Docente: A.Cutrì

Punteggio massimo:6+6+6+6+6

Analisi Matematica I (C.d.S. Ing. dell'Edilizia e Ing. Edile-Architettura)

Prova scritta del 19-02-2018-Tempo a disposizione: h 2:45 Compito A

Cognome e Nome dello studente Matricola Attenzione: le risposte non adeguatamente motivate, non verranno prese in considerazione ai fini della valutazione. Consegnare anche il testo del compito insieme al foglio protocollo dove indicare nome, cognome e numero di matricola 1) Disporre in ordine di infinitesimo crescente per $x \to 0^+$ e di infinito crescente per $x \to +\infty$ le seguenti funzioni specificando, ove possibile, l'ordine di infinitesimo (per $x \to 0^+$) e di infinito (per $x \to +\infty$): $f(x) = \sqrt[3]{x} + \sqrt[5]{x} + x^3 e^{-x^2}$ $g(x) = \frac{x^2 + \log(1 + x^{\frac{3}{5}})}{\sqrt{x}}$ $h(x) = \frac{e^{\sqrt[3]{x^2}} - 1}{\sqrt[3]{x}}$ $l(x) = x^{\frac{1}{3}} \log x$ 2) Calcolare $\lim_{x \to 0} \frac{x^2 - e^x + \cos x + x}{x(\log(1+x) - x)}$ 3) Dopo aver dato la definizione di convergenza della serie numerica $\sum_{n=1}^{+\infty} a_n$, discutere al variare del parametro $\alpha \in {\rm I\!R}$ la convergenza della seguente serie: $\sum_{n=1}^{+\infty} n^{\alpha} \left(\frac{3}{n^4} + \frac{6}{n^9} - 1 + \cos{\left(\frac{\sqrt{6}}{n^2} \right)} \right)$ 4) Discutere al variare del parametro $\alpha \in \mathbb{R}$ la convergenza dell'integrale improprio $\int_0^{+\infty} \frac{x^{\alpha} (\log(1+x^3))^{\alpha+\frac{1}{4}} \arctan(\sqrt{\frac{x}{3}})}{(x+3)x^{\frac{1}{4}}} dx$ e calcolarlo per $\alpha = -\frac{1}{4}$. 5) Data la funzione $f(x) = \frac{3}{2}(x - 3e)e^{\frac{1}{\log(x - 3e)}}$ determinare il dominio di f, eventuali asintoti, punti di non derivabilità, punti di estremo locale e loro natura, intervalli di crescenza/decrescenza, concavità/convessità, punti di flesso e disegnarne un grafico qualitativo. ${\it Io \ sottoscritto} \quad, \ nato \ a \quad, \ il \,$ autorizzo la Prof. Alessandra Cutrì a pubblicare l'esito della presente prova sulla propria pagina web.Firma....

Analisi Matematica I (C.d.S. Ing. dell'Edilizia e Ing. Edile-Architettura)

Docer	e: A.Cutrì Prova scritta del 19-02-2018 -Tempo a disposizione: h 2:45 Compito B
	Cognome e Nome dello studente
	<u>Matricola</u>
ai fin	<u>zione</u> : le risposte non adeguatamente motivate, non verranno prese in considerazione della valutazione. Consegnare anche il testo del compito insieme al foglio protocollo ndicare nome, cognome e numero di matricola
1)	Disporre in ordine di infinitesimo crescente per $x \to 0^+$ e di infinito crescente per $x \to +\infty$ le seguenti funzioni specificando, ove possibile, l'ordine di infinitesimo (per $x \to 0^+$) e di infinito (per $x \to +\infty$):
	$f(x) = \sqrt[8]{x} + \sqrt[4]{x} + x^3 e^{-x^2}$ $g(x) = \frac{x^3 + \log(1 + x^{\frac{2}{3}})}{\sqrt{x}}$
	$h(x) = \frac{e^{\sqrt[8]{x^3}} - 1}{\sqrt[8]{x}}$ $l(x) = x^{\frac{1}{4}} \log x$
2)	Calcolare
	$\lim_{x \to 0} \frac{x(\log(1+7x) - 7x)}{x^2 - e^x + \cos x + x}$
3)	Dopo aver dato la definizione di convergenza della serie numerica $\sum_{n=1}^{+\infty} a_n$, discutere al variare del parametro $\alpha \in \mathbb{R}$ la convergenza della seguente serie:
	$\sum_{n=1}^{+\infty} n^{\alpha} \left(\frac{1}{2n^2} + \frac{3}{n^5} - 1 + \cos\left(\frac{1}{n}\right) \right)$
4)	Discutere al variare del parametro $\alpha \in \mathbb{R}$ la convergenza dell'integrale improprio
	$\int_0^{+\infty} \frac{(x\log(1+x^2))^{\alpha}\arctan(\sqrt{\frac{x}{2}})}{(x+2)x^{\frac{1}{2}}} dx$
	e calcolarlo per $\alpha = 0$.
5)	Data la funzione $f(x) = \frac{4}{3}(x-4e)e^{\frac{1}{\log(x-4e)}}$ determinare il dominio di f , eventuali asintoti, punti di non derivabilità, punti di estremo locale e loro natura, intervalli di crescenza/decrescenza, concavità/convessità, punti di flesso e disegnarne un grafico qualitativo.
	Io sottoscritto, nato a, il, autorizzo la Prof. Alessandra Cutrì a pubblicare l'esito della presente prova sulla propria pagina web.
	Firma
p	integgio massimo:6+6+6+6+6

Matricola

Punteggio massimo:6+6+6+6+6

Docente: A.Cutrì

Analisi Matematica I (C.d.S. Ing. dell'Edilizia e Ing. Edile-Architettura)

Cognome e Nome dello studente

Attenzione: le risposte non adeguatamente motivate, non verranno prese in considerazione

Prova scritta del 19-02-2018-Tempo a disposizione: h 2:45 Compito C

ai fini della valutazione. Consegnare anche il testo del compito insieme al foglio protocollo dove indicare nome, cognome e numero di matricola 1) Disporre in ordine di infinitesimo crescente per $x \to 0^+$ e di infinito crescente per $x \to +\infty$ le seguenti funzioni specificando, ove possibile, l'ordine di infinitesimo (per $x \to 0^+$) e di infinito (per $x \to +\infty$): $f(x) = \sqrt[6]{x} + \sqrt[5]{x} + x^7 e^{-x^3}$ $g(x) = \frac{x^2 + \log(1 + x^{\frac{3}{5}})}{\sqrt{x}}$ $h(x) = \frac{e^{\sqrt[3]{x}} - 1}{\sqrt[15]{x^2}}$ $l(x) = x^{\frac{1}{5}} \log x$ 2) Calcolare $\lim_{x \to 0} \frac{2x^2 - 4[\log(1+x^2) - 1 + \cos x]}{x^2(\sin x)^2}$ 3) Dopo aver dato la definizione di convergenza della serie numerica $\sum_{n=1}^{+\infty} a_n$, discutere al variare del parametro $\alpha \in {\rm I\!R}$ la convergenza della seguente serie: $\sum_{n=1}^{+\infty} n^{\alpha} \left(\frac{8}{n^4} + \frac{6}{n^{10}} - 4 \log \left(1 + \frac{2}{n^4} \right) \right)$ 4) Discutere al variare del parametro $\alpha \in \mathbb{R}$ la convergenza dell'integrale improprio $\int_0^{+\infty} \frac{x^{\alpha} \arctan(\sqrt{\frac{x}{7}})(\log(1+2x^2))^{\alpha+\frac{3}{8}}}{(x+7)x^{\frac{1}{8}}} dx$ e calcolarlo per $\alpha = -\frac{3}{8}$. 5) Data la funzione $f(x) = 3(x-2e)e^{\frac{1}{\log(x-2e)}}$ determinare il dominio di f, eventuali asintoti, punti di non derivabilità, punti di estremo locale e loro natura, intervalli di crescenza/decrescenza, concavità/convessità, punti di flesso e disegnarne un grafico qualitativo. $\dots, nato \ a \dots, il \dots, il \dots$ autorizzo la Prof. Alessandra Cutrì a pubblicare l'esito della presente prova sulla propria pagina web.Firma....

Analisi Matematica I (C.d.S. Ing. dell'Edilizia e Ing. Edile-Architettura)

Docente: A.Cutrì

Punteggio massimo:6+6+6+6+6

Cognome e Nome dello studente
<u>Matricola</u>
Attenzione: le risposte non adeguatamente motivate, non verranno prese in considerazione di fini della valutazione. Consegnare anche il testo del compito insieme al foglio protocollo dove indicare nome, cognome e numero di matricola
1) Disporre in ordine di infinitesimo crescente per $x \to 0^+$ e di infinito crescente per $x \to +\infty$ le seguenti funzioni specificando, ove possibile, l'ordine di infinitesimo (per $x \to 0^+$) e di infinito (per $x \to +\infty$):
$f(x) = \sqrt[4]{x} + \sqrt[6]{x} + x^8 e^{-x^2} \qquad g(x) = \frac{x + \log(1 + x^{\frac{4}{5}})}{\sqrt{x}}$
$h(x) = \frac{e^{\sqrt{x}} - 1}{\sqrt[4]{x}} \qquad l(x) = x^{\frac{1}{4}} \log x$
2) Calcolare
$\lim_{x \to 0} \frac{3x^2 + 2(\cos x - e^{x^2})}{(\sin(x^2))^2}$
3) Dopo aver dato la definizione di convergenza della serie numerica $\sum_{n=1}^{+\infty} a_n$, discutere al variare de parametro $\alpha \in \mathbb{R}$ la convergenza della seguente serie:
$\sum_{n=1}^{+\infty} n^{\alpha} \left(\frac{1}{n^3} + \frac{9}{n^{10}} - \sin\left(\frac{1}{n^3}\right) \right)$
4) Discutere al variare del parametro $\alpha \in {\rm I\!R}$ la convergenza dell'integrale improprio
$\int_0^{+\infty} \frac{x^{\alpha} \arctan(\sqrt{\frac{x}{6}})(\log(1+x^4))^{\alpha+\frac{1}{3}}}{(x+6)x^{\frac{1}{6}}} dx$
e calcolarlo per $\alpha = -\frac{1}{3}$.
5) Data la funzione $f(x) = 2(x - e)e^{\frac{1}{\log(x - e)}}$ determinare il dominio di f , eventuali asintoti, punt di non derivabilità, punti di estremo locale e loro natura, intervalli di crescenza/decrescenza, con cavità/convessità, punti di flesso e disegnarne un grafico qualitativo.
Io sottoscritto, nato a, il, il autorizzo la Prof. Alessandra Cutrì a pubblicare l'esito della presente prova sulla propria pagine web.
Firma

Prova scritta del 19-02-2018-Tempo a disposizione: h $2{:}45$ ${\bf Compito}\ {\bf D}$