 · 23 · 997 · 43237 · 554573 · 659723 · 2220479 · 2459497 · 903335969.

In April 1997, using a slight modification of program D on a 250 Mhz DEC
alpha, we “rediscovered” the factor

p49 = 7455602825647884208337395736200454918783366342657

of F9. Of course, this factor was already known (see §1), but it is interesting to
see that it could have been found by ECM. We used the equivalent of about 73,000
curves with B1 = 107; the number of curves predicted as in §4.4 is about 90,000.
(The predicted optimal value of B1 is about 3 × 107, but for operational reasons
we used a smaller value.)

The “lucky” curve is defined as in §2.3 with σ = 862263446. The group order is

22 · 32 · 52 · 7 · 331 ·1231 ·1289 ·6277 ·68147 ·1296877 ·9304783 ·9859051 ·44275577.

9. Primality proofs

In [7] we gave primality certificates for the prime factors of F5, . . . , F8, using
the elegant method pioneered by Lucas [47, p. 302], Kraitchik [40, p. 135] and
Lehmer [42, p. 330]. To prove p prime by this method, it is necessary to completely
factor p− 1 and find a primitive root (mod p). The method is applied recursively
to large prime factors of p− 1.

Similar certificates can be given for the factors p49 and p99 of F9, using Crandall’s
factorizations [44] of p49 − 1 and p99 − 1:

p49 − 1 = 211 · 19 · 47 · 82488781 · 1143290228161321 · 43226490359557706629,
p99 − 1 = 211 · 1129 · 26813 · 40644377 · 17338437577121 · p68, and

p68 − 1 = 2 · 33 · 13 · 1531 · 173897 · 1746751 · 12088361983 ·
1392542208042011209 · 3088888502468305782559.

In these three cases the least primitive roots are 3.

FACTORIZATION OF FERMAT NUMBERS BY ECM 447

For the penultimate factor p40 of F10, the least primitive root is 5, and we have

p40 − 1 = 212 · 3 · 5639 · 8231 · 433639 · 18840862799165386003967,
p40 + 1 = 2 · 2887 · 52471477 · 31186157593 · 493177304177011507.

The same method cannot be applied to prove primality of the largest prime
factors of F10 and F11, because we have only incomplete factorizations:

p252 − 1 = 213 · 3 · 13 · 23 · 29 · 6329 · 760347109 ·
211898520832851652018708913943317 ·
9409853205696664168149671432955079744397 · c158,

p252 + 1 = 2 · 24407 · 507702159469 · c235,
p564 − 1 = 213 · 139 · 1847 · 32488628503 · 1847272285831883 ·

92147345984208191 · 23918760924164258488261 · c489,
p564 + 1 = 2 · 32 · 65231833 · c555.

We can apply Selfridge’s “Cube Root Theorem” [21, Theorem 11] to p252, since
p252 − 1 = F · c158, where F > 2 × 1093 is completely factored, p252 < 2F 3 + 2F ,
and the other conditions of the Cube Root Theorem are easily verified. Thus, p252

is prime, and the factorization of F10 is complete.
The large factor p564 of F11 was proved prime by Morain (in June 1988) using

a distributed version of his ecpp program [54, p. 13]. We have used the publicly
available version of ecpp, which implements the “elliptic curve” method of Atkin
and Morain [1], to confirm this result. Version V3.4.1 of ecpp, running on a 60 Mhz
SuperSparc, established the primality of p564 in 28 hours. It took only one hour to
prove p252 prime by the same method. Primality “certificates” are available [15].
They can be checked using a separate program xcheckcertif.

10. When to use ECM, and prospects for F12

When factoring large integers by ECM we do not usually know the size of the
factors in advance. Thus, it is impossible to estimate how long ECM will require.
In contrast, the running times of the MPQS and GNFS methods can be predicted
fairly well, because they depend mainly on the size of the number being factored,
and not on the size of the (unknown) factors, see [3, 32, 60]. An important question
is how long to spend on ECM before switching to a more predictable method such as
MPQS/GNFS. This question is considered in [71, §7], but our approach is different.

Theorem 3 of Vershik [73] says (approximately) that the ratios log q/ log p of
logarithms of neighboring large prime divisors q, p (q < p) of large random integers
are asymptotically independent and uniformly distributed in (0, 1). Using this
theorem (assuming the numbers to be factored behave like random integers) or past
experience gained by factoring a class of numbers (such as Cunningham numbers),
we can make a rough estimate of the probability P that ECM will factor a given
number in one unit of time (say one day of computer time). This estimate should
take into account the information that ECM has already spent some (say U0) units
of time unsuccessfully searching for a factor. As a simple approximation, we could
use the results of §4.4 to estimate q such that the expected time for ECM to find
a factor close to q is U0, and then assume a lower bound q on the unknown factor.
This amounts to approximating the function in (24) by a step function.

448 R. P. BRENT

For example, if we are factoring N ' 10100 and U0 is such that q ' 1030, then we
could assume that the unknown factor p lies in the interval

(
1030, 1050

)
and that

1/ log10 p is uniformly distributed in the corresponding interval (1/50, 1/30). The
probability P can now be estimated, using the results of §4.4, if we assume that the
parameters B1 and B2 are chosen optimally to find factors of size close to q. The
estimate might, for example, be P ' 1/(cU0), where c ' 9.

If the predicted running time of MPQS/GNFS exceeds 1/P units, then it is
worthwhile to continue with ECM for a little longer. If ECM is unsuccessful, we
repeat the procedure of estimating P . Eventually, either a factor will be found by
ECM or the estimate of P will become so small that a switch to MPQS/GNFS is in-
dicated. If a factor p is found by ECM, then the quotient N/p is either prime (so the
factorization is complete) or much smaller than the original composite number N ,
and hence much more easily factored by MPQS/GNFS.

Our approach is reasonable in the limiting case N →∞, because the assumption
that 1/ log p is uniformly distributed in (0, 1/ log q) gives a positive estimate for P .
For example, replacing N ' 10100 by N ' F15 in the example above multiplies the
constant c by a factor of about 2.5 = (1/30)/(1/30− 1/50).

For the Fermat numbers Fn, 12 ≤ n ≤ 15, the predicted probability of success
for ECM is low, but the predicted running time of other methods is so large that
it is rational to continue trying ECM. There is no practical alternative except the
old method of trial division.

Table 4. Second-largest prime factors of Fn

n 7 8 9 10 11
ρ2 0.98 0.45 0.82 0.27 0.06

Although Fermat numbers are not random integers, it is interesting to compute
ρ2(α) for α = logFn/ log p2, where p2 is the second-largest prime factor of Fn and
ρ2(α) is defined by (11). The values for n = 7, . . . , 11 are given in Table 4. For
large random integers, we expect ρ2(α) to be uniformly distributed (see §4.1). We
see that F11 has a surprisingly small second-largest factor, and F7 has a surprisingly
large second-largest factor. The second-largest factors of F8, F9 and F10 are not
exceptionally small or large.

The probability that a random integer N close to F12 has second-largest prime
factor p2 < 1040 is 0.059. F12 has five known prime factors (see §1). Harvey Dubner
and the author have tried more than 2200 curves with B1 ≥ 106, in an attempt to
factor F12, without finding more than the five known prime factors. Thus, from
Table 2 and (24), we can be reasonably confident that the sixth-smallest prime
factor of F12 is at least 1030; a smaller factor would have been found with probability
greater than 0.99. An indication of the likely size of the sixth-smallest prime factor
can be obtained from Vershik’s result [73, Thm. 3], which is paraphrased above.

The complete factorization of F12 may have to wait for a significant improve-
ment in integer factorization algorithms or the physical construction of a quantum
computer capable of running Shor’s algorithm [68].

References

[1] A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61
(1993), 29–68. Programs available from ftp://ftp.inria.fr/INRIA/ecpp.V3.4.1.tar.Z .
MR 93m:11136

FACTORIZATION OF FERMAT NUMBERS BY ECM 449

[2] D. J. Bernstein, Detecting perfect powers in essentially linear time, Math. Comp., to appear.
Available from ftp://koobera.math.uic.edu/pub/papers/powers.dvi . CMP 97:16

[3] H. Boender and H. J. J. te Riele, Factoring integers with large prime variations of the
quadratic sieve, Experimental Mathematics, 5 (1996), 257–273. Also Report NM-R9513,
Department of Numerical Mathematics, Centrum voor Wiskunde en Informatica, Amsterdam,
July 1995. ftp://ftp.cwi.nl/pub/CWIreports/NW/NM-R9513.ps.Z MR 97m:11155

[4] W. Bosma and A. K. Lenstra, An implementation of the elliptic curve integer factorization
method, Computational Algebra and Number Theory (edited by W. Bosma and A. van der
Poorten), Kluwer Academic Publishers, Dordrecht, 1995, 119–136. MR 96d:11134

[5] R. P. Brent, Algorithm 524: MP, a Fortran multiple-precision arithmetic package, ACM
Trans. on Mathematical Software 4 (1978), 71–81.

[6] R. P. Brent, An improved Monte Carlo factorization algorithm, BIT 20 (1980), 176–184.
MR 82a:10007

[7] R. P. Brent, Succinct proofs of primality for the factors of some Fermat numbers, Math.

Comp. 38 (1982), 253–255. MR 82k:10002
[8] R. P. Brent, Some integer factorization algorithms using elliptic curves, Australian Com-

puter Science Communications 8 (1986), 149–163. Also Report CMA-R32-85, Centre for
Mathematical Analysis, Australian National University, Canberra, Sept. 1985, 20 pp.

[9] R. P. Brent, Factorization of the eleventh Fermat number (preliminary report), AMS Ab-
stracts 10 (1989), 89T-11-73.

[10] R. P. Brent, Factor: an integer factorization program for the IBM PC, Report TR-CS-89-23,
Computer Sciences Laboratory, Australian National Univ., Canberra, Oct. 1989, 7 pp.

[11] R. P. Brent, Parallel algorithms for integer factorisation, Number Theory and Cryptography
(edited by J. H. Loxton), Cambridge University Press, 1990. MR 91h:11145

[12] R. P. Brent, On computing factors of cyclotomic polynomials, Math. Comp. 61 (1993), 131–
149. MR 92m:11131

[13] R. P. Brent, Factorization of the tenth and eleventh Fermat numbers, Report TR-CS-
96-02, Computer Sciences Laboratory, Australian National Univ., Canberra, Feb. 1996.
ftp://nimbus.anu.edu.au/pub/Brent/rpb161tr.dvi.gz .

[14] R. P. Brent, Large factors found by ECM, Computer Sciences Laboratory, Australian Na-
tional University, Dec. 1995 (and more recent updates). ftp://nimbus.anu.edu.au/pub/

Brent/champs.ecm .
[15] R. P. Brent, Primality certificates for factors of some Fermat numbers, Computer Sci-

ences Laboratory, Australian National University, Nov. 1995. ftp://nimbus.anu.edu.au/

pub/Brent/F10p252.cer, F11p564.cer .
[16] R. P. Brent, G. L. Cohen and H. J. J. te Riele, Improved techniques for lower bounds for odd

perfect numbers, Math. Comp. 57 (1991), 857–868. MR 92c:11004
[17] R. P. Brent, R. E. Crandall and K. Dilcher, Two new factors of Fermat numbers, Report

TR-CS-97-11, Australian National University, May 1997, 7 pp. ftp://nimbus.anu.edu.au/
pub/Brent/rpb175tr.dvi.gz .

[18] R. P. Brent and J. M. Pollard, Factorization of the eighth Fermat number, Math. Comp. 36
(1981), 627-630. MR 83h:10014

[19] R. P. Brent and H. J. J. te Riele, Factorizations of an ± 1, 13 ≤ a < 100, Report NM-R9212,
Department of Numerical Mathematics, Centrum voor Wiskunde en Informatica, Amsterdam,
June 1992. Also (with P. L. Montgomery), updates to the above. ftp://nimbus.anu.edu.au/
pub/Brent/rpb134*.*.gz .

[20] J. Brillhart, Some miscellaneous factorizations, Math. Comp. 17 (1963), 447–450.
[21] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factor-

izations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, 2nd ed., Amer. Math. Soc.,
Providence, RI, 1988. Also updates to Update 2.9, August 16, 1995. MR 90d:11009

[22] N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes,
J. Indian Math. Soc. 15 (1951), 25–32. MR 13:362f

[23] D. V. and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups
and new primality and factorization tests, Adv. in Appl. Math. 7 (1986), 385–434. MR
88h:11094

[24] H. Cohen, Elliptic curves, From Number Theory to Physics (edited by M. Waldschmidt,
P. Moussa, J.-M. Luck and C. Itzykson), Springer-Verlag, New York, 1992, 212–237. MR
94e:11063

450 R. P. BRENT

[25] R. E. Crandall, Projects in scientific computation, Springer-Verlag, New York, 1994. MR
95d:65001

[26] R. E. Crandall, Topics in advanced scientific computation, Springer-Verlag, New York, 1996.
MR 97g:65005

[27] R. Crandall, J. Doenias, C. Norrie, and J. Young, The twenty-second Fermat number is
composite, Math. Comp. 64 (1995), 863–868. MR 95f:11104

[28] R. Crandall and B. Fagin, Discrete weighted transforms and large-integer arithmetic, Math.
Comp. 62 (1994), 305–324. MR 94c:11123

[29] A. J. C. Cunningham and H. J. Woodall, Factorisation of yn ∓ 1, y = 2, 3, 5, 6, 7, 10, 11, 12
up to high powers (n), Hodgson, London, 1925.

[30] K. Dickman, On the frequency of numbers containing prime factors of a certain relative
magnitude, Ark. Mat., Astronomi och Fysik 22A, 10 (1930), 1–14.

[31] B. Dixon and A. K. Lenstra, Massively parallel elliptic curve factoring, Proc. Eurocrypt ’92,
Lecture Notes in Computer Science 658, Springer-Verlag, Berlin, 1993, 183–193.

[32] M. Elkenbracht-Huizing, An implementation of the number field sieve, Experimental Math-
ematics, 5 (1996), 231–253. MR 98a:11182

[33] V. Goncharov, On the field of combinatory analysis, Izv. Akad. Nauk SSSR Ser. Mat. 8
(1944), 3–48; English transl. in Amer. Math. Soc. Transl. (2) 19 (1962), 1–46.

[34] G. B. Gostin, New factors of Fermat numbers, Math. Comp. 64 (1995), 393–395. MR
95c:11151

[35] J. C. Hallyburton and H. Brillhart, Two new factors of Fermat numbers, Math. Comp. 29
(1975), 109–112. Corrigendum, ibid 30 (1976), 198. MR 51:5460; MR 52:13599

[36] W. Keller, Factors of Fermat numbers and large primes of the form k · 2n + 1, Math. Comp.
41 (1983), 661–673. Also part II, preprint, Universität Hamburg, Sept. 27, 1992 (available
from the author). MR 85b:11117

[37] W. Keller, New Cullen primes, Math. Comp. 64 (1995), 1733–1741. MR 95m:11015
[38] D. E. Knuth, The art of computer programming, Volume 2: Seminumerical algorithms (2nd

ed.), Addison-Wesley, Menlo Park, CA, 1981. MR 44:3531
[39] D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theor. Comp.

Sci. 3 (1976), 321–348. MR 58:16485
[40] M. Kraitchik, Théorie des nombres, Tome 2, Gauthier-Villars, Paris, 1926.
[41] F. Landry, Note sur la décomposition du nombre 264 +1 (Extrait), C. R. Acad. Sci. Paris 91

(1880), 138.
[42] D. H. Lehmer, Tests for primality by the converse of Fermat’s theorem, Bull Amer. Math.

Soc. 33 (1927), 327–340.
[43] A. K. Lenstra and H. W. Lenstra, Jr. (editors), The development of the number field sieve,

Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993. MR 96m:11116
[44] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The factorization of

the ninth Fermat number, Math. Comp. 61 (1993), 319–349. MR 93k:11116
[45] A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Proc. Eurocrypt ’89, Lecture

Notes in Computer Science 434, Springer-Verlag, Berlin, 1990, 355–371. MR 91i:11182
[46] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics (2) 126

(1987), 649–673. MR 89g:11125
[47] E. Lucas, Théorie des fonctions numériques simplement periodiques, Amer. J. Math. 1

(1878), 184–239 & 289–321.
[48] J. van de Lune and E. Wattel, On the numerical solution of a differential-difference equation

arising in analytic number theory, Math. Comp. 23 (1969), 417–421. MR 40:1050
[49] J. F. McKee, Subtleties in the distribution of the numbers of points on elliptic curves over a

finite prime field, J. London Math. Soc., to appear.
[50] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math.

Comp. 48 (1987), 243–264. MR 88e:11130
[51] P. L. Montgomery, An FFT extension of the elliptic curve method of factorization, Ph. D.

dissertation, Mathematics, University of California at Los Angeles, 1992. ftp://ftp.cwi.nl/
pub/pmontgom/ucladissertation.psl.Z .

[52] P. L. Montgomery, A survey of modern integer factorization algorithms, CWI Quarterly 7
(1994), 337–366. MR 96b:11161

[53] P. L. Montgomery, personal communication by e-mail, November 29, 1995.

FACTORIZATION OF FERMAT NUMBERS BY ECM 451

[54] F. Morain, Courbes elliptiques et tests de primalité, Ph. D. thesis, Univ. Claude Bernard –
Lyon I, France, 1990. ftp://ftp.inria.fr/INRIA/publication/Theses/TU-0144.tar.Z . MR
95i:11149

[55] M. A. Morrison and J. Brillhart, A method of factorization and the factorization of F7, Math.
Comp. 29 (1975), 183–205. MR 51:8017

[56] M. Paterson and L. Stockmeyer, On the number of nonscalar multiplications necessary to
evaluate polynomials, SIAM J. on Computing 2 (1973), 60–66. MR 47:2790

[57] J. M. Pollard, Theorems in factorization and primality testing, Proc. Cambridge Philos. Soc.
76 (1974), 521–528. MR 50:6992

[58] J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331–334. MR
52:13611

[59] C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology, Proc. Eu-
rocrypt ’84, Lecture Notes in Computer Science, Vol. 209, Springer-Verlag, Berlin, 1985,
169–182. MR 87d:11098

[60] C. Pomerance, The number field sieve, Proceedings of Symposia in Applied Mathematics 48,
Amer. Math. Soc., Providence, Rhode Island, 1994, 465–480. MR 96c:11143

[61] C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), 1473–1485. MR
97f:11100

[62] H. Riesel, Prime numbers and computer methods for factorization, 2nd edition, Birkhäuser,
Boston, 1994. MR 95h:11142

[63] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Comm. ACM 21 (1978), 120–126. MR 83m:94003

[64] R. M. Robinson, Mersenne and Fermat numbers, Proc. Amer. Math. Soc. 5 (1954), 842–846.
MR 16:335d

[65] J. L. Selfridge, Factors of Fermat numbers, MTAC 7 (1953), 274–275.
[66] D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp. Pure Math.

20, American Math. Soc., Providence, R. I., 1971, 415–440. MR 47:4932
[67] L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer.

Math. Soc. 121 (1966), 340–357. MR 33:3320
[68] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proc.

35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, California, 1994, 124. CMP 98:06

[69] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics 106,
Springer-Verlag, New York, 1986. MR 87g:11070

[70] R. D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987), 329–339.
MR 88c:11079

[71] R. D. Silverman and S. S. Wagstaff, Jr., A practical analysis of the elliptic curve factoring
algorithm, Math. Comp. 61 (1993), 445–462. MR 93k:11117

[72] H. Suyama, Informal preliminary report (8), personal communication, October 1985.
[73] A. M. Vershik, The asymptotic distribution of factorizations of natural numbers into prime

divisors, Dokl. Akad. Nauk SSSR 289 (1986), 269–272; English transl. in Soviet Math. Dokl.
34 (1987), 57–61. MR 87i:11115

[74] H. C. Williams, How was F6 factored?, Math. Comp. 61 (1993), 463–474. MR 93k:01046
[75] H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer

functions, Math. Comp. 30 (1976), 867–886. MR 54:2574

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,

OX1 3QD, United Kingdom

E-mail address: Richard.Brent@comlab.ox.ac.uk

