Theorem HYP.
Let A be such that $\rho(A)$ is eigenvalue of A and there exists $k \geq 1$ such that A^k is non negative and irreducible (HYP) (NOTE: if A is non negative, then HYP on A is equivalent to IRREDUCIBILITY of A). Then

(i) $\rho(A)$ is positive, is a simple eigenvalue of A and of A^T, and $\exists! \mathbf{z}, \mathbf{w}$ both positive vectors such that $\|\mathbf{z}\|_1 = \|\mathbf{w}\|_1 = 1$ and $A\mathbf{z} = \rho(A)\mathbf{z}$, $A^T\mathbf{w} = \rho(A)\mathbf{w}$.

(ii) There exists a diagonal matrix D with positive diagonal entries such that DAD^{-1} is $\rho(A)$-stochastic by columns (or by rows). Note that $(DAD^{-1})_{ij} \neq 0$ iff $(A)_{ij} \neq 0$, and $(DAD^{-1})_{ij}$ and $(A)_{ij}$ have the same argument [A and DAD^{-1} have the same pattern].

(iii) If $(A^k)_{ii}$ is positive for some i, then the remaining $n-1$ eigenvalues of A have absolute value less than $\rho(A)$.

(iv) If A^k is positive, then the remaining $n-1$ eigenvalues of A have absolute value less than $\rho(A)$.

(v) If the remaining $n-1$ eigenvalues of A have absolute value less than $\rho(A)$, then $\frac{1}{\rho(A)}A^j \to \frac{\mathbf{z}\mathbf{w}^T}{\mathbf{w}^T\mathbf{w}}$, and therefore there exists s such that A^s is positive.

(vi) A is similar to a $\rho(A)$-stochastic by rows and by columns matrix.

PROOF. SEE Appendix.

NOTE. Let A be a non negative $n \times n$ matrix. Then A is primitive ($A \geq 0$, A irreducible, $\rho(A)$ dominates the remaining eigenvalues of A) iff there exists m such that A^m is positive.

EXERCISE (by Fra). Let A be irreducible, with hermitian pattern (in the sense that $a_{ij} \neq 0$ iff $a_{ji} \neq 0$, and, in such case, $a_{ij}a_{ji} \in \mathbb{R}^+$), and such that A^2 is non negative and irreducible. Prove that then there exists m such that A^m is positive.

Corollary HYP. Let A be a stochastic by columns $n \times n$ matrix, i.e. $\sum_i a_{ij} = 1 \forall j$ ($a_{ij} \in \mathbb{C}$). Assume that there exists $k \geq 1$ such that $A^k \geq 0$. Then 1 is eigenvalue of A and $1 = \rho(A)$ (SEE Appendix). If, moreover, A^k is irreducible, then all assertions (i)-(vi) hold with $\rho(A) = 1$ and $\mathbf{w}^T = \mathbf{e}^T = [1 \ 1 \ \cdots \ 1]$.

The result stated in the latter Corollary justifies the researches of Riccardo.

At the end of the Appendix, are reported some considerations on $n \times n$ stochastic by columns matrices A (with complex entries), from which one deduces:

- If $m^A_\lambda(1) = m^A_\mu(1)$, then there exists \mathbf{z} such that $A\mathbf{z} = \mathbf{z}$, $\mathbf{z}^T\mathbf{e} \neq 0$.
- If $m^A_\lambda(1) > m^A_\mu(1)$ and $\exists k$ such that $A^k \geq 0$, then $(1 = \rho(A)$ is eigenvalue of A, see above, and) A must have an eigenvalue $\lambda \neq 1$ such that $|\lambda| = 1$.

1
2 × 2 THEOREM. Let A be a square $n \times n$ matrix that can be partitioned as follows

$$A = \begin{bmatrix} M & 0 \\ N & L \end{bmatrix}$$

where M (L) is square and the number of its columns (rows) is equal to the number of columns (rows) of N. M can have complex entries, $N \geq 0$, $L \geq 0$.

Assume that M satisfies HYP (this implies $\rho(M)$ positive). Assume also that $\rho(L) < \rho(M)$ (this implies $(\rho(M)L)^{-1}N \geq 0$).

Then $\rho(A)$ ($= \rho(M)$) is positive, is a simple eigenvalue of A and of A^T, and exists a unique $z \geq 0$ such that $\|z\|_1 = 1$ and $Az = \rho(A)z$:

$$z = \begin{bmatrix} \tilde{z} \\ (\rho(M)I - L)^{-1}N\tilde{z} \end{bmatrix}, \quad \tilde{z} > 0, \quad M\tilde{z} = \rho(M)\tilde{z},$$

and a unique $w \geq 0$ such that $\|w\|_1 = 1$ and $A^Tw = \rho(A)w$:

$$w = \begin{bmatrix} \tilde{w} \\ 0 \end{bmatrix}, \quad \tilde{w} > 0, \quad M^T\tilde{w} = \rho(M)\tilde{w}.$$

Moreover, there exists a diagonal matrix D with positive diagonal entries such that DMD^{-1} is $\rho(M)$-stochastic by columns. As a consequence, by the third Gershgorin theorem, if $[M^k]_{ii} > 0$ for some i, then the remaining order $\rho(M) - 1$ eigenvalues of M (the remaining $n - 1$ eigenvalues of A) have absolute value smaller than $\rho(M)$ ($= \rho(A)$), and thus, if $j \to +\infty$,

$$\frac{1}{\rho(M)^j}A^j = \frac{zw^T}{w^Tz} \begin{bmatrix} M^j \\ \sum_{i=0}^{j-1} L^i NM^{j-i} \\ L^j \end{bmatrix}.$$

Proof. See the Appendix.
3 × 3 THEOREM. Let \(A \) be a square \(n \times n \) matrix that can be partitioned as follows

\[
A = \begin{bmatrix}
L_1 & 0 & 0 \\
N_1 & M & 0 \\
S & N_2 & L_2
\end{bmatrix}
\]

with \(M, L_1, L_2 \) square. \(M \) and \(S \) can have complex entries, \(L_1 \geq 0, N_1 \geq 0, L_2 \geq 0, N_2 \geq 0. \)

Assume that \(M \) satisfies HYP (note that this implies \(\rho(M) \) positive). Assume also that \(\rho(L_1) < \rho(M), \rho(L_2) < \rho(M) \) (note that this implies \((\rho(M)I - L_2)^{-1}N_2 \geq 0, (\rho(M)I - L_2^T)^{-1}N_2^T \geq 0) \).

Then \(\rho(A) (= \rho(M)) \) is positive, is a simple eigenvalue of \(A \) and of \(A^T \), and exists a unique \(z \geq 0 \) such that \(\|z\|_1 = 1 \) and \(Az = \rho(A)z \):

\[
z = \begin{bmatrix}
0 \\
\tilde{z} \\
(\rho(M)I - L_2)^{-1}N_2\tilde{z}
\end{bmatrix}, \text{ } \tilde{z} > 0, \text{ } M\tilde{z} = \rho(M)\tilde{z},
\]

and a unique \(w \geq 0 \) such that \(\|w\|_1 = 1 \) and \(A^Tw = \rho(A)w \):

\[
w = \begin{bmatrix}
(\rho(M)I - L_1^T)^{-1}N_1^T\tilde{w} \\
w \\
0
\end{bmatrix}, \text{ } \tilde{w} > 0, \text{ } M^T\tilde{w} = \rho(M)\tilde{w}.
\]

Moreover, there exists a diagonal matrix \(D \) with positive diagonal entries such that \(DMD^{-1} \) is \(\rho(M) \)-stochastic by columns. As a consequence, by the third Gershgorin theorem, if \(|M^j|_{ii} > 0 \) for some \(i \), then the remaining \(\text{order}(M) - 1 \) eigenvalues of \(M \) (the remaining \(n - 1 \) eigenvalues of \(A \)) have absolute value smaller than \(\rho(M) (= \rho(A)) \), and thus, if \(j \to +\infty \),

\[
\frac{1}{\rho(M)^j} A^j \to \frac{zw^T}{w^Tz} \begin{bmatrix}
L_1^j & 0 & 0 \\
M^j & 0 \\
L_2^j
\end{bmatrix}.
\]

Proof. Left to the reader.
Consider a $n \times n$ matrix A of the form

$$
A = \begin{bmatrix} M & 0 \\ N & L \end{bmatrix}
$$

with M, L square, non-negative, N non-negative, M and N with the same number of columns, $M_{ii} = 0 \ \forall \ i$, $\sum_i M_{ij} + \sum_k N_{kj} = 1 \ \forall \ j$, and L with the structure

$$
L = \begin{bmatrix} 0 & \cdots & 0 \\ L_{21} & 0 & \cdots \\ \vdots & \ddots & \ddots \\ L_{r1} & \cdots & 0 \\
\end{bmatrix}
$$

where the diagonal zeros are null square matrices not necessarily of the same order, and $\sum_{s=t+1} \sum_i |L_{st}|_{ij} = 1 \ \forall \ j \ \forall \ t = 1, \ldots, r - 1$. Then

$$
\rho(A) = \rho(M) = \begin{cases}
1 & \text{if } N = 0 \ (\Rightarrow \ M \ \text{stochbycol}) \\
\leq 1 & \text{if } N \neq 0, \ M \ \text{reducible} \\
> 1 & \text{if } N \neq 0, \ M \ \text{irreducible}
\end{cases}
$$

Assume also that no column of M is null.

These assumptions are satisfied by QP^TQ^T where P is the transition matrix of the web and Q is the permutation putting together and down all null rows and null sub-rows of P, in the sense that

$$
QP^TQ^T = \begin{bmatrix} M^T & N^T \\ 0 & L^T \end{bmatrix}
$$

with M, L square, each row of M^T non-null, and L with a strictly lower triangular block structure (see below for a precise definition of Q). By the 2 by 2 Theorem, if the square matrix M satisfies HYP (iff M irreducible ($M \geq 0$)), since $\rho(L) = 0 < \rho(M) = \rho(P)$, then it is uniquely defined $z, z \geq 0$, $\|z\|_1 = 1$, such that $QP^TQ^Tz = \rho(P)z$, $P^T(Q^Tz) = \rho(P)(Q^Tz)$ with $\rho(P) < 1$, unless $N = 0$ in which case $\rho(P) = 1$, i.e., if we set $p = Q^Tz$, we have $p_j = \sum_{i: p_i > 0} \frac{1}{\rho(P)}$, $\|p\|_1 = 1$, $p_i \geq 0$.

Note that $p_i = (Q^Tz)_i = z_q_i$ is null whenever $q_i = \text{order}(M) + s$ where the sth row of $(I - \frac{1}{\rho(M)L})^{-1}N$ is null. If we want $p_i > 0 \ \forall \ i$, then it is enough to perturb one zero entry of each null row of $(I - \frac{1}{\rho(M)L})^{-1}N$. In order to do this, it is sufficient to perturb one zero entry of each null row of N

\[\text{[in fact,} \]

$$
(I - \frac{1}{\rho(M)L})^{-1}N = N + \frac{1}{\rho(M)}LN + \ldots + \frac{1}{\rho(M)^{r-1}}L^{r-1}N
$$

where $L^{r}N \geq 0$

(f.i. $0 \rightarrow \frac{1}{\deg(\cdot)+1}$), say the one in position r, and maintain non null but reduce (f.i. $\frac{1}{\deg(\cdot)} \rightarrow \frac{1}{\deg(\cdot)+1}$) the nonzero entries in the r column of N and of M so that the resulting M' and N' yet satisfy $\sum_i M'_{ij} + \sum_k N'_{kj} = 1 \ \forall \ j$, and all other assumptions [$M' \geq 0, N' \geq 0, M'$ satisfies HYP iff M' irreducible].
Observe also that $0 < \rho(P') = \rho(M') < \rho(P) = \rho(M) \leq 1$ ($= 1$ iff $N = 0$), where P' is defined by the following equality

$$Q(P')^T Q^T = \begin{bmatrix} M' & 0 \\ N' & L \end{bmatrix}$$

(since $M' \leq M$, $M' \neq M$, M is irreducible, we have $\rho(M') < \rho(M)$) and it is uniquely defined z', $z' > 0$, $\|z'\|_1 = 1$, such that $Q(P')^T Q^T z' = \rho(P')z'$, $(P')^T (Q^T z') = \rho(P')(Q^T z')$ with $\rho(P') < 1$, i.e., if we set $p' = Q^T z'$, we have $p'_j = \sum_{i: i \rightarrow j} \frac{(1/\rho(P'))}{\deg(i)} p'_i$, $\|p'\|_1 = 1$, $p' > 0$.
Consider a $n \times n$ matrix A of the form

$$A = \begin{bmatrix} L_1 & 0 & 0 \\ N_1 & M & 0 \\ S & N_2 & L_2 \end{bmatrix}$$

with M, L_1, L_2 square, non-negative, N_1, N_2, S non-negative, M and N_2 with the same number of columns, L_1, N_1, S with the same number of columns, $\sum_k [L_1]_{kj} + \sum_i [N_1]_{ij} + \sum_k [S]_{kj} = 1 \forall j$, $\sum_i M_{ij} + \sum_k [N_2]_{kj} = 1 \forall j$, $M_{ii} = 0 \forall i$, and L_2 with the structure

$$L_2 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ (L_2)_{21} & 0 & \cdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ (L_2)_{r1} & \cdots & (L_2)_{rr} & 0 \end{bmatrix}$$

where the diagonal zeros are null square matrices not necessarily of the same order, and $\sum_{s=t+1}^i (L_2)_{st} = 1 \forall j \forall t = 1, \ldots, r - 1$, and L_1 with the structure

$$L_1 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ (L_1)_{21} & 0 & \cdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ (L_1)_{s1} & \cdots & (L_1)_{ss} & 0 \end{bmatrix}$$

where the diagonal zeros are null square matrices not necessarily of the same order.

Then

$$\rho(A) = \rho(M) = \begin{cases} 1 & N_2 = 0 \Rightarrow \text{M stochbycol} \\ \leq 1 & N_2 \neq 0, \text{M reducible} \\ < 1 & N_2 \neq 0, \text{M irreducible} \end{cases}$$

Assume M with no null row and no null column.

These assumptions are satisfied by QP^TQ^T where P is the transition matrix of the web and Q is the permutation putting together and down (together and on left) all null rows and null sub-rows (null columns and null sub-columns) of P, in the sense that

$$QPQ^T = \begin{bmatrix} L_1^T & N_1^T & S^T \\ M^T & N_2^T & 0 \\ 0 & 0 & L_2^T \end{bmatrix}$$

with M, L_1, L_2 square, each row and column of M^T non-null, and L_1, L_2 with a strictly lower triangular block structure (see below for a precise definition of Q). By the 3×3 Theorem, if the square matrix M satisfies HYP (iff M irreducible ($M \geq 0$)), since $\rho(L_2) = \rho(L_1) = 0 < \rho(M) = \rho(P)$, then it is uniquely defined $z, z \geq 0, \|z\|_1 = 1$, such that $QP^TQ^Tz = \rho(P)z$, $P^T(Q^Tz) = \rho(P)(Q^Tz)$ with $\rho(P) < 1$, unless $N_2 = 0$ in which case $\rho(P) = 1$, i.e., if we set $p = Q^Tz$, we have $p_j = \sum_{i: i \rightarrow j} \frac{(1/\rho(P))^{\deg(i)} p_i, \|p\|_1 = 1, p_i \geq 0}$. Note that $p_i = (Q^Tz)_i = z_{q_i}$ is null whenever $q_i \leq \text{order}(L_1)$ or $q_i = \text{order}(L_1) + \text{order}(M) + s$ where the sth row of $(I - \frac{1}{\rho(M)}L_2)^{-1}N_2$ is null. If
we want $p_i > 0 \forall i : q_i > \text{order}(L_1)$, then it is enough to perturb one zero entry of each null row of $(I - \frac{1}{\rho(M)}L_2)^{-1}N_2$. In order to do this, it is sufficient to perturb one zero entry of each null row of N_2.

[in fact]

$$(I - \frac{1}{\rho(M)}L_2)^{-1}N_2 = N_2 + \frac{1}{\rho(M)}L_2N_2 + \ldots + \frac{1}{\rho(M)^r-1}L_2^rN_2$$

where $L_2^rN_2 \geq 0$

(f.i. $0 \rightarrow \frac{1}{\text{deg}(\cdot)+1}$), say the one in position r, and maintain non null but reduce (f.i. $\frac{1}{\text{deg}(\cdot)} \rightarrow \frac{1}{\text{deg}(\cdot)+1}$) the nonzero entries in the r column of N_2 and of M so that the resulting M' and N'_2 yet satisfy $\sum_i M'_{ij} + \sum_k (N'_2)_{kj} = 1 \forall j$, and all other assumptions [$M' \geq 0$, $N'_2 \geq 0$, M' satisfies HYP iff M' irreducible].

Observe also that $0 < \rho(P') = \rho(M') < \rho(P) = \rho(M) \leq 1$ (= 1 iff $N_2 = 0$), where P' is defined by the following equality

$${Q(P')}^TQ = \begin{bmatrix} L_1 & 0 & 0 \\ N_1 & M' & 0 \\ S & N' & L_2 \end{bmatrix}$$

(since $M' \leq M$, $M' \neq M$, M is irreducible, we have $\rho(M') < \rho(M)$) and it is uniquely defined z', $z' \geq 0$ ($z'_i = 0$ iff $i \leq \text{order}(L_1)$), $\|z'\|_1 = 1$, such that $Q(P')^TQ^Tz' = \rho(P'z'$, $(P')^TQ^Tz' = \rho(P'((Q^Tz')$ with $\rho(P') < 1$, i.e., if we set $p' = Q^Tz'$, we have $p'_j = \sum_i : i \rightarrow \frac{(1/\rho(P'))}{\text{deg}(i)}p'_i$, $\|p'\|_1 = 1$, $p' \geq 0$ ($p'_i = 0$ iff $q_i \leq \text{order}(L_1)$).
Example: $A = QP^TQ^T$, P web transition matrix

Let P be the $n \times n$ transition matrix of an oriented graph with n vertices (i.e. the web graph), i.e. $P_{ij} = \frac{1}{\text{deg}(i)}$ if there is a link from i to j ($\text{deg}(i) = \# \text{ links from } i$), and $P_{ij} = 0$ otherwise. Note that P is a non negative matrix such that $\sum_j P_{ij} = 1$ if $\text{deg}(i) > 0$, and $\sum_j P_{ij} = 0$ if $\text{deg}(i) = 0$, i.e. P is a non negative quasi-stochastic by rows matrix.

Here below is the procedure generating QPQ^T

\[P = \begin{bmatrix} \end{bmatrix} \]

Move the r_1 null rows of the upper-left $n \times n$ submatrix of P down:

\[R_1PR_1^T = \begin{bmatrix} \end{bmatrix} \]

Move the r_2 null rows of the upper-left $(n - r_1) \times (n - r_1)$ submatrix of $R_1PR_1^T$ down:

\[R_2R_1PR_1^T R_2^T = \begin{bmatrix} \end{bmatrix} \]

Move the r_3 null rows of the upper-left $(n - r_1 - r_2) \times (n - r_1 - r_2)$ submatrix of $R_2R_1PR_1^T R_2^T$ down:

\[R_3R_2R_1PR_1^T R_2^T R_3^T = \begin{bmatrix} \end{bmatrix} \]

In the upper-left $(n - r_1 - r_2 - r_3) \times (n - r_1 - r_2 - r_3)$ submatrix of $R_3R_2R_1PR_1^T R_2^T R_3^T$ there is no null row. Call it M^T and try to apply the 2×2 THEOREM.

Move the c_1 null columns of the upper-left $(n - r_1 - r_2 - r_3) \times (n - r_1 - r_2 - r_3)$ submatrix of $R_3R_2R_1PR_1^T R_2^T R_3^T$ on the left:

\[C_1R_3R_2R_1PR_1^T R_2^T R_3^T C_1^T = \begin{bmatrix} \end{bmatrix} \]

Move the c_2 null columns of the almost upper-left $(n - r_1 - r_2 - r_3 - c_1) \times (n - r_1 - r_2 - r_3 - c_1)$
submatrix of $C_1R_3R_2R_1PR_1^TR_2^TR_3^TC_1^T$ on the left:

$$C_2C_1R_3R_2R_1PR_1^TR_2^TR_3^TC_1^T = L_T \begin{bmatrix} 0 & 0 & 0 & M^T & L_T^T \end{bmatrix}$$

Move the c_3 null columns of the almost almost upper-left $(n - r_1 - r_2 - r_3 - c_1 - c_2) \times (n - r_1 - r_2 - r_3 - c_1 - c_2)$ submatrix of $C_2C_1R_3R_2R_1PR_1^TR_2^TR_3^TC_1^T$ on the left:

$$C_3C_2C_1R_3R_2R_1PR_1^TR_2^TR_3^TC_1^T = L_T \begin{bmatrix} 0 & 0 & 0 & M^T & L_T^T \end{bmatrix}$$

In the almost almost upper-left $(n - r_1 - r_2 - r_3 - c_1 - c_2 - c_3) \times (n - r_1 - r_2 - r_3 - c_1 - c_2 - c_3)$ submatrix of $C_3C_2C_1R_3R_2R_1PR_1^TR_2^TR_3^TC_1^T$ there is no null column (besides no null row). Call it M^T and try to apply the 3×3 THEOREM.
APPENDIX

Perron-Frobenius theorem. Let \(M \) be a non negative \((M_{ij} \geq 0)\), irreducible \(n \times n \) matrix. Then \(\rho(M) \) is positive, \(\rho(M) \) is a simple eigenvalue of \(M \) (this implies that \(\rho(A) \) is positive!) and there exists a unique positive vector \(z \) (\(z_i \) positive for all \(i \)) such that \(\|z\|_1 = 1 \) and \(Mz = \rho(M)z \). If \(M \) is also stochastic by columns, then \(1 = \rho(M) \).

PROOF of THEOREM HYP

(i) Since \(A^k \) is a non negative, irreducible \(n \times n \) matrix, by the Perron-Frobenius theorem \(\rho(A^k) \) is a positive simple eigenvalue of \(A^k \) (this implies that \(\rho(A) \) is positive!) and there exists a unique positive vector \(z \) such that \(\|z\|_1 = 1 \), \(A^kz = \rho(A^k)z = \rho(A)^kz \). Let \(y \neq 0 \) be an eigenvector of \(A \) corresponding to its eigenvalue \(\rho(A) \), thus \(Ay = \rho(A)y \). Note that then \(y \) also satisfies the identities \(A^ky = \rho(A)^ky \), \(\forall j \), and in particular the identity \(A^ky = \rho(A)^ky \). Since \(m_8^k(\rho(A)^k) = 1 \), this implies \(y = \alpha z \), for some \(\alpha \in \mathbb{C} \). So we have \(Az = \rho(A)z \) and \(m_8^k(\rho(A)) \geq m_8^k(\rho(A)) = 1 \) (Stefano). Finally note that \(m_8^k(\rho(A)) \leq m_8^k(\rho(A)^k) = 1 \), thus \(m_8^k(\rho(A)) = 1 \). The assertion on \(w \) follows by observing that \(A \) satisfies HYP iff \(A^T \) satisfies HYP.

(ii) By (i) we know that there exists a unique positive vector \(w \) such that \(\|w\|_1 = 1 \), \(A^T w = \rho(A)w \). It follows that \(\sum_i [A^T]_{ji} w_i = \rho(A)w_j \), and thus \(\sum_i w_i[A]_{ij}w_j^{-1} = \rho(A) \) (\(\forall j \)). Now observe that the latter identity can be rewritten as follows \(\sum_i [DAD^{-1}]_{ij} = \rho(A) \), \(\forall j \), where \(D = d(w) \) is a diagonal matrix with positive diagonal entries.

(iii) Let \(D \) be the matrix introduced in (ii). Then \((A^k)_{ii} \) positive implies \((DA^kD^{-1})_{ii} = [(DAD^{-1})^k]_{ii} \), positive. \(A^k \) non negative implies \(DA^kD^{-1} = (DAD^{-1})^k \), non negative. \(A^k \) irreducible implies \(DA^kD^{-1} = (DAD^{-1})^k \), irreducible.

Note also that, since \(DAD^{-1} \) is \(\rho(A) \)-stochastic by columns, i.e. \((DAD^{-1})^Te = \rho(A)e \), we have that \((DAD^{-1})^k \) is \(\rho(A)^k \)-stochastic by columns, i.e. \(((DAD^{-1})^k)^Te = \rho(A)^ke \).

Note that then all the Gershgorin circles \(\mathcal{G}_j \) of \((DAD^{-1})^k \) are in the set \(\mathcal{B} = \{z \in \mathbb{C} : |z| \leq \rho(A)^k\} \) and their borders pass through the point \(\rho(A)^k \). Moreover, the \(\mathcal{G}_j \) coincide with \(\mathcal{B} \) if \([(DAD^{-1})^k]_{ij} = 0 \), otherwise they touch the circle \(|z| = \rho(A)^k \) only in \(\rho(A)^k \). So, we can apply the third Gershgorin theorem to the matrix \((DAD^{-1})^k \) and say that a complex number \(z \), \(|z| = \rho(A)^k \), not being inside any circle, can be an eigenvalue of \((DAD^{-1})^k \) only if \(z = \rho(A)^k \), since \(\rho(A)^k \) is the only point in \(\alpha \partial K_j \). This and the fact that \(\rho(A)^k \) is a simple eigenvalue of \((DAD^{-1})^k \) imply that the remaining \(n-1 \) eigenvalues of \((DAD^{-1})^k \) must have absolute value smaller than \(\rho(A)^k \), and thus, that exactly \(n-1 \) eigenvalues of \(DAD^{-1} \) must have absolute value smaller than \(\rho(A) \).

(iv) It follows from (iii)

(v) Assume that \(A \) satisfies HYP. Let \(J \) be the Jordan form of \(A \). Then there is a non singular matrix \(S \) such that

\[
S^{-1} AS = J = \begin{bmatrix} \rho(A) & & \\ & |\lambda| = \rho(A), \lambda \neq \rho(A) & \\ & |\lambda| < \rho(A) & \end{bmatrix}
\]
Moreover, we can assume that the first column of S is exactly the vector z introduced in (i). Note that $e_1^T S^{-1} A = \rho(A) e_1^T S^{-1}$ and in the same time, of course, $w^T A = \rho(A) w^T$, where w is the other vector introduced in (i). Thus $e_1^T S^{-1}$ must be equal to αw^T for some $\alpha \in \mathbb{C}$ ($m_1^A(\rho(A)) = m_0^A(\rho(A)) = 1$).

Then, since $e_1^T S^{-1} z = 1$, we must have $\alpha w^T z = 1$, that implies $\alpha = 1/w^T z$. In other words, if we assume that the first column of S is exactly the vector z, then the first row of S^{-1} is exactly the vector $1/w^T z$. Now consider a partition of S and S^{-1} according to the form of J:

$$
S = \begin{bmatrix} z & X & \tilde{X} \end{bmatrix}, \quad S^{-1} = \begin{bmatrix} \frac{1}{w^T z} w^T & Y & \tilde{Y} \end{bmatrix}
$$

(note that X, \tilde{X}, Y, \tilde{Y} must satisfy the identities $w^T X = 0^T$, $w^T \tilde{X} = 0^T$, $Y z = 0$, $\tilde{Y} z = 0$). Then

$$
\frac{1}{\rho(A)^j} A^j = \frac{1}{\rho(A)^j} S J S^{-1} = \begin{bmatrix} z & X & \tilde{X} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{\rho(A)^j} [\lambda = \rho(A), \lambda \neq \rho(A)] & \frac{1}{\rho(A)^j} [\lambda = \rho(A), \lambda \neq \rho(A)]^T \end{bmatrix} \begin{bmatrix} \frac{1}{w^T z} w^T & Y & \tilde{Y} \end{bmatrix},
$$

$$
\frac{1}{\rho(A)^j} A^j = \frac{1}{w^T z} z w^T + X \frac{1}{\rho(A)^j} [\lambda = \rho(A), \lambda \neq \rho(A)] Y + \tilde{X} \frac{1}{\rho(A)^j} [\lambda = \rho(A), \lambda \neq \rho(A)] \tilde{Y}.
$$

If there is no eigenvalue λ of A such that $|\lambda| = \rho(A)$, $\lambda \neq \rho(A)$, then the last formula implies that, as $j \to +\infty$, the matrix $\frac{1}{\rho(A)^j} A^j$ tends to the rank one matrix $\frac{1}{w^T z} z w^T$, which is positive. Thus there must exists an s such that A^s is positive.

(vi) Let S be a non singular matrix. First notice that $S A S^{-1}$ is $\rho(A)$-stochastic by columns and by rows iff $(S A S^{-1})^T e = \rho(A) e$, $(S A S^{-1}) e = \rho(A) e$ iff $A^T (S^T e) = \rho(A) (S^T e)$, $A (S^{-1} e) = \rho(A) (S^{-1} e)$. Since A satisfies HYP, there exist positive vectors z and w' such that $A^T w' = \rho(A) w'$, $A z = \rho(A) z$, $\|z\|_1 = 1$, $\sum_i w'_i z_i = n$. Now the problem is reduced to find S such that $S^T e = w'$ (1), $S z = e$ (2). The matrix $S = M + (e - M z) e^T$ satisfies (2) for all M, so it is enough to choose M such that (1) holds:

$$
S^T e = M^T e + ((e - M z)^T e) e = w'.
$$

The latter equality is satisfied in particular by $M = d(w')$, and such choice of M makes S non singular (check it!).

PROOF of COROLLARY HYP

Since A is stochastic by columns, we have $A^T e = e$, $e = [1 \ 1 \ \cdots \ 1]^T$, so 1 is eigenvalue of A^T, and therefore of A (a matrix and its transpose have the same eigenvalues). If λ is an eigenvalue of A then λ^k is an eigenvalue of A^k. Then

$$
|\lambda|^k \leq \|A^k\|_1 = \max_j \sum_i |[A^k]_{ij}| = \max_j \sum_i |[A^k]_{ij}| = \max_j = 1 = 1
$$

(recall that μ eig of M implies $|\mu| \leq \|M\|_1$, and that A stochbycol implies A^j stochbycol for all j). Thus, $|\lambda|^k = |\lambda|^k \leq 1$, which implies $|\lambda| \leq 1$. So the absolute value of any eigenvalue of A is bounded by 1, and at least one of them (i.e. 1) has absolute value one.
PROOF of the 2×2 THEOREM

By the Perron-Frobenius theorem, $\rho(M^k)$ is a positive simple eigenvalue of M^k and there exists $\tilde{z} > 0$ such that $M^k \tilde{z} = \rho(M^k) \tilde{z}$. $\rho(M)$ is positive since $\rho(M)^k = \rho(M^k) > 0$. Observe that $M y = \rho(M) y$, $y \neq 0$, implies $M^k y = \rho(M)^k y = \rho(M) y$, thus $y = \alpha \tilde{z}$, $M \tilde{z} = \rho(M) \tilde{z}$, and $m_a^M(\rho(M)) = 1$. Moreover, $m_a^M(\rho(M)) \leq m_a^{M^k}(\rho(M)^k) = m_a^{M^k}(\rho(M^k)) = 1$. So, $\rho(M)$ is positive, is a simple eigenvalue of M, and thus $\rho(A) (= \rho(M))$ is positive, and is a simple eigenvalue of A. In fact,

$$
\begin{bmatrix}
M & 0 \\
N & L
\end{bmatrix}
\begin{bmatrix}
\tilde{z} \\
x
\end{bmatrix} =
\begin{bmatrix}
M \tilde{z} \\
N \tilde{z} + L x
\end{bmatrix} = \rho(M)
\begin{bmatrix}
\tilde{z} \\
x
\end{bmatrix}
$$

implies $x = (\rho(M) I - L)^{-1} N \tilde{z}$. Finally, of course, \tilde{z} can be chosen so that $\|z\|_1 = 1$ where

$$
z = \begin{bmatrix}
\tilde{z} \\
(\rho(M) I - L)^{-1} N \tilde{z}
\end{bmatrix}.
$$

Analogously, $\rho(M)$ is a simple eigenvalue of M^T and there exists $\tilde{w} > 0$ such that $M^T \tilde{w} = \rho(M) \tilde{w}$, and thus $\rho(A) (= \rho(M))$ is a simple eigenvalue of A^T. In fact,

$$
\begin{bmatrix}
M^T & N^T \\
0 & L^T
\end{bmatrix}
\begin{bmatrix}
\tilde{w} \\
x
\end{bmatrix} =
\begin{bmatrix}
M^T \tilde{w} + N^T x \\
L^T x
\end{bmatrix} = \rho(M)
\begin{bmatrix}
\tilde{w} \\
x
\end{bmatrix}
$$

implies $x = 0$. Finally, of course, \tilde{w} can be chosen so that $\|w\|_1 = 1$ where

$$
w = \begin{bmatrix}
\tilde{w} \\
0
\end{bmatrix}.
$$

The proof of the remaining assertions is left to the reader (proceed as in the proof of (ii),(iii),(v) of Theorem HYP).

PROOF of the 3×3 THEOREM

Left to the reader.
In the following \(A \) is stochastic by columns and in \(\mathbb{C}^{n \times n} \)

Assume \(m_a(1) = m_g(1) = q \) \((\Rightarrow q = m_a^{A^T}(1) = m_g^{A^T}(1))\). Let \(z_i \neq 0 \) be linearly independent and such that \(Az_i = z_i, i = 1, \ldots, q \), and consider the Jordan canonical form of \(A \):

\[
S = \begin{bmatrix} Z & X & \bar{X} \end{bmatrix}, \quad Z = \begin{bmatrix} z_1 & \cdots & z_q \end{bmatrix}, \quad S^{-1} = \begin{bmatrix} E & \cdot & \cdot \\ Y & \cdot & \cdot \\ Y & \cdot & \cdot \end{bmatrix},
\]

\[
S^{-1}AS = \begin{bmatrix} I_q & |\lambda| \geq 1, \lambda \neq 1 \\ |\lambda| = 1 & |\lambda| < 1 \end{bmatrix}.
\]

Observe that the equalities \((e_i^T S^{-1})A = (e_i^T S^{-1})\), \(r = 1, \ldots, q\), and \(e_i^T A = e_i^T\) imply \(e_i^T = \sum_{r=1}^{q}\beta_i e_i^T S^{-1}\). Moreover, \(E\) must be such that \(I_q = EAZ = EZ\). Thus \(e_i^T Z = \sum_{r=1}^{q}\beta_i(e_i^T S^{-1})Z = \sum_{r=1}^{q}\beta_i e_i^T\), and therefore \(\beta_i = e_i^T z_i\). In other words, the following formula must hold:

\[
e_i^T = \sum_{r=1}^{q}(e_i^T z_i)(e_i^T S^{-1}) \quad \text{if } q = 1 : e_i^T = (e_i^T z_i)(e_i^T S^{-1})].
\]

Note: the latter formula proves that at least one \(e_i^T z_i\) must be nonzero \((\text{if } q = 1: e_i^T z_i \text{ must be nonzero})\) !

Then we have the following representation of \(A^r\):

\[
A^r = ZE + X \begin{bmatrix} |\lambda| \geq 1, \lambda \neq 1 \\ |\lambda| = 1 & |\lambda| < 1 \end{bmatrix} Y + \bar{X} \begin{bmatrix} |\lambda| \geq 1, \lambda \neq 1 \\ |\lambda| = 1 & |\lambda| < 1 \end{bmatrix} \bar{Y}
\]

Such formula let us conclude that if the eigenvalues \(\lambda\) of \(A\) different from 1 are such that \(|\lambda| < 1\), then \(A^r \to ZE\), and, in particular, \(A^r v\) converges to a linear combination of the eigenvectors of 1 \((\text{if } q = 1: A^r \to \frac{z_i^T}{e_i^T z} \text{ and } A^r v\) converges to a multiple of \(z\); as a consequence, if \(z > 0\) (as in the example \(A = \begin{bmatrix} -\frac{1}{2} & b \\ \frac{1}{2} & 1 - b \end{bmatrix}; 0 < b < \frac{3}{2}\) then \(\exists r\) such that \(A^r > 0 (A^2 > 0)\)).

Example. For both the following matrices

\[
A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix},
\]

we have \(m_a(1) = m_g(1) = 2\). For the first matrix 1 is dominant, whereas for the second one 1 is not dominant.

Assume now \(m_a(1) = 2 > m_g(1) = 1\). In this case we shall do the following remark: if \(A^k\) is non negative for some \(k\), then \(A\) must have an eigenvalue \(\lambda \neq 1\) such that \(|\lambda| = 1\). We conjecture that the latter remark holds in the more general case \(m_a(1) > m_g(1)\) (it is not true if \(m_a(1) = m_g(1)\), see the above Example).

Let \(z_1, z_2 \neq 0\) and linearly independent be such that \(Az_1 = z_1, Az_2 = z_1 + z_2\). Consider the Jordan canonical form of \(A\):

\[
S = \begin{bmatrix} Z & X & \bar{X} \end{bmatrix}, \quad Z = \begin{bmatrix} z_1 & z_2 \end{bmatrix}, \quad S^{-1} = \begin{bmatrix} E & \cdot & \cdot \\ Y & \cdot & \cdot \\ Y & \cdot & \cdot \end{bmatrix},
\]

13
\[S^{-1}AS = \begin{bmatrix}
1 & 1 \\
0 & 1 \\
|\lambda| \geq 1, \lambda \neq 1 & |\lambda| < 1
\end{bmatrix}. \]

Then we have the following representation of \(A^r \):

\[
A^r = Z \begin{bmatrix}
1 & r \\
0 & 1
\end{bmatrix} E + X \begin{bmatrix}
|\lambda| \geq 1, \lambda \neq 1 & |\lambda| < 1
\end{bmatrix} Y + \tilde{X} \begin{bmatrix}
|\lambda| \geq 1, \lambda \neq 1 & |\lambda| < 1
\end{bmatrix} \tilde{Y}
\]

(prove it!).

Now let us prove the remark. So, assume \(A^k \geq 0 \) \(\Rightarrow 1 = \rho(A) \) is eigenvalue of \(A \) (by Corollary HYP). If all \(\lambda \neq 1 \) are such that \(|\lambda| < 1 \), then, chosen \(p \) such that \((z_1)_p \neq 0\), we would have \(\|(A^{km})_{p,j}\| \to +\infty \) as \(m \to +\infty \), and this is not possible since \(A^{km} \) is non negative and stochastic by columns for all \(m \).

Note: If \(A \in \mathbb{C}^{n \times n} \) is stochastic by columns and \(S \) is the matrix transforming \(A \) in Jordan form, i.e.

\[S^{-1}AS = \begin{bmatrix}
[1] & [\lambda] \geq 1, \lambda \neq 1 \\
[\lambda] = 1
\end{bmatrix}, \quad [1] = \begin{bmatrix}
U_{q_1} & \cdots & U_{q_g}
\end{bmatrix}, \quad U_s = \begin{bmatrix}
1 & 1 \\
\vdots & \ddots & \vdots \\
1 & 1
\end{bmatrix} \]

then \(e^T(Se_j) = 0 \), if \(j \neq q_1, q_1 + q_2, \ldots, q_1 + q_2 + \cdots + q_g \) (prove it!).