An example of preconditioning

Let A and E be the n x n matrices

We have 3
A=E'AET =T+ee”, e=[11... 1.

The eigenvalues of the matrix Aare: 1n—1 times, and 1 + e’e = n + 1. So,
the condition number of A (in norm 2) is n + 1.
Let us compute the condition number of A. The eigenvalues of A are known

in explicit form: 2 — 2 cos %, j=1,...,n. Thus,
A _2—2cosn"—f1_1+cosnLH_1+COS(22(n—7:_1))_2CO82m_ 1
pz( )_Q—ZCOSL_1—COSL_1—COS(2L)_2'2—77 Cotglo
o | 1 2(nt1) SIN” 5 & 3mtD)

Since limnHJroo(m)?/tg?m = 1, we can conclude that pz(A4) = O(n?).

It follows that, in order to solve a system Ax = b where the coefficient matrix
A is as above, it is convenient to apply the linear systems solver at disposal to
the equivalent system F~'AE~TETx = E~'b, i.e. compute x = ETx.

Proof that a DFT of order n can be reduced to two DFT of order n/2

Yo 1 1 1 20
Y1 1 w e wnt 21
y = = . . = Wz
yn_l 1 wn71 . e w(nfl)(nfl) Zn—l

(w=wp, W=W,). Then, fori =0,...,n—1,

R n—1 5 _ m—1_i(2p m—1 i(2p+1
Yi = Zj:O Wz = szo w'( )Z2p+zp:0 W )Z2p+1

= T (WP + W 3 (@) P gy = Yo Wik ey + Wi Yy wikzaprn, (1)

(w2 = wm, m=n/2) and, fori =0,...,m — 1,
m—1 m+1i)p 1 m—1 m+1i)p
Ymmti Zp:o wfn ) Zop + whtwy, p=0 W7(n ) 22p+1

= Y Wiz, — wi Y Wy (2)

Formulas (1), ¢=0,...,m — 1, and (2) in matrix form become:
Yo 20 1 z1
Y1 z2 Wn 23
=Wn + W ,
Ym—-1 Zn—2 W,:Ln71 Zn—1



Ym 20 1 21
Ym+1 Z2 Wn, Z3

Yn—1 Zn—2 Wy Zn—1

It follows that

20
Z2

g | W DW tms | [I D W 0],
Yy="nZ=1 w  _DW,, 2 | 7|1 =D 0 W,

23

Zn—1

where the permutation matrix @) is defined in an obvious way.

The real part of A(A)) >0 vs A(Ap) > 0, also for A real

AeCrn Ay, = %(A—&-A*), Agp = (A - A").
Definition: Ay, is p.d. iff z*Apz > 0,Vz € C*, z # 0.
Then

z*Az = z*Apz+ 2" A4z,
z*Az = (ZR—iZ[)T(AR+iA[)(ZR+iZ[)
= ZEARZR—FZ?ARZ[ —Z%(AI —A?)Z[
—l—i[Zg(AR — AE)Z] + ZEA[ZR + Z?A[Z[]

where z = zr + iz;, A = Ar + iA;. Note that z*A,z is real and z*A,,z is
purely immaginary.
Moreover

zhAzp + 2T Azp (if Ais real) =
(Z*AZ)R = Z*AhZ = (ZR — iZ])T[(AR)S + i(A])As](ZR —+ iZ[)
= 2z4(AR)szr + 2] (Ar)szr + 221 (A1) aszr
+i[z5(Ar) aszr + 2T (Ar) aszi]
= (if A is real) ZEASZR + 2zt Aszy,
(z*Az)p = ngRzR—i—z?ARz[ —zg(AI—A?)ZI
= (if Ais real) zh Azg + z7 Az;.

Consequences:
1. Ay ispd. iff (z*Az)r >0,VzeC", z#0

2. For any eigenvalue A(A) there exists z, ||z||2 = 1, such that (A(A))g =
z*Apz > min A(Ay) [it is the vector z in Az = \(A)z]

3. For any eigenvalue A(Ap) there exists y, ||yll2 = 1, such that A\(Ap) =
(y*Ay)r [it is the vector y in Apy = A(Ap)y]

4. Assume A real. Then the following assertions are equivalent



o A =Agispd. (z"Apz >0,Vz e C", z+#0)
o (TAE>0,VECR", £#0
o (TAsE>0,VECR £ #0 (ETAE = €T Agé if € € R™ and A is real)

Further results:

Ay, pd. (AM(A4r) > 0) = (A(A))r > 0 (consequence of 2.)

(A(A))r > 0 & A normal = A, p.d.

(AM(A))r > 0 does not imply A, p.d. (see Example with a? > 4)

There exist non normal matrices A with (A(A))r > 0 for which A, is p.d.
(see Example with 0 < a? < 4)

Perhaps (A(A))r “much” positive would imply A(A4x) > 0 (4, p.d.)

EXAMPLE.
1 a
A= [ 0 1 }, a € R,

[a:y][(l) ‘1’][i]:[mwy]{ﬂ:xumwy?,

22 fary +y> >0, Vo, y, (x,y) #(0,0) iff a® <4

i.e. the hermitian part of A is p.d. iff a® < 4. Also observe that A is normal iff
a=0.S0,a €R,0< a? <4 = A satisfies the coditions: A real, A, = Ag p.d.,
A is not normal, (A(A))r = A(4) =1 > 0.

We know that Ay p.d. implies R(A(A)) >0 ... R(A(A)) >0 = A, pd. ¢
If A is normal, yes; otherwise a stronger hypothesis of kind R(A(A)) > ¢ > 0 is
sufficient to obtain the p.d. of Ap. The aim is to find a q as small as possible.
A question is “q can be zero for a class of not normal matrices ?”

Let A be a generic n x n matrix. It is known that AX = XT, with X =

[X1 X2 ... Xy, unitary and T upper triangular
A1 otz -0 i
T_ 0 X
: . tn—1n
0 --- 0 A

with the eigenvalues of A as diagonal entries (Schur theorem). Equivalently, we
have

AXj = Aij + tljxl + ...+ tj—lej—h j = 1, .oy n.
Now let A(Ap) be a generic eigenvalue of A, = 1(A + A*), the hermitian part
of A. Then there exists y # 0 such that

y' Ay _ ¥y Ay ¥y Aany

MNAL) =
(4n) Yy Yy Yy

and, since \(Ay) is real and y* A,y purely immaginary, we have the formula:

Ry"Ay)

Aldn) = Yy

(1)



Let us obtain, using (1), an expression of A(A},) in terms of the eigenvalues \;
of A. There exist a; € C for which y = ). a;x; (recall that y is an eigenvector
of the A(A4},) we are considering), thus y*y = Y, |a;|? and

yiAy = > wx! Z o AX;

= DX Z (A, Xj+Zk 1thXk)

= > |Oév|2/\ + 2 Y Oéj(zk:ﬁijk)
i leaPx + 32, a_X*Z L (kg @gthg )X
Do |0‘%| Ai + f({ai}fe 1’{tlJ}l<j)

where

Faitizy, {tijti<y) Zaz Z ajtij = ZO‘J Zm ij-

=1 Jj=i+1 =
It follows that

AAp) = Zig,i:aéﬁg)\i) n %(f({aiz:}?_|10:j§ij}i<j))' @)

Remark. Since AX = XT implies Ay X = XT},, T, == (T + T*), we have:

: RO K}y {tii}ics))
MIN G (k) | X (k) indip. eigenvectors of Ay h‘l g
— : RUFHai}i {tisti<i ))
= MmNy (k)| (k) indip. eigenvectors of T), S, ﬁlz‘ —

Let us see some consequences of (2):
1 Ift;; =0Vi<j (ie. if Aisnormal), then
2
o[ TR(A
min R(\;) < A(A4p) = % < max R(\;).

So, if A is normal and R(A(A)) > 0, then A, is p.d. (all eigenvalues of Ay,
are positive)

2 Since [R(f)| < |f], in order to obtain bounds for R(f)/ >, |a;i|? in (2) we
look for bounds for | f]:

lfl = |Z?:104_i2?27;+1 ajtij| < 2?21 |as| Z?:z+1 |aj[[ti; ]

< VE ?1|ai2¢z?1 ?Hnamw
< Vi laif? \/Zz 1\ 2= 7+1|a.]|2)(2j iy [t ?
<

VEL P VI TPy S, Y tl?
= T el T S Il

-1
|f|<max|tu|2|az| > |aj|<max|tw|x2|a7|2 TS

2
j=i+1

So we can say that

zwm): <minf |33 Jl. mgjxltv:jl}- 3)

1=1 j=1i+1



Note how the min changes when passing from a matrix T with |¢;;] con-
stant (for ¢ < j) to a T' with ¢;; = 0 for all but one (4, ), i < j.

The case n = 2:

[R(atastio)| _ |aaloz|ltio| _ 1

t
a2+ Jasl? = Janl?  Jagl? = 222!

Theorem. We have
minR(N\;) — g({tij}ics) < MAn) < maxR(\i) + g({ti; }i<j)

whenever Z‘;R?(]:)IIQ < g({tijticj). So, if RIMA)) > g({tij}i<j), then Ay is
p.d.

i

Examples of functions g({t;;}i<;) are given in (3). Notice, however, that the
functions g({ti;}i<;) in Theorem should be easily computable from the entries
of A; in fact they should depend directly on the entries a;;:

oIt =70 = D NP = AN = Y NP < AlF — nminA(A"A4) ...
1<j i %

(AVZ‘ = )\iVi, = V;‘A*Avi = |)\i|2V;‘kVi )

FEigenstructure of normal matrices

If A is normal and Ax = Ax, then also A*x (besides x) is eigenvector of A
corresponding to A.

If A is normal, Ax = Ax and A is a simple eigenvalue, then there exists u
such that A*x = ux. Note that T must be an eigenvalue of A. (The eigenvalues
of A* are the complex conjugates of the eigenvalues of A).

If Ais normal, Ax; = \;jx;, 71 =1,...,n, and all the \; are simple eigenvalues
(so A has n distinct eigenvalues) , then there exist u; such that A*x; = p;x;,
i=1,...,n. Note that zi; must be equal to an eigenvalue A; of A

If A is normal then Ax; = \ix;, X[x; = 045, 1 <4,j <n, AA*x; = A*Ax; =
MNiA*x; = {A*x;} are eigenvectors of A (as {x;}). Moreover
(A*x;)*(A*x;) = xFAA*x; = xfA*Ax; = (Ax;)*(4x;)
()\ixi)*(x\jxj) = A_iijsz = |)\1|261j

So, if A is also non singular, then {%A*xi } are orthonormal eigenvectors of A

(as {x;}).

Clirculant-type matriz algebras

Let
0 a O
A=|0 0 b
c 0 O
We have:
e AS=Tiff abce=1
0 0 ab abc 0 0
A2=|bc 0 0 |, A>=] 0 bea O
0 ca O 0 0 cab



e the characteristic polynomial of A is A3 — abe, so, if abc = 1 then the
eigenvalues of A are: 1, w3, w3, where w3 = ei2m/3,

e A is normal iff |a| = |b] = |¢|.
e A is unitary iff |a| = |b] = |¢| = 1.
By imposing the identity

0 a O T |z
0 0 b y | =wly
c 0 O z z

for i = 0,7 =1, ¢ = 2, and therefore by requiring, respectively, the conditions
abc =1, abc =1 & w? =1, abc = 1 & wb = 1, one obtains the equalities:

0 a O 1 1 0 a O 1 1
0 0 b bc | =11bc |, |0 0 D bew | =w | bew |,
c 0 0 c c c 0 0 cw? cw?

0 a O
0 0 b bew? | = w? | bew?
c 0 0

cw 4 cw 4

So, if abc = 1 and Q = diag(1, be, ¢)F, where F is the 3 x 3 Fourier matrix,
then AQ = Q diag (1, w3, w3).

Note that @ is unitary iff |a] = |b| = |¢| = 1 (iff A is unitary).

Exercise. Consider the n x n case.

Proof of Ax; = \iAx;, A= [tI=3l], A GStrang

Let A be the real symmetric Toeplitz matrix [t'i_j‘]ﬁjzl and A be the

GStrang circulant matrix associated with A. Assume n even, set m = n/2
and consider the m x m matrices

It o gmt gmogmAl L gl
t tmfl
S = . 5 R == . )
tm_l t
tmoogm=l Ly o -~ 0 1
m—1
Q= ! J= Lo
: 0
t 1 0 0

(S, R, Q are Toeplitz). Observe that

_| S R _ _ pT s e _
A—[RT S],SJ—JS, RJ—JR,A—{Q S],QJ—JQ.
Obviously we have the identities Ae,, = Ae,, and Ae;+1 = Ae41.
Moreover, if x is the m x 1 vector [t 0 --- 0 —t™]T then
t— tnfl _tn + t2 _tn + tn
t2 _ tn72 _tnfl + tS _tnfl + tnfl
Sx = , QJx= . , RJx=
tm _ tm _tm+1 + tm+1 _tm+1 + tm+1



t— ol (t—t"~H(1£1)

2 — 2 (t2 —t"=2)(1 £ 1)
= Sx+RJx= . , Sx+QJx = )
tm —tm (t™ —t™) (1 +t)
1

SJJx + RJx = (5] Jx £ QJx)

=
= ISk JRTx = (S £ JQx)
= SJx+ RTx = 7 (SJx + Qx)

1
=

+SJx + RTx = 1—it(j:SJx+QX). (2)

t t
0 0
A = —
Ft" 1+ tA F
0 0
0 0
= ==

Finally, let y be any m x 1 vector [yo y1 -+ ym—1]T satisfying the following two
linear equations:

(@) yo+yit+...+yt! +... F Yy t™ =0,
(b) Ym—1+ Ym—ot+ ...+ yj_ltm—j 4+ yotm_l —0.

Multiplying (a) by ¢™,¢t™~1 ... t and (b) by t,t2,...,t™, one obtains the
identities:

tm tm+1 .. tn_l Yo tm tm_l .. t Yo
tm_l i . tm+1 Y1
Ry = : , =0, RTy = . : —0
t Ym—1 tn_l Ym—1
y | _| S R y | _| Sy
iA[iy}_[RT SHiY]_[iSY ' W
On the other side we also have:
1 t ... gm—l Yo g ogm=1l ¢ Yo
m - t Y1 tml (1
tmSy =t : : =— . . = —Qy.
tm_l Ym—1 t Ym—1



In fact, for j = 0,1,...,m—1 the (j+ 1)-row in the left is equal to (use (b) and
(a), respectively)

Yo
[tm+j coogmAl ymoymAl .t2m—1—j] y.I
Ym—1
— (thrij + tm+.]*1y1 _|_ . _|_ t@+1yj—1) _|_ (tmy] _|_ tm+1yj+1 + - + tZTI"Lflijm_l)
= (~Ym-1 = Ym—at... =yt I 4 (—yo — gt ... =yt
Yo
= —[tmd . gmolgmogmel y.l
Ym—1

which is the (j + 1)-row in the right. Thus

BTN AR EARE

+y Qy £ Sy —t™Sy £+ Sy +Sy
From (1) and (2) it follows that

y | 1 y 1 to tmt 1o o
R A Bl P (0
So we have:

- m — 2 eigenvectors of type { z } corresponding to the eigenvalue 17—175,”

- m — 2 eigenvectors of type { _yy ] corresponding to the eigenvalue #

two eigenvectors e, and e,, 1 corresponding to the eigenvalue 1

one eigenvector { fx } corresponding to the eigenvalue %th

1
1—¢

- one eigenvector { —);x } corresponding to the eigenvalue

where x = [t 0---0 —t™]T and the vectors y are m — 2 linearly independent
solutions of the system:

1 to-- gm—1 |0
gm=1 .. t 1 Yo

We have proved the equality Ax; = M\Ax; for n (eigenvalues,eigenvectors)
(i, xi). Why the x; are linearly independent ?

Let A,B be n X n (non null) matrices with complex entries. Assume that
Ax = ABx, Ay = uBy for non null vectors x and 'y where \,u € C, X # p.
Then x and y are linearly independent.



If B is non singular, then we have the equations B~'Ax = Ax and B~' Ay =
uy, and the thesis follows as in the classic eigenvalue problem case (but B~1A
takes the role of A).

If A is non singular and both A and p are non zero (the case of GStrang)
then we have the equations A~!'Bx = %x and A"'By = %y, and the proof is

very similar to the classic eigenvalue problem case (but A~ B takes the role of
A).

If B is singular, A is non singular and A = 0 (or g = 0), then we have the
equation Ax = 0 (Ay = 0) which implies x = 0 (y = 0), which is against our
hypothesis.

If B and A are singular ... is the thesis true ?

Proof of eigenvalue minmaz representation for a hermitian matriz A (and
of the interlace theorem)

(1) Ax; = Aix4, Xix5 = 05, M1 < Ao < ... <\, (recall that normal matrices
can be diagonalized via unitary transforms). Let V; C C” be a generic space

of dimension j. Then for any x # 0, x € V; N Span{x;,...,x,}, we have
X = E?:j a;x; with a; not all zeroes, and
x*Ax . S aixi) A onxk) _ (S @ax]) (3 o AeXy)
x*x (O aixi)* (30, akxk) O aix}) (X arxk)
Xl >\
= S 2N

Thus \; < maxyey, (x*Ax/x*x).
Moreover, we have (x} Ax;/x}x;) = A;j, and for any x = Y7, fix;, with §;
not all zeroes, ‘
* J 2
x*Ax _ =1 |ﬂz| )\z <\

xR AP
It follows that for V; = Span {x; ...x;} it holds maxye

j.
Vj x;:ix =Aj-

(2) A, B,C hermitian, «;,3;,7; their eigenvalues in non-decreasing order,
C = A+ B: proof of the interlace theorem

L : x*Cx _ ...: x"Ax x*Bx
’Y] = mlnv'j maXer'j x mlnvj maxxe‘/j ( perp =+ prew )
: x*Ax R x* Ax .
< miny; Maxxey; (W + 5n) = miny;, maxxev; 55> + Bn = aj + Bn,
R : x*Ax __ : x"Cx _ x"Bx
aj = miny, maxxey,; S = Mily, MaXxey, ( — — )
: x*Cx o x*Cx o
< miny; maxxev; ( x 51) = miny, maxxev, 5 — B1 = — P1-
Deflation
Le A be a n x n matrix. Denote by A\;, i =1,...,n, the eigenvalues of A and
by y; the corresponding eigenvectors. So, we have Ay; = \;y;, i =1,...,n.

Assume that A\1,y; are given and that A; # 0. Choose w € C™ such that
w*y1 # 0 (given y; choose w not orthogonal to y1) and set
A1
wW*y1

W=A-—

yiwr.



It is known that the eigenvalues of W are
0, Ao, ..., Aj, ooy Ap

i.e. they are the same of A except A\; which is replaced with 0. Let wy, wo,
..., Wj, ..., W, be the corresponding eigenvectors (Wwy, = 0, Ww,; = \;w;
j=2,...,n). Is it possible to obtain the w; from the y; ?

First observe that

Ay1=My1 = Wy1=0: wi =y1. (a)
Then, for j =2,...,n

A1 N wry
Wy; = Ay; — Wy WY = A5~ M Ly1 (1)
If we impose y; = w; +¢y1, j = 2,...,n, then (1) becomes,
WWj + Wy, = )\jo + C/\jyl /\1 Y1 — C/\1y1
= )\jo +¥y1 [C)\j — w y1 ]
So, if A\j # A1 and
)\1 W*Wj
= ;— —_— 5 2
Vi ST wy Y (2)

then Wwj; = Ajw;. If, moreover, A; 750 then w*y; = w wj—i—A owWwW =
A=

wa—waAAA = W'w; = wyj.So,by(),
forall j € {2...n} | A\j # A1,0
Ay; = \jy; = (b)

A A : A
W(YJ‘ﬁXii}H):/\j(Yj )\f:)};iyﬂ.wj yj__}v‘Z;m

Note that a formula for y; in terms of w; holds: see (2).
As regards the case \; = Ay, it is simple to show that

forall j e {2...n} | A\j = A1 :
Ay, = )\Jyj = . ) (¢)
W(y; — w yl.Y1) MY = atY1) T Wi =5 = oty

Note that the vectors y; — iy are orthogonal to w. Is it possible to find

w* y
from (c) an expression of y; in terms of w; ?

It remains the case A; = 0: find 7 in

forallje{2...n}|X;=0:

?
ij:Aij‘ZO = W(‘?):)\j(‘?):o W =7 (d)

(Vi =W — 5y y1 = Wiy; =0) ..

Choices of w. Since yjy1 # 0 one can set w = y;. In this way, if A is
hermitian also W is hermitian. ... . If i is such that (y;); # 0 then el Ay, =
A1(y1)i # 0. So one can set w* = e/’ A = row i of A. In this way the row i of W
is null and therefore we can introduce a matrix of order n — 1 whose eigenvalues
are Az, ..., A, (the unknown eigenvalues of A).
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