HOLOMORPHIC DYNAMICS

PhD course – Dipartimento di Matematica Università di Roma "Tor Vergata"

Leandro Arosio

This course is an introduction to the theory of holomorphic automorphisms of the complex space \mathbb{C}^n , with particular emphasis on Andersén-Lempert theory. It is well-known that for n = 1 every holomorphic automorphism is affine: $z \mapsto az + b$, $a \neq 0$. The situation is completely different in several complex variables, indeed $\operatorname{aut}(\mathbb{C}^n)$ is a huge and complicated group for all $n \geq 2$. Here follows a list of topics that will be considered during the course.

- Fatou-Bieberbach domains. If $n \ge 2$ there exists proper domains of \mathbb{C}^n biholomorphic to \mathbb{C}^n . This kind of domains appear in particular as basins of an attractive fixed point for an automorphism of \mathbb{C}^n which admits at least another fixed point. The proof is based on the Poincaré-Dulac method.
- The Andersén-Lempert theorem. If $n \ge 2$ and f is a biholomorphism between a starlike domain and a Runge domain of \mathbb{C}^n , then f is the uniform limit on compact subsets of automorphisms of \mathbb{C}^n .
- Forstneric-Weickert theorem. Let $P \colon \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial mapping with dP(0) invertible. Let d be the biggest degree of its components. Then there exists an automorphism Ψ of \mathbb{C}^n such that the d-jet of Ψ at 0 equals P.
- Construction of a non-Runge Fatou-Bieberbach domain and of a non-Stein long \mathbb{C}^2 .