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Udine, via Tomadini 30-A, Udine (Italy) antonino.zanette@uniud.it

Summary. We numerically compare some recent Monte Carlo algorithms devoted
to the pricing and hedging American options in high dimension. In particular, the
comparison concerns the quantization method of Barraquand-Martineau and an
algorithm based on Malliavin calculus. The (pure) Malliavin calculus algorithm im-
proves the precision of the computation of the delta but, merely for pricing purposes,
is uncompetitive with respect to other Monte Carlo methods in terms of computing
time. Here, we propose to suitably combine the Malliavin calculus approach with
the Barraquand-Martineau algorithm, using a variance reduction technique based
on control variables. Numerical tests for pricing and hedging American options in
high dimension are given in order to compare the different methodologies.
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1 Introduction

Pricing and hedging American options in high dimension is one of the most
interesting and open problems on the practical side and on the theoretical
one in the field of computational finance. From a practical point of view, to
find an efficient numerical solution for the price and the delta of an American
option written on d assets is really a challenge when d is high (say, d > 3).
The straightforward application of standard numerical schemes (e.g. finite
difference, finite element or lattice methods) fails due to the so-called “curse
of dimension”: the computational cost and the memory requirement increase
exponentially as the dimension of the problem increases. Therefore, variational
inequalities for parabolic problems in dimension d larger than 3 cannot be
solved in practice by conventional, deterministic methods and thus, Monte
Carlo methods appear as the the only practicable way.
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In the last years, several new ideas appeared in this field. Roughly speaking
they may be divided in three main families. In the first one, a tree is built
up in order to obtain a discretization of the underlying diffusion on a grid;
this family includes, for example, the Broadie and Glasserman algorithm [3],
the quantization algorithm developed by Bally, Pagés and Printems [2] or the
Barraquand and Martineau method [4]. The second idea is to use regression
on a truncated basis of L2-spaces in order to compute the conditional expec-
tations, as it has been done by Longstaff and Schwartz [12] and by Tsisiklis
and Van Roy [14]. Finally, in the papers [5], [7], [8] and [11], the authors de-
velop representation formulas for the conditional expectation using Malliavin
calculus and then employ them in order to perform a Monte Carlo algorithm.
The peculiarity of this last approach is that it appears as a pure Monte Carlo
method despite the nonlinearity.
Another problem of interest is to compute the sensitivity of the solution with
respect to some parameter (hedging and Greeks). It seems that Malliavin
calculus is an especially promising tool for solving such a problem. It has
been used for example by Lions and Reigner [11] and Bouchard and Touzi
[5], who follow the third method, as well as by Bally, Pagés and Printems [2],
where the quantization algorithm is employed. In [1], Bally, Caramellino and
Zanette give a simplified presentation of this topic, including some reduction of
variance techniques and with a special interest to the practical implementation
and performance of the method.
As a conclusion, it seems that all methods give quite good results for the
numerical pricing, but the Malliavin calculus approach behaves in the best way
when the numerical hedging is considered. Since the (pure) Malliavin calculus
method turns out to be also much slower than the others, the idea is to mix
it with some other faster algorithm. Therefore, in this paper we we study
some combinations between the Malliavin calculus techniques and the pricing
quantization algorithm by Barraquand-Martineau, chosen for the simplicity
of the implementation, the accuracy of the pricing results and because it runs
quickly.
The outline of the paper is as follows: Section 2 is devoted to the framework of
Monte Carlo methods for pricig/hedging American options; in Section 3 and
4, the Malliavin calculus method and the Barraquand-Martineau algorithm
are briefly described; Section 5 develops the variance reduction technique here
used; finally, numerical tests and results are given in Section 6.

2 Pricing/hedging American options: the Dynamic
Programming principle

Let (Ω,F ,P) be a probability space where a d-dimensional Browinan motion
W is defined and set Ft = σ(Ws : s ≤ t). Let X = (Xt)t∈[0,T ] denote the
process (on Rd) of the asset prices, which as usual evolves as a diffusion pro-
cess. An American option with maturity T underlying the asset price process
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X, is an option whose holder can exercise his right of option in any time up
to T . If Φ(Xs) denotes the associated cash-flow, the price at time t of such an
option is then

P (t, x) = sup
τ∈Tt,T

Et,x

(
e−r(τ−t)Φ(Xτ )

)
(1)

where, here and in the following, Et,x denotes the expectation conditional to
Xt = x and Tt,T stands for the Ft-stopping times taking values in [t, T ]. It is
well known that the price function P (t, x) solves a PDE problem with obstacle
allowing to set up a Dynamic Programming Principle, which in turn gives the
following analytical approximation for the function P :

Theorem 1. Given ∆t = T/n ∈ (0, 1), let (X̄k∆t)k=0,1,...,n a discretization
for (Xt)t∈[0,T ]. Define P̄n∆t(X̄n∆t) = Φ(X̄n∆t) and for any k = n−1, . . . , 1, 0,

P̄k∆t(X̄k∆t) = max
(
Φ(X̄k∆t) , e−r∆t E

(
P̄(k+1)∆t(X̄(k+1)∆t)

∣∣∣ X̄k∆t

))
.

Then P̄k∆t(X̄k∆t) ' P (k∆t,Xk∆t).

Let us remark that the above statement is heuristic and a rigorous formulation
supposes to precise the hypothesis on the diffusion coefficients and on the
regularity of the obstacle Φ (see Bally, Pagés and Printems [2]).
Monte Carlo algorithms are based on the dynamic programming principle
above. They are obviously backward and, roughly speaking, can be summa-
rized as follows. Take tk = k ∆t, as k = 0, 1, . . . , n and, for example, consider
X following the Black-Scholes model (geometric Brownian motion).

Step n: simulation of (W q
tn

)q=1,...,M

↪→ simulation of (Xq
tn

)q=1,...,M

↪→ computation of (P̄tn(Xq
tn

))q=1,...,M: P̄tn(Xq
tn

) = Φ(Xq
tn

).

Step n− 1: given (W q
tn

)q=1,...,M

↪→ simulation of (W q
tn−1

)q=1,...,M (use Brownian bridge)

↪→ simulation of (Xq
tn−1

)q=1,...,M

↪→ computation of (P̄tn−1(X
q
tn−1

))q=1,...,M:

P̄tn−1(X
q
tn−1

) = max
(
Φ(α) , e−r ∆T E(P̄tn(Xtn) |Xtn−1 = α)︸ ︷︷ ︸

♣

)∣∣∣
α=X

q
tn−1

... ← Step k = n− 2, . . . , 1

[
replace n− 1 with k; at the end, the

samples (P̄t1(X
q
t1

))q=1,...,M are available

]

Step 0: computation of the price:

P̄0(x) = max
(
Φ(x), e−r ∆t 1

M
P̄t1(X

q
t1

)
)



4 Lucia Caramellino and Antonino Zanette

In practice, this procedure gives rise to the problem of the computation of a
large number of conditional expectations (terms ♣). Now, in order to handle
this problem, one can

(a1) approximate by means of a stratification of the path space ([3], [2], [4]);
(a2) approximate by means of regression methods ([12], [14]);
(a3) use representation formulas involving non conditioned expectations ([1],

[6], [8], [11]).

Now: what about the delta? Recall that the delta Greek is given by ∆(t, x) =
∂xP (t, x). The two main tools are given by:

(b1) the finite difference method, that is

∆(0, x) ' ∆̄0(x) =
1
2δ

(
P̄0(x + δ)− P̄0(x− δ)

)
(2)

where δ is chosen “small enough”;
(b2) representation formulas for the derivative of conditional expectations

involving non conditioned expectations ([1], [6], [8], [11]), which will be
better clarified in the sequel.

It is well known that the finite difference method does work poorly, especially
whenever the function Φ is not regular, so that it would be very important to
perform a careful study of the second method.
Now, in the following sections we briefly recall the main procedures we will
take into account, that is:

- the (pure) Malliavin calculus algorithm, using in some sense (a3) and (b2);
- the (standard) Barraquand-Martineau method, considering (a1) and (b1);
- an algorithm following (a1) and (b3): it gives the price by the Barraquand-

Martineau algorithm and evaluates the delta through Malliavin calculus.

Our framework for the evolution of the underlying asset price process will
be the multidimensional Black and Scholes model: under the risk neutral
measure,

dXi
t = (r − ηi)Xi

t dt +
d∑

k=1

σik Xi
t dW k

t , t ∈ (0, T ], i = 1, . . . , d, (3)

with X0 = x ∈ Rd
+, r being the (constant) spot rate, η1, . . . , ηd the continuous

dividends and σ the volatility matrix.

3 The (pure) Malliavin calculus algorithm

The (pure) Malliavin calculus algorithm is based on representation formulas
of the conditional expectation in terms of non conditional ones, as developed
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in [1], [5], [7], [8] and [11], and follows the dynamic programming principle
described before. It makes use of the following results in order to evaluate
the conditional expectations and their derivatives involved in the simulation
programme (for notations, proofs and comments we refer to [1]).

3.1 Price

Without loss of generality, one can suppose that the volatility matrix σ is a
sub-triangular matrix, that is σij = 0 whenever i < j. Thus, any component
of Xt can be written as

Xi
t = xi exp

(
hit +

i∑

j=1

σijW
j
t

)
, i = 1, . . . , d (4)

where hi = ri − ηi − 1
2

∑i
j=1 σ2

ij , i = 1, . . . , d. To our purposes, let us set

X̃i
t = xi exp

(
hi t + σiiW

i
t

)
, i = 1, . . . , d. The main facts for the introduction

of X̃ are: X̃ has independent components and for any t ≥ 0, there exists
an invertible transformation Ft(·) : Rd

+ → Rd
+ such that Xt = Ft(X̃t) and

X̃t = F−1
t (Xt): F 1

t (y) = y1 and as i = 1, . . . , d,

F i
t (y) = yi

i−1∏

j=1

( yj

xj
e−hjt

)σ̃ij

, where σ̃ij =
σij

σjj
(5)

(so, Ft allows to handle X̃ in place of the original process X). Then, one has

Theorem 2. For any 0 < s < t, Φ with polynomial growth and α ∈ Rd
+, the

following localized representation formula holds:

E(Φ(Xt) |Xs = α) =
E(Φ(Xt)Θ

ψ
s,t(α))

E(Θψ
s,t(α))

(6)

where either ψ = 0 (i.e. no localization is considered) or ψ(x) =
∏d

i=1 ψi(xi),
x = (x1, . . . , xd) ∈ Rd, with ψi ≥ 0 and

∫
R ψi(ξ)dξ = 1, and the weight Θψ

s,t is
given by:

Θψ
s,t(α) =

d∏

i=1

[
ψi(Xi

s − αi) +
H(X̃i

s − α̃i
s)− Ψi(X̃i

s − α̃i
s)

σiis(t− s)X̃i
s

∆W i
s,t

]

being: H(ξ) = 1{ξ>0}, Ψi = 0 if ψ = 0, otherwise Ψi(y) =
∫ y

−∞ ψi(ξ)dξ;
α̃s = F−1

s (α), where F−1
s is the inverse function of Fs, defined in (5); ∆W i

s,t =
(t− s)(W i

s + σiis)− s(W i
t −W i

s).
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Let us spend some words about the localizing function ψ. The non localized
representations, that is ψ = 0, do not work in practice, mainly because the
involved Heaviside function H(ξ) = 1{ξ>0} provides high dispersion. There-
fore, the use of ψ turns out to be essential. Now, one could think to choose ψ
such that H − Ψ is small, but not too much otherwise ψ becomes “close” to
the Dirac mass δ0. In [1], an optimization method for the choice of the “right”
function ψ is studied (involving a suitable “integrated variance”, following
Kohatsu-Higa and Petterson [10]). The result is that a good choice (either
from a theoretical and practical point of view when t− s is small, and this is
the case) is given by a multivariate Laplace probability density function:

ψ∗(x) =
d∏

j=1

φ∗(xj), x = (x1, . . . , xd), where φ∗(ξ) ∝ e−|ξ|/
√

t−s. (7)

3.2 Delta

For the computation of the delta ∆(t, x) = ∂xP (t, x), one uses the following

Proposition 1. For any ∆t = T/n ∈ (0, 1), set

Γ∆t = {α ∈ Rd ; P̄∆t(α) = Φ(α)},

where P̄∆t(α) is the approximation of the price from the dynamic programming
principle, that is P̄∆t(α) = max

(
Φ(α) , e−r∆t E

(
P̄2∆t(X̄2∆t)

∣∣∣ X̄∆t = α
))

.

Then, by setting

∆̄(α) = ∂α Φ(α)1Γ∆t
+ e−r∆t∂α E

(
P̄2∆t(X̄2∆t)

∣∣∣ X̄∆t = α
)
1Γ c

∆t
and

∆̄0(x) = Ex

(
∆̄(X̄∆t)

)

where ∂α denotes the gradient, one has ∆(0, x) ' ∆̄0(x)

Again, such an assertion is heuristic and a rigorous statement, including error
bound, turns out to be a more difficult problem (in [2] a bound is given in a
weak sense).
Now, in order to compute the derivative of the conditional expectation, one
makes use of the following representation formula, giving such a derivative in
terms of non conditioned expectations:

Theorem 3. For any 0 < s < t, Φ with polynomial growth and α ∈ Rd
+, the

following localized representation formula holds:

∂αE(Φ(Xt) |Xs = α) =
E(Φ(Xt)Υ

ψ
s,t(α))E(Θψ

s,t(α))− E(Θψ
s,t(α))E(Υψ

s,t(α))

(E(Θψ
s,t(α)))2

,

(8)
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where the localizing function ψ enjoys the same properties as in Theorem 2
and the weight Υψ

s,t = (Υψ
s,t;1, . . . , Υ

ψ
s,t;d) is given by:

Υψ
s,t;j(α) = −

j∑

k=1

σ̂kj
α̃k

s

αj
×

[
ψk(X̃k

s − α̃k
s )

∆W k
s,t

σkks(t− s)X̃k
s

+

+
H(X̃k

s − α̃k
s )− Ψk(X̃k

s − α̃k
s )

σkks(t− s)(X̃k
s )2

( (∆W k
s,t)2

σkks(t− s)
+ ∆W k

s,t −
t

σkk

)]
×

×
d∏

i=1,i 6=k

[
ψi(X̃i

s − α̃i) +
H(X̃i

s − α̃i
s)− Ψi(X̃i

s − α̃i
s)

σiis(t− s)X̃i
s

∆W i
s,t

]

Ψi, α̃i
s, ∆W i

s,t being defined in Theorem 2 and σ̂ = σ̃−1, with σ̃ as in (5).

The previous remarks on the importance of ψ hold as well and again, numerical
and theoretical evidence shows that ψ can be taken as in formula (7).

4 The Barraquand-Martineau algorithm

The Barraquand-Martineau algorithm (see [4]) allows to numerically compute
the price of an American option by making use of a quantization method
acting on a one dimensional dynamical programming algorithm. Let us briefly
describe it.

4.1 Price

To overcome the “curse of dimension” problem, Barraquand and Martineau
propose to approximate the optimal stopping strategy by the following sub-
optimal one. Assume that the option holder knows at time t the payoff values
{Φ (Xu) ; u ≤ t} but not the stock values {Xu; u ≤ t}. Then, the option holder
can only exercise according to a strategy optimizing

sup
τ∈S0,n

E
(
e−r τΦ (Xτ )

)
(9)

where S0,n is the set of the Gt-stopping times taking values in {t0, t1, . . . , tn},
with tk = k ∆t, and (Gt)t being the filtration generated by the payoff process:
Gt = σ(Φ(Xs) : s ≤ t). To compute (9), a dynamic programming principle
can be set up:

{
Qn := Φ (Xtn)
Qj−1 := max

(
Φ

(
Xtj−1

)
, e−r∆t E(Qj | Gtj−1)

)
, j = n, . . . , 1.

(10)

Since the process (Φ (Xt))t≥0 is (in general) not Markov with respect to (Gt)t,
a second approximation is done and (10) is replaced by
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{
P̂n := Φ (Xtn

)
P̂j−1 := max

(
Φ

(
Xtj−1

)
, e−r∆t E(P̂j |Φ(Xtj−1))

)
, j = n, . . . , 1.

(11)

Barraquand and Martineau then use (11) in order to numerically compute the
price of an American option with payoff function Φ and propose to compute
the involved conditional expectations through a quantization technique (in
few words, this means to use suitable weights built from an approximation
of the process (Φ(Xt))t; for details see [4], where the method is developed).
Notice that the algorithm becomes now one dimensional.

4.2 Delta

In the paper by Barraquand and Martineau, no suggestions are given for the
computation of the delta, so that a standard implementation of the algorithm
would use the standard finite difference method (see (2)).
However, one could also follow the same procedure used in the (pure) Malli-
avin algorithm, described in Section 3.2, or also something of simpler. Let
us explain the simple way (the procedure as in Section 3.2 is an immediate
generalization).
Let us come back to the dynamic programming principle described in Section
2. Then, the delta can be numerically computed as

∆̄0 =





∂x Φ(x) if Φ(x) > e−r∆t E0,x

(
P̄t1(Xt1)

)

e−r∆t∂x E0,x

(
P̄t1(Xt1)

)
if Φ(x) < e−r∆t E0,x

(
P̄t1(Xt1)

)
.

As for the computation of the derivative of the conditional expectation, one
can use the typical formula coming from Malliavin calculus technique (see e.g.
[7]):

∂xE0,x

(
P̄t1(Xt1)

)
= E0,x

(
P̄t1(Xt1)π∆

)

where π∆ = (π∆
1 , . . . , π∆

d ) is a suitable weight which, in the case of the Black
and Scholes model, enjoys the formula

π∆
i =

W i
t1

Xi
t1 σii t1

.

Therefore, in practice one can follow the Barraquand and Martineau algo-
rithm, which gives many independent simulations (P̂ q

1 )q=1,...,M of the random
variable P̂1. Since P̂1 is an approximation for P̄t1(Xt1), by using the law of
large numbers one can numerically approximate the delta by

∆̂0 =





∂x Φ(x) if Φ(x) > e−r∆t 1
M

M∑
q=1

P̂ q
1

e−r∆t 1
M

M∑
q=1

P̂ q
1 π∆,q if Φ(x) < e−r∆t 1

M

M∑
q=1

P̂ q
1 ,
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where π∆,q denotes the qth sample of the weight π∆.

5 Control variate

When one works with Monte Carlo, one typically looks for some ways to speed
up the algorithm, that is to reduce the variance. For example, we have already
observed that the (pure) Malliavin calculus algorithm does not run without
the localizing function. A further technique allowing to reduce the variance is
the introduction of a control variate. Unfortunately, there is not a standard
way to proceed in this direction. Nevertheless, for pricing an American option
it is quite natural to take into account the price of the associated European
option as the control variate. The motivation is the following.
For a fixed initial time t and underlying asset price x, let us set P am(t, x) and
P eu(t, x) as the price of an American and European option respectively, with
the same payoff Φ and maturity T . We define

P (t, x) = P am(t, x)− P eu(t, x).

Then it is easy to see that

P (t,Xt) = sup
τ∈Tt,T

E
(
e−r(τ−t)Φ̂(τ,Xτ )

∣∣∣Ft

)

where Tt,T stands for the set of all the stopping times taking values on [t, T ]
and Φ̂ is defined by

Φ̂(t, x) = Φ(x)− P eu(t, x)

(notice that Φ̂(T, x) = 0 and that the obstacle Φ̂ is now dependent on the
time variable also). Thus, for the numerical evaluation of P (0, x), one can set
up a dynamic programming principle in point of fact identical to the one in
Section 2, with Φ̂ in place of Φ. Given the estimated “price” P̄0(x) and “delta”
∆̄0(x) (according to Φ̂), the price and delta of the American option are then
approximated by

P̄ am
0 (x) = P̄0(x) + P eu(0, x) and ∆̄am

0 (x) = ∆̄0(x) + ∆eu(0, x)

respectively. Since Φ̂ has to be evaluated at each time step, in order to set
up this program one should compute the price/delta of an European option
on Φ. For some options, European prices and deltas are known in closed form
but in the general case, one can compute them by simulation.

6 Numerical tests and results

Our numerical experiences for pricing/hedging American options concern both
a regular and a singular payoff. We present here several tests on the American
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put on the minimum on 2 and 5 assets (Section 6.1) and on the American
relative digital option on 2 assets (Section 6.2). The study will be different
according to the type of option because, as we will see, different behaviors
will be observed. On these options, we numerically illustrate the behavior of
the following methods:

PM method: the pure Malliavin calculus one (as in Section 3.1 and 3.2),
where as a control variate we consider the twin European price given by
its closed form solution;

BM method: the Barraquand-Martineau algorithm (as in Section 4.1), with
the standard implementation (no control variate and deltas numerically
computed by the finite difference approximation);

BM-M method: the Barraquand-Martineau algorithm with a Malliavin
correction, in which the control variate is given by the twin European
price computed with the Barraquand-Martineau algorithm itself and for
the deltas, we use the Malliavin approach described in Section 4.2.

Let us briefly explain why, in order to evaluate the control variable, the closed
form formula has been used only in the PM method. The associated European
price and deltas are available in a closed form solution and entail the com-
putation of the cumulative multivariate normal distribution function (see e.g.
Johnson [9]). The computation of such a function is an expensive operation
and moreover, it has to be done a number of times proportional to the number
of Monte Carlo iterations. Now, as we will see, when using the PM algorithm
one is forced (by computational costs) to use few simulations, while in the
BM method one has to consider many trials in order to achieve good results,
so that the use of the closed formula becomes unfeasible. Moreover, as for the
BM method, let us stress that the numerical results using finite differences
are all obtained with the classical implementation, that is with δ = x× 10−3

in formula (2) and, as usual, by using common trials.
Finally, from the computer point of view, all the computations have been
performed in double precision on a PC Pentium IV 1.8 GHz with 256 Mb of
RAM.

6.1 American put on the minimum

Here, the numerically tested option is a put on the minimum of d assets3: its
payoff function is given by

Φ(x) =
(
K −min(x1, x2, .., xd)

)
+

As for the dimension, one considers first the case d = 2 in order to assess
the numerical behavior of the algorithms and then, the case d = 5. With a

3Such an option has been provided by Gilles Pagés, as the organizer of the
session “From the pricing American options on baskets to RBSDE discretization”
in the Juan Le Pins MC2QMC 2004 conference.
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view to have comparable results at our disposal, a symmetric case is taken
into account, in which the deltas are all equal. Thus, both the initial values
and the volatilities are assumed to be equal, with null continuous dividend
rates and no correlations among the assets. The parameters are: initial values
x1 = · · · = xd = 100; volatilities σ1 = · · · = σd = 0.2; exercise price K = 100;
risk-free interest rate r = 0.05.
For the sake of comparison, we use the following “true” reference American
put on the minimum price/deltas:

d = 2: price and deltas are compared with the ones issued from the Villeneuve-
Zanette finite difference algorithm developed in [15] (VZ-P and VZ-∆ in
the next tables), with 500 time space steps;

d = 5: the price is compared with the result from the Longstaff-Schwarz al-
gorithm corrected with the importance sampling variance reduction tech-
nique given by Moreni [13], using 50 time steps and 500.000 Monte Carlo
trials; no “true” reference deltas are available.

Put on the minimum of 2 assets

Table 1 shows prices and deltas obtained with the PM method (pure Malli-
avin, with control variable equal to the European price evaluated in closed
form), with varying time periods n = 10, 20, 50 and Monte Carlo trials
Nmc = 500, 1000, 5000, 10000, 20000. The use of the control variate and, ob-
viously, the localization techniques give prices with low dispersion and very
stable values for the deltas. Notice that even though the computational costs
are devastating when n and Nmc increase, nevertheless one obtains good re-
sults for few time periods and number of simulations (n = 10 and Nmc = 500
respectively; a discussion concerning this case is postponed at next page 12).

Nmc PM-P̄ VZ-P PM-∆̄1 PM-∆̄2 VZ-∆ CPU

500 10.237458 -0.293331 -0.298902 9
10 time 1000 10.222146 -0.294641 -0.293187 34
periods 5000 10.209749 -0.293881 -0.297122 836

10000 10.215610 -0.296033 -0.296534 3422
20000 10.200799 -0.295824 -0.294665 13425

500 10.331336 -0.301507 -0.293753 15
20 time 1000 10.312649 -0.291905 -0.291274 61
periods 5000 10.290837 10.246619 -0.294500 -0.296029 -0.295244 1511

10000 10.289001 -0.295440 -0.296039 6040
20000 10.266047 -0.295398 -0.295012 24220

500 10.456991 -0.305999 -0.285968 36
50 time 1000 10.387566 -0.287292 -0.288892 140
periods 5000 10.359696 -0.300333 -0.298844 3533

10000 10.367262 -0.296894 -0.298983 14356
20000 10.345456 -0.297391 -0.296504 56219

Table 1. American put on the minimum of 2 assets: price/deltas by PM method.



12 Lucia Caramellino and Antonino Zanette

Table 2 gives the performance of the BM method (standard Barraquand-
Martineau: no control variate and finite differences for the deltas), for varying
time periods n = 50, 70, 90 and Monte Carlo simulations Nmc = 20000, 50000,
100000, 200000, 500000. Notice that the computing time cost is very much
lower in spite of the increasing of both n and Nmc. While the price seems to
be more reliable than the one by the PM method, this procedure produces
values for the deltas which are not so stable.

Nmc BM-P̄ VZ-P FD-∆̄1 FD-∆̄2 VZ-∆ CPU

20000 10.190763 -0.296578 -0.292227 2
50 time 50000 10.127491 -0.293258 -0.293982 6
periods 100000 10.076552 -0.292935 -0.293469 11

200000 10.062527 -0.292859 -0.292464 23
500000 10.052767 -0.293358 -0.292993 57
20000 10.232724 -0.292136 -0.294390 3

70 time 50000 10.154290 -0.292351 -0.291339 8
periods 100000 10.126706 10.244882 -0.292155 -0.293554 -0.295244 16

200000 10.104338 -0.292689 -0.292538 32
500000 10.095747 -0.292732 -0.293068 80
20000 10.259548 -0.297909 -0.291471 4

90 time 50000 10.167042 -0.294732 -0.291964 10
periods 100000 10.144407 -0.290924 -0.291355 20

200000 10.123695 -0.292693 -0.291131 41
500000 10.117590 -0.292396 -0.292225 101

Table 2. American put on the minimum of 2 assets: price/deltas by BM method.

In Table 3, prices and deltas are from the BM-M algorithm (Barraquand-
Martineau plus Malliavin correction, with control variable equal to the Euro-
pean price evaluated by BM itself), with the number n of time periods and
Nmc of Monte Carlo trials as in Table 2. The numerical results show good
efficacy of the procedure: the use of the control variate gives prices with low
dispersion and the Malliavin correction provides very stable deltas. The re-
sults show then the precision of the method both for pricing and hedging
purposes. Moreover, the computational cost is satisfactory.
As a comparison, we report that the associated European put on the minimum
price and deltas are equal to 9.665145 and −0.278340 respectively.

Let us finally give some further remarks concerning the behavior of the pure
Malliavin method. We can assert that, here and also in the next 5-dimensional
case, the deltas are quite stable but, on the contrary, the price turns out to
be satisfactory only with few both time discretization steps and Monte Carlo
trials (see the left corner of Table 1 and also of next Table 5 concerning
the 5-dimensional case). One may deduce that, as the dimension increases,
the convergence (in terms of time iterations) is slower when the number of
time periods is high. This could be explained if one knew the theoretical
error, for which at the moment there are no results. However, the procedure
developed by Bouchard and Touzi in [5], which is not so far from the one
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Nmc BM-P̄ VZ-P EMall-∆̄1 EMall-∆̄2 VZ-∆ CPU

20000 10.190763 -0.296578 -0.292227 2
50 time 50000 10.127491 -0.293258 -0.293982 6
periods 100000 10.076552 -0.292935 -0.293469 11

200000 10.062527 -0.292859 -0.292464 23
500000 10.052767 -0.293358 -0.292993 57
20000 10.232724 -0.292136 -0.294390 3

70 time 50000 10.154290 -0.292351 -0.291339 8
periods 100000 10.126706 10.244882 -0.292155 -0.293554 -0.295244 16

200000 10.104338 -0.292689 -0.292538 32
500000 10.095747 -0.292732 -0.293068 80
20000 10.259548 -0.297909 -0.291471 4

90 time 50000 10.167042 -0.294732 -0.291964 10
periods 100000 10.144407 -0.290924 -0.291355 20

200000 10.123695 -0.292693 -0.291131 41
500000 10.117590 -0.292396 -0.292225 101

Table 3. American put on the minimum of 2 assets: price/deltas by BM-M method.

here presented, gives the following theoretical error (Theorem 6.3 in [5]): the
maximum of all the Lp distances between the true conditional expectations
and the associated regression estimators is of order nd/(4p) N

−1/(2p)
mc as n →

∞. Such a result would suggest that as the dimension increases, one should
increase a lot the number of Monte Carlo iterations in order to achieve good
results. So, in our numerical tests it seems that when a few number of time
steps is considered, a good choice of few Monte Carlo trials has been done in
order to balance the analytical error and the statistical one. In other words, the
underestimate coming from the approximation of the American option with
the Bermudean one (giving the analytical error) has been well equilibrated
by the “overestimate” coming from the Monte Carlo estimator (giving the
statistical error). And let us notice that this empirical evidence is not from a
single numerical test but is confirmed by repeating it several times. In fact,
as shown in next Table 4, such kind of balancing is empirically proved by the
narrow 95% confidence interval for the price and the deltas coming from 100
runs of the PM algorithm.

P̄ 10.237256

95% CI [10.2319346, 10.2425774]

∆̄1 −0.292008

95% CI [−0.292843,−0.291173]

∆̄2 −0.292208

95% CI [−0.293051,−0.291365]

Table 4. Price, deltas and their 95% confidence interval from 100 runs of the PM
algorithm in dimension d = 2, with n = 10 time periods and Nmc = 500 trials.
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Put on the minimum of 5 assets

We consider here as the “true” reference American price the one provided
by the Longstaff-Schwartz algorithm with importance sampling: it is equal
to 17.225366. Moreover, the closed form solution formula for the associated
European price and deltas gives 17.010422 and -0.145269 respectively.
Table 5 reports prices and deltas from the PM method (pure Malliavin plus
European price as the control variable, evaluated by the closed form solution).
The deltas are quite stable: it seems to be reliable to put them all equal to
0.14. On the contrary, the price turns out to be satisfactory only with few
time discretization steps, a phenomenon similar to the one yet observed and
discussed in dimension 2 (see page 12).

Nmc PM-P̄ PM-∆̄1 PM-∆̄2 PM-∆̄3 PM-∆̄4 PM-∆̄5 CPU

3 time 500 17.228082 -0.144003 -0.142825 -0.148317 -0.144328 -0.144129 1335
periods 1000 17.203429 -0.146310 -0.145184 -0.144466 -0.141576 -0.148651 5344

5000 17.225699 -0.146578 -0.144713 -0.146462 -0.141829 -0.151819 130350
5 time 500 17.306792 -0.147045 -0.146015 -0.145506 -0.144541 -0.144248 2539

periods 1000 17.313300 -0.143961 -0.145753 -0.144254 -0.140675 -0.144558 20315
5000 17.323421 -0.145170 -0.144910 -0.147152 -0.145496 -0.144370 508016

10 time 500 17.420290 -0.139797 -0.144316 -0.140149 -0.142493 -0.138571 4377
periods 1000 17.407128 -0.142647 -0.141150 -0.143271 -0.145136 -0.141313 35110

5000 17.422493 -0.142752 -0.143105 -0.144719 -0.143523 -0.144160 850453

Table 5. American put on the minimum of 5 assets: price/deltas by PM method.
“True” reference price: 17.225366.

Table 6 gives the performance of the BM method (standard Barraquand-
Martineau: no control variate and finite differences for the deltas) for time
periods n = 50, 70, 90 and Monte Carlo simulations Nmc = 20000, 50000,
100000, 200000, 500000. As for d = 2, this method works good enough for the
pricing but it gives unsatisfactory values for the delta.
Finally, we show in Table 7 prices and deltas produced by the BM-M method
(BM algorithm with control variable evaluated by BM itself plus Malliavin
correction). Numerical results confirm the efficacy of the procedure: the dis-
persion of the prices is small and the deltas are extremely stable. Moreover,
the BM-M algorithm with 90 time discretization steps and 500.000 Monte
Carlo trials runs in a reasonable time (the CPU time is 236.95 sec.), giving
the price equal to 17.21464 and the deltas ranging between -0.146917 and
-0.147889. Table 7 then confirms the precision of the method both for pricing
and hedging purposes.
The conclusion we can derive from our numerical tests is that the BM-M
method gives a dispersion which is much lower than the one get from the
BM and PM methods. As an example, next tables show the 95% confidence
intervals for the deltas arising from our experiments in dimension d = 5.
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Nmc BM-P̄ FD-∆̄1 FD-∆̄2 FD-∆̄3 FD-∆̄4 FD-∆̄5 CPU

20000 17.460207 -0.159696 -0.226632 -0.158597 -0.149758 -0.228941 5
50 time 50000 17.369041 -0.142873 -0.145968 -0.104369 -0.139240 -0.124434 13
periods 100000 17.339862 -0.146710 -0.143540 -0.138880 -0.143685 -0.145569 26

200000 17.298433 -0.146871 -0.158427 -0.155457 -0.143626 -0.148808 53
500000 17.260427 -0.144222 -0.144012 -0.147445 -0.149417 -0.152117 131
20000 17.489552 -0.103888 -0.156574 -0.171656 -0.108386 -0.129727 7

70 time 50000 17.386159 -0.110242 -0.130498 -0.138644 -0.132104 -0.134197 18
periods 100000 17.356226 -0.145139 -0.135330 -0.148800 -0.140391 -0.136315 36

200000 17.318434 -0.153479 -0.154239 -0.154302 -0.158471 -0.144490 72
500000 17.271725 -0.143741 -0.151927 -0.143667 -0.155565 -0.145461 179
20000 17.494507 -0.122205 -0.116665 -0.139285 -0.157534 -0.133938 10

90 time 50000 17.400365 -0.122296 -0.145769 -0.128461 -0.130128 -0.146100 23
periods 100000 17.370721 -0.157246 -0.156728 -0.140088 -0.128637 -0.147778 47

200000 17.328868 -0.146533 -0.144423 -0.150003 -0.151428 -0.150963 92
500000 17.284830 -0.150170 -0.147086 -0.149053 -0.140551 -0.144029 230

Table 6. American put on the minimum of 5 assets: price/deltas by BM method.
“True” reference price: 17.225366.

Nmc BM-P̄ EMall-∆̄1 EMall-∆̄2 EMall-∆̄3 EMall-∆̄4 EMall-∆̄5 CPU

20000 17.211546 -0.147306 -0.148566 -0.148212 -0.147856 -0.148170 6
50 time 50000 17.163299 -0.148192 -0.147771 -0.148391 -0.148597 -0.148087 13
periods 100000 17.141235 -0.148440 -0.148012 -0.148331 -0.148281 -0.147619 26

200000 17.137925 -0.148454 -0.148048 -0.148370 -0.147960 -0.147591 52
500000 17.138058 -0.148390 -0.148135 -0.148365 -0.148194 -0.147606 130
20000 17.277483 -0.148763 -0.147155 -0.147888 -0.147014 -0.147206 8

70 time 50000 17.214609 -0.147278 -0.148236 -0.147995 -0.148457 -0.147413 18
periods 100000 17.193022 -0.148118 -0.147849 -0.148023 -0.147812 -0.147700 37

200000 17.192147 -0.148143 -0.147818 -0.147840 -0.147997 -0.147291 72
500000 17.182889 -0.148200 -0.147724 -0.148082 -0.147909 -0.147140 180
20000 17.299891 -0.149521 -0.148774 -0.148431 -0.147822 -0.147367 10

90 time 50000 17.246921 -0.148203 -0.147783 -0.147231 -0.148884 -0.147334 24
periods 100000 17.227334 -0.147817 -0.147333 -0.147173 -0.147890 -0.147076 48

200000 17.221100 -0.148092 -0.147787 -0.147871 -0.147587 -0.147059 95
500000 17.214648 -0.147889 -0.147623 -0.147795 -0.147670 -0.146917 237

Table 7. American put on the minimum of 5 assets: price/deltas by BM method.
“True” reference price: 17.225366.

Table 8 reports the deltas and the 95% confidence interval computed by
launching 1000 times both the BM-M and the BM algorithm. A compari-
son between the confidence intervals confirms that the use of the Malliavin
approach improves the results.
Concerning the error from the PM method, the slowness of the algorithm
does not allow to run it several times. Therefore, in Table 9 we report the
95% confidence interval evaluated on one launch. In terms of the statistical
error (which is here only roughly computed), it seems that PM method be-
haves better than the BM one, but again the BM-M method gives the best
performances.
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BM-M method BM method

∆̄1 −0.147413 −0.149163

95% CI [−0.147439,−0.147386] [−0.184138,−0.114189]

∆̄2 −0.147406 −0.150679

95% CI [−0.147432,−0.147379] [−0.185974,−0.115384]

∆̄3 −0.147422 −0.152518

95% CI [−0.147449,−0.147395] [−0.188166,−0.116870]

∆̄4 −0.147432 −0.128041

95% CI [−0.147459,−0.147406] [−0.163129,−0.092953]

∆̄5 −0.147439 −0.127282

95% CI [−0.147562,−0.147315] [−0.162377,−0.092188]

Table 8. Deltas and their 95% confidence interval from 1000 runs of the BM-M
and BM algorithm in dimension d = 5, with n = 70 time periods and Nmc = 50000
trials.

PM method

∆̄1 −0.146578

95% CI [−0.148009,−0.145147]

∆̄2 −0.144713

95% CI [−0.146126,−0.143210]

∆̄3 −0.146462

95% CI [−0.147932,−0.144992]

∆̄4 −0.141829

95% CI [−0, 143859,−0.139799]

∆̄5 −0.151819

95% CI [−0.154455,−0.149183]

Table 9. Price, deltas and their 95% confidence interval from the PM algorithm in
dimension d = 5, with n = 3 time periods and Nmc = 5000 trials.

6.2 American relative digital option on 2 assets

In this section, we present the numerical results of the different proposed
algorithms in a case of singular payoff. This is done in order to empirically
study the sensitivity of the methods with respect to the “regularity” of the
considered payoff function. In fact, it is known that in the competition between
the Malliavin Monte Carlo method and the finite differences one, the results
becomes dramatically better for the Malliavin Monte Carlo one if a singular
payoff is taken into account. Therefore, we test here whether the Malliavin
correction in the Barraquand and Martineau algorithm brings to good results
even in the case of a singular payoff.
In particular, we consider a relative digital option on two stocks. This option
pays one unit if the price of stock 1 at maturity is higher than the price of
stock 2. Then, its payoff function is given by

Φ(x1, x2) =
{

1 if x1 ≥ x2,
0 otherwise
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Explicit solutions are immediate to write down in the European case. In the
American one, the low dimensionality makes the deterministic methods very
accurate, giving results which can be taken as good benchmarks. Here, the
“true” reference American relative digital price and deltas are the ones issued
from the Villeneuve-Zanette finite difference algorithm [15].
In our experiments, we consider different initial values x1 = 100 and x2 = 110,
the other parameters being unchanged (that is, null continuous dividend rates,
no correlation, volatilities σ1 = σ2 = 0.2 and risk-free interest rate r = 0.05).
As a comparison, let us report that the associated European relative digital
option price is equal to 0.350118 and the deltas are 0.0126763 and −0.0115239
respectively.
Table 10 shows prices and deltas obtained with the PM method (pure Malli-
avin, with control variable equal to the European price evaluated in closed
form), with varying time periods n = 10, 20, 50 and Monte Carlo trials
Nmc = 500, 1000, 5000, 10000, 20000. Notice that the use of the control variate
and, obviously, the localization techniques give prices and deltas numerically
converging to the “true” reference ones, even if slower and with more disper-
sion than in the previous case of a regular payoff.

Nmc PM-P̄ VZ-P PM-∆̄1 PM-∆̄2 VZ-∆1,2 CPU

500 0.594854 0.018308 -0.015955 5
10 time 1000 0.594938 0.021187 -0.015651 19
periods 5000 0.599335 0.019076 -0.016894 484

10000 0.599038 0.019368 -0.017024 1914
20000 0.597728 0.019409 -0.017372 7890

500 0.641910 0.025070 -0.020798 9
20 time 1000 0.638146 0.025047 -0.021920 35
periods 5000 0.639151 0.711646 0.023675 -0.021207 0.026859 138

10000 0.638669 0.023228 -0.020714 -0.024417 555
20000 0.635722 0.022973 -0.020185 2215

500 0.674533 0.030608 -0.017411 20
50 time 1000 0.672565 0.027051 -0.023245 82
periods 5000 0.672784 0.026926 -0.021965 330

10000 0.672986 0.026567 -0.022705 1328
20000 0.669231 0.026119 -0.023095 5322

Table 10. American relative digital option on 2 assets: price/deltas by PM method.

Table 11 gives the performance of the BM method (standard Barraquand-
Martineau: no control variate and finite differences for the deltas), for varying
time periods n = 10, 20, 50 and Monte Carlo simulations Nmc = 20000, 50000,
100000, 200000, 500000. This procedure produces values for the prices and
deltas which are unsatisfactory, a fact suggesting that the Barraquand-
Martineau procedure is much more sensible than the PM algorithm to the
singularity of the payoff.
In Table 12, prices and deltas are from the BM-M algorithm (Barraquand-
Martineau plus Malliavin correction, with control variable equal to the Eu-
ropean price evaluated by BM itself), with a number n of time periods and
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Nmc BM-P̄ VZ-P FD-∆̄1 FD-∆̄2 VZ-∆1,2 CPU

20000 0.678769 0.022744 -0.020716 0.28
10 time 50000 0.676988 0.024251 -0.022144 0.68
periods 100000 0.673486 0.023393 -0.020104 1.36

200000 0.673883 0.024292 -0.022857 2.75
500000 0.674076 0.024429 -0.021171 6.86
20000 0.773942 0.027558 -0.019171 0.54

20 time 50000 0.775553 0.018872 -0.021744 1.37
periods 100000 0.770021 0.711646 0.022620 -0.021751 0.026859 2.75

200000 0.772028 0.023883 -0.021757 -0.024417 5.59
500000 0.771356 0.023362 -0.020675 13.89
20000 0.886927 0.016470 -0.013306 1.38

50 time 50000 0.885405 0.017462 -0.013811 3.48
periods 100000 0.882437 0.017189 -0.016284 6.99

200000 0.883786 0.016070 -0.015490 14.07
500000 0.882814 0.017018 -0.015744 34.79

Table 11. American relative digital option on 2 assets: price/deltas by BM method.

Nmc of Monte Carlo trials as in Table 11. The numerical results confirms the
instability of the Barraquand and Martineau method if a singular payoff is
taken into account, even if a control variate technique is used.

Nmc BM-P̄ VZ-P EMall-∆̄1 EMall-∆̄2 VZ-∆1,2 CPU

20000 0.648217 0.021482 -0.020020 0.21
10 time 50000 0.647615 0.022020 -0.020421 0.56
periods 100000 0.647834 0.021832 -0.019955 1.10

200000 0.648149 0.021893 -0.020103 2.20
500000 0.648228 0.021825 -0.019969 5.52
20000 0.757731 0.016761 -0.017507 0.43

20 time 50000 0.760290 0.017234 -0.016148 1.11
periods 100000 0.758649 0.711646 0.017199 -0.016028 0.026859 2.18

200000 0.760315 0.017744 -0.016152 -0.024417 4.32
500000 0.759523 0.017648 -0.016039 10.89
20000 0.878817 0.010585 -0.010919 1.08

50 time 50000 0.878403 0.014053 -0.011941 2.73
periods 100000 0.879533 0.013480 -0.012766 5.43

200000 0.880806 0.013338 -0.011834 10.85
500000 0.879467 0.013271 -0.011778 27.03

Table 12. American relative digital option on 2 assets: price/deltas by BM-M
method.

As a surprisingly conclusion, the Barraquand and Martineau algorithms do
not seem to converge, so that the pure Malliavin method turns out to be the
appropriate one in the case of a relative digital option. But, in addition to
the singularity of the payoff, there is another aspect which can explain the
poor behavior of the approaches inspired by Barraquand and Martineau. In
fact, in these cases the exercise date is assumed to optimize with respect to
the knowledge of the payoff values {Φ (Xu) ;u ≤ t} (and not the stock values
{Xu;u ≤ t}). When dealing with a digital option, this procedure may bring
to loose a lot of knowledge.
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7 Conclusions

In this paper we give new insight into two Monte Carlo numerical methods
(PM and BM-M) to compute price and deltas of American options, and we
manage numerical experience on their speed precision efficiency, in the context
of a regular payoff (multidimensional put on the minimum) and in the case of
a singular payoff (relative digital option on two assets). In the framework of a
regular payoff, the pure Malliavin approach has high precision and efficacy in
pricing and hedging American options in “low dimension”, while the standard
Barraquand-Martineau methods works better in high dimension for the pric-
ing, although it gives unstable deltas. Conversely, the Barraquand-Martineau
algorithm seems to be satisfactory for pricing and hedging if a control variable
and the Malliavin correction are taken into account. In the case of a singular
payoff, the pricing stability of Barraquand-Martineau algorithm dramatically
decays, involving the Malliavin correction for the delta as well, while the pure
Malliavin approach turns out to have good robustness.
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