Roma, 29 novembre 2013 — Esercitazioni di algebra 1 (Damiani) 9^a lezione

- 1) Descrivere il minimo campo $\mathbb{Q}(\sqrt{2})$ contenente \mathbb{Q} e $\sqrt{2}$: che dimensione ha come spazio vettoriale su \mathbb{Q} ?
- 2) Descrivere il minimo campo $\mathbb{Q}(i\sqrt{2})$ contenente \mathbb{Q} e $i\sqrt{2}$: che dimensione ha come spazio vettoriale su \mathbb{Q} ?.
- 3) Confrontare i due campi degli esercizi 1) e 2): determinare la loro intersezione e dire se uno contiene l'altro.
- 4) Determinare un omomorfismo suriettivo di anelli unitari $\mathbb{Q}[x] \to \mathbb{Q}(i\sqrt{2})$ e calcolarne il nucleo.
 - 5) Dimostrare che ogni campo di caratteristica zero contiene Q.
 - 6) Dimostrare che l'identità è l'unico omomorfismo di anelli unitari di \mathbb{Q} in \mathbb{Q} .
- 7) Dimostrare che per ogni p primo non ci sono omomorfismi di anelli unitari da \mathbb{Q} a \mathbb{Z}_p né da \mathbb{Z}_p a \mathbb{Q} .
 - 8) Dimostrare che ogni campo di caratteristica p ($p \in \mathbb{Z}$ primo) contiene \mathbb{Z}_p .
- 9) Dimostrare che se K è un campo e $f:K\to A$ è un omomorfismo di anelli unitari, allora f è iniettivo.
 - 10) Descrivere il minimo campo $\mathbb{Q}(\sqrt[3]{2})$ contenente \mathbb{Q} e $\sqrt[3]{2}$.
 - 11) Fattorizzare $x^4 + 1$ in $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$, $\mathbb{Z}_5[x]$, $\mathbb{Z}_{641}[x]$.
- 12) Fattorizzare $x^2 1$ in $\mathbb{Z}_8[x]$ e dimostrare che $\mathbb{Z}_8[x]$ non è a fattorizzazione unica; $\mathbb{Z}_8[x]$ è un dominio?
 - 13) Fattorizzare i seguenti polinomi in $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$, $\mathbb{Z}_2[x]$, $\mathbb{Z}_3[x]$, $\mathbb{Z}_5[x]$:

$$3x^3 + 2x^2 - 7x + 2$$
, $x^4 + x^3 - x - 1$, $x^6 - 2x^4 - 5x^2 + 6$, $x^6 + 4$.