(Herve.Gaussier@univ-grenoble-alpes.fr)

UMR 5582 CNRS – UGA 100 rue des Mathématiques BP 74 38402 St Martin d'Hères (France)

Metric Geometry and Curvature of Domains in \mathbb{C}^n

I. Generalities on metric spaces

- I.1. The Poincaré metric and generalizations
- I.2. The Hopf-Rinow Theorem for Length SpacesLet X be a complete, locally compact, length space. Then X is a proper geodesic space.

II. Gromov hyperbolic spaces

- II.1. Definitions and examples
- II.2. The Bonk-Schramm embedding Theorem
 - Isometric embedding of any Gromov hyperbolic metric space in a complete, geodesic, Gromov hyperbolic metric space.
- II.3. Geodesic stability

(X,d) geodesic Gromov space, $A \ge 1$, $B \ge 0$. Then there exists r > 0 such that every (A,B)-quasi-geodesic $\gamma : [a,b] \to X$, joining p to q, satisfies : $d_{Haus}(\gamma([a,b]), [p,q]) \le r$.

- II.4. The boundary of a Gromov hyperbolic space
 - Existence of geodesic rays and geodesic lines in proper, geodesic, Gromov hyperbolic spaces - The Visibility Theorem. Given $x \neq y \in \partial_G X$, where X is Gromov hyperbolic, proper, geodesic, there is $K \subset \subset X$ such that every geodesic line joining x to y intersects K.

- Geodesic lines stability

- The Bonk-Schramm filling Theorem : construction of a Gromov hyperbolic metric space Cone(Z) whose boundary is a given bounded metric space Z. Link between $Cone(\partial X)$ and X when X is a Gromov hyperbolic metric space.
- II.5. Gromov hyperbolicity of some complete Kobayashi hyperbolic domains in \mathbb{C}^n
 - Z.Balogh-M.Bonk's result : If *D* is strongly pseudoconvex, then (D, K_D) is Gromov hyperbolic and $\partial_G D$ can be identified with ∂D .

- The Squeezing function and associated results

III. Curvature of Kähler metrics

- III.1. Definitions and links (from holomorphic sectional curvature to sectional curvature)
- III.2. Examples
- III.3. The Yau-Ahlfors-Schwarz Lemma and application

Theorem. (M,g) complete, Kähler, $Ric(g) \ge -a$ $(a \ge 0)$, (N,h) Hermitian, $Bisect(h) \le -b < 0$. If $f: M \to N$ holomorphic, then $f^*h \le (a/b)g$.

- III.4. Non-existence of a complete Kähler metric with pinched negative holomorphic bisectional curvature on a polydisk (Yang's Theorem)
- III.5. Bounded geometry and deformation of a complete Kähler metric with stable pinching condition