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Introduction

This master's thesis is a survey about the relationship between the geometry of the �ag varieties
and the representation theory of the algebraic groups. The ground �eld will be always the �eld
of the complex numbers.

The concept of �ag comes from the linear algebra: given a �nite dimensional vector space V ,
a �ag is a maximal increasing sequence of vector subspaces:

V0 ( V1 ( V2 ( · · · ( Vn−1 ( Vn .

The �rst element V0 will be the origin, V1 a line, V2 a plane containing the line V1, and so on
until the last element Vn that will be whole space V . The set of all the �ags has a natural
structure of algebraic variety: the local coordinates are the coe�cients of the equations of the
vector subspaces. Globally this space can be seen as a closed subvariety of the product of all the
Grassmanians of the vector space, then it is a projective variety.

Let us call G the special linear group of V . The group G acts in a natural way on the �ag
variety, this action is regular and transitive. Given a �ag, in a suitable base its stabilizer is the
group B of the upper triangular matrices; we can thus identify the �ag variety with the quotient
G/B.

The group B is a closed connected resoluble subgroup of G, and it is maximal in respect
of these proprieties: such a group is a called a Borel subgroup. One can prove that in any
a�ne algebraic group all the Borel subgroup are conjugated, so the isomorphism classes of the
quotient G/B is independent from the choice of the Borel subgroup B. We can now give the
general de�nition of �ag variety.

De�nition 0.1 (The �ag variety associated to an a�ne algebraic group). Let G be an a�ne
algebraic group. The �ag variety associated to G is the quotient G/B, where B is a Borel subgroup
of G.

We are interested in the groups G that are connected and reductive.
The �rst result is the Bruhat decomposition. We recall that we can associate to any reductive

algebraic group its Weyl group. It is a �nite group that detects many proprieties of the algebraic
group. One characteristic, among the others, is that every element of the Weyl group has a
well-de�ned length, which is a non-negative integer. If we let the group B act on the �ag variety
we obtain a decomposition into orbits, the Bruhat decomposition states that there is a bijective
correspondence between the orbits and the elements of the Weyl group. Moreover each orbit
is isomorphic to an a�ne space of dimension the length of the corresponding element of the
Weyl group. Such a decomposition provides us the CW-structure of the �ag variety and allow
us to compute the dimension of all its de Rham cohomology groups. Finally, using the Bruhat
decomposition, one can de�ne an a�ne open covering of G/B, which is very easy to handle.

The second step is to study the vector bundles over the �ag variety. We will de�ne an
equivalence of categories between the vector bundles over G/B and the B-modules. We will
focus our attention over the line bundles. Each line bundle comes from a one dimensional
representation of B, and these representations are essentially the characters of B.

The Borel-Weil theorem describes the global sections of the line bundles over the �ag variety.
It states that the space of global sections is an irreducible representation of G; namely if the
character is dominant it is the dual of the representation associated to the character, if the
character is not dominant the space of global sections is trivial. This theorem can be used also
to prove that there exists a representation for every dominant character. Moreover it describes
the divisor of a meromorphic section for each line bundle.
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The Borel-Weil-Bott theorem is a generalization of the previous result, it describes all the
cohomology groups of all the line bundles. This theorem says that the cohomology of a line
bundle is non-trivial only for one degree, and it is possible to compute this degree using the
Weyl group. There are some exceptions given by some line bundles called singular that have
trivial cohomology. The classical proof of this result uses techniques of algebraic geometry, a
(complicated) exposition of this proof is given in [Lur]. We will not discuss it. The strategy of
our proof is to relate the statement of the Borel-Weyl-Bott theorem to a statement about the
cohomology of the Lie algebras, and then to invoke the Kostant formula.

The Kostant formula describes the weight spaces of the cohomology of the maximal unipotent
Lie subalgebras, it does not use any concept from algebraic geometry. The proof of this formula
contains the main ideas of the classical proof of the Borel-Weil-Bott theorem. The key point (we
describe it for the classical proof of the Borel-Weyl-Bott theorem) is to prove that the action
of the simple re�ections determines an isomorphism of degree plus or minus one between the
cohomology of di�erent line bundles. Then one uses the Borel-Weil theorem and some facts
about the structure of the Weyl group to compute all the cohomology groups.

For all the basic results about the algebraic groups we refer to the book "Lie groups: an
approach through invariants and representation theory" written by C. Procesi, in the text it
is indicated as [Pro07]. This book provides a comprehensive introduction to Lie groups, Lie
algebras and to algebraic groups. The proof of the Borel-Weil-Bott theorem was explained to us
orally by our advisor O. Mathieu. We would like to thank him for introducing us to this subject
and for his fascinating explications.
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1 Notations, basic notions and examples

In this section we establish the notations that will be in force trough all the paper. We refer to
[Pro07] for a complete discussion of all this notions and examples.

The ground �eld will be always the �eld of complex numbers C. Let G be an a�ne algebraic
group.

De�nition 1.1 (Rational representations). A �nite dimensional representation V of G is ratio-
nal if and only if the map

ρ : G→ GL(V )

that de�nes the action is regular.
An in�nite dimensional representation is rational if and only if every vector is contained in

a �nite dimensional rational representation.

Proposition 1.2 (Example of rational representation). If G acts in a regular way on an a�ne
algebraic variety X, then C[X] is a rational representation of G.

We will consider only the rational representations of G. Now we give another key de�nition.

De�nition 1.3 (Reductive groups). A group G is reductive if it does not contain any proper
closed unipotent normal subgroup.

The �rst foundamental fact about the reductive groups is the following.

Proposition 1.4. If the characteristic of the ground �eld is 0, then a group G is reductive if
and only if every representation splits in a direct sum of �nite dimensional representions.

Trough all the paper the letter G will denote an a�ne complex algebraic reductive and
connected group.

An a�ne algebraic groups is always isomorphic to some closed subgroup of GL(V ), for some
complex vector space V . Moreover all the simple representations of G can be obtained, after
possibly tensoring by some power of te determinant, as quotients of tensor powers of V . This
implies that if in a suitable base of V the groups G is self-adjoint, then G is reductive. Using
this result we obtain a remarkable list of examples.

Proposition 1.5 (Examples of reductive groups). The groups

SL(n,C), SO(n,C), Sp(n,C)

are a�ne complex algebraic connected and reductive groups.

We �x a Borel subgroup B of G, i.e. a maximal resoluble connected closed subgroup of
G. For a closed subgroup of GL(n,C) an example of Borel subgroup is G intersected the upper
triangular matrices. We call U the subgroup (B,B), this is a maximal unipotent closed connected
subgroup of G. A torus of G is a maximal closed commutative subgroup of G. We indicate with
T the maximal torus inside B, we have the decomposition B = T n U .

We recall an important theorem about the resoluble groups.

Theorem 1.6 (Borel �xed point theorem). Let B be a resoluble group acting on a projective
variety X, then there exists at least one �xed point.

4



We call g the Lie algebra of G, and respectively b, u and t the Lie algebras of B, U and T .
We have two decompositions of Lie algebras: b = u ⊕ t and g = u− ⊕ t ⊕ u, where u− is the
maximal unipotent subalgebra opposite to u. We call U− the subgroup associated to u− and B−

the subgroup associated to b− := u− ⊕ h.
If we let t act on g, we �nd a decomposition into eigenspaces, namely

g = t⊕
⊕
α∈Φ

gα .

The �nite set Φ is a subset of the dual of t, it forms a root system. We denote by Φ+ the
eigenvalues of u (the positive roots) and with Φ− the eigenvalues of u− (the negative roots), one
proves that Φ− = −Φ+. A positive root is simple if it can not be decomposed into a sum of two
positive roots, the symbols αi will denote the simple positive roots.

De�nition 1.7 (The Weyl group of G). The Weyl group of G is denoted by W and is de�ned
as follows:

W := NG(T )/T ,

where NG(T ) is the normalizer of T inside G.

This group acts on the root system, it plays a key role in all the theory. By abuse of notation,
the same letter w will often denote at the same time an element of W and a representant of this
element inside G. At each simple root αi we can associate a simple re�ection si inside W , these
re�ections generate W . Given w in W we de�ne its length l(w) as the smallest number of simple
re�ections one needs to write w; there exists a unique element w0 that is the longest element of
W , moreover l(w0) = dimU and B− = w0Bw

−1
0 . Finally one proves that l(w) is the number of

roots of Φ+ that w sends in Φ−.
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2 The Bruhat decomposition for the special linear group

In this �rst section we want to state and prove the Bruhat decomposition in the case of the
special linear group; in this case, as we have seen in the introduction, the associated �ag variety
is the variety of all the �ag of a vector space.

We recall the de�nition of a �ag. Let V be an n dimensional complex vector space.

De�nition 2.1 (Flag of V ). A �ag F of V is a sequence of subspace of V

{0} ( F1 ( F2 ( · · · ( Fi ( · · · ( Fn−1 ( V ,

such that
dimFi = i .

It is useful to use the bases of V in order to work on the �ags, we give the following de�nition.

De�nition 2.2 (Base adapted to a �ag). A base {v1, · · · , vn} is adapted to the �ag F if

Fi = SpanC < v1, · · · , vi > ;

in symbol we write
F = (v1, · · · , vn) .

Clearly di�erent bases may be adapted to the same �ag: we are free to replace a vector vi
with a linear combinations of the previous ones.

We �x once for all a base {e1, · · · , en} of V . Let W be the symmetric group of n elements
(i.e. the Weyl group of the special linear group), for every w in W we de�ne the �ag

bw := (ew(1), . . . , ew(n))

.
We introduce the special linear group. Let G be SL(V ) and let B be the subgroup of upper

triangular matrices, B− the subgroup of the lower ones and T = B ∩ B− the diagonals (recall
that we are working with a �xed base). The group G acts transitively on the �ags of V , the
stabilizer of bId is B, hence every point of G/B represent a �ag of V and we can call G/B the
�ags variety.

The Bruhat decomposition is the decomposition of G/B in B− orbits, such a decomposition
has an explicit and useful description.

First we prove that the bw are the unique �xed points of the action of T . In fact let (v1, . . . , vn)
be a �xed point of T , we must have tv1 = χ(t)v1 for some character χ and for every t in T , so
v1 is one of the ei. Say v1 = ei1 . In the quotient space V/ < ei1 > the class of the ei (for i
di�erent from i1) form a base, in this base T is still diagonal, the spaced spanned by v2 must
be still stable for the action of T so we get that the class of v2 is equal to to the class of ei2 for
some i2. Since we are free to replace a vector with a combination of the previous ones we can
suppose that v2 is equal to ei2 . By induction we obtain the statement for every vi.

To obtain our goal we will de�ne an invariant

c : G/B → {�ag of {1, . . . , n}} .

A �ag of {1, . . . , n} is de�ned as the �ag for the vector space, just replacing subspace with
subset and dimension with cardinality. The �ag of {1, . . . , n} are in a bijective correspondence
with W : given a w in W we can cook up the �ag {w(1)} ⊂ {w(1), w(2)} · · · , given a �ag F we
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de�ne a permutation w(i) := Fi+1 \ Fi. The idea is to prove that B−bw is exactly c−1(w), so c
will be a complete invariant for the action of B−.

First we establish some notation. Let P(i) be the set of subset of cardinality i of {1, . . . , n},
given an element I of P(i) we order the element of I and we call Ij the j-th element of I. We
de�ne a partial order on P(i), we we say that I ≤ J if Ik ≤ Jk for every k; given two elements
of P(i) they can be not comparable, for example if n = 4 and i = 2 take {1, 4} and {2, 3}.

In order to de�ne the function c we will use some results of standard monomial theory that
we will prove in the next section.

Let U be an i dimensional subspace of V , let ωi be a base of
∧i

U , we write

ωi =
∑
I∈P(i)

cIeI ,

where eI is eI1 ∧ · · · ∧ eIi . Let S be the subset of element I of P(i) such that cI is not zero. This
set has a minimum because ωi is a pure tensor, for a proof see the section 3 proposition 3.5. We
de�ne

ci(W ) := minimum ofS .

Moreover suppose that U and U ′ are two subspace of V of dimension i and i + 1 such that
U ⊂ U ′, we have

ci(U) ⊂ ci+1(U ′) .

To prove this remark that if ωi is a base of U and v is a vector of U ′ \ U then a base of U ′ is
v ∧ ωi, so we can apply the proposition 3.7 of the section 3. We �nally give our key de�nition.

De�nition 2.3 (The function c). Let F be a �ag of V , we de�ne

c(F) := {c1(F1) ⊂ c2(F2) ⊂ · · · ⊂ ci(Fi) ⊂ · · · ⊂ cn−1(Fn−1)} .

It follows directly from the de�nition that

c(bw) = w ∀w ∈W .

We can now state and prove the Bruhat decomposition.

Theorem 2.4 (The Bruhat decomposition for the special linear group). The function c de�ned
above is a complete invariant for the action of B− on G/B; in symbols:

c−1(w) = B−bw

for every w in W .

Proof. First we prove the inclusion

c−1(w) ⊇ B−bw .

Let A be an element of B− and F = Abw. We denote by Aj the j-th column of A, we have that

F = (Aew(1), . . . , Aew(n)) = (Aw(1), . . . , Aw(n)) .

A base of
∧i Fi is ωi = Aw(1)∧· · ·∧Aw(i). The matrix A is lower triangular and all the elements

of the diagonal are not zero, so ci(ωi) = {w(1), . . . , w(i)} and then c(F) is equal to w.
Now we prove the inclusion

c−1(w) ⊆ B−bw .
Let F be a �ag such that c(F) = w. We must prove the following lemma
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Lemma 2.5. Let F be a �ag, pose w := c(F); there exists a base {v1, · · · , vn} adapted to F
such that

vi = ew(i) +
∑
j<w(i)

aijej .

Proof. Take a base {v1, · · · , vn} adapted to F , write

vi =
∑
j

aijej

and call A the matrix (aij). The data of the matrix A is equivalent to data of a base, so we will
interchange the expressions �change A� and �change the base�.

We know that we are free to add to the vi a linear combination of the vj with j smaller
then i without changing the �ag. Doing this elementary operation several times we will get the
requested base. We construct a base such that ajw(i) is zero if j < w(i) and not zero if w(i) = j
by induction on i.

For i equal to 1 since c1(v1) = w(1) then aj1 is zero for j < w(1) and aw(1)w(1) is di�erent
from zero. We can thus assume that aw(1)j = 0 for all the j strictly bigger than w(1).

We suppose the statement true for i smaller than t and we prove it for i = t. We will prove
in the next paragraph that the coe�cient of v1 ∧ · · · ∧ vt in ew(1) ∧ · · · ∧ ew(t−1) ∧ ej is, up to a
sign, equal to aw(1)w(1) · · · aw(t−1)w(t−1)ajw(t) =: k. We know by the inductive hypothesis that
aw(i)w(i) is not zero for i < t so k is equal to zero if and only if ajw(t) vanishes; since c(F) = w
the coe�cient k is zero if j < w(t) and not zero if j = w(t) so we have proved the lemma.

We compute the requested coe�cient. We must compute the determinant of the minor of A
formed by the line of indexes {w(1), . . . , w(t−1), j} and columns {w(1), . . . , w(t)}, call this minor
Γ. We relabel the indexes {1, . . . , t− 1} with {i1, . . . , it−1} in such a way that w(ip) < w(ip+1)
for every p. Call is the coe�cient such that w(is) is the biggest before j; similar de�nition for
ik: it is the index such that w(ik) is the biggest before w(t).

The matrix Γ is formed by square block, it is of the form α B C
∗ δ F
∗ ∗ ε


The �rst line of blocks goes from w(i1) to w(is), the second from j to w(ik), the third from
w(ik + 1) to the end. The �rst column of blocks goes from w(i1) to w(is), the second from
w(is+1) to t, the third from w(ik+1) to the end. The idea is to prove that the blocks B,C, and
F are all trivial and then to compute explicitly the determinant of the blocks α,δ, and ε.

The blocks B and C are all zero because of the induction and because w(ip) < w(ip+1) for
all p. The block α is 

aw(1)w(1) 0 · · · 0
∗ aw(2)w(2) 0 0
...

...
. . .

...
∗ ∗ · · · aw(is)w(is)


because of the induction. The block δ is

0 0 · · · ajw(t)

aw(s+1)w(s+1) 0 · · · 0

∗
. . .

. . .
...

∗ ∗ aw(ik)w(ik) 0

 ,
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the line j is like this because j < w(is+1), the column w(t) because w(ip) < w(t) for every p < k.
The block F is zero because of the induction and j < w(t) < w(ik+1). The block ε is

aw(ik+1)w(ik+1) 0 · · · 0
∗ aw(ik+2)w(ik+2) 0 0
...

...
. . .

...
∗ ∗ · · · aw(it)w(it)

 ,

for the same reasons of α.

We can now prove the proposition. Let vi be a base for F such that

vi = ew(i) +
∑
j<w(i)

aijej ,

we de�ne a matrix A in following way

Aw(i)j := aij ;

clearly Abw is equal to F and A is lower triangular.

De�nition 2.6 (Bruhat cells). We call C(w) the orbit of bw under the action of B−.

We can give a more explicit description of these orbits. First we choose a represent for every
element of W , we choose the matrices of permutation (this choice is not canonical). If w and
z are in W then zbw = bwz. We conclude that W acts simply transitively on the �xed points
of T . Let U (respectively U−) be the subgroup of strictly upper (respectively lower) triangular
matrices. The stabilizer of bw in B− is

S(w) := wBw−1 ∩B− ;

so C(w) is isomorphic to B−/S(w) and hence

C(w) ∼= wU−w−1 ∩ U− =: Uw .

We have that U− is isomorphic as a variety to C(n(n−1)/2) so C(w) is isomorphic to Cp for some
p. This is a very important remark because show that the C(w) give us the CW-structures of
G/B!

We want a formula for the dimension of the C(w). We de�ne l(w) as the smallest number of
transposition {(1, 2), (23), . . . , (n−1, n)} one needs to write w (we remark that these transposition
generate the symmetric group). We claim that

dimC(w) = n(n− 1)/2− l(w) .

We can use this formula to compute the dimension of the de Rham cohomology groups of the
�ag variety. For example, the dimension of the cohomology groups of SL(4,C)/B are:

1 3 5 6 5 3 1
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3 Some results of standard monomial theory

In this section we prove some facts of standard monomial theory. These results are necessary to
prove that the function c de�ned in 2.3 is well-de�ned. We will tackle the problems from several
points of view.

We recall the notations. Let P(i) be the set of subset of cardinality i of {1, . . . , n}, given an
element I of P(i) we order the element of I and we call Ij the j-th element of I. We de�ne a
partial order on P(i), we we say that I ≤ J if Ik ≤ Jk for every k; given two elements of P(i)
they can be not comparable, for example if n = 4 and i = 2 take {1, 4} and {2, 3}.

3.1 Two dimensional case

We prove the proposition 3.5 in the two dimensional case. Let V be a vector space and
{e1, · · · , en} be a base of V . Let

v1 =
∑
t

atet , v2 =
∑
t

btet .

We write
v1 ∧ v2 =

∑
s<t

cstes ∧ et ,

where
cst = asbt − atbs .

We de�ne a partial order on the ordered couple saying that (s, t) ≤ (i, j) if and only if s ≤ i and
t ≤ j.

Proposition 3.1. With the same notation as above there exist the smallest couple (s, t) among
the couples such that cij is not zero.

Proof. Let i, j, k, l be four indexes such that the couple (i, j) is not comparable with (k, l), without
lost of generality we can assume that:

i < k < l < j .

We claim that if both cij and cst are non zero then there is a non zero cst such that (s, t) is
smaller then both (i, j) and (k, l). The smallest couple in i, j, k, l is (i, k). If cik is not zero we
are home. Assume that

cik = aibk − akbi = 0 . (1)

We claim that

Lemma 3.2. If cik is zero then
cijckl − cilckj = 0 .

Proof. Proof by explicit computation. We compute the �rst term

cijckl = (aibj − ajbi)(akbl − albk) = [aibjakbl + ajbialbk]− [aibjalbk + ajbiakbl] .

Using 1 we have
aibjalbk + ajbiakbl = akbi(albj + ajbl) .

We compute the other term

cilckj = (aibl − albi)(akbj − ajbk) = [aiblakbj + albiajbk]− [aiblajbk + albiakbj ] .
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Using 1 we have
aiblajbk + albiakbj = akbi(ajbl + albj) .

From the lemma follows the proposition.

3.2 The Plucker relations

The previous computation can be generalized in an abstract way. Let V be a vector space, there
exists a non degenerate pair

n∧
V ∗ ⊗

n∧
V → C

(φ1 ∧ · · · ∧ φn, v1 ∧ · · · ∧ vn) 7→ det(φi(vj)) ;

so we can identify
∧
V with (

∧
V ∗)∗ and then we can de�ne a structure of Hopf algebra on

∧
V .

For n bigger or equal then 2 we call ∆ the composition of the comultiplication with the
projection from

∧
V ⊗

∧
V to V ⊗

∧n−1
V ; explicitly:

∆ :

n∧
V → V ⊗

n−1∧
V

eI 7→
∑
i∈I

ei ⊗ eI\i .

Now �x a vector ω in
∧n

V , we de�ne a map

µ : V ⊗
n−1∧

V →
n+1∧

V ⊗
n−1∧

V

α⊗ β 7→ (α ∧ ω)⊗ β ;

if ω is a pure tensor then µ(∆ω) is zero, if it is not a pure tensor then the composition is not
forced to be zero. Now let

ω = v1 ∧ · · · ∧ vn =
∑

cIeI ,

we compute explicitly µ∆ω, we get

∆(ω) =
∑
I

cI∆(eI) =
∑
I

cI
∑
i∈I

ei ⊗ eI\i ,

µ(∆(ω)) =
∑
I

cI
∑
i∈I

ei ∧ (
∑
J

cJeJ)⊗ eI\i =
∑

I,J |I\J|≥1

cIcJ
∑

i∈(I\J)

±eJ∪i ⊗ eI\i ;

As we have noticed before µ(∆(ω)) = 0; since the elements eJ∪i ⊗ eI\i are linearly independent
we can equal the coe�cients to zero, so for every couple of set of indexes K and T we have the
equation ∑

i∈K\T

±cK\icT∪i = 0 .

Now we specialize this equation to the case

K = {i, j, k} T = {l} ,
with

i < k < l < j ;

we get
−cijckl − cikclj + cjkcil = 0

and the lemma of the previous section follows.
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3.3 General case

First we remark a basic fact of linear algebra.

Lemma 3.3 (Exchange lemma-�rst version). Let F be a vector space and I = {I1, . . . , In} and
J = {J1, . . . , Jn} two bases. For every index i there exist an index j such that

I ∪ {Ji} \ {Ij}

is still a base.

We give an easy generalization of this lemma.

Lemma 3.4 (Exchange lemma-second version). Let F be a vector space and I = {I1, . . . , In}
and J = {J1, . . . , Jn} two bases. Fix an integer k. We can replace at least one element among
{Ik, Ik+1, . . . In} with an element of {J1, J2, . . . , Jk} obtaining a new base.

Proof. This lemma follows from the previous one because of dimensional reason: if we can not
replace an element of {Ik, Ik+1, . . . In} with an element Js this means that Js belong to the space
spanned by {I1, I2, . . . , Ik−1}; but {J1, J2, . . . , Jk} are k vectors linearly independent so they can
not belong all to the space spanned by {I1, I2, . . . , Ik−1}.

These lemmas will be used several times.
Let V be a vector space of dimension n and {ei} be a base of V . Let

vt =
∑
j

ajtej

for t from 1 to i. We write
v1 ∧ · · · ∧ vi =

∑
I∈P(i)

cIeI ,

where eI is eI1 ∧ · · · ∧ eIi . Let A be the matrix of coe�cient ajt and let Ak be the k-th line of
A. The key remark is that cI is the determinant of the matrix with lines the Ak's for k in I.
Clearly cI is not zero if and only if the set {Ai}i∈I is a set of linear independent vectors. In
the next proof an element I of P(i) will denote at the same time a subset of {1, . . . , n} and the
correspondent lines of the matrix A.

Proposition 3.5. Let S be the subset of element of P(i) such that cI is not zero. There exist a
minimum and a maximum element in S.

Proof. We just prove that there exist a minimum. Take two elements I and J in S, it is enough
to prove that there exist a Z in S smaller then I and J . We give a de�nition.

De�nition 3.6 (k-smaller). For every k in {1, . . . , n} we say that I is k-smaller then J , in
symbol I <k J , if and only if the following conditions hold

1. ∃t < k | It < Jt,

2. Is 6 Js∀s < k,

3. Ik > Jk.

Moreover i+ 1-smaller means smaller.
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We prove that, gives two elements I and J in S there exists Z in S smaller then I and J .
We can assume that I is k smaller then J . We prove the statement by decreasing induction on
k. If k = i + 1 we are home. Now suppose the statement true for all the couple I and J such
that I is k + ε smaller then J .

Using the second version of the exchange lemma we can replace one element among {Ik, Ik+1, · · · , Ii}
with an element of {J1, J2, · · · , Jk}. Call P the new element of S one obtains after this change,
we will show that P is smaller then I and z smaller then J for z strictly smaller then k.

Let Jt be the element put inside I. If t < k then the ordinate set of index P is of the form

(I1, . . . , Is, Jt, Is+1, . . . Ik−1, . . . ) ,

where s is bigger then t because It ≤ Jt. Remark that Jt is in the place s+ 1.
First we confront P and I. The �rst s position are the same. For the position s+ 1 we have

that Jt < Is+1 because of their positions in P . Moreover for the position after s+ 1 we use the
fact that Ii < Ii+1 for every i because the sets are ordinate, so we can conclude that P < I.

Now we confront P and J . The �rst s position are not changed so they are ok because
I <k J . In position s we have that Jt < Js+1 because s > t. For the further positions we have
that Pi < Ji for i from s + 1 to k because It < Jt < Jt+1 for t from s + 1 to k − 1, so P <z J
for a z strictly bigger then k.

By decreasing induction on k we can �nd an element T of S smaller then P and J so we are
home.

If t = k then P is of this form

(I1, . . . Ik−1, Jk, . . . ) ,

in this case P is k + ε1 smaller than I and k + ε2 smaller then J . We apply two times the
inductive hypothesis. First we �nd an element Z̃ of S smaller then P and I, this element, being
smaller then P , is k + ε smaller then J so there exist a Z in S smaller then I and J .

Let
ωi := v1 ∧ · · · ∧ vi ,

we call c(ωi) the minimum of S. Let v be a vector of V such that v ∧ ωi is not zero, recall that
c(ωi) and c(v ∧ ωi) are both subset of {1, . . . , n}, we claim the following proposition.

Proposition 3.7. Keep notation as above. We have that:

c(ωi) ⊂ c(v ∧ ωi) .

Proof. As we have done for ωi we write

v ∧ ωi =
∑

I∈P(i+1)

dIeI ,

we call T the set of the I in P(i + 1) such that dI is not zero. Same de�nition for U : the subset
of the i in {1, . . . , n} such that the coe�cient of v in ei is not zero.

An element of T is of the form J ∪ {j} where J is an element of S that does not contain j
and j is in U . Fix an element J ∪{j} of T , we will show that there exist an element of T smaller
or equal to J ∪ {j} and containing c(ωi): this is enough to prove the proposition. There are two
cases. First j doesn't belong to c(ωi), in this case c(ωi) ∪ {j} is the requested element. Now
suppose that j belongs to c(ωi), so c(ωi) ∪ {j} is not an element of T . For the �rst version of
the exchange lemma we can cook up an element of S in the following way: remove j from c(ωi)
and add an element of J such that we do not get out S, call this new set I. Clearly I doesn't
contain j so I ∪ {j} is in T and it is the requested element.
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4 Tori

4.1 Rigidity of Tori

A trous T is an algebraic group isomorphic to (C∗, ·)n. First we describe its subgroups. Let
X(T ) be the group of characters of T , i.e. the group of algebraic homomorphism from T to
(C∗, ·). We have the morphism of evaluation:

ev : T → Homgr(X(T ),C∗)

de�ned in the natural way:
ev(p)(χ) := χ(p) .

Clearly ev is a morphism of groups, moreover we have the following proposition.

Proposition 4.1. The morphism ev is an isomorphism of algebraic groups.

Proof. The injectivity is trivial, for the surjectivity we need coordinates. Let t1, . . . , tn be co-
ordinates on T , we de�ne χi(t1, . . . , tn) := ti, the χi's are free generators of X(T ). Given an
element f of Homgr(X(T ),C∗) we claim that ev(f(χ1), . . . , f(χn)) is equal to f because they
have the same value on the χi's.

We de�ne a canonical bijection between the subgroups ofX(T ) and the subgroup ofHomgr(X(T ),C∗).
Given a subgroup E of Homgr(X(T ),C∗) we pose

Ker E :=
⋂
f∈E

Ker f ;

given a subgroup H of X(T ) we pose

AnnH := {f ∈ E s.t. f |H≡ 1} .

Clearly AnnH and Ker E are both subgroups, in general (for example in the case of vector
space) they do not give a bijective correspondence, but in our case we can claim the following
lemma.

Lemma 4.2. With the same notation as above

KerAnnH = H and AnnKer E = E .

Proof. We will use the description of X(T ) as the group of monic monomial in the ti's. For the
�rst assertion is clear that

H ⊂ KerAnnH .

To prove the reverse inclusion we will �nd a �nite number of functions fi in Homgr(X(T ),C∗)
such that the intersection of their kernels is is exactly H. We write X(T )/H as product of
�nite many cyclic groups Fi. Every cyclic group can be embedded in C∗ (the group Z with the
exponential and the �nite ones as roots of the unit). For each factor Fi we de�ne an fi as the
projection of X(T ) on X(T )/H composed with a map that embeds Fi and is trivial on all the
other factors.

For the second assertion is clear that

E ⊂ AnnKer E .
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In order to prove the other inclusion we must prove that two subgroups E0 and E1 ofHomgr(X(T ),C∗)
with the same kernel are equal (this statement is not true for example if X(T ) was a vector space
instead that a group of characters). We argue by induction on n. For n equal to one we have
that E0 =< tk > and E1 =< ts >, since C is algebraically closed if k is di�erent from s they
have di�erent kernels. If n is bigger then one let Tn be the subtorus of T with last coordinate
equal to 1, we look at the group homomorphism given by the restriction

r : Homgr(X(T ),C∗)→ Homgr(X(Tn),C∗) ,

since r(E0) and r(E1) have the same kernel they are equal by inductive hypothesis. The kernel
of r is given by the characters trivial on Tn, hence is < tn >. Because of the �rst step the kernels
of r restricted to E0 and E1 are equal. Since the image and kernel of r restricted to E0 and E1

are equal we conclude that E0 and E1 are equal.

Since X(T ) is isomorphic to Zn we obtain that the subgroups of a torus are discrete. We
now state an important theorem about the structure of the tori.

Theorem 4.3 (Rigidity of tori). Let T1 and T2 be two tori and V a connected family of homo-
morphism, then V is trivial. In a more explicit way: let V be a connected variety, and suppose
we have a map

α : V × T1 → T2

such that its restriction to v × T1 is an homomorphism of groups for every v in V , then α is
constant in V : the map that associate at each v the homomorphism α |v is constant.

Proof. The main idea is that a map between two torus correspond to a map between the character
groups, so it can not be deformed. For a complete proof see [Bor91] page 116-117.

One of the most important consequence of this theorem is the following proposition.

Proposition 4.4. Let T be a torus inside an algebraic group G, let N(T ) ans Z(T ) be respectively
its normalizer and its centralizer, then connected component of the identity of N(T ) is contained
in Z(T ).

Proof. Let N0 be the connected component of the identity inside N(T ). Consider the map

α : N0 × T → T

(n, t) 7→ ntn−1 .

If we restrict α to {Id} × T we get a trivial map, so applying the theorem of rigidity we obtain
the statement.

4.2 Fixed points of the a action of a Torus

Let T be a torus and V be a linear representation of T . Since T is abelian its action is diagonal
so we can decompose V in eigenspaces

V =
⊕

Vχi

where the χi are characters of T . The �xed point of the action of T on PV are PVχi , so if the Vχi
are all one dimensional then the �xed points are isolated, otherwise the �xed points formed linear
subspace of PV of positive dimension. Now we reduce the problem of studying the �xed points
of the action of a torus to the study of the �xed points of the action of a generic 1-parameter
subgroup.
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Theorem 4.5. Suppose that is given an action of T on PV , then for a generic one-parameter
subgroup ρ we have that

Fix(T ) = Fix(ρ) .

Proof. Call χi the eigenvalue of the action of T on V . For every couple of index i and j call
Kij the subgroup of T where χi is equal to χj . The generic one parameter subgroup of T will
have an open dense subset outside all the Kij . To prove this is enough to look the Lie algebra
of G: the tangent spaces of the Kij are contained in a �nite number of hyperplanes, hence the
generic 1 dimensional subspace of the Lie algebra can be integrated to a 1 parameter subgroup
intersecting with an open dense subset outside the Kij .

Now �x one generic one parameter subgroup of T

ρ : C∗ → T .

Suppose that [v] is not �xed by T , then v is outside the Vχi and we can write

v = v1 + · · ·+ vk

where each vi is an element of Vχi and k is bigger then one. The action of an element t of T is
the following

t.v = χ1(t)v1 + · · ·χk(t)vk ,

now take an element ρ(z) outside all the Kij , then ρ(z).v is not proportional to v and t.[v] is
di�erent from [v], so we can conclude that

Fix(ρ) = Fix(T ) .

Fix a point [v] on V we would like to compute

lim
z→0

ρ(z)[v] ,

write χi(ρ(z)) = zmi , for some mi in Z, recall that the mi are all di�erent, call χi the character
with the smallest mi; now write as before

v = vχ1
+ · · ·+ vχk ,

then
lim
z→0

ρ(z)[vχ1
] .

We remark that
lim
z→0

ρ(z)[v] ,

is a �xed point for the action of T for every [v] in V .
We look the case when T is a maximal torus of a reductive group G and it acts on the Lie

algebra of G with the adjoint representation. We recall the formula

dAd(etv)(u) |t=0= ad(v)(u) ,

hence the di�erential of the character χi are the roots of the Lie algebra, and the eigenspace of
T have all dimension 1.
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5 Equivariant vector bundles

We want to tackle the following problem: given an action of an algebraic group G on a (projective
or a�ne) variety X we want to �nd a linear representation V of G such that we can embed X
inside V or PV in G equivariant way. Roughly speaking if we think X embedded in some space
V or PV we want to extend the action of G to all V .

5.1 The a�ne case

First we tackle the problem when X is an a�ne variety. In this case we can always solve our
problem. We consider the representation C[X]. We �rst prove the following fact.

Lemma 5.1. Let f be an element of C[X], then f is contained in a �nite dimensional G module.

Proof. Let ρ be the map from G×X to X given by the action. We have that

g.f(x) = f(g−1x) = ρ∗f(g, x) =

k∑
i=1

ui(g)vi(x) ;

the last equality comes from the fact that, given two algebraic varieties U and V , then C[U ×V ]
is isomorphic to C[U ]⊗C C[V ], and an isomorphism is given in the following manner

(
∑
i

ui ⊗ vi)(x, y) :=
∑
i

ui(x)vi(y) .

We can conclude that, if ρ∗f =
∑k
i=1 uivi, then for every g the function g.f is a linear combination

of the vi, namely

g.f =

k∑
i=1

ui(g)vi .

Now we �x a set of generators of C[X], this is a �nite set so it spans a �nite dimensional G
module, call it M . There is a natural embedding of X in M∗:

ev : X →M

x 7→ evx ,

and evx(f) := f(x). This is an embedding because M contains the generators of C[X], moreover
the map ev is G equivariant:

(g.evx)(f) = evx(g−1.f) = f(gx) = evgx(f) .

5.2 The projective case

The projective case is more complicated and the answer is not always positive; we begin with
some remarks. First we give the following de�nition

De�nition 5.2. An embedding
ι : X → PN

is called non degenerate if and only if X is not contained in any proper subspace of PN .
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Let ι be a proper embedding of X in some PN , we can consider the line bundle ι∗O(1); call

V := Γ(X, ι∗O(1)) ,

the embedding of X in PN is equivalent to the embedding of X in P(V ∗) de�ned as follows:

x 7→ ([s] 7→ [s(x)]) .

Our problem became: can we de�ne an action of G on V such that the embedding is equiv-
ariant? First we recall that ι(x) is the hyperplane of V formed by all the section vanishing on x,
so the embedding is equivariant if and only if, given a section s vanishing on x, the section gs
vanishes on gx.

We give the following de�nition

De�nition 5.3. A line bundle L over a G variety X is equivariant if there is an action of G on
L such that the projection is an equivariant morphism and the action is linear on the �bers.

It is useful to reformulate our problem in term of G-equivariant vector bundles.

Proposition 5.4. Let X be a G variety and

ι : X → PV ∗

be a non degenerate embedding. Then V admits a structure of G module such that ι is G equiv-
ariant if and only if the line bundle L := ι∗O(1) admits a structure of G equivariant vector
bundle.

Proof. First recall that V is isomorphic to Γ(X,L). If the bundle is equivariant we can de�ne
the following action on the section

g.s(x) = gs(g−1x) ,

since p is equivariant then s is still a section. This action veri�es the requested propriety: if
s(x) = 0 then

g.s(gx) = g(s(x)) = g0 = 0

because g is linear on the �bers.
Now suppose that is given an action on V such that the embedding ι is equivariant. We

de�ne an action of G on L such that the bundle is equivariant. Let l be a point of L and x be
p(l), since the bundle is very ample then there exist a section s̃ such that s̃(x) = l. We de�ne

g.l := (g.s̃)(gx) ,

the map p is equivariant because gs̃ is a section, since G acts linearly on V then it acts linearly
on the �bers; the de�nition does not depend on the choice of s̃ because (gs)(x) = 0 if and only
if s(gx) = 0.

Let us provide an example.

Example 5.5. Consider the natural action of G = SL(2,C) on G/B ∼= P1. For n > 0 consider
the very ample vector bundle O(n). In this case

V = C[X,Y ]n ,
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where X and Y are the homogeneous coordinates of P1. We can lift the action of G to an action
C[X,Y ]n, namely we pose

(gp)(X,Y ) = p(g−1X, g−1Y ) ,

and this action makes the bundle O(n) equivariant.
Instead consider G = PSL(2,C), also in this case G/B ∼= P1, but PSL(2,C) doesn't act on

C[X,Y ]1. The group PSL(2,C) acts just on the spaces C[X,Y ]2k = Γ(P1,O(2k)), thus only the
bundles O(2k) admit a structure of PSL(2,C) equivariant bundle.

As the example suggest our problems admits always a solution of and only if the group is
connected and simply connected. We follow [Ser54]. First we prove the following proposition, it
is true also in the case of not simply connected groups.

Proposition 5.6. Let G be a connected group, X a G variety and

ι : X → PV ∗

a proper embedding, then we can de�ne a projective action of G on PV ∗ such that ι is G equiv-
ariant.

Proof. First we need a lemma that uses some results of complex algebraic geometry.

Lemma 5.7. For every g in G the line bundle g∗L is isomorphic to L.

Proof. The group H1(X,O∗) is the Picard group of X and G acts via pull-back on it. We have
the exact sequence

0→ Z→ O → O∗ → 0 ,

and since X is projective we have the exact sequence

0→ Pic0(X) = H1(X,O)/H1(X,Z)→ H1(X,O∗)→ H1,1(X,Z)→ 0 .

Let [L] be the isomorphism class of L inside the Picard group. Since H1,1(X,Z) is discrete and
G is connected the orbit G[L] is inside the coset Pic0(X)[L]. We have thus an action

G× Pic0(X)[L]→ Pic0(X)[L] .

Always becauseX is projective Pic0(X) is an abelian variety. Applying the rigidity of the abelian
varieties we obtain the statement. For further details on the Picard group see [Voi02], for the
rigidity of abelian varieties see [Bor91] page 116-117.

Let div(L) be the divisor of a meromorphic section of L and let us identify the non trivial
global section of L with the meromorphic function f such that div(f)+div(L) > 0. The previous
lemma means that for every g in G there exist a meromorphic function fg on X, unique up to a
constant, such that the map

Γ(X, g∗L)→ Γ(X,L)

s 7→ fgs

is an isomorphism of vector space. Moreover the pull back gives an isomorphism

Γ(X,L)→ Γ(X, g∗L)

s 7→ g∗s .
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Composing these two isomorphism we get a map

ρ : G× Γ(X,L)→ Γ(X,L) .

This map in general is not an action. To explain the problem we de�ne a map

ω : G×G→ C∗

(g, h) 7→ (fgg
∗fh)/(f∗h∗fgh) ,

the image of every couple is an invertible regular function on a projective variety, thus a non
zero constant. But the map ω is not in general constant. The reason because ρ is not an action
is that

ρ(g)ρ(h)ρ(h−1g−1)s = ω(g, h)s .

Since the image of ω is inside C∗ we have that the induced map

ρ̃ : G× PΓ(X,L)→ PΓ(X,L)

is an action.

In our original problem we are now free to replace X with a projective space PV . The solution
is the following.

Proposition 5.8. Let G be a connected and simply connected group, let

ρ : G→ PGL(V )

be an action of G on PV , we can always de�ne an action ρ̃ of G on V such that ρ is the induced
action.

Proof. Let
π : GL(V )→ PGL(V )

be the projection, to �nd the needed action of G on V we must de�ne a map

ρ̃ : G→ GL(V )

such that π ◦ ρ̃ = ρ. If there was a section of π we will be home, but this is not the case. We use
the Lie algebras, in this case dπ is just a projection

dπ : sl(V )⊕ CId→ sl(V )

and there is a section, so we have found a representation

dρ̃ : Lie(G)→ gl(V )

such that dπ ◦ dρ̃ = dρ, the problem is: can we integrate dρ̃ to a representation ρ̃ of G? We can
always integrate it if and only if G is simply connected.

Remark 5.9. If G is not simply connected, as PSL(2,C), there are some representations of the
Lie algebra that we can not integrate to a representation of the group, and hence may happen
that some line bundle doesn't admit a structure of G equivariant line bundle.

Let us summarize all the previous discussion.
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Theorem 5.10. Let G be a connected group, X a G variety and

ι : X → PV

a proper embedding, there always exist a projective action of G on PV such that ι is a G equiv-
ariant. Moreover if G is simply connected there exist an action of G on V such that ι is G
equivariant.

We are interested to apply this result to the case of the G projective variety G/B, where B is
a Borel subgroup of G. In this case we have an explicit G equivariant embedding in a projective
space. Call d the dimension of U and consider the adjoint action of G on

∧d
g. Let l be the line∧d

u, we have a map

G→ P
d∧
g

g 7→ g.[l] ,

since the stabilizer of u is B we obtain a G equivariant embedding

ι : G/B → PV

where V is
∧d

g.
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6 The Bruhat decomposition

In this section we state and prove the Bruhat decomposition for a general linear reductive and
connected group G. Our goal is to describe the orbits of the action of B− on G/B. The �ag
variety is projective and it is a T variety, so we can apply the general results of the previous
section.

6.1 The �xed points of the action of T on G/B

We recall some facts about the algebraic group without proofs. All the Borel subgroup are
conjugated (see [Bor91] p.147) and the normalizer of a Borel subgroup is the group itself (see
[Bor91] page 154). We de�ne a bijective correspondence between the points of the quotient
G/B and the Borel subgroups of G: at a point [g] corresponds the Borel subgroup gBg−1, at
a Borel subgroup B̃ corresponds the unique class gB such that B̃ = gBg−1. The group G
acts by left translation on G/B and by conjugation on the set of Borel subgroups, the bijective
correspondence de�ned above is G-equivariant.

We want to study the �xed points of the action of T on G/B. We follow the strategy of
[Pro07] page 358. We translate the problem into a Lie algebras problem. We think G/B as the
variety of all the Borel subalgebra of the Lie algebra g of G; we call b the Lie algebra of B and
at a point [g] of G/B corresponds the Lie algebra Ad(g)(b). We claim that the �xed point of the
action are the Borel subalgebra containing t. The key lemma:

Lemma 6.1. Let Φ be the set of roots of g, a subset A of Φ has the following proprieties

(S) α, β ∈ A,α+ β ∈ Φ⇒ α+ β ∈ A ,

(B) α ∈ A⇒ −α /∈ A ,

if and only if is a subset of w(Φ+), where w is an element of the Weyl group W and Φ+ is a
�xed Weyl chamber.

Proof. We just list the main ingredients. The groups W is the group of automorphism of the
root system. The roots in a Weyl chamber associated to a regular vector v are all the roots α
such that (v, α) > 0, the group W acts simply transitively on the Weyl chambers. Given two
roots α and β such that (α, β) < 0 then α+ β is a root.

An easy consequence of this the lemma is the following proposition.

Proposition 6.2. Given a subset A of Φ consider the following vector space

h := t
⊕
α∈A

Lα ,

this subspace is a Lie subalgebra if and only if (S) is true, moreover it is solvable if and only if
(B) is true.

Proof. The �rst assertion follows from the fact that [Lα, Lβ ] ⊂ Lα+β . For the second assertion
suppose that (B) is not true, then the subalgebra associated to {α,−α} is not solvable. If (B) is
true, because of the lemma it is enough to prove that the Lie algebra associated to Φ+ is a Borel
subalgebra. Let v be a vector such that (α, v) > 0 for every α in Φ+, then (α+ β, v) > (α, v) for
every α and β in Φ+, since Φ+ is a �nite set and [Lα, Lβ ] ⊂ Lα+β the Lie algebra is solvable.
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We conclude that the �xed points of the action of T are the Borel subalgebra containing t
and they are in a bijective correspondence with the Weyl chambers and with the elements of the
Weyl group, hence they are a �nite set. All this correspondence are equivariant for the action of
W . We give a name to this special point.

De�nition 6.3. The point [bw] inside G/B it the point that corresponds to the Borel subgroup
wBw−1 Sometime for short we will omit the brackets, or, when there is not any danger of
confusion, we will call this point just w.

We can see this point in a more concrete way. The Weyl group is de�ned as the normalizer
of T quotiented by its centralizer. The centralizer is contained in B so the class of an element of
W in G/B is well-de�ned.

6.2 The dense orbit

We recall that U− := (B−, B−) is the unipotent part of B−, its Lie algebra is

u− =
⊕
α∈Φ−

Lα .

This group acts on G/B, we will see that the stabilizer of Id is trivial. The stabilizer of Id for
the action of G is B, because B is equal to its normalizer, so the stabilizer for the action of U−

is B ∩ U−.

Lemma 6.4. The group B ∩ U− is �nite.

Proof. The Lie algebra of B ∩ U− is

L(B) ∩ L(U−) = (t⊕α∈Φ+ Lα) ∩ ⊕α∈Φ−Lα = {0} ;

so the group is discrete, and a discrete subgroup of algebraic group is �nite.

Lemma 6.5. A �nite unipotent group is trivial.

Proof. A �nite group is always linearly reductive in characteristic 0 because we can �nd an
invariant scalar product. The group is algebraic so we can choose a faithful representation V ,
being unipotent the group stabilize a vector v and since it is linearly reductive we can �nd a
decomposition

V = Cv ⊕M .

By induction on the dimension the group acts trivially on M , but the representation is faithful
so the group is trivial.

We conclude that the stabilizer of Id for the action of U− is trivial, so the action on b give
an injection

i : U− ↪→ G/B .

We recall the universal propriety of the quotient.

Theorem 6.6 (Universal propriety of the quotient). Let G be a group, V a G variety and H
the stabilizer of a point p of V . Then G/H has a structure of variety and it is isomorphic, as G
algebraic variety, to the orbit of p.

Proof. see [Pro07] page 175, [Bor91] page 98 or [Spr98] page 91.
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Using this theorem we have that the orbit of Id is isomorphic to U−, call it C(Id).
We compute the dimension of the orbit, we recall that

Lie(G) = Lie(B)⊕ Lie(U−) ,

so
dimC(Id) = dimU− = dimG− dimB = dimG/B

and then C(Id), being G/B connected, is a dense set.
We now prove that C(Id) is open, this facts is due to the following general result.

Proposition 6.7. An orbit is open in its closure.

Proof. Let G an algebraic group acting on V , let p be a point of V and O(p) its orbit. Let us
consider the surjective application

f : G→ O(p)

g 7→ gp .

The image of any regular map contains an open dense set of its closure because of a general
result of algebraic geometry, see [Spr98] page 19. We apply this this fact to f , we get a point x
in O(p) which has a neighborhood U (for the topology of O(p)) entirely contained in O(p), since
G acts transitivity on O(p) every point has a neighborhood contained in O(p) and hence O(p) is
open in O(p).

Being O(p) equal to the whole space we have that O(p) is open. All this discussions hold
also if we replace B− and U− with B and U , one has just to conjugate everything for w0. We
summarize the discussion of this section.

Theorem 6.8 (Existence of an open dense U -orbit). There exist an open dense orbit for the
action of U on G/B.

6.3 The smaller cells

We want to study the other orbits of the action of B− on G/B. We �x a one parameter subgroup
ρ of T such that

Fix(T ) = Fix(ρ) ;

for every root α we have that
α(ρ(z)) = zmα ,

Call X(T ) the group of characters of T and X∗(T ) the group of one parameter subgroup of T . We
request ρ to verify the following propriety: for every negative root α we want that mα is positive.
Such a group exist because we have a perfect duality between the one parameter subgroup of
T and the characters of T : the integer (ρ, χ) is the unique such that χ(ρ(z)) = z(ρ,χ). Then
we have that X(T ) is isomorphic to the dual of X∗(T ). The simples root of Φ− are Z linearly
independent so we can de�ne a linear map

l : X(T )→ Z

such that l(α) is positive for every negative root and does not assume the same value on two
di�erent roots. This map correspond to the requested one parameter subgroup.

We can give a more clever description of C(Id):

C(Id) = {p ∈ G/B s.t. lim
z→0

ρ(z)p = Id} .
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We prove that this description agrees with the older one. First we see that, being U− normal in
B−, then the orbit of Id under the action of U− is T stable:

tuId = tut−1tId = u′tId = u′Id .

If we take a point outside U−Id we can not get inside this open set applying ρ(C∗), so C(Id) is
inside U−Id. We show the other inclusion. Using the exponential map the action of T on U−Id
is isomorphic to the action of T on u−, we identify Id with 0. Since the mα are all positive for
the negative roots we obtain that U−Id is inside C(Id).

Now we de�ne the other Bruhat cells in the same way.

De�nition 6.9 (The Bruhat cells). The Bruhat cell associated to an element w of W is

C(w) := {p ∈ G/B s.t. lim
z→0

ρ(z)p = w} .

Because of our previous analysis on the action of the one parameter group the Bruhat cell
cover all the space G/B. For the same argument as above we have that

Proposition 6.10. For every w in W

C(w) = U−w .

The point is that the stabilizer of the action is trivial if and only if w is the identity.
We can de�ne a partial order on the element of the Weyl group using the Bruhat cells, namely

we say that
w ≺ w′ ⇔ C(w) ⊂ C(w′) .

We can give another description of the Bruhat cell. Let [v] be a point of G/B, as we have
done in the previous section we can embed G/B in PV for some representation V of G, call vw a
non zero vector of the right corresponding to w in V , we write

v = cw1vw1 + · · ·+ cwnvwn .

At each point [v] we can thus associated the following subset of the Weyl group

S([v]) := {w ∈W s.t. cw 6= 0} ,

and then we claim that

C(w) = {p ∈ G/B s.t. S(p) ≺ w and w ∈ S} .

First we remark that if limz→0 ρ(z)p = w then w must appear in S(p). Recall that the integer
(ρ, χwi) are all di�erent because ρ is generic. Moreover we claim that if w ≺ w′ then (ρ, χw) >
(ρ, χw′). The reason is that C(w′) is dense in C(w′) so what must happen is that limz→0 ρ(z)p =
w if and only if w′ is not in S(p) and not vice versa.

We conclude that if p is in C(w) then w is the maximum of the partially order set S(p).

6.4 The CW-complex structure of the �ag variety

The cells C(w) are all isomorphic to Ck for some k. The proof of the isomorphism between C(w)
and Ck is in [Bor91] page 182, we describe the main idea. In a group G we �x an unipotent
subgroup U and a maximal torus T ; for every root α of the Lie algebra of U we call Uα the
unique closed subgroup that is �xed by the action of the connected component of the identity of
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Ker α (here the roots are the characters of the action of T on u). The Lie algebra of Uα is Lα
and Uα is isomorphic to the group (C,+). Moreover let α1 · · ·αn be the roots of u, the map

f : Cn ∼= Uα1 × · · · × Uαn → U

given by the multiplication is an isomorphism of algebraic variety. This proof works also in
positive characteristic, over C is easier to use the exponential: being the lie algebra u composed
of nilpotent elements the exponential is an algebraic isomorphism between u and U .

Because of this isomorphism the cells of the Bruhat decomposition are the cells of the CW-
complex structure of G/B. The dimension of the i-th cohomology group of G/B is thus the
number of element of the Weyl group of length i; the cell C(Id) is the top dimensional cell of
G/B.
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7 The Borel-Weil theorem

7.1 Construction of the line bundle associated to a character

We construct a line bundle on G/B from a character χ of B.
First we remark that, being C∗ commutative, the unipotent part of B is (B,B) =: U and

hence any character is trivial on U . Furthermore B is isomorphic (as algebraic variety) to TU and
an isomorphism is given by the multiplication, hence χ is essentially a character on a torus. One
can write any element b of B as a product tu with t in T and u in U . Let t(b) = (t1(b), . . . , tn(b))
be the coordinates of b on T . We have that

χ(b) = χ(t(b)) = tm ,

where m is a �xed element of Zn associated to χ.
Let Cχ be the representation of B given by the character χ: the vector space is just C and

the action is given by χ. The group B acts on the right on G and on the left on Cχ so B acts
on G× Cχ and we can consider the space

Lχ := G× Cχ/B

. We will prove that Lχ, that by now is just a set, is an algebraic variety and moreover is a line
bundle on G/B.

The projection of G× Cχ on the �rst factor gives the projection

p : Lχ → G/B .

First we trivialize Lχ on p−1C(Id) (we know that C(Id) is a�ne so Lχ, if it is a line bundle,
must admit a trivialization on C(Id)). Given a point [g] in C(Id) there is a unique element of
U− such that g = ub, hence we de�ne a map

f : p−1C(Id)→ C(Id)× C

[(g, v)] = [(ub, v)] 7→ (u, χ(b)v) ,

the de�nition is well posed because f([g, v]) = f([gb, χ(b−1)v]). If we let Uw = wU−w−1 act
on [w] in G/B we obtain again an open dense set isomorphic to U , we do an abuse of notation
calling it Uw. The Uw form an open a�ne cover of G/B because of the Bruhat decomposition.
We trivialize Lχ on Uw.

fw : p−1Uw → Uw × C
[(g, v)] = [(wub, v)] 7→ (wu, χ(b)v) .

One verify that the fw are a trivialization of Lχ.
We have not de�ned a complex structure on Lχ. We use the the fw. Locally Lχ is isomorphic

to U−×Cχ, we glue this chart with the tw1,w2
=

fw1

fw2
and we obtain a complex structure for Cχ;

moreover with this structure Lχ is a line bundle.
This strategy can be generalized. We follow [Spr98] page 95.

Proposition 7.1. Let H be a closed subgroup of G such that the projection

π : G→ G/H

admits local section, then for every H variety X the quotient G×H X exists and the map

p : G×H X → G/H

is a �bration of �ber X.
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Proof. Given a section
σ : U → G/H ,

one de�nes
f : U ×X → p−1U ×H X

([h], x) 7→ [(σ([h]), σ(h)−1hx)]

and
f−1 : p−1U ×H X → U ×X

[(g, x)] 7→ (p(g), g−1σ(p(g))x) .

These functions are well de�ned and one can use it to glue the U × H to construct the space
G×H X. The space constructed in this way is a �bration with �ber X.

To apply this general result to our case we need the following

Lemma 7.2. The map
π : G→ G/B

admits local section.

Proof. We use the open cover formed by the translation of the biggest cell of the Bruhat de-
composition Uw de�ned above. Each Uw is isomorphic to U−, moreover these isomorphisms are
local sections for p because every element of p−1Uw can be written in a unique way as wub with
u in Uw and b in B.

We conclude that G×B Lχ exists and, since Cχ is a linear representation, it is a line bundle.
Now we compute the transition functions tw1,w2 on Uw1 ∩ Uw2 . (Remark that we are not

giving an explicit description of the domain of the transition functions!) Let [g] be a point of
Uw1 ∩ Uw2 , we can write in a unique way

g = w1u1b1 = w2u2b2 ,

so
tw1,w2

(g) = χ(b1b
−1
2 ) .

We remark that tw1,w2(gb) = χ(b1bb
−1b−1

2 ) = tw1,w2(g).
We conclude our analysis �nding a divisor D on G/B such that Lχ is isomorphic to L(D).
We must study �rst the case G = SL(2,C), in this case G/B is isomorphic to P1 and, �xed

a point p, any divisor is equivalent to np for some n in Z. We calaim the following proposition.

Proposition 7.3. Let G be SL(2,C), and χ the character of B given by

χ(

(
t ∗
0 1

t

)
) = tm .

The line bundle Lχ is isomorphic to OP1(mp).

Proof. The Weyl group of SL(2,C) is composed by two elements: Id and w, we choose as

representant of w the matrix

(
0 1
−1 0

)
.
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Write g =

(
a b
c d

)
, if g is in the intersection of U Id and Uw then both a and c are not

zero. The Bruhat decomposition for such an element is the following

g =

(
1 0
c
a 1

)
Id

(
a b
0 1

a

)
=

(
1 a

c
0 1

)
w

(
−c d
0 − 1

c

)
.

We call s the section that is equal to 1 on the open a�ne set U Id, we want to extend it to
a meromorphic section and compute its order in [w]. In the intersection of the trivializing open
sets take a point

g =

(
1 0
k 1

)
= w

(
1 0
− 1
k 1

)(
−k 1
0 − 1

k

)
;

then

s([g]) = [(g, 1)] = [(w

(
1 0
− 1
k 1

)
, (−1

k
)m)] .

To obtain s([w]) we must let k tend to in�nity, so s has a zero of order m in w. We conclude
that the divisor of Lχ is mp.

This analysis holds also in the case G = PSL(2,C), because the center is inside B, the only
di�erence is that m must be even to de�ne a character on PSL(2,C).

Now we will use this case to solve the general case. The key point is that the Bruhat
cells are a�ne, so every line bundles restricted to a Bruhat cell is trivial and thus it admits a
constant section. We �x a section s equal to one on Uw0, where w0 is the longest element of
the Weyl group. We establish some notation: given a root α in the Lie algebra we call hα the
corresponding element in the Cartan subalgebra under the Killing duality, call eα and fα a base
of the eigenspaces for α and −α; tα is the one parameter sub group of T given by the exponential
of Chα.

We write the complement of Uw0 as the union of irreducible divisor Zi, so the divisor of s
will be a linear combination

∑
niZi. The group B is irreducible so the closure of the B orbits are

irreducible, we get that the Zi are the closure of the B orbits of codimension 1. The codimension
of Bw is the length of ww0, so we are interested to the orbit of the element w such that ww0 is a
simple re�ections; let w be such a point and Z the closure of its orbit, call α the root associated
to the simple re�ection ww0. If we let B− act on w we get an orbit of dimension 1, call it O.
The sub Lie algebra of g generated by {eα, hα, fα} is isomorphic to sl(2), let H be the subgroup
associated. The group H is isomorphic either to SL(2,C) or to PSL(2,C). This group acts
transitively on O, moreover the closure of O is isomorphic to H/(B∩H). We restrict the bundle
Lχ to Ō, its divisor has degree (χ, tα) for the computation done for SL(2,C). Remark that w is
a smooth point for both O and Z because it is inside an orbit.

The last step is to prove that D and Z intersect transversely, let π be the map given by the
action of G on w, then dπ is a surjection from the Lie algebra of G to the tangent space of w,
we decompose the Lie algebra of G in the following way

(h⊕
⊕

α∈Φ−|w(α)∈Φ+

Lα ⊕
⊕

α∈Φ+|w(α)∈Φ+

Lα)⊕ (
⊕

α∈Φ−|w(α)∈Φ−

Lα)⊕ (
⊕

α∈Φ+|w(α)∈Φ−

Lα) ,

the �rst bracket is the kernel of π, the second is isomorphic to the tangent space of D, the third
to the tangent space of Z. We conclude that the following theorem holds.

Theorem 7.4 (Divisor associated to Lχ). A divisor associated to Lχ is∑
α∈R

(χ, tα)Zα ,
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where R is the set of simple roots and Zα is the closure of the orbit of the simple re�ection
associated to α under the action of B−.

7.2 The space of global section and the Borel-Weil theorem

Given a character χ we de�ne an action of G on Lχ

g.[h, v] = [gh.v] ;

the de�nition does not depend from the representant, we remark that p is G-equivariant. The
group B acts on Γ := Γ(G/B,Lχ) in the following way

(b.s)(x) := bs(b−1x) ;

we check that b.s is still section

p(b.s)(x) = p(bs(b−1x)) = bp(s(b−1x)) = bb−1x = x .

We can see the sections of Lχ in a simpler way, they are all the regular function

s : G→ C

solving the following functional equation

s(gb) = χ(b−1)s(g) ∀b ∈ B g ∈ G .

To prove this we see these functions as section of the trivial bundle G × Cχ over G. Because
of the functional equations we can quotient the base and the bundle by B and they are still
sections.

Let U = (B,B) be the unipotent part of B and ΓU be the global section invariant under the
action of U . When an unipotent group acts on a vector space of positive dimension it always
admits a non trivial �xed vector, so Lχ admits non trivial global section if and only if ΓU is not
trivial. Now suppose that s is a U invariant non trivial section, hence constant on Uw0; using
the computation and the notation of the last part of the section 7.1 we get that

div(s) =
∑
α∈R

(χ, tα)Zα ,

so an U invariant section is regular if and only if (χ, tα) is bigger or equal than zero for every
simple root α. We recall the following de�nition

De�nition 7.5 (Domninant characters). A character χ of G is dominant if and only if

(χ, tα) ≥ 0 ,

for every simple root α.

If the character χ is dominant we prove that the bundle Lχ admits non trivial global section:
we de�ne s equal to 1 on Uw0, we extend it to a meromorphic section, its divisor is positive so
s is a global regular section. We have thus proved that the bundle Lχ admits global section if
and only if χ is dominant, from now suppose that χ is dominant.

Proposition 7.6. The vector space ΓU is a B module.
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Proof. We have to prove that

u.b.s = b.s ∀s ∈ ΓU ,∀b ∈ B, ∀u ∈ U .

We recall that U is a normal subgroup of B so

u.b.s = (ub).s = (b(b−1ub)).s = bũ.s = bs ,

where ũ is the element b−1ub of U .

Proposition 7.7. The dimension of ΓU is one.

Proof. Let s1 and s2 be two non trivial elements of ΓU , we will show that they are linearly
dependent. The function f = s1/s2 is a meromorphic function on G/B, since C(Id) is dense
there exist a point p in C(Id) and a complex number z such that f(p) = z. As we have seen in
the previous section C(Id) is an U -orbit so, being the si's U invariant, f is constant on C(Id).
A function constant in a dense set is constant everywhere so

s1 = zs2 .

We recall a general fact.

Theorem 7.8. Given a representation V of an algebraic group G the number of irreducible
component of V is equal to the dimension of the space V U of the U invariants vectors.

Proof. We give a sketch of the proof using the Lie algebras. Fix v in V , consider the map π
given by the action of G on v, now the image of π is contained in a proper subspace of V if and
only if the image of the di�erential is contained in a proper subspace, hence a representation of
a group is irreducible if and only if is irreducible as a representation of the Lie algebra of the
group. Take v in V U . We recall the decomposition g = u− ⊕ t⊕ u+. The representation admits
a base of eigenvectors for the action of t. If we apply repeatedly the elements of u− to v we
obtain a stable subspace, call it M(v). The point is to prove that M(v)U is Cv and one get an
irreducible subrepresentation of V for every one dimensional U invariant subspace of V . For the
complete proof see [Pro07] page 343.

We conclude that if Γ(G/B,Lχ) is not zero then it is an irreducible representation of G, we
want to identify it. We know from the general theory that the representation of G are classi�ed
by the eigenvalues of T on the U invariant subspace, so let s the U invariant section and t an
element of T , we know that

ts = λ(t)s ,

we want to compute λ. Let w0 be the longest element of the Weyl group, we compute (ts)(w0):

(ts)(w0) = s(t−1w0) = s(w0w
−1
0 tw0) = χ(w0t

−1w−1
0 )s(w0) = (−w0χ)(t)s(w0) .

In this computation we have characterized the section of Lχ as complex valued function on G.
We know that the B orbit of w0 is dense in G/B, since the space Cs is U invariant we have

that
ts = (−w0χ)(t)s .

We remark that given a representation V of weight χ its dual representation has weight
−w0(χ). To see this �x a basis of eigenvectors of T , call µi the eigenvalue, the dual base is is still
a base of eigenvectors but the eigenvalues are −µi. Changing the sign the highest vector became
the lowest one, and one have to apply w0 to the lowest to �nd the highest. We have thus proved
the following theorem.

31



Theorem 7.9 (Borel-Weil). The line bundle Lχ has non trivial global section if and only if χ
is dominant, in this case

Γ(G/B,Lχ)

is an irreducible G module isomorphic to the dual of the representation of maximal weight χ.
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8 The Kostant formula

In this section we work only on the Lie algebras. We �x a simple Lie algebra g and a decompo-
sition of g of the kind

g = u− ⊕ h⊕ u ,

where u is a maximal unipotent subalgebra, h is a Cartan subalgebra and u− is the opposite
maximal unipotent subalgebra.

We �x a dominant weight λ of g and we call L(λ) the irreducible representation of g of
maximal weight λ. The Cartan algebra h acts on both u and L(λ) so, as we will see in details,
it acts on Hs(u, L(λ)); given a root µ we will describe

Hs(u, L(λ))µ ,

with this notation we indicate the vector space of all the elements ω of Hs(u, L(λ)) such that
h.ω = µ(h)ω.

8.1 The key exact sequence

We consider the complex
∧
u, the boundary operator is

d0 :

i∧
u→

i−1∧
u

u1 ∧ · · · ∧ ui 7→
∑
s<t

(−1)(s+t+1)[us, ut] ∧ u1 ∧ · · · ûs · · · ût · · · ∧ ui

this is a complex of b = h⊕ u module, the action is the adjoint one, namely

v.u1 ∧ · · · ∧ un =
∑
i

(−1)i+1[v, ui] ∧ u1 ∧ · · · ûi · · · ∧ un .

We �x a simple root αi, we call ei a generator of the weight space of αi and fi a generator of
the weight space of −αi. We call

ui =
⊕
α6=αi

uα ,

this is an ideal of u, moreover we have the following decomposition

u = ui oCei ,

and the algebra b acts on ui. Moreover also fi acts on ui. To prove this fact we recall that

[fi, uα] ⊂ uα−αi ,

so we have to prove that α − αi is a positive root di�erent from αi. Since α is di�erent from
αi there exist at least one index j such that α − αi has a positive coe�cient in αj . Because
of the general theory a root has either all non-negative coe�cients in the simple roots or only
non-positive coe�cient, see [Pro07] pages 317-318. The coe�cient of α−αi in αj is positive then
α− αj either it is a positive root or it is not a root. If it is not a root the action of αi on uα is
trivial; if it is a root it must be di�erent from αi because 2αi is not a root, so we are home. We
call

ai := Cfi ⊕ h⊕ Cei ,
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this is a Lie algebra formed by a commutative factor plus a copy of sl(2) generated as a vector
space by ei,fi and hi; because of the previous discussion ui is an ai module.

As we have done for u, we de�ne the complex
∧

ui, this is a complex of ai module. We have
the following exact sequence of complexes

0→
∧

ui
ι−→
∧

u
π−→
∧

ui ⊗C ei → 0 ,

where ι is the inclusion and π is the projection. The quotient makes sense because ui is an ideal
of u and it is a b module: the action of u on ei is trivial, the action of h on ei is the adjoint one.
We remark that the j-th element of the complex

∧
ui⊗ ei is

∧j−1
ui⊗ ei. The maps ι and π are

maps of b modules.
From the previous exact sequence we construct the following exact sequence of complexes:

0→ HomC(
∧

ui, L(λ))⊗ e∗i
π∗−→ HomC(

∧
u, L(λ))

ι∗−→
∧

HomC(ui, L(λ))→ 0 ; (2)

the di�erential is de�ned as follows

(dω)(u1 ∧ · · · ∧ un) :=

=
∑
i<j

(−1)i+j+1ω([ui, uj ] ∧ u1 ∧ · · · ûi · · · ûj · · · ∧ un)−
∑
i

(−1)i+1uiω(u1 ∧ · · · ûi · · · ∧ un))

and
d(ω ⊗ e∗i ) := d(ω)⊗ e∗i .

The complexes and the maps are still complexes and maps of bmodules, the action is the following

b.ω(u1 ∧ · · · ∧ un) := ω(b.u1 ∧ · · · ∧ un)− bω(u1 ∧ · · · ∧ un) ,

and on e∗i is the dual of the action on ei: the part on ei of the complex is important because it
changes the action of h. In the same way the third one is a complex of ai module. We compute
the homology of these complexes.

We recall the standard way to compute the cohomology of a Lie algebra. Given a Lie algebra
g one has the Chevalley-Eilenberg complex

∧
g ⊗C U(g), where g acts on the right on U(g).

One applies the functor HomU(g)(− , L(λ)) to the Chevalley-Eilenberg complex and one obtains
HomC(

∧
g, L(λ)) with the di�erential de�ned as above; the cohomology groups Hs(g, L(λ)) are

by de�nition the homology of this complex. We conclude that the jth homology groups of the
complexes appearing in the sequence 2 are respectively Hj−1(ui, L(λ)) ⊗ e∗i , H

j(u, L(λ)) and
Hj(ui, L(λ)).

The complexes are complexes of b modules, so b acts on the homology groups, we will see
that ui acts trivially on H∗(ui, L(λ)) and u acts trivially on H∗(u, L(λ)). The proofs are the same
so we will do just the case of u. Fix an ω in Hj(u, L(λ)) and an element u of u, the form is closed
so

0 = dω(u ∧ u1 ∧ · · · ∧ uj) = (u.ω)(u1 ∧ · · · ∧ uj)+

−
∑
s<t

(−1)s+t+1ω([us, ut]∧u∧u1 ∧ · · · ûs · · · ût · · · ∧uj) +
∑
s

(−1)s+1usω(u∧u1 ∧ · · · ûs · · · ∧uj) ;

we have to prove that∑
s<t

(−1)s+t+1ω([us, ut]∧ u∧ u1 ∧ · · · ûs · · · ût · · · ∧ uj)−
∑
s

(−1)s+1usω(u∧ u1 ∧ · · · ûs · · · ∧ uj) =
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= (dφ)(u1 ∧ · · · ∧ uj)

for some φ in Hom(
∧j−1

u, L(λ)). The good φ is a contraction of ω:

φ(u1 ∧ · · · ∧ uj) := ω(u ∧ u1 ∧ · · · ∧ uj) .

Instead h does not act trivially on the cohomology groups and ei does not acts trivially on
Hj(ui, L(λ)).

From 2 arises the following long exact sequence

· · · → Hj−1(ui, L(λ))
δ−→ Hj−1(ui, L(λ))⊗ e∗i → Hj(u, L(λ))→ Hj(ui, L(λ))

δ−→ · · · , (3)

we want to describe the connecting homomorphism δ. Fix an element ω in Hom(
∧j

ui, L(λ)).

We choose an element φ in ι∗−1(ω) such that φ(u ∧ ei) = 0 for every u in
∧j−1

ui. Take dφ, by
de�nition δ(ω) is the class of an element of π∗−1(dφ). Such an element is (ei.ω)⊗ e∗i because

π∗((ei.ω)⊗ e∗i )(u1 ∧ · · · ∧ uj ∧ ei) = ei.ω(u1 ∧ · · · ∧ uj) = dφ(u1 ∧ · · · ∧ uj ∧ ei) .

So we conclude that
δ(ω) = ei.ω ⊗ e∗i .

Because of the previous description of the connecting homomorphism, the long exact sequence
3 gives rise to a short exact one:

0→ Hj−1(ui, L(λ))ei ⊗ e∗i
π∗−→ Hj(u, L(λ))

ι∗−→ Hj(ui, L(λ))ei → 0 , (4)

where Hj−1(ui, L(λ))ei means Hj−1(ui)/(ei.H
j−1(ui)). This short exact sequence is a sequence

of b module and it will be crucial in the following discussion.

8.2 The Kostant formula

The Kostant formula describes the weight spaces of Hj(u, L(λ)); we �x a weight µ and we use the
sequence 4 to study its weight space. The idea is to take advantage of the fact that Hj(ui, L(λ))
is an sl(2) module, namely it is a module for the Lie algebra generated by ei,fi and hi: the non
trivial factor of ai.

We recall the general theory of the sl(2) module. Let M be an sl(2) module, let s be a
representant of the non trivial element of the Weyl group of sl(2) inside SL(2). Call Me the set
of the e invariant and Me the set of e covariant. We have the following classical theorem.

Theorem 8.1 (Proprieties of the sl(2) module). Keep notation as above. Fix a weight µ of
sl(2). Then

Me
µ 6= 0 ⇔ µ(h) ≥ 0 ,

(Me)µ 6= 0 ⇔ µ(h) ≤ 0 .

Moreover the action of s on M determines an isomorphism between Me
µ and (Me)s(µ).

Remark that the choice of s is not unique so the isomorphism is not canonic.
In the case of Hj(ui, L(λ))eiµ we have that

dim Hj(ui, L(λ))eiµ 6= 0 ⇒ µ(hi) ≥ 0 .

Now we study (Hj−1(ui, L(λ))ei ⊗ e∗i )µ. First we have that

dim (Hj−1(ui, L(λ))ei)µ 6= 0 ⇒ µ(hi) ≤ 0 .
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The presence of e∗i twists the weights: a vector v ⊗ e∗i belongs to (Hj−1(ui, L(λ))ei ⊗ e∗i )µ if
and only if v belongs to (Hj−1(ui, L(λ))ei)µ+αi . This means that a weight space of weight α
in Hj−1(ui, L(λ))ei corresponds to a weight space of weight α − αi in Hj−1(ui, L(λ))ei ⊗ e∗i , we
conclude that

dim (Hj−1(ui, L(λ))ei ⊗ e∗i )µ 6= 0 ⇒ µ(hi) ≤ −2 .

We are now ready to study Hj(u, L(λ))µ. Suppose that ω is a non trivial vector of weight
µ, since the sequence 4 is an exact sequence of h module at least one between the following
possibilities is true:

1. ι∗−1(ω) contains a non trivial vector of weight µ;

2. π∗(ω) is a non trivial vector of weight µ.

Because of the previous discussion the �rst possibilities is true if and only if µ(hi) ≤ −2, the
second if and only if µ(hi) ≥ 0. We conclude that:

Proposition 8.2. In the exact sequence 4 for every weight µ we have that:

1. if µ(hi) ≥ 0 then ι∗ is an isomorphism between Hj(u, L(λ))µ and Hj(ui, L(λ))eiµ ;

2. if µ(hi) ≤ −2 then π∗ is an isomorphism between Hj(u, L(λ))µ and (Hj−1(ui)ei ⊗ e∗i )µ;

3. if µ(hi) = −1 then Hj(u, L(λ))µ is trivial.

We will use this result to understand the weight spaces of H∗(u, L(λ)).
We need a twisted action of the Weyl group. Call ρ the weight

∑
ωi, where the ωi are the

roots such that ωi(hj) = δij . The equality ρ = 1
2

∑
α∈Φ+ α holds because the di�erence between

the RHS and the LHS is stable under the action of the Weyl group.
We de�ne the twisted action of the Weyl group in the following way:

w · λ := w(λ+ ρ)− ρ ;

if w is a simple re�ection the action turns to be

si · λ = si(λ)− αi

because si(ρ) = ρ− αi. For more details see [Pro07] page 324. This action is important because
(si · µ)(hi) ≥ 0 if and only if µ(hi) ≤ −2, the proof is the following computation:

si · µ(hi) = 〈si(µ)− αi, αi〉 = −〈µ, αi〉 − 2 = −µ(hi)− 2 ,

where 〈 , 〉 denotes the Cartan integers.
We give the following de�nition:

De�nition 8.3 ((Twisted) Regular weight). A weight µ is regular if its stabilizer for the (twisted)
action of the Weyl group is trivial.

Remark 8.4. A weight µ is regular for the classical action of the Weyl group if and only if
µ(hα) 6= 0 for every root α. It is regular for the twisted action of the Weyl group if and only if
µ(hα) 6= −ρ(α) for every root α; if α is simple ρ(α) = 1.
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If the action of the Weyl group is the classical one then a dominant weight is regular if and
only if the stabilizer of the highest weight vector in the correspondent irreducible representation
is B; otherwise it is not regular if the stabilizer is bigger then B. In this and in the following
section we will indicate in this way w(−) the classical action and in this way w · − the twisted
one. Regular will mean always regular for the twisted action.

We �x a representant of si inside G, we call it allways si. The action of si on Hj(ui) gives
an isomorphism of vector space between Hj(ui)

ei and Hj(ui)ei ; as h module a vector of weight µ
became a vector of weight si(µ). Composing this action with the tensorization for e∗i we get an
isomorphism

f : Hj(ui)
ei → Hj(ui)ei ⊗ e∗i

that transform a vector of weight µ in a vector of weight si · µ because the tensorization twists
the weights of −αi. We remark that the choice of the representant of si is not unique, so f is
not canonically de�ned.

We write the sequence 4 in two cases

0→ Hj−1(ui)ei ⊗ e∗i
π∗−→ Hj(u)

ι∗−→ Hj(ui)
ei → 0

0→ Hj(ui)ei ⊗ e∗i
π∗−→ Hj+1(u)

ι∗−→ Hj+1(ui)
ei → 0 .

We de�ne a map
Φ : Hj(u)→ Hj+1(u)

as the composition of the ι∗ of the �rst sequence, the map f de�ned above and the π∗ of the
second sequence.

Proposition 8.5. Keep notation as above and �x a weight µ. We have that:

1. if µ(hi) ≥ 0 then Φ gives an isomorphism Hj(u, L(λ))µ and Hj+1(u, L(λ))si·µ;

2. if µ(hi) ≤ −2 then Φ gives an isomorphism Hj(u, L(λ))si·µ and Hj+1(u, L(λ))µ;

3. if µ(hi) = −1 then Hj(u, L(λ))µ is trivial.

We recall that these isomorphisms are not canonic.

Proof. As we have seen before the tensorization for e∗i determines an isomorphism between
Hj(ui)µ and Hj(ui)µ−αi . Suppose that µ(hi) ≥ 0, because of the proposition 8.2 ι∗ is an iso-
morphism between Hj(u, L(λ))µ and Hj(ui, L(λ))eiµ . The map f gives an isomorphism between

Hj(ui, L(λ))eiµ and (Hj(ui, L(λ)) ⊗ e∗i )si·µ. The action of si on µ is twisted because of e∗i . Now
µ(si · hi) ≤ 0 so always because of the proposition 8.2 we get the statement.

The case µ(hi) ≤ −2 is symmetric. The case µ(hi) = −1 follows directly form the proposition
8.2.

We state the main result of this section.

Theorem 8.6 (Kostant formula). Let µ be a weight and λ a dominant weight for the classical
action of the weight group, then the weight spaces

Hj(u, L(λ))µ

is isomorphic to C if there exist an element w of the Weyl group such that w ·µ = λ and l(w) = j,
otherwise it is trivial.

37



Proof. The proof will be done in three steps. First we collect all the informations we already
have about the cohomology of u. In the second step we recall without proof the proprieties of
the Weyl group. In the last step we use the proposition 8.5 and the proprieties of the Weyl group
to describe all cohomology of u starting from the �few� groups already known.

The already known informations about the cohomology of u are the following.

Lemma 8.7 (The u-invariants). The space

H0(u, L(λ))µ

has dimension one if µ is equal to λ, zero otherwise.

Moreover we have two bounds on the degrees of the non trivial cohomology groups:

1. the groups Hj(u, L(λ) are trivial for j > dim u because the length of Chevalley-Eilenberg
complex is dim u,

2. by de�nition the cohomology in negative degree is trivial.

Now we recall some proprieties of the Weyl group without proofs. We call a weight µ twisted
dominant if µ(hi) ≥ −1 for ever i, we call it twisted antidominant if w0 · µ is twisted dominant.
Given a weight µ there exists an element w of the Weyl group such that w ·µ is twisted dominant,
and an element w′ such that w′ · µ is twisted antidominant. If w and w′ are as above �x two
reduced expressions w = si1 · · · sil(w)

and w′ = s′i1 · · · s
′
il(w′)

, one proves that for every j

sj+1 · · · sil(w)
· µ(hj) ≤ −1

and
s′j+1 · · · s′il(w′) · µ(hj) ≥ −1 ;

moreover l(w) + l(w′) = l(w0). If a weight is regular then w and w′ are unique. For proofs and
further details see [Pro07] page 328.

Now we put together all the previous results. Suppose that there exist a w as in the statement
of the Kostant formula. Because of the proprieties of the twisted action of the Weyl group and
because of the proposition 8.5 we have that

Hj(u, L(λ))µ ∼= H0(u, L(λ))w·µ .

Applying the proposition 8.7 we obtain the conclusion.
We tackle the other case. Fix an element w of the Weyl group such that w · µ is twisted

dominant. Because of the proprieties of the twisted action and of the proposition 8.5 we have
that

Hj(u, L(λ))µ ∼= Hj−l(w)(u, L(λ))w·µ .

Suppose that l(w) is equal to j and w ·µ is di�erent from λ. We obtain the statement applying
the proposition 8.7. Suppose that j is smaller than l(w), then j − l(w) is negative so the RHS
has dimension zero.

Now suppose that j is bigger then l(w). Take a w′ such that w′ ·µ is antidominant. We have
that

Hj(u, L(λ))µ ∼= Hj+l(w
′)(u, L(λ))w′·µ ;

in this case j + l(w′) = j − l(w) + l(w0) is bigger than the dimension of u so the RHS has
dimension zero.

38



9 The Borel-Weil-Bott theorem

The aim of this section is to prove the following foundamental theorem.

Theorem 9.1 (Borel-Weil-Bott). The cohomology group

Hi(G/B,Lχ)

is isomorphic as G module to L(w · χ)∗ if and only if there exist an element w of length i of the
Weyl group such that w · χ is dominant. If such an element does not exist the group is trivial.

With the dot we denotes the twisted action of the Weyl group. We recall that a weight χ is
dominant if and only if χ(hi) ≥ 0 for every simple root. An element w as in the hypothesis of
theorem exists if and only if χ is regular for the twisted action of the Weyl group. Moreover this
element is unique. If λ is singular the theorem states that all the cohomology vanishes.

The strategy of our proof is to link the cohomology of the line bundles with the cohomology
of the Lie algebras of B and U , then to apply the Kostant formula.

9.1 Another proof of the Borel-Weil theorem

In this section we give another proof of the Borel-Weil theorem. The proof of the Borel-Weil-Bott
theorem will be a generalization of this one. We recall the Peter-Weyl theorem.

Theorem 9.2 (Peter-Weyl). Let G be a complex reductive algebraic group, then

C[G] ∼=
⊕
U∈Ĝ

U ⊗ U∗ ∼=
⊕
U∈Ĝ

EndC(U)∗ ,

where Ĝ is the collection of all the class of isomorphism of the �nite dimensional representation
of G.

Corollary 9.3. Let G be complex reductive algebraic group simply connected, then

C[G] ∼=
⊕
λ∈Λ+

L(λ)⊗ L(λ)∗ ∼=
⊕
λ∈Λ+

EndC(L(λ))∗ ,

where Λ+ is the set dominant weights of the Lie algebra of G and L(λ) is the irreducible repre-
sentation associated to λ.

This theorem is classically stated for the compact topological group, for a complete discussion
about these objects see [Hoc68]. The link between the Peter-Weyl theorem for Lie groups and
for algebraic groups gives the Tannaka-Krein duality. For a complete discussion of this deep link
see [Pro07].

When we study the variety G/B we can suppose that G is simply connected; otherwise let
Ĝ be its universal cover, G is the quotient of Ĝ for a subgroup of the center, since the center is
contained in every Borel subgroup we have that G/B is isomorphic to Ĝ/B̂.

As we have seen at the beginning of the section 7.2 the space of global section of Lχ is
isomorphic to C[G]⊗B Cχ; this second space is the space of B invariant elements of C[G]⊗C Cχ
so we have that

H0(G/B,Lχ) ∼= H0(B,C[G]⊗C Cχ) .

Using the Peter-Weyl theorem we get

H0(G/B,Lχ) ∼=
⊕
λ∈Λ+

H0(B,L(λ)∗ ⊗C L(λ)⊗C Cχ) ∼=
⊕
λ∈Λ+

L(λ)∗ ⊗C H0(B,L(λ)⊗C Cχ) ;
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the last isomorphism due to the fact that when B acts on L(λ)∗ ⊗C L(λ) it acts only on L(λ).
The Borel-Weyl theorem states that

Theorem 9.4 (Borel-Weyl). The group

H0(G/B,Cχ)

is isomorphic as G module to L(χ)∗ if χ is dominant, it is trivial otherwise.

Since we have proved that

H0(G/B,Cχ) ∼=
⊕
λ∈Λ+

L(λ)∗ ⊗C H
0(B,L(λ)⊗C Cχ)

we conclude that the the following result is equivalent to the Borel-Weil theorem:

Theorem 9.5 (Borel-Weil). The G module H0(B,L(λ)⊗CCχ) is isomorphic to the trivial module
C if λ = χ and is zero dimensional otherwise.

Proof. Since B ∼= T n U to look for the B invariant elements of a module is equal to look �rst
for the U invariant elements and then for the T invariant elements among the U invariants, so
we have that:

H0(B,L(λ)⊗C Cχ) ∼= H0(U,L(λ)⊗C Cχ)T .

Since U acts trivially on Cχ we have that H0(U,L(λ) ⊗C Cχ) is isomorphic as T module to
H0(U,L(λ))⊗C Cχ. Now we use a standard fact of representation theory:

H0(U,L(λ)) ∼= L(λ)λ ∼= Cλ .

The space Cλ ⊗C Cχ is one dimensional; it is H invariant if and only if λ = χ so we obtain the
statement.

(Recall that the action of B on Cχ is by de�nition the right one so t.v = µ(t)−1v.)

We remark that this proof can be formulate in terms of Lie algebras, in fact since we are in
characteristic zero we have that

H0(U,M) ∼= H0(u,M) and H0(T,M) ∼= H0(t,M)

for every module M ; we will use this reformulation to apply the Kostant formula.

9.2 How to derive the composition of two functors

To prove the Borel-Weil-Bott theorem we will need to derive the composition of two functors
several times so we recall quickly the general theory.

Let F be a covariant left exact functor. The right derived functor RiF is de�ned in the
following way: let I• an injective resolution of M , then RiF (M) is the i-th homology group of
F(I•). One proves that the derived functor is well-de�ned. There is another way to compute
the derived functors, �rst we give a de�nition:

De�nition 9.6 (F-acyclic object and resolution). An object M is F-acyclic if RiF(M) ∼= 0 for
every i > 0

Let I• be a resolution of M , we say that I• is F-acyclic if Ik is an F-acyclic object for every
k.
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We have that:

Theorem 9.7. Let I• be an F-acyclic resolution of M , then RiF(M) is isomorphic to the i-th
homology group of F(I•).

For a proof see [Voi02] page 101.
Now let F and G be two covariant left exact functors, we want to relate Ri(F ◦ G) with the

derived functors of F and G. This task may be di�cult, but we are interested just in two simple
cases.

Lemma 9.8 (First case). Suppose that G is exact and for every object M there exist resolution
N• such that G(Nk) is an F-acyclic object, then

Ri(F ◦ G) ∼= Ri(F) ◦ G .

Proof. Since G is exact any resolution of M is G-acyclic. Always because of the exactness of G
we have that G(N•) is a resolution for G(M). For every k the object Nk is acyclic also for F ◦G
because Nk is acyclic for G and G(Nk) is acyclic for F . Since G(N•) is an F-acyclic resolution
of G(M) we get the statement.

Lemma 9.9 (Second case). Suppose that F is exact, then

Ri(F ◦ G) ∼= F ◦Ri(G) .

Proof. For every complex I• the homology of F(I•) is isomorphic to F applied to the homology
of I• because F is exact. The statement follows.

For further details and complete proofs see [Voi02] chapter I.4 .

9.3 The link between the cohomology of a Borel subgroup and the

cohomology of the Lie algebra

We compare the cohomology of B to the cohomology of the Lie algebra u.
We consider the left action of U on itself, this gives rise to a rational action of U on C[U ]; we

give to C[U ] the structure of u module di�erentiating this action.

Proposition 9.10. The u module C[U ] is acyclic for the functur of the u invariants.

Proof. We must prove that
Hi(u,C[U ]) = 0

for every i ≥ 0. We compute these groups using the Chevalley-Eilenberg complex. The group
Hi(u,C[U ]) is the i-th homology group of the complex HomC(

∧∗
u,C[U ]), and this complex is

ismorphic to
∧∗

u∗ ⊗C C[U ]. As variety U is ismorphic to Cn so its tangent bundle is trivial,
namely it is isomorphic to U × u. The algebraic De Rham complex of U is

∧∗
u∗ ⊗C C[U ] and,

because of the Chevalley-Eilenberg theorem, the di�erential is the same of the di�erential of the
Chevalley-Eilenberg complex; we conclude that

Hi(u,C[U ]) ∼= Hi(U,ΩU ) .

The algebraic De Rham cohomology of Cn is trivial so we have proved the claim.
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We want to study the structure of B module of C[B] that arises from the left action of B on
itself. We recall that B is isomorphic to U o T . Let (u, t) and (x, y) be elements of U o T , we
remark that

(u, t).(x, y) = (utxt−1, ty) ,

so it is natural to de�ne the following left action of B on U

(u, h).x = uhxh−1 .

If we consider U as a quotient of B for the left action of H this just the left action of B on B
composed with the projection to the quotient. Moreover if we restrict the action of B to U we
obtain the left action. We call π the projection from B to U and ι the immersion of U in B,
these maps are regular. The map ι is a morphism of group but is not B equivariant, instead π
is not a morphism of group but it is B equivariant.

We consider the structure of B module on C[U ] given by the action de�ned above, we have
the following proposition:

Proposition 9.11. The module C[B] as left B module is isomorphic to⊕
λ∈X(T )

C[U ]⊗C Cλ ,

where X(T ) is the group of characters of T .

Proof. First we consider the right action of T on B: b.t := bt−1. (We write the right action
on the right because there is a danger of confusion with the left action.) This gives rise to a
rational action of T on C[B], namely (f.t)(b) := f(bt). Being this action rational every vector is
contained in �nite dimensional submodule of C[B], this implies that C[B] can be decomposed in
weight subspaces, namely:

C[B] =
⊕

λ∈X(T )

C[B]λ .

where
C[B]λ = {f ∈ C[B]|f.t = λ(t)f ∀t} .

The C[B]λ are submodule for the left action of B because left and right actions commute. We
want to prove that C[B]λ is isomorphic to C[U ]⊗ Cλ.

We de�ne a map Φ from C[B]λ to C[U ]⊗Cλ, we pose Φ(f) := ι∗f ⊗ 1, we call Ψ its inverse,
namely Ψ(f ⊗ 1) := λπ∗f . (Remark that ι∗λ = 1). We have to check that these maps are
morphisms of B modules. For every t write b = ut and call (x, y) another element of U o T . For
Φ we have that

Φ(b.f) = ι∗(b.f)⊗ 1

and
ι∗(b.f)(x) = b.f(x, 1) = f(t−1u−1xt, t−1) = λ(t)−1f(t−1u−1xt, 1) ;

on the other side
b.Φ(f) = b.(ι∗f ⊗ 1) = (b.ι∗f)λ(t)−1 ⊗ 1

and
b.ι∗f(x) = (ι∗f)(t−1u−1xt) = f(t−1u−1xt, 1).

For Ψ we have that

Ψ(b.(f ⊗ 1))(x, y) = Ψ(λ(t)−1(b.f)⊗ 1) = (λπ∗(b.f))(x, y)λ(t)−1 = (b.f)(x)λ(y)λ(t)−1 =

= f(t−1u−1xt)λ(y)λ(t)−1 = b.(λπ∗f)(x, y) = Ψ(f ⊗ 1)(x, y) .
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We remark that C[U ]⊗Cλ is isomorphic to C[U ] as U module, where the action of U is just
the left one.

Proposition 9.12. The B module C[U ]⊗C Cλ are irreducible.

Proof. We recall that in each �nite dimensional irreducible B module the space of U invariant has
dimension one. Given an in�nite dimensional rational representation M each vector is contained
in a �nite dimensional irreducible submodule, hence if M is reducible the space of U invariant
has dimension bigger than one then.

The U invariant of C[U ] for the left action are the constant functions, hence is a one dimen-
sional submodule. Since C[U ]⊗CCλ is isomorphic to C[U ] as U module we get the statement.

We have now a very careful description of C[B], �rst we put in evidence the following fact.

Corollary 9.13. The module C[B] is acyclic for the functor of the u invariant.

Proof. A direct sum, also in�nite, commute with the functor of the cohomology.

One can go further in the analysis of C[B], one can prove that for every λ the module C[U ]⊗Cλ
is injective as u module and it is the dual of the Verma modules of weight λ, so C[B] contains
all the Verma modules.

Remark 9.14. Almost all these results can be obtained using the functors of induction and
restriction. See chapter I.3 of [Jan03].

Now we need a key lemma, true for every kind of algebraic group.

Lemma 9.15. Let G be an algebraic group and M a G module, then there exist an immersion
of M inside M0 ⊗C C[G], where M0 is a trivial G module isomorphic to M as complex vector
space.

Proof. We �rst recall that M ⊗C C[G] is isomorphic to the space of regular function from G to
M such that the image is contained in a �nite dimensional subspace. The action of G gives an
immersion

ι : M →M ⊗C C[G]

v 7→ (g 7→ gv) .

Using the theory of Hopf algebras one proves that the G module M ⊗C C[B] is isomorphic to
M0 ⊗C C[G], where M0 is isomorphic to M as a vector space but the action of G is trivial. See
[Jan03] page 41.

We can �nally link the cohomology of B to the cohomology of u.

Proposition 9.16. For every B module M and every integer p we have that

Hp(B,M) ∼= Hp(u,M)T .

Proof. Let F be the functor that transform an U module in a u module: the vector space F(M)
is isomorphic to M , the maps do not change, but F gives to M the structure of u module
di�erentiating the action of U . Clearly M and F(M) are isomorphic as T module. Moreover F
is an exact functor. In the statement there is a small abuse of notation, we should write

Hp(B,M) ∼= Hp(u,F(M))T .
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The functor Hp(B,−) is the derived functor of H0(B,−). Since we are working in charac-
teristic zero and U is normal in B, the functor H0(B,−) is isomorphic to the composition of
F , H0(u,−) and H0(T,−). We have to prove that the derivation of this last composition is
Hp(u,−)T .

First we remark that, being T composed only of semisimple elements, the functor of the T
invariant is exact so, because of lemma 9.9, we have that

Ri[H0(T,H0(u,F(− )))] = H0(T,Ri[H0(u,F(− ))]) .

Now we must prove that

RiH0(u,F(−)) = Hi(u,F(−)) .

The functor F is exact, so we are in the situation of the lemma 9.8. For any B module M we
can cook up a resolution using the lemma 9.15. We know C[B] is acyclic for the u invariants
(actually we should say F(C[B]) is acyclic). The tensorization for a trivial module (also of in�nite
dimension) commute with the cohomology, thus M0 ⊗C C[B] is acyclic for the functor of the u
invariants. Applying the lemma 9.8 we obtain the requested result.

Remark 9.17. Since the characteristic is zero the t invariants are the same of the T invariants.

9.4 The link between the cohomology of the Borel subgroup and the

cohomology of the line bundles over the �ag variety

Now we link the cohomology of B to the cohomology of the line bundles over G/B. We need to
treat this argument in a more general framework: we will study G-equivariant vectors bundles
(also of in�nite dimension) on G/B.

First we de�ne a functor L from the category of B module to the category of G equivariant
vector bundles on G/B. For any B module M we pose

L(M) := G×B M .

This functor is a generalization of the line bundles Lχ ∼= L(Cχ). This construction has been
discussed in the section 7.1 proposition 7.1 or see [Spr98] page 95. The structure of G equivariant
vector bundle is given by

g.[(x, v)] := [(gx, v)] .

If f is a morphism between two B module M and N we de�ne

L(f)([g,m]) := [g, f(m)] ,

the de�nition is well posed because f is a morphism of B module.. We need a closer look to G
equivariant vector bundles. The �ber on the point p := B/B of a G equivariant vector bundle is
a B module because B is the isotropy group of p.

Proposition 9.18. Let (E, πE) and (F, πF ) be two G equivariant vector bundles on G/B and f
a morphism of B modules from Ep to Fp, then f extends to a unique morphism of G-equivariant
vector bundles between E and F .

Proof. Let x be a point of E. Take an element g of G such that gp = πE(x). We de�ne

f(x) := gf(g−1x) ;
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Since f is a morphism of B module the de�nition does not depend from the choice of g. On an
a�ne neighborhood U of p the morphism is just

(Id, f) : U × Ep → U × Fp .

The uniques is due to the fact that the morphisms between G-vector bundles have to be G
equivariant, and G acts acts transitively on G/B.

Corollary 9.19. Every G-equivariant vector bundles E on G/B is isomorphic to L(Ep).

Corollary 9.20. The functor L is an equivalence between the category of the B module and the
category of the vector bundles over G/B; in particular it is an exact functor.

We want now to prove that L transforms injective objects into acyclic object for the functor
of global sections to apply the lemma 9.8; in order to do this we need to study the cohomology
of the bundle L(C[B]). Call π la projection from G to G/B. We have that

Proposition 9.21. The bundle L(C[B]) is isomorphic to π∗(OG).

Proof. Call j the inclusion of B in G and i the inclusion of p in G/B. Clearly p = π(B). One
has that

π∗(OG)p = i∗π∗(OG) = π∗j
∗(OG) = π∗(OB) = OB(B) = C[B] .

We can now apply the corollary 9.19.

Proposition 9.22. The cohomology groups

Hp(G/B,L(C[B]))

are all trivial for p bigger than zero.

Proof. We compute the cohomology groups of π∗OG.
First we derive the functor H0(G/B, π∗(−)), i.e. the composition of π∗ and the functor of

global section on G/B, using the lemma 9.8.
We prove that π∗ is exact. Given any exact sequence of sheaves

0→ F → G → H → 0

we must apply the functor π∗ and check that the new sequence is exact on every stalk. The map
π is a �bration with a�ne �ber isomorphic to B, so given a sheaf F on G the stalk of π∗F is
isomorphic to F(B). Finally on each stalk we get the exact sequence:

0→ F(B)→ G(B)→ H(B)→ H1(B,F) .

We recall the Serre theorem: the cohomology of a quasi-coherent sheaf over an a�ne variety is
always trivial in positive degree, for a proof see [Har77] page 215. In particular we obtain that
H1(B,F) is zero because B is a�ne.

Since π∗ is the right adjoint functor of π
∗, then π∗ transforms injective objects into injective

objects.
We are now in the situation of lemma 9.8 so we get that:

RpH0(G/B, π∗(−)) ∼= Hp(G/B, π∗(−)) .

for every p.
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By de�nition of the direct image we have that

H0(G/B, π∗(−)) = H0(G,−) ,

the derivation of the RHS is by de�nition Hp(G,−), so for every p we have that

Hp(G/B, π∗(−)) = Hp(G,−) .

Being G a�ne H∗(G,OG) is trivial in positive degree so we get the statement.
For further details about the theory of coherent and quasi coherent sheaves see [Har77].

Now we need to discuss the functor F de�ned as follow: given a B module M

F(M) := M ⊗C C[G] .

Proposition 9.23. The functor F de�ned above is exact and the image of an injective object is
still injective.

Proof. The functor F is exact because we are tensorizing on C.
Because of the Peter-Weyl theorem C[G] is the direct sum of �nite dimensional G module,

call these modules Ei (we are only interested in the fact that they are �nite dimensional).
We prove the following fact: given an injective B module I and a �nite dimensional B

module M , the module M ⊗C I is still injective. Since M is �nite dimensional the vector space
HomB(M,V ) has still a structure of rational B representation for every G module V , also of
in�nite dimension. To give an injection from I ⊗CM to V is equivalent to give an injection from
I to HomB(M,V ). Moreover the �rst injection admits a right inverse if and only if the second
admits a right inverse. Since I is injective as B module also I ⊗C M is.

The sum of countably many injective modules is still injective, so if I as injective B module
also F(I) is.

We can �nally link the cohomology of the vector bundles with the cohomology of B.

Proposition 9.24. Given a B module M we have that

Hp(B,C[G]⊗C M) ∼= Hp(G/B,L(M))

for every p.

Proof. The functors H0(B,C[G] ⊗C −) and H0(G/B,L(−)) are isomorphic because of the dis-
cussion at the beginning of the section 7.2, so their derived functors are isomorphic.

Because of the previous proposition the derived functor ofH0(B,C[G]⊗C −) isHp(B,C[G]⊗C
−).

Given a B module M using the lemma 9.15 we can cook up a resolution N• made of module
of the form V ⊗ C[B], where V is a trivial module. For every k the object L(Nk) is acyclic for
the functor of global sections because both L and the cohomology commute with the in�nite
direct sums. Since L is exact applying the lemma 9.8 we conclude that

Rp[H0(G/B,L(−))] = Hp(G/B,L(−)) .
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9.5 The proof of the Borel-Weil-Bott theorem

The proof of the theorem is now quite easy. Combining the isomorphisms 9.16 and the proposition
9.24 we get that

Hi(G/B,Lχ) ∼= Hi(u,C[G]⊗C Cχ)T .

Now we apply Peter-Weyl and we get

Hi(u,C[G]⊗C Cχ)T ∼=
⊕
λ∈Λ

L(λ)∗ ⊗C H
i(u, L(λ)⊗C Cχ)T .

because B acts trivially on L(λ)∗. Since u acts trivially on Cµ we have that as T module

Hi(u, L(λ)⊗C Cµ) ∼= Hi(u, L(λ))⊗C Cµ .

Moreover we have the isomorphism

(Hi(u, L(λ))⊗C Cµ)T ∼= Hi(u, L(λ))µ .

We can now use the Kostant formula to describe Hi(u, L(λ))µ. Suppose that µ regular and let
w be an element of the Weyl group such that w·µ is dominant. We have that (Hi(u, L(λ))⊗CCµ)T

is trivial either if λ 6= w · µ or i 6= l(w). Putting everything together we get the main theorem.

Theorem 9.25 (Borel-Weil-Bott). If λ is a regular weight let w be an element of the Weyl group
such that w · λ is dominant, then the cohomology group

Hi(G/B,Lλ)

vanishes if i is di�erent from l(w) and it is isomorphic as G module to L(λ)∗ if i is equal to
l(w). If λ is a singular weight then the cohomology

H∗(G/B,L(λ))

is zero.
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