
Exercises in Differential and Riemannian

Geometry

Gabriele Benedetti and Giulio Codogni

These are three problem sheets proposed by M. Dafermos during the course
in Differential and Riemannian geometry that he gave during the year 2012-13
at the University of Cambridge. Here, we collect some solutions. We thank
Mihalis for giving us the opportunity to teach the example classes, and the
students who patiently worked out the exercises with us.
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Part III Differential Geometry, Prof. M. Dafermos Example Sheet 1

1. Given an example of a smooth manifold which is not Hausdorff. Give an example which is
not paracompact. Give an example which is paracompact but not second countable. From now
on, manifolds are assumed Hausdorff and paracompact.

2. Let M and N be smooth manifolds. Give the formal details of the definition of what it
means for a continuous map f :M→N to be smooth at a point p. In particular, address the
issue of exactly on what neighbourhoods of φα(p) can the expressions φ̃α ◦ f ◦ φ−1α be defined,
and what does it mean for φ̃α ◦ f ◦ φ−1α to be smooth “at” φα(p).

3. Exhibit two complete atlases {(φα,Uα)} and {(φ̃α, Ũα)} on the same underlying topological
space Rn such that the identity map

id : (Rn, {(φα,Uα)})→ (Rn, {(φ̃α, Ũα)})

is not a smooth map of manifolds. Show that the two manifolds are nonetheless diffeomorphic
for your example, or prove otherwise.

4. Let F :M→ N be smooth, let f ∈ C∞(N ). Let F ∗(f) denote f ◦ F . Show that F ∗(df) =
d(F ∗(f)). Now let G : N → N ′, and let x ∈M. Show that ((G ◦F )∗)p = (G∗)F (p) ◦ (F∗)p. Let
ω ∈ Γ(T ∗N ′) be a 1-form. Show that (G ◦ F )∗ω = F ∗(G∗(ω)).

5. Multilinear algebra. Show that the identification of u∗⊗ v with the map sending u 7→ u∗(u)v
extends by linearity an isomorphism U∗⊗V ∼= Hom(U, V ). Show that the identification of u∗⊗v∗
with the map sending u ⊗ v 7→ u∗(u)v∗(v) extends to an isomorphism U∗ ⊗ V ∗ ∼= (U ⊗ V )∗.
Show that these isomorphisms lead to a natural identification

End(U) ∼= (U∗ ⊗ U)∗ ∼= (End(U))∗

where End(U) denotes Hom(U,U). Show that the image of id ∈ End(U) in (U∗ ⊗ U)∗ under
this isomorphism, is the map C : U∗ ⊗ U → R which takes u∗ ⊗ u 7→ u∗(u). Show that the
image of id ∈ End(U) in (End(U))∗ is the map taking L ∈ End(U) to trL.

6. Let M be smooth of dimension m, and let f1, . . . , fd be a collection of smooth functions on
M. Let N denote the set where f1 = · · · = fd = 0. Suppose (dfi)p span a subset of dimension
d′ in T ∗p (M) for all p ∈ N . (We assume d′ to be constant, but d′ need not equal d.) Show that
N can be given the structure of a closed submanifold of M of dimension m − d′. The above

applies to Sn, where f : Rn+1 → R is given by f(x1, ..., xn+1) = −1+
√∑n+1

i=1 x
2
i . Show that the

manifold structure defined above is the same as the structure defined via the projection maps
to the coordinate hyperplanes.

7. Assuming the classical existence, uniqueness, and continuous dependence on parameters
theorem for o.d.e.s, prove the following version on manifolds: Let M be a smooth manifold,
and let X ∈ Γ(TM) be a smooth vector field. Then for each x ∈ M, there exists a unique
maximal smooth curve γ : (T−, T+)→M, with −∞ ≤ T− < 0 < T+ ≤ ∞,such that γ(0) = x,
and γ′(t) = X for all t ∈ (T−, T+), where γ′(t) denotes (γ∗)t

(
∂
∂t

)
. Moreover, if T+ < ∞, then

for every compact K ⊂ M, there exits a tK < T+ such that x[tK , T+) ∩K = ∅. To remember
the dependence on x, let us denote γ by γx, and T+, T− by T+(x), T−(x). Finally, for every
x ∈M, there exists an open subset Ux and an ε > 0, such that (T−(x̃), T+(x̃)) ⊃ (−ε, ε) for all
x̃ ∈ Ux, and such that the map φ : U × (−ε, ε)→M defined by φ(x̃, t) = γx̃(t) is smooth.
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Part III Differential Geometry, Prof. M. Dafermos Example Sheet 1

8. Let G be a group, and M a manifold. Let Diff(M) denote the set of all smooth transfor-
mations of M. (Recall that a smooth transformation is a diffeomorphism from M to itself.)
Show that Diff(M) defines a group with composition as multiplication. Suppose there exists
a group homomorphism R : G → Diff(M). Given x ∈ M, we define the isotropy group of x
as the set of g ∈ G such that R(g)x = x. Show that this defines a subgroup of G, denoted Gx.
We say that R is properly discontinuous if the following are true:

1. For all x, x̃ ∈ M such that there does not exist a g with R(g)(x) = x̃, there exist
neighbourhoods x ∈ U , x̃ ∈ Ũ , with R(g)(U) ∩ Ũ = ∅, for all g.

2. Gx is finite for all x ∈M.

3. For all x ∈M, there exists a neighborhood x ∈ U such that R(h)(U) ⊂ U for all h ∈ Gx,
and U ∩R(g)(U) = ∅ for g /∈ Gx.

Show the following: If R : G → Diff(M) is properly discontinuous and injective, then the
quotient space M/G (defined by the equivalence relation x ∼ x̃ if there exists a g ∈ G such
that R(g)x = x̃) inherits the structure of a smooth manifold such that the quotient map
π :M→M/G is smooth.

9. Take a thin strip of paper and attach the short ends to each other with the opposite orien-
tation. Now exhibit this construction as a rank 1 vector bundle E → S1, i.e. a vector bundle
whose fibres have dimension 1. We call this the Möbius strip. We say that two vector bundles
E ′, and E are equivalent if there exists a smooth φ : E → E ′ such that φ(Ex) = E ′x and φ|Ex

is a linear isomorphism of Ex with Ex′ . Show that the previous vector bundle is not equivalent
to S1 × R1.

10. Show that a Riemannian metric defines an equivalence, in the above sense, between the
bundles T ∗M and TM. What about the converse?

11. Let F : N n → Mm denote an immersion. Show that there exists a vector bundle E of
rank m − n over N , and a smooth map F̃ : E ⊕ TN → TM, of the form F̃ : ep ⊕ vp 7→
Lp(ep) + (F∗)p(vp), where Lp maps linearly Ep → TF (p)M, and such that F̃ is an isomorphism
when restricted to the fibres. Show that this defines E uniquely up to equivalence. We call
E the normal bundle of N defined by F . Show that in the case of Ex. 6, if d = d′, then the
normal bundle of N in M is trivial.

12. Is TS2 equivalent to S2 × R2? Is it diffeomorphic as a manifold?

For comments, email M.Dafermos@dpmms.cam.ac.uk
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Hints and (sketches of) Solutions - Example sheet 1

G.Benedetti and G.Codogni

19th October 2012

Linear Algebra review Given a vector space V , there are not, in general, canonical iso-
morphisms between V and its dual V ∨. An isomorphism between a vector space and its dual
is equivalent to a non-degenerate bilinear form on the space. On the other hand, there exists a
canonical isomorphism between V and its bi-dual V ∨∨: the one sending a vector v to the map
(η 7→ η(v)).

Topology review A topological space is second countable if the topology has a countable
basis, it is paracompact if every open cover has a locally �nite re�nement. The upshot is that
paracompact spaces are arbitrary disjoint unions of second countable spaces.

Exercise 1 This is a list of pathological manifolds.

• Paracompact, 2nd countable, but not Hausdor� : a line with two origins.

• Hausdor�, paracompact, but not second countable: uncountable disjoint union of lines.

• Hausdor�, not paracompact, not second countable: Prüfer surface (see Wiki or Spivak
appendix A) and the Long Line (see Wiki or Kobayashi and Nomizu page 166)

From now on, all the manifold are assumed to be Hausdor�, paracompact and second countable.
Let us remark that Rm is locally compact, so every manifold is locally compact.
Exercise 3 The idea is the following. Take a map F from Rn to Rn which is an isomorphism

of topological spaces but it is not smooth (e.g. if n = 1 you can take x3). Then take on the �rst
copy of Rn an atlas and on the second the same atlas twisted by F . With this choice the identity
is not a smooth map, but F is an isomorphism between the two manifolds.

Exercise 4 This exercise shows that the pull-back is functorial (i.e. (G ◦F )∗ = F ∗G∗). The
situation is the following

M
F−→ N

G−→ N ′ f−→ R

We can pull-back the function f , and we have

(G ◦ F )∗f = F ∗G∗f .

To prove the functoriality of the pull-back of one forms there are two possibilities. A �rst
proof is a computation in local co-ordinates. Let us �rst prove that F ∗df = dF ∗f . Call x =
(x1, · · · , xN ) and y = (y1 · · · , yn) the co-ordinates.

d(F ∗f) =
∑

i,k

(∂xif)(∂yk
Fi)dyk

F ∗(df) =
∑

i

∂xifdFi =
∑

i,k

(∂xif)(∂yk
Fi)dyk
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The other assertions follows from the previous computations working locally.
There second strategy is more intrinsic. A tangent vector v is a derivation, its push-forward

is de�ned as (F∗v)(f) := v(F ∗f). The functoriality of the push-forward follows from the func-
toriality of the pull back of functions. A 1 form ω is a linear form on the tangent vectors, its
pull-back is de�ned as (F ∗ω)(v) = ω(F∗v), so the functoriality of the pull-back for one forms
follows from the functoriality of the push-forward.

Exercise 5 The main idea of this exercise is that there exists a canonical bilinear form on
End(U): the trace. We need to assume that the vector spaces are �nite dimensional, otherwise
the statements are false (�nd a counterexample!).

We show that the map from U∨ ⊗ V to Hom(U, V ) is an isomorphism. Injectivity: take
F :=

∑
ηi ⊗ vi, with ηi linearly independent, pick a vector u such that ηi(u) = δ1i, then

F (u) = vi 6= 0. To prove surjectivity, we remark that the vector spaces have the same dimension.
We want to describe the image of id under the chain of isomorphisms. Let us �x a basis ui

for U and the corresponding dual basis ηi for U
∨ (i.e. ηi(uj) = δij). We have that id =

∑
ηi⊗ui

in U∨⊗U , then we get
∑

ui⊗ ηi inside U ⊗U∨ ∼= End(U)∨. Now write L =
∑

aijηi⊗ uj , then

(
∑

ui ⊗ ηi)(L) =
∑

ij

aijηi(uj)ηj(ui) =
∑

aii = Tr(L)

Exercise 6 We work locally around a point p. First, let us assume d = d′. Let us complete
df1, . . . dfd to a basis of TM

∨
p , call the new elements dg1, . . . dgk. Because of the �Implicit Function

Theorem�, the vector -valued function (f1, . . . , fd, g1, . . . gm−d) de�ne an isomorphism between a
neighbourhood of p in M and one of the origin in Rm, so the fi are local co-ordinates and their
zero locus is a submanifold. Equivalentely, consider the function (f1 . . . , fd), the �IFT� gives
(locally) a parametrisation of the preimage of 0 as function of x1, · · · , xd.

Now, let's drop the assumption d = d′. Take a point p such that f1(p) = · · · = fd(p) = 0.
Suppose, without loss of genearality, that df1, . . . , dfd′ are linearly independent around p, then
they de�ne (locally) a submanifold N . Let γ be an arc in N passing trough p, we need to
prove that fi is constant along γ for every i > d′, to get this is enough to express dfi as linear
combination of the �rst d′ di�erentials.

The structure de�ned via the projection is

(x1, · · · , xn) 7→ (x1, · · · , xn,
√
1−

∑
x2
1)

which is exactly the same parametrisation given by the IFT.
Di�erential equations review All the statements of exercise 7 are true if you replace the

manifold M with a neighbourhood U of the origin in Rn. In this case the vector �eld X is just
a di�erential operator

∑
fi

∂
∂xi

, where fi are smooth real-valued functions on U .
Exercise 7 Call S the set of smooth curves solving the di�erential equation. It is not empty,

because, applying the classical existence theorem, we can construct a solution in a chart around
p. Given two elements of S, they must agree on the intersection of their domains, because of
a local argument. Finally, taking the �union� of all the elements of S one obtains a maximal
solution γ.

To prove the second statement one argues by contraddiction. Take a sequence tn in Iγ
converging to T+ such that γ(tn) converges to an element k of K; working locally around k one
proves that the solution γ can be extended.

The last statement follows from its local analogue.
Exercise 8We endow M/G with the quotient topology. The �rst hypothesis guarantees that

M/G is Hausdor�.
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Let us suppose that the stabiliser is always trivial. In this case the map R is a covering
(see e.g the Example Sheet 2 Exercise 4 of last year Algebraic Topology Part II, or any book of
(Algebraic) Topology). Using the fact that R is a local isomorphism, one can de�ne an atlas on
M/G.

If at some points x the stabiliser is not trivial, then it could be that the image of x in M/G
is singular. Examples to keep in mind are the following ones

• The real line with the group {±1} acting by multiplication. The quotient is a smooth
manifold with boundary.

• The complex plane with the group of roots of unity acting by multiplication. The quotient
is a cone.

• The symmetric product of two Riemann surfaces, which is smooth.

If you are interested in quotient singularities, have a look to the (classical) McKay correspon-
dence. It could be a good topic for a Part III seminar.

Exercise 9 Take two points a and b on S1 and consider the open cover formed by U1 := S1 \a
and U2 := S1 \ b. Call V1 and V2 the two connected components of U1 ∩U2. In order to de�ne a
line bundle, we need to de�ne the transition function on V1 and V2. The Möbius strip is obtained
choosing the identity on V1 and minus the identity on V2.

Now, suppose by contradiction that the two line bundles are isomorphic. This means that
we have a never vanishing section s of the Möbius strip. A section s is the datum of a smooth
function f1 on U1 and a smooth function f2 on U2, such that f1 = f2 on V1 and f1 = −f2 on
V2. We conclude that f1 must change sign at some point, so it has at least two zeros (the same
is true for f2).

Exercise 10 Let g be the Riemannian metric. The map from TM to TM∨ is de�ned as
follows

(x, v) 7→ (x, (w 7→ g(v, w))) .

Its inverse is de�ned as
(x, η) 7→ (x, v) ,

where v is the unique vector of TxM such that g(v, w) = η(w) for every w. This second map is
well de�ned because of linear algebra reasons. It is clear that both are maps of vector bundles.
In order to check that they are regular one has to use local co-ordinates.

The converse is not true, given an equivalence one gets a non-degenerate bilinear form on
TxM for every x (i.e. a section of TM∨ ⊗ TM∨), but a Riemannian metric must satisfy also
a positivity and symmetry assumption. A counterexample is given by symplectic manifolds. A
symplectic manifold is a pair (M,ω), where ω is a non degenerate closed alternating one forms.
The form ω de�nes an equivalence between TM and TM∨, but it is far from being a Rimeannian
metric.

Review quotient bundle Let M and N be two vector bundles, suppose an immersion ι (as
vector bundles) of N in M is given. We de�ne the quotient vector bundle E := M/N , its �ber
at a point x is given by the quotient Mx/Nx. In a good trivialisation, the transition functions of
M are in block form. (

A ∗
0 B

)

where A is the transition function of N and B of E. (Take a book and have a look to a proper
de�nition!)
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As in all the abelian categories, we have an exact sequence

0→ N
ι−→M

π−→ E → 0

The quotient is unique up to isomorphism. The sequence splits if M is isomorphic to the direct
sum of N and E, in order to split the sequence one can either �nd a right inverse for π or a right
inverse for ι. (Have a look to the so called ��ve-lemma�)

Exercise 11 To start with, let us assume the existence and prove the uniqueness. Composing
the inverse of F̃ with the projection to E we obtain the normal bundle exact sequence

0→ TN
F∗−−→ TM |N→ E → 0

The quotient of two vector bundles is unique up to isomorphism, so the (isomorphism class of
the) normal bundle E is unique.

The previous argument proves also the existence of the vector bundle E, namely it is de�ned
as the quotient of TM by F∗TN . Let us stress that this de�nition depends on M , N and on the
embedding F . Now, we need to prove the existence of the map L, in other words we must show
that the normal bundle exact sequence splits. To do this, let us �x a Riemannian metric g on
M . Using the metric, we can de�ne the orthogonal projection from TM to TN , this projection
splits the sequence.

Keep notations as in exercise 7, when d = d′. It is enough to trivialise E∨, this bundle is the
one generated by dfi. Consider the map

(x, ω) 7→ (x, (a1, · · · ad))

where (a1, · · · , ad) is the unique vector of Rd such that
∑

aidfi = ω. One checks that this map
is an isomorphism with the trivial bundle.

(To split the normal bundle exact sequence we used the fact that every di�erential manifold
can be endowed with a Riemannian metric. To construct the metric one uses a partition of unity.
This argument may not be re�ned: indeed the normal bundle exact sequence does not always
split in categories where a partition of unity does not exist, e.g. complex manifolds.)

Exercise 12 The vector bundles TS2 is not trivial. If it was trivial, then we would have a
never vanishing section, i.e. a never vanishing vector �eld on a sphere. It is known that a never
vanishing vector �eld on a sphere does not exist. (The proof is classical, the idea is that such
a vector �eld allows you to construct a homotopy between the identity and minus the identity,
but these maps do not act in the same way on the cohomology)

The answer to the second question is no, but the proof is more complicated. You need some
algebraic topology, in particular you need the second homotopy group and the correct de�nition
of intersection of two oriented sub-manifolds. The proof goes more or less as follow.

Take a vector bundle E on S2. The zero section 0 : S2 → E is an element of the second
homotopy group π2(E). A vector bundle is homotopically equivalent to the base, so π2(E) = Z.
Suppose that h is a di�eomorphism between two bundles E and E′, then it must send generators
of π2(E) to generaters of π2(E

′). This means that the image of the zero section of E is, up to
the choice of the orientation, homotopically equivalent to the zero section of E′.

When the rank of E is two, it makes sense to speak about the self-intersection of the zero
section, and the previous argument shows that it is (up to a sign) an invariant of the total space
of the vector bundle as a manifold.

To compute the self intersection of the zero section we remark that all the sections are
homotopically equivalent (you can rescale them), so it is enough to take a generic non trivial
section and count its zeros (with sign). For the trivial bundle take a constant section and you
get zero. For the tangent bundle consider the vector �eld generated by a rotation: you get two.

4



Bonus track Let X be a manifold. Suppose, for the sake of simplicity, that X is one
dimensional. Let xα be an atlas, call gαβ the changes of co-ordinates. Locally, the tangent
bundle is trivialised by ∂xα , so we have natural co-ordinates given by (xα, pα), where pα stands
for the derivation pα∂xα (these co-ordinates are �position� and �momentum�). The bundle TTX
is a rank two vector bundle on TX, we claim that the transition function of this bundle is

(
∂xα

∂pα

)
=

(
∂xαg p

∂2
xα

g

(∂xαg)2

0 ∂xα
g

)(
∂xβ

∂pβ

)
.

This means that the vertical space is always well de�ned. Instead, the horizontal one is de�ned
only along the zero section (i.e. p = 0). To de�ne the horizontal space at every point of the
bundle one must �x a connection.
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Part III Differential Geometry, Prof. M. Dafermos Example Sheet 2

1. Let M be a smooth manifold, and ∇ a connection in TM. Let φt define the 1-parameter
group of local transformations of TM determining geodesic flow. Show that for any point
p ∈ M, φ1 can be defined on an open set U ⊂ TM containing 0p. (It suffices to show that
for the domain U of φ1, there exists an open W ⊂ M containing p, and ε > 0, such that
{Vq : |Vq| < ε}q∈W ⊂ U , where | · | denotes coordinate length.) We define the exponential
map exp : U → M by π ◦ φ1, where π : TM → M denotes the natural projection. We call
a connection ∇ geodesically complete if all solutions to ∇TT = 0 can be defined for all time,
i.e. if the domain of exp can be taken as TM. Show that compact manifolds are geodesically
complete with respect to any connection ∇ in TM satisfying ∇YX = 0 =⇒ Y g(X,X) = 0.

2. Let π : E → M be a vector bundle. Show that there exists a connection in E. Let ∇, ∇̃
denote two connections in E. Show that ∇− ∇̃ defines a section of T ∗M⊗ E∗ ⊗ E.

3. Let A ⊂ Γ(TM) denote a Lie subalgebra, i.e. a subspace of Γ(TM) closed under the Lie
bracket. Let p ∈M. Show that there is a submanifold N of M, such that TqN is spanned by
A for all q in a neighborhood of p in N .

4. Let M be a smooth manifold, let π : E → M be a vector bundle and let ∇, ∇̃ denote
connections on E. For any curve γ from p1 to p2, let T∇p1,p2,γ denote the parallel transport

map with respect to ∇. Suppose T∇p1,p2,γ = T ∇̃p1,p2,γ̃ for all p1, p2, γ. Show that ∇ = ∇̃, i.e.,
“parallel transport determines the connection”. Give sufficient conditions on a collection of
maps {Tp1,p2,γ} such that these arise as parallel transport maps from a connection ∇.

5. Consider En with its standard Euclidean connection ∇. Let M denote a submanifold.
Define a connection ∇̃ on M by ∇̃ξY = πTpM∇ξY , where Y ∈ Γ(TM), ξ ∈ TpM, and
πTpM : TpEn → TpM denotes the projection. Show in particular that this definition can be

made sense of even though Y 6∈ Γ(TEn). Show that ∇̃ coincides with the Levi-Civita connection
of the induced metric g on M.

6. Now let Sn denote the n-sphere in En+1. Compute the Christoffel symbols of its induced
Riemannian connection in your favourite system of local coordinates. Describe geometrically
parallel transport. Are there vector fields defined in open subsets U of Sn, V : U → TM such
that ∇ξV = 0 for all ξ? Prove that Sn is not locally isometric to Rn using this information.

7. Let π : E → M be a vector bundle, and let ∇ be a connection in E. Clearly, we can
define the parellel transport map Tp1,p2,γ not just for smooth curves γ, but for piecewise smooth
curves. For p ∈ M consider the set {Tp,p,γ}, where γ ranges over all piecewise smooth closed
curves from p to p. Show that this defines a subgroup Gp of the group of linear isomorphisms
of Vp, and explain the composition law. This is known as the holonomy group at p. Show that
if M is connected then Gp ∼= Gq. Let ∇ now be the Levi-Civita connection of a Riemannian
metric g. Show that Gp is a subgroup of the group of isometries of the tangent space.

8. Compute Gp for Rn and for Sn with their Levi-Civita connections. Produce a connected n-
dimensional Riemannian manifold whose Levi-Civita connection gives a holonomy group bigger
than that of Rn and smaller than that of Sn. Produce a simply-connected such manifold.

9. Recall the vector bundle E defining the Möbius strip and let ∇ be a connection on E. What
are the possibilities for Gp?
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Part III Differential Geometry, Prof. M. Dafermos Example Sheet 2

10. Fill in the gaps in the proof of the first variation formula, i.e. in the proof that a curve γ0(t) =
γ(t, 0) extremizes length over variations γ(t, s) with the same fixed points iff ∇γ∗ ∂

∂t
γ∗

∂
∂t

= 0. In

particular, justify why from

∫ b

a

(∇γ∗ ∂
∂t
γ∗
∂

∂t

∣∣
s=0

, γ∗
∂

∂s

∣∣
s=0

)dt = 0

for all variations γ(t, s), we can infer that ∇γ∗ ∂
∂t
γ∗

∂
∂t

∣∣
s=0

= 0 for all t.

11. Let (M, g) be connected, and locally isometric to Rn. Show that if γ is a topologically
trivial closed curve, then Tp,pγ = id. More generally, show that there exists a well-defined
group homomorphism

φ : π1(M)→ Gp
where π1 denotes the fundamental group of M.

Show that a Riemannian manifold (M, g) is locally isometric to Rn iff for all p, there exists
a U containing p such that Tp,p,γ = id for all γ ⊂ U . Show that the condition γ ⊂ U can be
weakened to the condition that γ is topologically trivial.

12. Let (Mn, g) be Riemannian. If n = 2, show that the condition ∇ξg(X, Y ) = g(∇ξX, Y ) +
g(X,∇ξY ), together with the requirement that length extremizing curves γ, parametrized by
arc length, should satisfy ∇γ′γ

′ = 0, determines ∇ to be Levi-Civita. Show that this is no
longer the case for n > 2.

For comments, email M.Dafermos@dpmms.cam.ac.uk
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Hints and (sketches of) Solutions - Example sheet 2

G.Benedetti and G.Codogni

22nd November 2012

Review of morphism of vector bundles Let T : E → F be a map of vector bundles over
a manifold X. We can de�ne a map

T∗ : Γ(X,E) → Γ(X,F )
s 7→ s ◦ T

The main point is that T∗ is a C∞(X)-linear, i.e. T∗(fs) = fT∗(s) for every function f in C∞(X)
and every section s of E.

Suppose you have a C∞(X)-linear map T∗ as before, then one can show that there always
exist a map T of vector bundle inducing T . The �rst step is to show, using bump functions, that
for every point (x, p) in E there exist a section s of E such that s(x) = p. Then, you can de�ne
T (x, p) := T∗(s)(x). Now, you need to show that T is well de�ned and it is a map of vector
bundles.

If you work on complex manifolds, where bump functions do not exist, there is a re�ned
version of this argument involving maps of OX -modules.

Exercise 2 Existence. On a local chart Uα, you can �x a trivialising frame eαi for E. A
section s, locally, is given by

∑
fiαe

α
i , so a connection on Uα is given by

∇α(s) :=
∑

i

eαi ⊗ dfα
i

Globally, we can de�ne

∇(s) :=
∑

α

ρα∇α(s) =
∑

α

ραeα ⊗ dfα ,

where ρα is a partition of unity. The only non-trivial thing one has to check is the Leibniz's rule.
Indeed, connections form an a�ne space, so a sum of connection is not in general a connection,
but a convex combination it is.

To solve the second point it is enough to check that∇−∇̃ is C∞(X)-linear, i.e. (∇−∇̃)(fs) =
f(∇− ∇̃)(s) for every function f and section s.

Exercise 5 We want to give sense to ∇ξY . The problem is local, so let ∂1, . . . , ∂N be a basis
of the tangent space at p of EN such that ∂1, . . . , ∂n form a basis for TpM. Write

ξ =
n∑

i=1

ci∂i Y =
n∑

i=1

fi∂i

where ci are numbers and fi functions, we pose

∇ξY :=
n∑

i=1

ci
∂fi
∂xi

∂i
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We want to show that ∇̃ is the Levi-Civita connection. It is enough to show that ∇̃ is
compatible with g and symmetric. This is a local problem. Call N the orthogonal (with respect
to g) complement of TM in TE. Every vector �eld X decompose as a sum XM + XN , with
g(XM , XN ) = 0, where XM = π(X) := πTpM(X). A vector �eld X is tangent toM if XN = 0.
Suppose X and Y are tangent to M (and hence [X,Y ]). The torsion τE of the Euclidean
connection ∇E is zero, so

0 = τE(X,Y ) = ∇X(Y )N +∇X(Y )M −∇Y (X)N −∇Y (X)M − [X,Y ]

Apply π to the previous equation, since [X,Y ] is tangent toM we get

0 = ∇X(Y )M −∇Y (X)M − [X,Y ]

so ∇̃ is symmetric. The compatibility follows from the fact that g(XM , XN ) = 0
Exercise 6 Geometric picture Start with a tangent vector v at the north pole of a sphere.

Let γ be the red triangle in the following picture. Call α the angle between the �rst and third
segment.

The parallel transport along γ rotates v of α, this means that v can not be extended to a
parallel vector �eld. On the other hand, any tangent vector to the plane can be extend to a
parallel vector �eld, just translate the vector. We can conclude that the plane is not locally
isometric to the sphere (actually γ is not very local, but you can make it). Notice that the sum
of the internal angles of γ is π + α, so the existence of such a γ shows that the geometry on the
sphere is not Euclidean.

Let us notice that the plan is conformally equivalent to the sphere: the stereographic projec-
tion is a conformal equivalence, i.e. it preserves the angles.

Bonus question Prove that the sum of the internal angles of a triangle in a plane in π (you
do not need Gauss-Bonnet ...)

The computation Call ∇ the Levi-Civita connection on Sn, ∇E the standard connection
on the Euclidean space, π⊥ the orthogonal projection to the tangent space of Sn.

Case n = 1. A one dimensional Riemannian manifold is always locally isometric to E1, the
isometry is given by the arc-length parametrisation. Anyway, we work out the computation when
n = 1.
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We show that, with the usual parametrisation, the Christo�el's symbol of S1 is zero, so the
parallel transport is as in the Euclidean space E1. A local parametrisation of S1 is given by
(x, y) = (cos(θ), sin(θ)). The tangent space is spanned by Dθ = (−sin(θ), cos(θ)). We have

∇Dθ
(Dθ) = π⊥(∇E

Dθ
(Dθ) = π⊥(−x ∂

∂x
− y

∂

∂y
) = 0

So the unique Christo�el's symbol is zero.
Case n = 2. First, we look at the plane. Take a tangent vector v := a∂x + b∂y at a point p,

the constant vector �eld
X(x, y) = a∂x + b∂y

is a parallel extension of v.
If S2 were locally isometric to the plane, then every tangent vector at a point p could be

extendend to a parallel vector �eld in a neighbourhood of p. Let us show that this is not the case.
A parametrisation of S2 as submanifold of E3 is (x, y, z) = (sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)).
A basis for the tangent space is

Dθ = (cos(θ)cos(φ), cos(θ)cos(φ),−sin(θ))

Dφ = (−sin(θ)sin(φ), sin(θ)cos(φ), 0)
In this case, it is messy to carry out the computation done for n = 1. We �rst compute the
metric on the S2, recall that the metric is nothing but the ordinary scalar product. The matrix
we get is

g =

(
1 0
0 sin2(θ)

)

where θ is on the �rst line and φ on the second. We compute the Christo�el's symbols using the
formula

Γk
ij =

1

2

∑

r

glr(∂jgri + ∂igri + ∂rgij)

The only non-trivial one is
Γθ
φφ = sin(θ)cos(θ)

Pick a non-zero tangent vector v at a point p := (θ0, φ0), we look for a parallel vector �eld

X(θ, φ) = F (θ, φ)∂θ +G(θ, φ)∂φ

such that X(θ0, φ0) = v. Being parallel means

∇Dθ
(X) = ∇Dφ

(X) = 0

Now
∇Dθ

(X) = (∂θF )∂θ + (∂θG)∂φ

and
∇Dφ

(X) = (∂φF )∂θ + (∂φG)∂φ + (sin(θ)cos(θ)G)∂θ .

First, we get that G is constant. Then, we have ∂θF = 0 and ∂φF = −sin(θ)cos(θ)G. Consider
the integral on a closed path ∫ [θ+2π,φ]

[θ,φ]

dF

3



this is zero because dF is exact, using the explicit expression of dF we get G = 0. So F is
constant. We can assume that p to be the north pole, the vector �eld X is de�ned across p, so
F must be zero.

We prove that En is not locally isometric to Sn by induction. The case n = 2 is done.
Suppose by contradiction that En is locally isometric to Sn. Then, let f be a local isometry
from a neighbourhood of 0 in En to a neighbourhood of N in Sn. Pick a hyperplane H in T0En.
The exponential of H is a line, so a copy of En−1, the exponential of df(H) is a copy of Sn−1.
Because of the following formula

exp(df(v)) = f(exp(v))

we conclude that f is a local isometry between Sn−1 and En−1, which is impossible.
Notation We will write equivalently T (a, b, γ) and Ta,b,γ for the parallel transport.
Exercise 7 Let γ be a piece-wise regular path, suppose it is not smooth at t ∈ [0, 1], then

just de�ne
T (γ(0), γ(1), γ) := T (γ(0), γ(t), γ |[0,t]) ◦ T (γ(t), γ(1), γ |[t,1])

Let Γp(M) be the groupoid of loops centred at p, the operation �·� is the usual concatenation
of paths (the one used to de�ne the �rst homotopy group π1). We de�ne a map

φ : Γp(M) → GL(Ep)
γ 7→ T (p, p, γ)

This map is a morphism of groupoids, its image is, by de�nition, the holonomy group Gp. It does
depend on the connection.

Suppose thatM is connected (recall that connected+locally path-connected = path-connected).
Pick a path η from p to q, then the map

Fη : Gp → Gq
T (p, p, γ) 7→ T (q, q, η · γ · η−1)

is an isomorphism of group.
Now, we restrict ourself to case E = TM and ∇ the Levi-Civita connection. We want to

show that Gp is contained in O(Ep, gp). Let γ be a loop around p, take vectors v and w in Ep,
and extend them to parallel vector �elds V (t) and W (t) along γ (this is a small abuse of notation:
V (0) 6= V (1), and V (1) = T (p, p, γ)(v)). We have

d

dt
g(V (t),W (t)) = g(∇γ̇(t)(V (t)),W (t)) + g(V (t),∇γ̇(t)(W (t))) = 0

The �rst equality is because the Levi-Civita connection is compatible with g, the second because
V and W are parallel along γ. We conclude that

g(V (0),W (0)) = g(V (1),W (1))

so T (p, p, γ) is an isometry of Ep.
Exercise 11 Let Γp(M) be the group of loops centred at p, the operation is the usual

concatenation of paths. We have a surjective homomorphism of groups

φ : Γp(M) → Gp
γ 7→ Tp,p,γ

To show that this map factors through a map

φ : π1(M)→ Gp
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we must show that if γ is homotpically equivalent to the constant path, then φ(γ) = Id. To
prove this, it is enough tho prove that if γs is a family of path from a to b, then Ta,b,γs does not
depend on s. (It is enough because T (γ(0), γ(1), γ) = T (γ(0), γ(t), γ |[0,t])T (γ(0), γ(1), γ |[t,1]),
convince yourself)

We can arbitrarily subdivide the domain of γs, so we assume that the image of γs is contained
in a co-ordinate patch U isometric to a ball in En. Fix a tangent vector v at a. We want to
show that Ta,b,γs does not depend on s. Extend v to parallel vector �eld X on U , we can do
this because U is isometric to a ball in En. Because of the de�nition of parallel vector �eld,
∇γ̇s(X) = 0 for every s. We conclude that Ta,b,γs(v) = X(b), which does not depend on s.

Now, we want to prove that if every contractible loop gives trivial parallel transport,

then the manifold is locally isometric to En. Let U be a co-ordinate patch around a point
p. Every tangent vector v can be extended to a parallel vector �eld X on U as follow. For any
point z in U , de�ne X(z) := Tp,z,γ(v), where γ is any path from p to z contained in U . This
de�nition does not depend on γ, because of the hypothesis and the fact that every path in U
is topologically trivial. Fix a basis ei of the tangent space TpM. Extend the basis to parallel
vector �elds Xi. At every point z, Xi(z) are a basis for TzM because the parallel transport is
an isometry.

The Christo�el symbols associated to this local frame vanish identically, because the vector
�elds are parallel,

We want to show that the vector �elds Xi can be integrated to a system of local co-ordinates,
to do this we need to show that [Xi, Xj ] = 0 for every i and j, see the proof of Frobenius' theorem
proposition 1. We use the torsion tensor of the connection

τ(Xi, Xj) = ∇XiXj −∇XjXi − [Xi, Xj ] = [Xj , Xi]

the last equality holds because the vector �elds Xi are parallel. The torsion tensor of the Levi-
Civita connection is zero, so the vector �elds Xi commute.

Since the vector �elds Xi can be integrated to local co-ordinate, we can use the formula

Γk
ij =

1

2

∑

r

glr(∂jgri + ∂igri + ∂rgij)

The symbols Γk
ij are zero for every i, j and k, so ∂kgij = 0 for every i, j and k. The metric is

costant, so we can choose a local frame of the tangent space such that g is constantly equal to
the identiy. We conclude thatM is locally isometric to the Euclidean space.

Exercise 8 The holonomy group of En is trivial, because of the exercise 11. Assume n > 1.
The holonomy group of the sphere must be a subgroup of SO(n). This because all paths are
homotopic, so the map

Γ(Sn) φ−→ Gp det−−→ {±1}
must be continuous, hence constant. (A similar argument shows that the holonomy is a subgroup
of SO(n) for every orientable manifold).

For n = 2, the holonomy group of S2 is the whole SO(2). Indeed, the group SO(2) is the
group of rotations, and we can get a rotation of angle α considering a triangular path with two
square angles and an angle of α. For n > 2, we still obtain that the holonomy group is SO(n).
The group SO(n) is generated by rotation about axes. Call V the tangent space TNSn, where
N is the north pole. Fix an orthogonal basis e1, . . . , en for V . For each i we have an injection

Fi : SO(n− 1) ↪→ SO(n)
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The group SO(n) is generated by the Fi(SO(n − 1)), these are the �Euler angles�. Call Hi the
orthogonal complement of ei. the exponential of Hi is a copy Si of Sn−1. The holonomy group
of Si is contained in Fi(SO(n− 1)) and, by induction, it is equal to Fi(SO(n− 1)).

The holonomy group of a product is the product of the holonomy groups (check it!) so an
example is E1 × S2. You can take E2 minus the origin and mod out by a �nite group of rotation
R. The quotient is a cone (minus the vertex: it is a singular point!) and the holonomy group is
exactly R. In this last case the holonomy group is equal to the fundamental group, this is not
always the case: see the circle S1 or the torus.

Exercise 8 - Easy caseWe can de�ne the Möbius strip E as a quotient of E2. The Euclidean
metric induces a metric on E, and we can consider the Levi-Civita connection. With this choice,
the holonomy group is a subgroup of O(R), which is Z2. If the holonomy group were trivial, then
E would be orientable. We conclude that, for this connection, the holonomy group is Z2.

Exercise 10 You can �nd a complete proof of the �rst variational formula on Lee page 91.
We sketch it. The simple case is when γ is smooth. In this case, just take ∂s = ∂t and use
g positive de�nite. Suppose γ is not smooth, with the help of a bump function, the previous
argument shows that ∇∂t∂t = 0 on the regular intervals. We must shows that γ has no �corner�.
Again, using a bump function, we construct a ∂s which is equal to ∆iγ̇ for a �xed i and zero at
the other corners. Using g > 0 we get ∆iγ̇ = 0. Since the velocities at the angles match up, and
γ is a geodesic away from the corner, because of the uniqueness of the solutions of the ODE we
get that γ is a smooth geodesic. (We need a Bootstrap argument for the regularity)
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1 Question 3: Frobenius Theorem

Let M be a smooth manifold of dimension m = h + k. We say that A is a
smooth distribution of dimension h inside TM if and only if it is a smoothly
varying family of h-dimensional subspaces. This means that for each point
x0 ∈ M there exists a neighbourhood Ux0 and vector fields X1, · · · , Xh in
Γ(TUx0) such that

• the Xi’s are linearly independent,

• the vector space generated by the Xi’s at a point x ∈ Ux0 is Ax.

We shall call (X1, · · · , Xh) a local frame for A.

Definition 1. Suppose we have a vector field X defined on some open subset
U ofM. We say that X belongs to A (or to be more precise that X belongs to
A
∣∣
U) and we write X ∈ A (or X ∈ A

∣∣
U) if and only if

∀x ∈ U , Xx ∈ Ax. (1)

Thus, in particular every element Xi of a local frame for A belongs to A.

Definition 2. We say that A is involutive (or that it is closed under Lie
bracket) if and only if, given X and Y vector fields defined over an open set U

X ∈ A, Y ∈ A =⇒ [X,Y ] ∈ A. (2)

Remark 1. We point out that checking condition (2) for all the pairs of vector
fields belonging to A is equivalent to checking it for every pair of elements in a
local frame. So that A is involutive if and only if for each x0 there exists a local
frame (Xi)1≤i≤h around it such that

∀1 ≤ i, j ≤ h, [Xi, Xj ] ∈ A. (3)

Definition 3. A distribution A is said to be integrable if and only if for each
x0 inM there exists an embedded submanifold Nx0 ↪→M such that

• x0 ∈ Nx0 , • ∀x ∈ Nx0 , TxNx0 = Ax.

Prove that every integrable distribution is involutive. The content of the
question is to show the converse.

Theorem 1 (Frobenius). A is involutive if and only if it is integrable.

Remark 2. Applying the theorem to a Lie Group G with Lie algebra TeG = g
we get that there is a correspondence

{
Lie sub-algebras of g

} 1:1←→
{
Lie sub-groups of G

}
. (4)
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We notice that every one-dimensional distribution A is involutive. If we also
suppose that it is oriented we can find a vector field XA ∈ Γ(M) such that
XA ∈ A. Thus in this case the theorem reduces to the standard theorem about
local existence of integral curves for X, which asserts the existence of a flow map
ΦXA : (T−(x0), T

+(x0)) × Ux0
→M around every point x0 ∈ M. We will use

the shorthand ΦXA
t (x) = ΦXA(t, x) when we want to consider the restriction

ΦXA
∣∣
{t}×Ux0

.

Question 1. When A is one-dimensional we also have local uniqueness of in-
tegral manifolds. Is this still true for higher dimensions?

The proof of the Frobenius Theorem consists of two parts.

Proposition 1. Suppose that for each x0 ∈M we have a local frame (Xi)1≤i≤h

around x0, such that

∀1 ≤ i, j ≤ h, [Xi, Xj ] ≡ 0. (5)

Then A is integrable.

Proof. Consider the flows ΦXi around x0. We can suppose that they are defined
on a common neighbourhood

(0, x0) ∈ (−ε, ε)× Ux0 ⊂ R×M. (6)

Define the map

F : (−ε, ε)h → M
(t1, · · · , th) 7→ ΦXh

th
◦ · · · ◦ ΦX1

t1 (x0).

Condition (5) implies that the flows of Xi and Xj commute, namely

Φ
Xj

tj ◦ Φ
Xi

ti = ΦXi

ti ◦ Φ
Xj

tj . (7)

We see that F is a smooth function since, for every 1 ≤ i ≤ h, repeated use of
Equation (1) yields partial derivatives at every point (t10, · · · , th0 ). Indeed,

∂F

∂ti

∣∣∣
(t10,··· ,th0 )

= d(t10,··· ,th0 )F

[
∂

∂ti

]

=
d

dti

∣∣∣
ti=ti0

ΦXi

ti

(
Φ

Xi

ti0

omitted
︷ ︸︸ ︷
(ΦXh

th0
◦ · · · ◦ ΦX1

t10
) (x0)

)

= Xi(Φ
Xi

ti0

(
Φ

Xi

ti0

omitted
︷ ︸︸ ︷
(ΦXh

th0
◦ · · · ◦ ΦX1

t10
) (x0)

)
)

= Xi(F (t10, · · · , th0 )).
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If we look at F in a local chart we can use this argument to show that the
partial derivatives of any order do exist, so that F is smooth.

Since (Xi)1≤i≤h is a local frame near x0 we see that F is an immersion and
hence, up to shrinking (−ε, ε)h to a smaller neighbourhood (−ε0, ε0)h of 0 ∈ Rh,
we have that F : (−ε0, ε0)h ↪→ M is an integral embedded submanifold for A
near x0.

Proposition 2. Suppose A is involutive. Then, for each x0 ∈ M, there exists
a local frame (Xi)1≤i≤h around it satisfying condition (5).

Proof. Since the statement is local we can suppose that we have a local frame for
A on an open subset U of the Euclidean space Rh+k. Denote by

(
∂
∂si

)
1≤i≤h+k

the standard basis. Shrinking U even more and relabeling the variables if nec-
essary we can assume that A

∣∣
U is always transverse to the subspace

B := Span

{
∂

∂si

}

h+1≤i≤h+k

.

• Claim: we have a unique local frame on U for A of the form

∀1 ≤ i ≤ h, Yi :=
∂

∂si
+

h+k∑

j=h+1

aji
∂

∂sj
, (8)

for some smooth functions aji : U → R. In order to show uniqueness:

– Prove that if for some i and some functions bj : U → R the tangent
vector Z := ∂

∂si +
∑h+k

j=h+1 b
j ∂
∂sj belongs to A, then you have Z = Yi.

In order to show existence:

– write down Xi using the standard basis:

Xi =

h+k∑

j=1

cji
∂

∂sj
; (9)

– prove that
(
cji

)
1≤i,j≤h

is invertible, with inverse
(
dji

)
1≤i,j≤h

;

– show that Yi =
∑h

j=1 d
j
iXj is a local frame of the form (8).

To end up the proof notice that, since
[

∂
∂si ,

∂
∂sj

]
= 0,

∀1 ≤ i, j ≤ h, [Yi, Yj ] ∈ B. (10)

On the other hand we know that [Yi, Yj ] ∈ A and thus,

[Yi, Yj ] ∈ A ∩ B = {0}. (11)

Frobenius Theorem now is a corollary of these two proposition.
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1.1 Addendum

Let us add some extra information about a dual formulation of Frobenius Theo-
rem and how to prove that we have local uniqueness of integral manifolds. Ob-
serve that there is a bijective map between k-dimensional subspaces in Γ(TM)
and h-dimensional subspaces in Γ(T ∗M) sending each A into its annihilator
AnnA. We recall that the annihilator at a point x0 is defined as

(AnnA)x0
:=
{
α ∈ T ∗

x0
M | kerα ⊃ Ax0

}
. (12)

The inverse correspondence will be denoted in the same way and it is given by

(AnnF)x0
:= {X ∈ Tx0M | ∀α ∈ Fx0 , X ∈ kerα} . (13)

We ask now what is the image of involutive distributions under this bijection.
Consider the following example. Suppose that i : N ↪→ M is an integral
manifold for A around some point x0. If α belongs to Ann(M), then

α|N = i∗α = 0. (14)

This implies that
dα|N = i∗(dα) = d(i∗α) = 0. (15)

This leads us to the following definition.

Definition 4. A k-dimensional distribution F of 1-forms is said to be closed
if and only if

∀α ∈ F , dα|AnnF = 0. (16)

Proposition 3. The annihilator correspondence restricts to a bijection be-
tween involutive h-dimensional distributions of tangent vectors and closed k-
distributions.

In order to prove this proposition one has to apply the identity

dα[X,Y ] = X (α[Y ])− Y (α[x])− α[[X,Y ]]. (17)

Definition 5. We shall call a k-dimensional distribution F integrable if and
only if its associated h-dimensional distribution Ann(F) is integrable.

Theorem 2 (Dual formulation of Frobenius Theorem). A closed distribution
of 1-forms is closed if and only if it is integrable.

The analogue of condition (5) is the following property: each point x0 ∈M
has a neighbourhood Ux0 and smooth functions {f i}1≤i≤k defined on it such
that (df i)1≤i≤k is a basis for F on Ux0 . Then, the analogue of Proposition
1 is simply the Implicit Function Theorem. The main difficulty is to prove a
proposition corresponding to Proposition 2, where one needs to single out a
proof for the existence of such a basis.
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We end up by proving that the integral manifold is unique. By this we mean
that if N and N ′ are two integral manifolds for A at x0, then there exists a
neighbourhood Ux0 of x0 where we have

N ∩ Ux0 = N ′ ∩ Ux0 . (18)

In order to show this, suppose that N is given through a set of equations

N = {f i = ci0 | 1 ≤ i ≤ k}, f i : Ux0 → R, (ci0) ∈ Rk, (19)

such that (df i)1≤i≤k is a basis for F on the whole Ux0 . Then it is enough to prove
that f i|N ′ is constant. This is true since df i ∈ F on the whole neighbourhood
Ux0

and thus also on N ′ ∩ Ux0
.

Remark 3. The way we constructed the integral manifold in the dual formula-
tion shows that one actually gets a foliation of integral manifolds by varying the
values (ci) in Rk. How can one adjust the proof we gave for the tangent vectors
case to arrive to the same conclusion there?
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1 Question 2

Let π : E →M be a vector bundle over a smooth manifoldM. Let us endow
E with a connection ∇. This means that we have a map

∇ : TM× Γ(E) → E

(Xx, s) 7→ (∇Xx
s)x

such that

1. for each s ∈ Γ(E) the restricted map ∇s : TM→ E is smooth and linear
in the fibers.

2. for each (x, v) ∈ TM the restricted map ∇v : Γ(E) → Ex satisfies the
Leibniz rule

∀f ∈ C∞(M), (∇vfs)x = dxf [v]sx + f(x)(∇vs)x. (1)

First of all let us point out that on every vector bundle, the set of all linear
connections C(E) is not empty.

We do this in the following three steps.

1. If we have E =M×Rk, a section of E is simply a smooth map s :M→ Rk

and we set
∇0s := ds : TM→ TRk ' Rk. (2)

Verify that ∇0 ∈ C(E).

2. If Φ : E1
∼→ E2 is an isomorphism of vector bundles, the map

C(E2) → C(E1)

∇ 7→ Φ∗∇ :=
(
s 7→ Φ−1 ◦ ∇(Φ)

)
.

is a bijection.

3. Let {Uα}α∈I be an open cover ofM which trivialises E and let {ρα}α∈I

be a partition of unity subordinate to it. From the previous two points we
can find a collection of connections {∇α}α∈I , such that ∇α ∈ C(E

∣∣
Uα

).
Verify that

∇ :=
∑

α∈I

ρα∇α (3)

belongs to C(E).

Having found out that we have many connections, we would also like to see how
they are related to each other.

First remember that the space Γ(E0) of sections of a vector bundle E0 has
a structure of a C∞(M)-module. Simply set

C∞(M)× Γ(E0) → Γ(E0)

(f, s) 7→ (fs)p := f(p)sp

1



Call Hom(Γ(E1),Γ(E2)) the set made of all the C∞(M)-linear maps L between

E1 and E2. Namely, for any f, f̃ ∈ C∞(M) and s, s̃ ∈ Γ(E1) we have

L[fs+ f̃ s̃] = fL[s] + f̃L[s̃]. (4)

Then, the following representation result holds.

Lemma 1. Let E1 and E2 be two smooth vector bundles overM. The map

Γ(Hom(E1, E2)) → Hom(Γ(E1),Γ(E2))

A 7→
(
LA[s]

)
p
:= Ap[sp]

is a bijection.

Remark 1. From the definition we see that a connection can also be defined as
a map

∇ : Γ(E)→ Γ(T ∗M⊗ E) = Γ(Hom(TM, E)) (5)

that satisfies the Leibniz rule. However ∇ does not come from a section of

Hom(E,Hom(T ∗M, E)) = E∗ ⊗ (T ∗M⊗ E) = T ∗M⊗ E∗ ⊗ E (6)

because the C∞(M)-linearity fails.

Lemma 2. Let ∇0 and ∇1 be two connections on E, then the map

∇1 −∇0 : Γ(E)→ Γ(T ∗M⊗ E) (7)

is C∞(M)-linear. Thus ∇1 −∇0 = LA for some A ∈ Γ(E∗ ⊗ T ∗M⊗ E).

With this result we get an answer to Question 2. However we will end this
section by giving some more precise information on the algebraic structure of
C(E) and on the local representaion of its elements. In the following discussion
we will abuse notation and denote A and LA by the same symbol A.

Proposition 1. Let E be a vector bundle onM. Then, the map

C(E)× Γ(Hom(TM,End(E))) → C(E)

(∇, A) 7→ ∇+A := (s 7→ ∇s+As) .

turns the space of connections in an affine space with associated vector space
Γ(T ∗M⊗ E∗ ⊗ E).

In particular if ∇0 and ∇1 belong to C(E),

∀r ∈ R, ∇r := (1− r)∇0 + r∇1 ∈ C(E). (8)

Example 1. When the bundle E is the trivial one E =M×Rk we have defined
the connection ∇0 which simply is the differential d of sections. In this case an
element of Hom(TM,End(E)) is a k × k matrix of one forms. Therefore any
connection on E can be represented as

dA := ∇0 +A = d+A, (9)
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where A ∈ Γ(Hom(TM,End(E))). If also the (co)tangent bundle of M is
trivialised by a frame (ϕi)1≤i≤n, then

A =

n∑

i=1

ϕi ⊗Ai, (10)

where Ai : M → End(Rk) are smooth functions.

Applying the discussion contained in the example we can give a nice local
description of connections. Indeed, suppose we have trivialisations for E and
TM on some open set U ⊂M. Then the restriction of a connection ∇ ∈ C(E)
to U can be written as ∇

∣∣
U
= dA via these local trivialisations. The entries of

the matrices Ai defined above are exactly the Christoffer symbols. Namely,

(Ai)
k
j = Γk

ij . (11)

2 Question 4

2.1 From connection to covariant derivative and back

Every connection ∇ induces a covariant derivative along curves in M. Let
γ : Iγ → M be a smooth curve and let πγ : γ∗E → Iγ be the pullback of E
through γ. In other words the fiber of γ∗E over t ∈ Iγ is Eγ(t). We define the
covariant derivative along γ as the unique map

∇γ

dt
: Γ(γ∗E)→ Γ(γ∗E) (12)

such that

1. satisfies the Leibniz rule

∇γ

dt

∣∣∣
t=t0

fs = f(t0)
∇γ

dt

∣∣∣
t=t0

s+ ḟ(t0)st0 ; (13)

2. satisfies a compatibility condition with ∇

∀s ∈ Γ(E),
∇γ

dt

∣∣∣
t=t0

s ◦ γ =
(
∇γ̇(t)s

)
γ(t)

. (14)

One can check that this is indeed a good definition.
As before we have a simple local representation for ∇γ

dt whenever we have a

trivialisation for E. It is given by d
dt +Aγ , where Aγ : (t0−ε, t0+ε)→ End(Rk)

is a smooth path of k × k matrices. It is related to the matrix of one forms A
for ∇ through the formula

Aγ(t) = A(γ̇(t))γ(t). (15)
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We observe first of all that covariant derivatives determine the connection uni-
voquely. This can be seen from the second property. Let s ∈ Γ(E) and let
(x, v) ∈ TM. Take any curve γ : (−ε, ε) →M such that (γ(0), γ̇(0)) = (x, v).
Then,

(∇vs)x =
∇γ

dt

∣∣∣
t=0

s ◦ γ. (16)

If we reverse the perspective, we can think of starting with a correspondence
which assign to each smooth path γ : Iγ →M a map Dγ satisfying Property 1.
What further conditions must we impose so that the collection Dγ is induced
by a connection ∇ on E, in other words Dγ = ∇γ

dt ?. The easiest thing would be
to ask the following two properties.

A) If s ∈ Γ(E) and γ, σ are two paths such that γ(0) = σ(0) = x, then

γ̇(0) = σ̇(0) =⇒ Dγ
∣∣∣
t=0

s ◦ γ = Dσ
∣∣∣
t=0

s ◦ σ. (17)

B) For any point x0 ∈M, there exists a coordinate neighbourhood (U, φ) of x0

such that the following holds. For every (x, v) ∈ TM
∣∣
U

call

γx,v(t) = φ−1 (φ(x) + tdxφ[v]) . (18)

In a down-to-earth language we use the coordinates in order to construct a
family of curves which varies smoothly with the point x and the velocity v.
Notice that

(γx,v(0), γ̇x,v(0)) = (x, v). (19)

We then ask that, for every s ∈ Γ(E
∣∣
U
), and every x ∈ U the map

Ls
x : Rn → Ex ' Rk

v 7→ Dγx,v

∣∣∣
t=0

s

is linear and that x 7→ Ls
x is a smooth section of Hom(TM

∣∣
U
, E
∣∣
U
).

Then, we define (∇vs)x := Ls
x[v]. We see that ∇ is then a connection on U . By

property 1 we also know that the covariant derivatives along curves induced by∇
is exactly the family of map given, i.e. Dγ = ∇γ

dt . We want to conclude that two
connections defined in this way on two overlapping coordinates neighbourhood
patch together and gives a global connection on E →M. This follows from the
fact that on the intersection of the two neighbourhood the two connections have
the same covariant derivative and we showed before that covariant derivatives
determines uniquely the connection. Thus, the two connections coincide on the
intersection of the two neighbourhoods and we can glue them together.

2.2 From covariant derivative to parallelism and back

The notion of covariant derivative allows us to speak about parallel sections
along curves.
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Definition 1. A section s ∈ Γ(γ∗E) is said to be parallel if and only if

∇γ

dt
s = 0. (20)

Exploiting the local description of a covariant derivative we see that being
parallel amounts in solving a non-autonomous linear equation in Rk:

ds

dt
= −A(t)st. (21)

Thus we conclude that the space of parallel sections along a curve γ is a real
vector space of dimension k. An explicit isomorphism is obtained sending a
parallel section s to its value at some point t ∈ Iγ :

evt : s 7→ st ∈ Eγ(t). (22)

The composition of the isomorphisms for two different values t0, t1 ∈ Iγ is called
parallel transport

P γ
t1,t0 = evt1 ◦ ev−1

t0 : Eγ(t0) → Eγ(t1). (23)

The fundamental properties of this family of linear isomorphisms are the listed
below.

1. For any t ∈ Iγ , we have
P γ
t,t = IdEγ(t)

. (24)

2. For any t0, t1, t2 ∈ Iγ , we have

P γ
t2,t1 ◦ P

γ
t1,t0 = P γ

t2,t0 . (25)

3. If we have t0 ∈ Iγ and e0 ∈ Eγ(t0), then t 7→ P γ
t,t0e0 is a smooth section.

4. P γ is compatible with the covariant derivative along γ: for any t0 ∈ Iγ
and e0 ∈ Eγ(t0), t 7→ P γ

t,t0e0 is parallel. Namely,

∇γ

dt
P γ
t,t0e0 = 0. (26)

We see now that the parallel transport encodes all the information about the
covariant derivative. Suppose that s ∈ Γ(γ∗E) and that we want to compute
∇γ

dt

∣∣∣
t=t0

s. Then,

Iγ → Eγ(t0)

t 7→ P γ
t0,tst

is a smooth curve inside the vector space Eγ(t0). Thus

d

dt

∣∣∣
t=t0

P γ
t0,tst ∈ Tst0

Eγ(t0) ' Eγ(t0) (27)
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and we are going to prove that, after the above identification,

∇γ

dt

∣∣∣
t=t0

s =
d

dt

∣∣∣
t=t0

P γ
t0,tst. (28)

Indeed, take (σi)1≤i≤n a basis for Eγ(t0) and extend it to a frame of parallel
sections on γ

sγi t := P γ
t,t0σi. (29)

Then, there exist functions {ci : Iγ → R}1≤i≤n such that

st :=

n∑

i=1

ci(t)sγi t. (30)

Now you get

P γ
t0,tst = P γ

t0,t

(
n∑

i=1

ci(t)sγi t

)
=

n∑

i=1

ci(t)P γ
t0,ts

γ
i t =

n∑

i=1

ci(t)σi. (31)

Hence,

∇γ

dt

∣∣∣
t=t0

s =
∇γ

dt

∣∣∣
t=t0

n∑

i=1

ci(t)sγi t

=

n∑

i=1

ċi(t0)s
γ
i t0

+

n∑

i=1

ci(t0)
∇γ

dt

∣∣∣
t=t0

sγi

=

n∑

i=1

ċi(t0)σi

=
d

dt

∣∣∣
t=t0

n∑

i=1

ci(t)σi

=
d

dt

∣∣∣
t=t0

P γ
t0,tst.

From this we get that the parallel transport determines univoquely the covariant
derivative.

Moreover we see that if we have a family of maps P γ
t1,t0 satisfying Properties

1 and 2 given before (namely Equations (24) and (25)), we can use Equation
(28) to define a collection of maps Dγ : Γ(γ∗E)→ Γ(γ∗E):

Dγ
∣∣∣
t=t0

s =
d

dt

∣∣∣
t=t0

P γ
t0,tst. (32)

ThenDγ satisfies the Leibniz rule which we labeled as Property 1 in the previous
subsection:

Dγ
∣∣∣
t=t0

fs = f(t0)D
γ
∣∣∣
t=t0

s+ ḟ(t0)st0 . (33)
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We would like to complete the answer to Question 4 and find conditions that
ensure that the collection of linear maps P γ arises from a connection. In view
of the preceding discussion this is equivalent to asking that the maps Dγ , that
come from P γ as described above, satisfy the two further conditions A and B
from the previous subsection. A more elegant answer would be to translate
those two properties into properties of the maps P γ by using (28).

3 Question 1

Let us now specialise the discussion to the case in which E =M. If γ : Iγ →M
is a smooth curve we have that γ̇ is an element of Γ(γ∗TM) and we also have
a corresponding curve in TM

γ̃ : Iγ → TM
t 7→ (γ(t), γ̇(t)) ,

called the lift of γ. Lifts of curves can be easily characterised inside the set of
all curves with values in TM and they are preserved under differential of maps.

Lemma 3. A smooth curve η = (γ, v) : Iη → TM is a lift if and only if

∀t ∈ Iη, γ̇(t) = v(t) ∈ Tγ(t)M. (34)

If this is the case, we see that η = γ̃.
Furthermore if we have a smooth map F :M1 →M2 and η : Iη → TM1 is

a lift, then dF ◦ η : Iη → TM2 is a lift.

Since γ̇ is a vector field over γ we can take its covariant derivative

∇γ

dt
γ̇. (35)

This can be interpreted as a generalisation the acceleration of a curve in the
Euclidean space and leads us to give the following definition.

Definition 2. A curve γ : Iγ →M is called a geodesic if and only if it satisfies

∇γ

dt
γ̇ = 0. (36)

We write down this equation using local coordinates y : U → Rm. These
give a trivialisation u : M

∣∣
U
→ Rm of TM

∣∣
U
. Its basic property is that if

yγ = y ◦ γ, then
ui(γ̇) = ẏiγ . (37)

Using this trivialisation and the coordinates y onM we get local coordinates

(y, u) : TM
∣∣
U
→ Rm × Rm (38)
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on TM. The expression of the lift γ̃ given by them is

(y, u) ◦ γ̃ = (yγ , ẏγ) = ỹγ . (39)

If we write the geodesic equation on U using the Christoffer symbols (Γk
ij)

associated to the given trivialisation we have

∇γ

dt
γ̇ = 0 ⇐⇒ d

dt
ẏiγ +

∑

j,k

ẏjγΓ
i
jk(yγ)ẏ

k
γ = 0, 1 ≤ i ≤ m. (40)

We can interpret this last equation as a differential equation for curves (z, w)
in Rm × Rm:

d

dt
wi +

∑

j,k

wjΓi
jk(z)w

k = 0, 1 ≤ i ≤ m. (41)

If we also require that the curve (z, w) is a lift (this is the same as requiring
that (y, u)−1 ◦ (z, w) is a lift by the lemma), we get the following first order
differential equation





dzi

dt
= wi 1 ≤ i ≤ m,

dwi

dt
= −

∑

j,k

wjΓi
jk(z)w

k 1 ≤ i ≤ m.
(42)

We have seen in the previous example sheet that every first order differential
equation comes from a vector field. If we push forward this vector field over
U ⊂M using (y, u)−1 we get XU ∈ Γ

(
T (TM)

∣∣
TU

)
given by

X(U,y) =
∑

i


ui ∂

∂yi
−
∑

j,k

ujΓi
jk(y)u

k ∂

∂ui


 . (43)

The associated Cauchy problem yields us a smooth flow Φ(U,y) : V (U,y) → TU ,
where V (U,y) is an open neighbourhood of {0} × TU inside R× TU . If we have
two overlapping local coordinates (Uα, yα) and (Uβ , yβ) the restriction of the
flows to T (Uα∩Uβ) must coincide. Therefore, we can glue together all the local
flows in order to get a global one Φ on TM. This means that also the vector
fields X(U,y) patch together (being determined by the corresponding flows) and
yield a global vector field X ∈ Γ(T (TM)) called the geodesic vector field.

Let us give the first properties of the geodesic flow. First of all, from the
local equations, we see that X vanishes only at the zero section of TM. Then
we note that if we reparametrise a geodesic γ by a scalar factor c, we still have
a geodesic γc(t) := γ(ct). Indeed,

∇γc

dt

∣∣∣
t=t0

γ̇c(t) = c
∇γc

dt

∣∣∣
t=t0

γ̇(ct) = c2
∇γc

dt

∣∣∣
t=t0

γ̇(ct) = c2
∇γ

dt

∣∣∣
t′=ct0

γ̇(t′). (44)
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We can sum up all of this by saying that if γ : (T−(x, v), T+(x, v)) → M is a
maximal geodesic such that γ̃(0) = (x, v), then

γc :

(
1

c
T−(x, v),

1

c
T+(x, v)

)
→M (45)

is a maximal geodesic such that γ̃c(0) = (x, cv). From this we also see that

• T−(x, cv) =
1

c
T−(x, v), • T+(x, cv) =

1

c
T+(x, v).

We are now in position to give three proofs of the fact that Φ1 is defined in a
small neighbourhood of every (x, 0) ∈ TM.

1. We noticed before that (x, 0) is a rest point for the flow. In particular
(1, (x, 0)) is inside the domain of definition V of Φ, which is an open set.
The fact that (1, (x, 0)) is an interior point of V yields the conclusion.

2. For each (x, 0) there exist ε, δ > 0 such that

∀t ∈ R, |t| ≤ δ, =⇒ Φt is defined on {|v| < ε}. (46)

The homogeneity property proved before implies that

∀t ∈ R, |t| ≤ 1, Φt is defined on {|v| < εδ}. (47)

3. We give only a sketch of a rough quantitative estimate that can be given.
Consider a coordinate neighbourhood of x, F : U → Br(0) with F (x) = 0.
This will yield Christoffer symbols Γk

ij . Suppose we have a convenient

uniform bound C on Γk
ij . This in turn will give a differential inequality

d

dt
|γ̇| ≤ C|γ̇|2. (48)

Integrating this with some initial value ε and then integrating again to
get a bound on γ we conclude that Φt is well defined on all the points
{(y, v) ∈ TM|U | F (y) ∈ Br/2(0), |v| < ε} provided that t satisfies

|t| < 1− e
Cr
2

εC
. (49)

This answer to the first part of the question.
Now we would like to investigate now if Φ is complete or not. In view of

the previous discussion this is the same as asking if Φ1 is defined on the whole
tangent manifold. One natural assumption is to takeM compact. However this
is not enough, since the equation

dvi

dt
= −vjΓi

jk(x)v
k (50)
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can blow up after a finite time even if the Γk
ij are uniformly bounded. If you

want a concrete case, take the trivial bundle of rank one over S1 and consider
the connections ∇a := d + a, where a is a real number. Find explicitly the
geodesic flow in this case. What happens when a 6= 0?

Completeness becomes true when together with compactness we also ask for
a compatibility property between ∇ and some Riemannian metric g onM:

∀(x, v) ∈ TM, (∇vX)x = 0 =⇒ v
(
g[X,X]

)
= 0. (51)

Indeed, the metric induces a kinetic energy function on TM:

κ : TM → [0,+∞)

(x, v) 7→ 1

2
gx[v, v].

This function is an integral of motion for the geodesic flow, meaning that κ is
constant along geodesics. Indeed,

∇γ

dt
γ̇ = 0 =⇒ 0 = γ̇ (g[γ̇, γ̇]) = 2

d

dt
κ(γ̃). (52)

The conclusion now follows from the fact that the level sets

Σc := {κ = c} ⊂ TM (53)

are compact ifM is compact. Flows on compact manifolds are complete by the
first example sheet.

4 Question 9

We recall how the Möbius strip was built. Let Uα and Uβ be two open interval
covering R/Z and suppose that Uα ∩ Uβ = V0 t V1, where V0 and V1 are two
disjoint intervals. The transition map G : Uα ∩ Uβ → R \ {0} for the Möbius
vector bundle E → R/Z is given by

G
∣∣
V0
≡ 1, G

∣∣
V1
≡ −1. (54)

We would like to describe all the connections on E. From the fact that G is
locally constant we have that the standard connections on Uα and Uβ patch
together and give a global connection ∇0 on E. In other words if s ∈ Γ(E),
then

∇0s = χ−1
(
d(χ(s))

)
1, (55)

where χ is either the trivialisation on Uα or on Uβ which are related by G.
From the discussion around Question 2, we know that any other connection
is determined by some a ∈ Γ(T ∗M ⊗ E∗ ⊗ E) = C∞(R/Z). Take now the
curve γ : [0, 1] → R/Z, such that γ(t) := [t]. The pullback bundle γ∗E has a

1to be precise we mean that χ−1 acts on d(χ(s)) after we compute it on a tangent vector.
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trivialisation F : γ∗E → [0, 1] × R such that F ◦ F−1
∣∣ : {0} × R → {1} × R is

simply the map (0, v) 7→ (1,−v). We see that the parallelism equation using
the trivialisation F reduces to

{
v̇ = −av,

v(0) = v0.
(56)

If A is a primitive for a satisfying A(0) = 0, the solution of the previous
problem is given by v(t) = v0e

−A(t) and in particular v(1) = v0B, where

B := e−
R 1
0
a(t)dt ≥ 0. Taking into account the isomorphism F ◦ F−1 we get

P γ
0,1v = −Bv, ∀v ∈ E[0]. (57)

So that we find {
(−B)k

}
k∈Z ⊂ G[0]. (58)

Actually you can prove that equality holds. This can be seen both as a conse-
quence of Question 11 or by considering the covering p : R→ R/Z and lifting E
to p∗E → R. With an analogous argument as the one outlined before, one can
now show that p∗E has a global parallel section, so that the parallel transport
along curves in R does not depend on the curve but only on the endpoints.

5 Question 12

We observed that if E →M is a vector bundle, the space of connections C(E)
is an affine space whose associated vector space is Γ(T ∗M ⊗ End(E)). We
consider now an inner product g on E. By this we mean a section of the
bundle E∗ ⊗ E∗, which is also symmetric and positive definite on each fiber.
Using partition of unity we see that on E there are plenty of such inner products.
Since for every x we have a vector space with inner product (Ex, gx), we can
speak of the antisymmetric transformations of this space and denote them by
A(Ex, gx). We collect all these linear maps into a vector bundle A(E, g)→M.

Definition 3. A trivialisation (U, χ) of E is said to be orthonormal if and
only if the metric induced on the fibers of U × Rk is the standard one.

Proposition 2. There exist local orthonormal trivialisations for (E, g) around
every point onM.

Proof. Start with a local frame around some x0 ∈M and then apply the Gram-
Schmidt orthonormalisation method in each point of the neighbourhood. We
get an orthonormal frame which varies smoothly at each point since the Gram-
Schmidt method is smooth.

Remark 2. We remark that elements of A(Ex, gx) are represented by antisym-
metric matrices in any orthonormal frame at x. By the previous proposition we
know that, using orthonormal frames, we can represent sections of A(E, g)→M
as sections of U ×A(Rk, g0) on every sufficiently small open set U ⊂M.
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Definition 4. We shall say that ∇ ∈ C(E) is compatible with g if and only if

∀(x, v) ∈ TM, ∀s1, s2 ∈ Γ(E), v(g[s1, s2]) = gx[∇vs1, s2]+gx[s1,∇vs2]. (59)

We denote the space of compatible connections by C(E, g).

Proposition 3. The set C(E, g) is not empty and it is an affine space with
Γ(T ∗M⊗A(E, g)) as the associated vector space.

Proof. The existence of a compatible connection follows as in Question 2, when
one requires the local trivialisations to be orthonormal. Let ∇ ∈ C(E, g) and let

∇̃ ∈ C(E). From Question 2 we know that there exists A ∈ Γ(T ∗M⊗ End(E))
such that

∇̃ = ∇A = ∇+A. (60)

Using Equation (59) we see that

∇A ∈ C(E, g) ⇐⇒ A ∈ Γ(T ∗M⊗A(E, g)). (61)

Suppose now that E = TM. Then we can associate to every connection
∇ ∈ C(TM) a tensor τ∇ ∈ Λ2T ∗M⊗ TM called the torsion:

τ∇[X,Y ] = ∇XY −∇Y X − [X,Y ]. (62)

In order to show that it is a tensor one needs to prove that

∀f ∈ C∞(M), τ∇[fX, Y ] = fτ∇[X,Y ] = τ∇[X, fY ]. (63)

How does the torsion change under the Γ(T ∗M⊗ End(TM)) action?

Proposition 4. Let ∇ ∈ C(TM) and A ∈ Γ(T ∗M⊗ End(TM)). Then

τ∇
A

[X,Y ] = τ∇[X,Y ] +A(X)[Y ]−A(Y )[X]. (64)

Finally, we also defined in Question 1 geodesics associated to a connection ∇
on TM. Analogously to what we did for the torsion, we would like to investigate
how geodesics change under the action of Γ(T ∗M⊗ End(TM)).

Proposition 5. Let ∇ ∈ C(TM) and A ∈ Γ(T ∗M⊗ End(TM)). Then ∇A

and ∇ have the same geodesics if and only if

∀x ∈M, ∀X,Y ∈ TxM, A(X)[Y ]+A(Y )[X] = 0 ⇐⇒ A(X)[X] = 0. (65)

Proof. Take (x, v) ∈ TM and consider a geodesic γ for both connections such
that γ̃(0) = (x, v). Then,

0 =
(∇A)γ

dt

∣∣∣
t=0

γ̇ =
∇γ

dt

∣∣∣
t=0

γ̇ +A(γ̇(0))[γ̇(0)] = A(v)[v]. (66)
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Endow TM with a metric g. Let ∇ be the Levi Civita connection associated
to g. This means that ∇ ∈ C(TM, g) and that its torsion is zero. It can be
shown that this connection is unique. We know that length extremising curves
parametrised by arc length are geodesics for ∇. Therefore, we conclude that
a connection ∇̃ has the same geodesics as ∇ if and only if the geodesics for ∇̃
are length extremising curves parametrised by arc length. This leads us to the
following result.

Proposition 6. Let ∇̃ ∈ C(TM, g) and ∇ be the Levi Civita connection. We

know that there exists A ∈ Γ(T ∗M⊗A(TM, g)) such that ∇̃ = ∇A. Then the
following properties are equivalent.

1. The geodesics of ∇A are length extremising curves parametrised by arc
length.

2. The tensor A is antisymmetric in the first two variables

A(X)[Y ] = −A(Y )[X], or equivalently, (67)

A(X)[X] = 0. (68)

3. The torsion tensor of ∇A is antisymmetric in the second and third variable

g[τ∇
A

(X)[Y ], Z] = −g[Y, τ∇A

(X)[Z]], or equivalently, (69)

g[τ∇
A

(X)[Y ], Y ] = 0. (70)

4. τ∇
A

= 2A,

5. g[τ∇
A

[·, ·], ·] and g[A(·)[·], ·] are smooth 3-forms. In other words, if

Λ3T ∗M⊂ T ∗M⊗ T ∗M⊗ T ∗M (71)

is the vector bundle of antisymmetric trilinear forms on TM, then

g[τ∇
A

[·, ·], ·], g[A(·)[·], ·] ∈ Γ(Λ3T ∗M). (72)

We shall denote the set of connections satisfying any of these properties by
C0(TM, g).

Let us now prove that C0(TM, g) contains only one element when the di-
mension is 2 and infinitely many when the dimension is bigger. To achieve this,
we only have to compute the rank of the vector bundle Λ3T ∗M in order to show
the existence of a nonzero section B. Then the tensor A we are looking for will
be univoquely determined by the relation

B[·, ·, ·] = g[A(·)[·], ·]. (73)

We need the following observation from linear algebra.
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Lemma 4. The vector space of trilinear antisymmetric forms on Rk has di-

mension

(
k

3

)
.

Proof. In order to compute the dimension of this space fix a basis of Rk and
notice that a trilinear antisymmetric function is univoquely determined by its
values on the ordered subsets of the basis made of three elements. The number
of such subsets is

(
k
3

)
.

Applying the next result to Λ3T ∗M, we answer completely to Question 12.

Proposition 7. Let E →M be a vector bundle. If the rank of E is zero, then
Γ(E) contains only the zero section. When the rank is bigger than zero, there
are infinitely many elements in Γ(E).

Proof. Use local trivialisations and smooth functions with compact support.
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Part III Differential Geometry, Prof. M. Dafermos Example Sheet 3

1. Give an example of a Riemannian manifold not geodesically complete, but so that every
p and q can be joined by a length-minimizing geodesic. Give an example of a Riemannian
manifold for which any two points p and q can be joined by a geodesic, but for which there
exist two points p̃ and q̃ which cannot be joined by a length-minimizing geodesic.

2. Recall the definition of the Riemann curvature tensor

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ −∇[Y,X]Z. (1)

Show the identities
R(X, Y )Z = −R(Y,X)Z,

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

g(R(X, Y )Z,W ) = g(R(X,W )Z, Y ),

g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z).

Show that given now a vector bundle E → M, and a connection ∇, the definition (??) still
makes sense, and R ∈ Γ(T ∗M⊗ T ∗M⊗ E∗ ⊗ E). This is called the curvature tensor of the
connection. Are the above identities (those that make sense, that is) still true?

3. Let Sn denote the standard n-sphere, and let Hn denote hyperbolic n-space. The latter is
defined by the manifold {(x1, . . . , xn) : (x1)2 + · · · (xn)2 < 1}, with metric g = −4((dx1)2 +
· · · (dxn)2)(1 − ((x1)2 + · · · (xn)2))−1. Compute the Riemann curvature, sectional curvatures,
Ricci curvature, and scalar curvature. Show that Hn is geodesically complete.

4. Let N denote a submanifold of codimension 1 of an n-dimensional Riemannian manifold
(M, g). We define the second fundamental form, on a subset U ⊂ N , as follows: Let N
denote a unit normal field on U , i.e. a vector field defined along U such that g(N,N) = 1
and g(N, T ) = 0 for all T ∈ TpN for p ∈ U . (There are two choices for N . Note which of
the definitions that follow depend on the choice, and which do not.) For X, Y vector fields
along U , let X̃, Ỹ , Ñ , denote arbitrary extensions to a neighborhood Ṽ of N in M, and
define B(X, Y ) = −g(∇X̃N, Ỹ ). Show that this definition does not depend on the extensions.
B is thus a covariant 2-tensor, i.e. an element of Γ(T ∗N ⊗ T ∗N ). Show moreover that B is
symmetric.

5. Let N , (M, g) be as above. Let Bij denote (as usual) the components of the tensor B
with respect to local coordinates on N , and let ḡij denote the induced Riemannian metric
on N . Let k1 . . . kn−1 denote the eigenvalues of Bij with respect to gij. These are known as
the principal curvatures. We call 1

n−1 (k1 + · · ·+ kn−1) = H the mean curvature. Show that

(n − 1)H = gijBij. We call k1 · k2 · · · kn−1 = K the Gauss curvature. Show that if n = 3,
K = 2R where R is the scalar curvature of (N , ḡ). This is the Theorema Egregium of Gauss.
Derive a general relation relating the second fundamental form Bij and the Riemann curvature
tensor Rl

kij, valid in all dimensions n ≥ 2.

6. For a connected Riemannian manifold, prove that metric completeness implies that every p
and q can be joined by a length-minimizing geodesic by filling in the details to the following
sketch: Let δ = d(p, q). Clearly, there exists a sequence of curves γi joining p and q such that
limL(γi) = δ. Extract a convergent subsequence of the γi. Argue that the limit of this sequence
is the desired geodesic.
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Part III Differential Geometry, Prof. M. Dafermos Example Sheet 3

7. Now adapt the above argument to prove the following: SupposeM is compact. If π1(M) is
nontrivial, then for each [γ] ∈ π1(M), there exists a γ̃ ∈ [γ] such that γ̃ is a closed geodesic,
and γ̃ is length minimizing in its homotopy class, i.e. L(γ̃) ≤ L(γ̃′) for all γ̃′ ∈ [γ]. Does the
existence of a closed geodesic in (M, g) imply that π1 is non-trivial?

8. Now let S1 and S2 be smooth closed hypersurfaces in a connected Riemannian manifold
(M, g). Suppose S1 ∩ S2 = ∅, and suppose there exists an ε > 0 and a compact set K, such
that for all p, q ∈M\K, p ∈ S1, q ∈ S2, we have d(p, q) ≥ ε+d(S1,S2). Show that there exists
a curve γ joining S1 and S2 which minimizes the distance between these two hypersurfaces.
Show that γ is a geodesic orthogonal to both hypersurfaces. Now suppose conversely that γ is
some geodesic connecting S1 and S2, which is orthogonal to both hypersurfaces. Show that γ
locally extremizes the length functional for curves joining the hypersurfaces. Show by explicit
example that γ is not necessarily a length minimizing curve. Investigate examples in Euclidean
space.

9. Let (M, g) denote a Riemannian manifold, and let X, and Y be vector fields defined in a
neighborhood of some point p ∈M, such that [X, Y ] = 0 identically. For t0 ≥ 0, let At0 denote
the parallel transport operator correponding to the curve γ : [0, 4t0]→M defined by

t 7→ (φX
t )(p), 0 ≤ t ≤ t0

t 7→ φY
t−t0(φ

X
t0

(p)), t0 ≤ t ≤ 2t0

t 7→ φ−Xt−2t0(φ
Y
t0

(φX
t0

(p))), 2t0 ≤ t ≤ 3t0

t 7→ φ−Yt−3t0(φ
−X
t0

(φY
t0

(φX
t0

(p)))), 3t0 ≤ t ≤ 4t0,

where φX
t denotes the 1-parameter local group of transformations defined by X. We assume that

t0 is sufficiently small so the maps referred to above are defined. Note that At0 : TpM→ TpM.
Show that

At0(Z) = Id− t0R(X, Y )Z + o(t0).

10. Recall the holonomy groups Gp of the previous example sheet. Use the above formula to
show that for “generic” Riemannian metrics, Gp = SO(n). Justify your definition of genericity.
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Differential Geometry Example Sheet 3 Errata

Gabriele Benedetti
Giulio Codogni

January 21, 2013

Question 2 The third equation should be

g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ). (1)

Question 3 The expression for the metric in the hyperbolic space should be

g =
4

(1− ((x1)2 + · · ·+ (xn)2))2
((dx1)2 + · · ·+ (dxn)2). (2)

Question 4 The definition of the bilinear form B should be

B(X,Y ) = −g(∇ eXÑ , Ỹ ). (3)

Question 5 In order to prove the Theorema Egregium of Gauss, you should
assume that (M, g) is a flat manifold. Moreover for n = 3 the equation
should read as

2K = R. (4)

Question 7 The beginning of the third sentence should be changed in “For
each nonzero [γ] ∈ π1(M) there exists a γ̃ ∈ [γ] such that . . . ”.

Question 8 You should also assume thatM is complete.

Question 9 In the expansion for At0(Z) you should substitute t20 for t0, namely

At0(Z) = Id−t20R(X,Y )Z + o(t20). (5)
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Differential Geometry Example Sheet 3 Solutions

Gabriele Benedetti
Giulio Codogni

February 4, 2013

1 Question 2

Consider a vector bundle E over a smooth manifoldM of dimension n and let
∇ be a linear connection on E. We can associate to ∇ its curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (1)

R is a section of the bundle T ∗M⊗ T ∗M⊗ E∗ ⊗ E → M. We will see that
proving Properties A to D will correspond to check that the curvature is actually
a section of particular smaller subbundles of T ∗M⊗ T ∗M⊗ E∗ ⊗ E.

Property A holds without any further assumption and it says that R is
antisymmetric in the first two variables. This means that R is a section of
Λ2T ∗M⊗ E∗ ⊗ E.

Suppose furthermore that E is endowed with an inner product g. In other
words g is a section of the bundle Sym2(E∗) ⊂ E∗ ⊗ E∗ of symmetric bilinear
forms and moreover it satisfies the positivity property

∀x ∈M, ∀Zx 6= 0 ∈ Ex, gx(Zx, Zx) > 0. (2)

We say that g and ∇ are compatible if and only if

X
(
g(Z,W )

)
= g (∇XZ,W ) + g (Z,∇XW ) . (3)

In textbooks, this is sometimes written omitting X as

dg(Z,W ) = g (∇Z,W ) + g (Z,∇W ) . (4)

We can use g to lower one index of the curvature tensor and consider

R∗(X,Y, Z,W ) := g(R(X,Y )Z,W ), (5)

which is now a section of Λ2T ∗M⊗ E∗ ⊗ E∗, since Property A translates into

Property A’ R∗(X,Y, Z,W ) = −R∗(Y,X,Z,W ). (6)

A calculation shows that compatibility of the metric yields Property D. This
condition can also be rewritten as

Property D’ R∗(X,Y, Z,W ) = −R∗(X,Y,W,Z). (7)

1



In other words R∗ is antisymmetric also in the last two entries and therefore it
is a section of Λ2T ∗M⊗ Λ2E∗.

In the following discussion, especially when we will deal with Question 10,
it will be convenient to express the curvature as a linear map on the space of
bivectors Λ2TM. This goal can be achieved in two ways.

i) Define as Endg(E) the subbundle of End(E) = E∗⊗E whose elements are
g-antisymmetric endomorphisms of E. Namely,

L ∈ Endg(E) =⇒ g(LZ1, Z2) = −g(Z1, LZ2). (8)

Then, define R∗ : Λ2TM→ Endg(E) as the bundle map

R∗
(∑

i

Xi ∧ Yi

)
(Z) =

∑

i

R(Xi, Yi)Z. (9)

ii) Using the metric tensor g we can put an inner product on the space of
bivectors Λ2E. On simple bivectors Z1 ∧W1, Z2 ∧W2 it has the form

g̃(Z1 ∧W1, Z2 ∧W2) := g(Z1, Z2)g(W1,W2)− g(Z1,W2)g(W1, Z2). (10)

This inner product allows us to raise the last two indices of R∗ and express
the curvature as an operator R : Λ2TM→ Λ2E. On simple bivectors the
curvature operator is defined as follows

g̃(R(X ∧ Y ),W ∧ Z) = R∗(X,Y, Z,W ). (11)

We analyse now Property C. First of all we observe that, since we are swap-
ping X with Z, we must necessarily have E = TM. Then, Property C says
that R : Λ2TM→ Λ2TM is a symmetric operator with respect to the inner
product g̃ on bivectors introduced before. Hence we see that this condition is
not implied by Property D and it gives a further restriction. Nevertheless one
can ask:

Exercise Does Property C follow from the compatibility with the metric?

Also in this case we rewrite the property using R∗:

Property C’ R∗(X,Y, Z,W ) = R∗(Z,W,X, Y ). (12)

Finally let us deal with the second property of the list. Again we must require
that E = TM. A computation shows that if ∇ is torsion-free, Property B holds.
We point out that the torsion tensor can be defined only for connections on TM.

If we have both metric compatibility with some g and zero torsion, ∇ is the
Levi Civita connection of g. In this case Properties A,B and D hold and yield as
a purely algebraic consequence Property C, i.e. the symmetry of the curvature
operator. Moreover, in the presence of a metric, we can use R∗ in order to
express Property B in the equivalent way

Property B’ R∗(X,Y, Z,W ) +R∗(Y, Z,X,W ) +R∗(Z,X, Y ) = 0. (13)
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We can call FM ↪→ Λ2T ∗M⊗ Λ2T ∗M the subbundle whose element are
tensors η which satisfy Property A’, B’, D’ (and hence also C’ ). Notice that
this space does not depend on g.

Exercise The bundle FM has rank n2(n2−1)
12 , where n is the dimension ofM.

For any metric g onM the following ones are sections of FM:

1. g(X,Y, Z,W ) := g̃(X ∧ Y,W ∧ Z),

2. the Riemann tensor R∗.

2 Question 3

Using stereographic projection we find coordinates (xi) : Sn → Rn such that
the metric is given by

gSn = f2
Sn(r)g0, (14)

where

1. r =
√∑

i(x
i)2 is the function giving the radial distance to the origin,

2. fSn : [0,+∞)→ (0,+∞) is the real function given by

fSn(y) =
2

1 + y2
, (15)

3. g0 is the Euclidean metric on Rn.

In the same way one defines the hyperbolic n-space Hn to be the open unit disc
Bn ⊂ Rn with the metric

gHn = f2
Hn(r)g0, (16)

where fHn : [0, 1)→ (0,+∞) is the real function given by

fHn(y) =
2

1− y2
. (17)

We see that both metrics are conformally flat, hence the spherical angles and
the hyperbolic angles are the same as the Euclidean angles. In particular the
spheres {r = R} are perpendicular to the radial direction in each geometry.
On Spivak’s A comprehensive introduction to differential geometry, Volume II,
Chapter 7, Addendum II you can find the computation of the curvature for
metrics conformal to the flat one, with generic conformal factor f . There f can
be any positive function on some subset of Rn. In this way we give an answer
to the first part of the question.

We will end this section by showing that Hn is complete. In order to prove
this fact we observe that radii are length minimising curves in every confor-
mally flat rotationally symmetric geometry. Hence they are geodesics up to
reparametrisation. Let f be the conformal factor and suppose that it depends
only on the radial distance r. Define F (r) :=

∫ r

0
f(r′)dr′ and introduce polar

coordinates (r, θ). Let γ = (rγ , θγ) be a curve from the origin to some point

3



x0 = (r0, θ0) and let γ0(r) = (r, θ0) be the radial curve defined on [0, r0]. Since
the metric is conformally flat we see that the arc-length satisfies

|γ̇(t)| ≥ |ṙγ(t)|
∣∣∣∣
∂

∂r

∣∣∣∣
r=rγ(t)

= f(r(t))|ṙγ(t)|. (18)

Therefore

`(γ) =

∫

I

|γ̇(t)| dt ≥
∫

I

f(r(t))|ṙγ(t)|dt

≥
∣∣∣∣
∫

I

f(r(t))ṙγ(t)dt

∣∣∣∣

=

∣∣∣∣
∫

I

d

dt
F (r(t))dt

∣∣∣∣
= F (r0)

= `(γ0).

Exercise Actually one can use F to exhibit normal coordinates around the
origin. Just take the diffeomorphism (r, θ) 7→ (F (r), θ). Check that this is
indeed a diffeomorphism and find the expression of the metric in the new
coordinates.

In the hyberbolic case one finds

FHn : [0, 1) → [0,+∞)

r 7→ log
1 + r

1− r
.

Therefore, all the closed balls for the hyberbolic metric centered at the origin
are compact, since

BHn(0, R) = {r ≤ rR}, (19)

where rR = F−1(R) =
eR − 1

eR + 1
= tanh

R

2
< 1. The fact that rR < 1 implies that

{r ≤ rR} is a compact subset of {r < 1}. This is exaclty the smooth manifold
on which we are putting the hyperbolic metric gHn .

3 Question 9

For the case of surfaces this question is simply a variation of the ideas at the
basis of Gauss-Bonnet Theorem. Suppose γ : [0, 1] → S is a closed curve on a
surface S and that γ bounds a region R ⊂ S. The element of the holonomy group
associated to γ (or to R) will be a rotation in the tangent plane at γ(0) = γ(1)
of an angle ∆θ(R). This is the angle between Z(1) and Z(0), where Z is any
parallel vector field along γ. It is given by the formula

∆θ(R) =

∫

R

KdA, (20)

where K is the Gaussian curvature and dA is the area element. If we shrink R
to a point p ∈ S we get

∆θ(R) = K(p)∆A(R) + o(∆A(R)), (21)
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where ∆A(R) is the area of the region R. Taking R as a small parallelogram
whose sides are parallel to some commuting vector fields X and Y we get the
formula contained in the Question.

Now we prove the general case. The following argument is entirely contained
in the graduate project On Parallel transport and curvature by Raffaele Rani,
which you can easily find on the web.

LetM be a Riemannian manifold of arbitrary dimension and let X and Y
be two commuting fields defined near a point p. We can use their flows in order
to construct a map

f : [−t0, t0]× [−t0, t0] → M
(x, y) 7→ ΦX

x

(
ΦY

y (p)
)
.

Then, for each t ≤ t0, we consider the parallelogram of side t parallel to X and
Y . We collect all of them in a family of curves H : [0, t0]× [0, 1]→M:

H(t, s) :=





f(4st, 0), 0 ≤ s ≤ 1/4,

f(t, (4s− 1)t), 1/4 ≤ s ≤ 1/2,

f((3− 4s)t, t), 1/2 ≤ s ≤ 3/4,

f(0, (4− 4s)t), 3/4 ≤ s ≤ 1.

(22)

Hence, for fixed t, the curve Ht := H(t, ·) goes around the parallelogram of side
t as s goes from 0 to 1.

Take now Z0 ∈ TpM and define At(Z0) ∈ TpM as the vector obtained by
parallel transporting Z0 along the whole Ht. Observe that this is the same map
considered in the Example Sheet 3, since the parallel transport does not depend
on the parametrisation of the curve. Our goal will be to compute the expansion
of At(Z0) in t = 0 up to the second order:

• A0(Z0) = ?,
d

dt

∣∣∣
t=0

At(Z0) = ?, • d2

dt2

∣∣∣
t=0

At(Z0) = ?. (23)

Clearly A0(Z0) = Z0, since H0 is the constant path. In order to compute the
first and second derivative we argue as follows.

Denote by P t
s : TpM → THt(s)M the parallel transport operator along

Ht
∣∣
[0,s]

. Then, the extension of Z0 to a vector field Z over [0, t0]× [0, 1] parallel

along each Ht can be written as

Z : [0, t0]× [0, 1] → TM
(t, s) 7→ P t

sZ0.

We have the relations

• Z(t, 0) = Z0, • Z(t, 1) = At(Z0), • ∇∂sZ = 0. (24)

We would like to look for an analogous of d
dtAt(Z0) as s changes. The expres-

sion ∂
∂tZ(t, s) is meaningless, since Z(t1, s) and Z(t2, s) live in TH(t1,s)M and

TH(t2,s)M respectively, which might be different. We overcome this problem by
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using the covariant derivative along the t-direction. Consider the vector field
W (t, s) := ∇∂tZ(t, s) and notice that

• W (t, 0) =
d

dt
A0(Z0) =

d

dt
Z0 = 0, • W (t, 1) =

d

dt
At(Z0). (25)

We now compute the variation of W in s using parallel transport. Indeed,

observe that
(
P t
s

)−1
W (t, s) ∈ Tf(t,0)M = TpM belongs to a fixed vector space

(namely TpM), so that we can take its derivative in s. In order to compute this
partial derivative, remember the formula

d

ds

(
P t
s

)−1
=
(
P t
s)

−1∇∂s . (26)

Exercise Prove identity (26) by writing a vector field along a curve in term of
a parallel basis.

Using the previous relation and the definition of curvature one finds

d

ds

(
P t
s

)−1
W (t, s) =

(
P t
s

)−1∇∂s∇∂tZ(t, s)

=
(
P t
s

)−1
(
RH(t,s)(∂t, ∂s)Z(t, s) +∇∂t∇∂sZ(t, s)

)

=
(
P t
s

)−1 ◦RH(t,s)(∂t, ∂s) ◦ P t
s

(
Z0)

= Rt,s(Z0),

where we have defined

Rt,s :=
(
P t
s

)−1 ◦RH(t,s)(∂t, ∂s) ◦ P t
s ∈ Endg(TpM) . (27)

Integrating the previous relation between 0 and 1, we get

(
P t
1

)−1
W (t, 1)−

(
P t
0

)−1
W (t, 0) =

(∫ 1

0

Rt,sds

)
(Z0) (28)

and finally
d

dt
At(Z0) = W (t, 1) = P t

1

(∫ 1

0

Rt,sds

)
(Z0) (29)

Let us write down Rt,s:

Rt,s =

{
0 0 ≤ s < 1/4 or 3/4 < s ≤ 1,

t
(
P t
s

)−1 ◦RH(t,s)(X,Y ) ◦ P t
s 1/4 ≤ s ≤ 3/4.

(30)

Therefore,

d

dt
At(Z0) = tP t

1

(∫ 3/4

1/4

(
P t
s

)−1 ◦RH(t,s)(X,Y ) ◦ P t
sds

)
(Z0). (31)

Taking derivatives we see that

• d

dt

∣∣∣
t=0

At(Z0) = 0,

• d2

dt2

∣∣∣
t=0

At(Z0) = P 0
1

(∫ 3/4

1/4

RH(t,0)(X,Y )ds

)
(Z0) = 2Rp(X,Y )Z0

These identities prove the expansion

At(Z0) = Z0 + t2Rp(X,Y )Z0 + o(t2). (32)
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4 Question 10

From an intuitive point of view we would like to prove that we can always
perturb a little an arbitrary (M, g) and get another Riemannian manifold with
Gp = SO(n) at some point p ∈M (and hence at any point). We will see that it
is enough to fixM and p ∈ M and vary only the metric in an arbitrary small
neighbourhood of the point. Thus we consider the set

Met(M) := {g ∈ Γ(Sym2(T ∗M)), g positive definite} (33)

and we are going to endow it with a sufficiently strong topology τ (namely
Hausdorff). We would like to prove that the subset

B := {g ∈ Met(M) | Gp = SO(n)} (34)

is topologically big. The easiest way to define a topological size is to say that a
set is big if it has an open and dense subset. The previous question helps us
finding such a subset. We need first the following nontrivial fact.

Theorem 1. The holonomy group at p is a Lie subgroup of SO(n). In particular
it is a smooth submanifold of SO(n).

From this important result we see that Gp is the whole special orthogonal
group if and only if it contains a neighbourhood of the identity e. Indeed,
suppose that Gp contains a neighbourhood U of the identity. Then, if h ∈ Gp,
the set h ·U , which is a neighbourhood of h, is contained in Gp. This fact shows
that Gp is an open subgroup of SO(n). However, since

SO(n) \ Gp =
⋃

h/∈Gp

h · Gp, (35)

we see that also its complement is an open set. Since SO(n) is connected this
implies that Gp = SO(n).

Now we observe that checking if Gp is a neighbourhood of the identity e is
the same as checking

TeGp = TeSO(n) (36)

because of the Inverse Function Theorem. The vector space TeSO(n) corre-
sponds to the g-antisymmetric linear maps. In Question 2 we used for it the
notation Endg(TpM). Then, the results contained in Question 9 imply

R∗
p(Λ

2
pM) ⊂ TeGp ⊂ Endg(TpM), (37)

where R∗ is the curvature operator defined in Question 2. Therefore if the
linear map R∗

p associated to some metric g is surjective, we can conclude that
g ∈ B. Since Λ2

pM and EndA(TpM) have the same dimension this is the same
as asking for R∗

p to be an isomorphism.
On the other hand since Rp and R∗

p are related by some form of metric
duality we can require equivalently that Rp is an isomorphism. Since Rp is
an endomorphism of Λ2TM, we can check this property by looking at the
determinant of Rp. Hence we consider the following real function on Met(M):

Dp : Met(M) → R
g 7→ detRp.
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All the previous discussion can be summarised in

{Dp 6= 0} ⊂ B. (38)

Thus, the goal for the rest of this section will be to show that {Dp 6= 0} is open
and dense with respect to the topology τ . In order to achieve this result we will
need τ with the following two properties

i) D is continuous,

ii) for any u ∈ Γ(Sym2(T ∗M))

lim
ε→0

g + εu = g. (39)

As far as the first property is concerned, we notice that, taking local coordi-
nates around p, Dp(g) becomes a polynomial in the coefficient of the curvature
tensor. These in turn are polynomials in the Taylor expansion of the coefficients
of the metric up to second order at p. From this observation we see that, in
order to achieve the first condition, τ must control the derivative of the metric
g up to second order.

We will postpone the actual construction of the topology until the end of
this section. Now let us point out as the two conditions we gave guarantee that
{Dp 6= 0} is open and dense.

On the one hand openness stems from the fact that the preimage under a
continuous map of an open set is open.

On the other hand, in order to show that {Dp 6= 0} is dense, it is sufficient
to find a section u such that the set

{ε | Dp(g + εu) 6= 0} ⊂ R (40)

has ε = 0 in its closure. The second condition previously imposed on τ guaran-
tees that this is enough.

Let us prove the existence of such an u. First of all consider a coordinate
chart (xk) : (U, p)→ (Rn, 0) around p. Let gij and R∗

iklj the coordinate expres-
sion of g and R∗ respectively. For the sake of notation we will denote partial
derivatives of a function f in the chart by

∂

∂xk
f = f,k. (41)

Suppose now that in the coordinates (xk) the metric g is Euclidean up to the
first order at p. Namely, we are asking that

• gij(0) = δij , • gij,k(0) = 0. (42)

Observe that such coordinates always exist, since normal coordinates around p
satisfy these two properties.

Take η∗ ∈ FRn

0 an element in the fibre over the origin of the subbundle of
T ∗Rn ⊗ T ∗Rn ⊗ T ∗Rn ⊗ T ∗Rn introduced in Question 2. Let η∗iklj be the coor-
dinates of η∗ with respect to the standard basis. As we did when we discussed
Question 2 we can associate to η∗ an operator H : Λ2Rn → Λ2Rn, using the
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duality induced by the flat metric δij . We shall assume that detH 6= 0. We
claim that such an η∗ can always be found. We start with the identity map
Id : Λ2Rn → Λ2Rn. Then we take the duality isomorphism in the opposite di-
rection to get a form id∗ ∈ Rn∗⊗Rn∗⊗Rn∗⊗Rn∗ whose coordinates expression
is

id∗iklj = δijδkl − δikδjl. (43)

From one of the exercises in Question 2 we know that id∗ belongs to FRn

0 and
thus the claim is proved.

We now define u locally around p in the (xk) coordinates as

uij := −
1

3

∑

k,l

η∗ikljx
kxl (44)

and away from p we cut u to zero using a bump function. Since η∗ satisfies
Property C’, we know that u is indeed a symmetric bilinear form. The local
expression for gε := g + εu is

gεij = gij −
ε

3

∑

k,l

η∗ikljx
kxl, (45)

so that all the metrics gε are Euclidean up to the first order at p and

gεij,kl(0) = gij,kl(0)−
ε

3
(η∗iklj + η∗ilkj). (46)

In the following lemma we describe how to compute the curvature R∗ in
coordinates for these kind of metrics.

Lemma 1. Suppose that gij is a metric on Rn which is Euclidean up to the
first order at the origin. Then its curvature tensor satisfies

2R
∗
iklj(0) = gil,kj(0) + gkj,il(0)− gij,kl(0)− gkl,ij(0) (47)

= Aj,l

(
gil,kj(0)− gkl,ij(0)

)
, (48)

where Aj,l is the antisymmetrisation operator in the indexes j and l.

Exercise Prove the Lemma by computing the Christoffel symbols first.

We can apply the lemma to gε. Using identity (46), we get

2R∗ε
iklj(0) = 2R∗

iklj(0)−
ε

3
Aj,l

(
η∗ikjl + η∗ijkl − η∗kijl − η∗kjil

)
. (49)

Applying Property B’ to the second summand we find

Aj,l

(
η∗ikjl + η∗ijkl − η∗kijl − η∗kjil

)
= −6η∗iklj . (50)

Therefore we have found the relation

R∗ε
iklj(0) = R∗

iklj(0) + εη∗iklj . (51)

Switching to the operator formulation we rewrite this identity as

Rε
p = Rp + εH. (52)
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We can use this formula to compute the determinant:

det
(
Rε

p

)
= det (Rp + εH)

= det(H)ε(
n
2) + . . .+ det(Rp).

Hence Dp(g
ε) is a polynomial in the variable ε whose leading coefficient is

nonzero because of the assumptions we made on H. Since the polynomial is
nonzero, its zeroes are isolated and therefore the statement about density has
been proven.

Finally it remains to check that we can find τ as claimed. Let us choose

i) a natural number r bigger than or equal to 2;

ii) a finite collection of charts forM,
−→
φ = (φa : Ua → Va)a∈A , where Ua ⊂M

and Va ⊂ Rn;

iii) a finite collection of compact sets
−→
K = (Ka)a∈A such that

• Ka ⊂ Ua, • M =
⋃

a∈A

Ka. (53)

Define the following distance between elements g1 and g2 of Met(M)

dr
(
−→
φ ,

−→
K)

(g1, g2) := max
a∈A

{
sup

x∈φa(Ka)

∣∣∣(φ−1
a )∗g1 − (φ−1

a )∗g2
∣∣∣
r
(x)

}
, (54)

where | · |r takes into account the derivatives up to order r:

|h|r(x0) :=
r∑

|α|=0

∣∣∣∣
∂|α|

∂xα
h(x0)

∣∣∣∣ . (55)

Exercise Check that dr
(
−→
φ ,

−→
K)

induces a topology with the required properties.
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24th of January 2013

Exercise 1 You can take any proper open geodesically convex subset of a
complete manifold. A good example is a finite interval inside a line, or any ball
inside an Euclidean space.

For the second example, you can take a sphere minus a point, or a flat torus
minus a point.

Review on metric space Let (T, d) be a metric space. T is complete if
every Cauchy sequence converges. Let K be a subspace of T . K is totally
bounded if, for every positive ε, there exists a finite collection of points ki of
K such that K is contained in the union of the balls of centre ti and radius ε.
The following fact holds: If T is complete and K is closed, then K is compact
if and only if it is totally bounded. This property is needed in the proof of the
following lemma

Lemma 0.1. Let (M, g) be a finite dimensional Riemannian manifold. Call D
the distance induced by g. If M is complete with respect to D, then, for every
point p and every positive number R, the closed ball of centre p and radius R
is compact.

Proof. Fix p, and call BR the closed ball B(p,R). Call I ⊂ R>0 the set of R
such that BR is compact. If some r is in I, then I contains the interval (0, r],
this because a closed subset of a compact set is compact. We are going to prove
that I is non-empty, open and close.

Non-empty. Take a local chart U around p, this is isomorphic (as a topolog-
ical space) to an open subset of Rn. If R is small enough, then BR is contained
in U , so BR is compact and R is in I.

We will need the following auxiliary fact (which does not hold in a generic
metric space). Let R and δ be positive numbers, and call ∂ the boundary of
B(p,R).

B(p,R+ δ) ⊂ B(p,R) ∪
⋃

q∈∂

B(q, δ). (1)

The proof is as follow. Pick a point x of B(p,R + δ), let γ be a path from p
to x. The length of γ, L(γ), is equal to R + δ + ε. Because of the definition of
D, we can not assume that ε is zero, but we can take it as small as we wish.
The distance is continuous, so there exists a t such that D(p, γ(t)) = R, i.e.
γ(t) ∈ ∂, call a := γ(t). The length of the path γ restricted to [t, 1] is δ + ε, so
D(a, x) ≤ δ + ε. We have shown that

B(p,R+ δ) ⊂ B(p,R) ∪
⋃

q∈∂

B(q, δ + ε)

1



for every positive ε. The intersection of infinitely many closed set is closed, so
we get the claim.

Open. Suppose that R is in I, we prove that, for some δ, R+δ is in I as well,
so (0, R+ δ) is in I and I is open. The boundary ∂ of BR is compact, so we can
pick a (small) r such that the ball B(q, r) is compact for every q in ∂. We cover
∂ with a finite number of balls B(qi,

r
2 ). Call Z the union of B(p,R) and the

balls B(qi, r), we want to show that Z contains the ball C := B(p,R+ r
2 ). Take

x in C \BR, because of 1 there exists q in ∂ with D(q, x) ≤ r
2 . By construction,

there exists qi with D(qi, q) ≤ r
2 , we conclude that D(qi, x) ≤ r, so x is in Z.

The set Z is a finite union of compact sets, so it is compact. The ball C is a
closed subset of a compact set, so it is compact, we conclude that R+ r

2 is in I.
Closed. Take a sequence Rn in I converging to R. Fix N such that

| R−RN |< ε .

Cover B(p,RN ) with a finite number of balls Bj of radius ε. Since the boundary
∂ is compact, there exists a finite collection qi of points on the boundary such
that the balls B(qi,

ε
2 ) cover ∂. Because of 1, the ball B(p,R) is contained in

the union of the balls Bj and B(qi, ε), so B(p,R) is totally bounded. Now we
use that M is complete and we conclude that B(p,R) is compact. (Warning:
we can not assume that the ball B(qi, ε) are compact)

General idea for exercises from 6 to 8 We consider some space of
“regular” paths P and the functional given by the length

L : P → R>0

If L has a (local) minimum, using variational formulae we show that this min-
imum, up to reparemetrization, is a geodesic with the requested properties.
There might be regularity issues, according to the space we are dealing with.
A good discussion about space of paths is in the book “Riemannian Geometry
and Geometric Analysis”, 2nd edition, by J. Jost, section 5.4 .

To show that this minimum exists, we will need to construct some (finite
dimensional) subspace K of P . First, we will show that for every γ in P there
exists an η in K such that L(η) ≤ L(γ). Then, we will show that, for a suitable
topology, K is compact and L is continues. Another possibility is to use Ascoli-
Arzela’ theorem.

Exercise 6 Fix points p and q on M , call R their distance. To solve our
problem we can replace M with a ball of centre p and radius bigger than R (say
2R), so we can assume that M is compact.

Let V be the space of paths γ from p to q such that γ is defined on the
interval [0,1] and it is piece-wise C∞. A (local) minimum of L is a smooth
geodesic because of the first variational formula. Consider the functional given
by the energy:

E : V → R>0

γ 7→
∫
I
g(γ̇, γ̇)

We could endow V with a distance which makes both L and E continues, but
actually we do not need it. This metric is discussed in the book suggested
before.
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Lemma 0.2. Let γ be a path defined on an interval I = [0, l], then

L(γ)2 ≤ lE(γ)

Proof. Holder’s inequality says

(

∫

I

√
g(γ̇, γ̇) · 1)2 ≤

∫

I

g(γ̇, γ̇)

∫

I

1

the RHS is equal to E(γ)l.

For every positive constant C, let

VC := {γ s.t.E(γ) ≤ C}

If we take C to be R2+ ε, for some positive ε, then for every γ in V there exists
an η in VC with L(η) ≤ L(γ). So it is enough to look for the global minimum
of L on VC , instead than on V . We still need a smaller space of paths.

We know that for every x in M , there exists a number ρ(x) such that any
point of the ball B(x, ρ(x)) can be joined to x via a unique geodesic. Since all
balls are compact and M is compact as well, we can find a positive number ρ
such that for every point x and every couple of points a and b in the ball B(x, ρ)
there exists a unique geodesic from a to b contained in the ball.

Let S = {t1, . . . , tk} be a subset of I, with ti < ti+1, t1 = 0 and tk = 1. Call
S̄ the subset of VC of paths which are geodesic away from the points ti. This
set could be empty, or very big.

We now fix an S such that

| ti − ti+1 |≤
ρ2

C

for every i. With this choice, we will see that S̄ is quite nice. We construct a
“regularising” operator

R : VC → S̄

as follow. Given a path γ, because of the lemma we have

D(γ(ti), γ(ti+1)) ≤ ρ

so there exist a unique geodesic from γ(ti) to γ(ti+1). We define R(γ) to be
the union of the geodesics from γ(ti) to γ(ti+1) for every i. (In particular, this
shows that S̄ is not empty.) Inside every ball, the geodesic is a length-minimize
path, so

L(R(γ)) ≤ L(γ) .

Now, we need to find a minimum for L in S̄. A path γ in S̄ is uniquely
determined by the values of γ(ti). Let us denote by Mk the k-fold product of
M . We have an injective map

S̄ ↪→ Mk−2

γ 7→ (γ(t2), . . . , γ(tk−1))

In particular, S̄ can be identified with the set

{(x2, . . . , xk−1) | D(xi, xi−1) ≤ ρ} (2)
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where x1 = p and xk = q. S̄ inherits a topology from Mk−2, with this topol-
ogy it is a closed subset of Mk−2. Since Mk−2 is compact, S̄ itself is compact.
The functional L is continue on S̄, so it has a global minimum.

Exercise 7 The solution of this exercise is similar to the solution of exercise
6. We just point out the difference.

Fix a class [γ] in π1(M,p). Pick a C∞-representative γ, replacing M with
B(p, L(γ)) we can assume that M is compact.

We define VC as before, but we take p = q and we ask that every loop has
the homotopy type of γ.

We can define S and S̄ in the same way. We have to check that the homotopy
type of R(γ) is the same of γ for every loop γ. Call γi the restriction of γ to the
interval [ti, ti+1]. We need to show that the image of γi is contained in a simply
connected set, so it can be deformed to the geodesic joining γ(ti) and γ(ti+1).
To get this, we need that L(γi) ≤ ρ, so the condition

| ti − ti+1 |≤
ρ2

C

is enough.
The description 2 of S̄ does not work any more. We need to show that S̄

is closed in Mk−2. Given a sequence γn in S which converges, we just need to
show that the limit has the same homotopy time of γn. Which is doable.

An example of simply connected Riemannian variety with closed geodesic
is the sphere. In this case, every geodesic is closed and contractible. Another
interesting example is the flat torus: there are many closed geodesics, but none
of them is contractible.

Exercise 8 To show the existence of γ we argue as in exercise 6. Now, VC

is the space of paths with starting point in S1 and ending point in S2. Looking
for the minimum, we can restrict our attention to paths with starting point
in K ∩ S1 and ending point in K ∩ S2. With this choice, S̄ is a subset of
K ×Mk−2 ×K, which is compact because both K and M are. So the global
minimum exists.

We now have to write down carefully the first variational formula for γ: since
the start and end points are moving, we have a boundary term in the integral.
Consider a vector field v(t) along γ, this defines a variation with parameter s,
we have

dγs
ds

(0) = usual terms + g(v(0), γ̇(0)) + g(v(1), γ̇(1))

Usually both v(0) and v(1) are zero, because the starting and ending points are
fixed. In our case, they are vectors tangent to S1 and S2 respectively. Using
bump functions one shows that

g(v(0), γ̇(0)) = 0

for every vector v(0) tangent to S1, so γ is orthogonal to S1. The same holds
for S2. This computation shows as well that if γ is a geodesic orthogonal to S1

and S2, then
dγs
ds

(0) = 0

for every variation γs.
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