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Abstract

Following the pioneering papers of Fournié, Lasry, Lebouchoux, Lions and Touzi, an
important work concerning the applications of the Malliavin calculus in numerical
methods for mathematical finance has come after. One is concerned with two prob-
lems: computation of a large number of conditional expectations on one hand and
computation of Greeks (sensitivities) on the other hand. A significant test of the
power of this approach is given by its application to pricing and hedging American
options. The paper gives a global and simplified presentation of this topic including
the reduction of variance techniques based on localization and control variables. A
special interest is given to practical implementation, number of numerical tests are
presented and their performances are carefully discussed.
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1 Introduction

The theory of Markov Processes and the Stochastic Calculus have provided a probabilistic inter-
pretation for the solutions of linear partial differential equations (shortly, linear PDE’s) by means
of the Feynman-Kac formula. One of the most striking application is the emergence of the Monte
Carlo method as an alternative to deterministic numerical algorithms for solving PDE’s. This
method is slower than the analytical ones, but as the dimension increases (more than 3), it is well
known that the analytical methods do no more work and so Monte Carlo methods remain the only
alternative. Moreover, to speed up Monte Carlo methods one could use some variance reduction
techniques (such as control variate and localization functions), even if in this context difficulties
arise when dealing with expectations for large times.
But one has to notice that both the Feynman-Kac formula and Monte Carlo methods are specific to
linear problems and collapse when dealing in the nonlinear case. In the last decay much work has
been done in order to extend probabilistic methods in a nonlinear frame. On one hand, in a set of
papers Pardoux and Peng (see [22], [23]) introduced the backward stochastic differential equations
(BSDE’s in short), which generalize the probabilistic representation given by the Feynman-Kac
formula to nonlinear problems. In [16] (see also [1]) this representation was obtained for obstacle
problems as well (by means of reflected BSDE’s). Applications to mathematical finance have been
discussed in [17]. So the theoretical background has been prepared. The second step is to obtain
efficient probabilistic algorithms for solving such problems.
Recall that one specific point in the Monte Carlo method is that it does not employ grids. More
precisely, in order to compute the solution u(0, x0) of the linear PDE

(∂t + L)u(t, x) = 0, (t, x) ∈ [0, T ] × R
d

u(T, x) = f(x),

one represents u(0, x0) as an expectation and employs a sample of the underlying diffusion in order
to compute this expectation. On the contrary, an analytical method constructs a time-space grid
and uses a dynamical programing algorithm to compute the solution. This means that in order
to compute the solution in one point (0, x0), the analytical method is obliged to compute it on a
whole grid (tk, x

i
k) while the Monte Carlo method provides directly the solution in (0, x0). This is

a big advantage because in large dimension grids become difficult to handle.

Think now that instead of the above linear problem, one has to solve a PDE of the type

(∂t + L)u(t, x) + f(t, x, u(t, x)) = 0.

Even if a probabilistic representation of u is available (and this is the case), one is obliged to
compute the solution on a whole grid for the simple reason that one has to know the value of
u(t, x) which comes on in f(t, x, u(t, x)). Therefore, the dynamical programing algorithm becomes
essential. At this stage, a probabilistic approach is in the same position as an analytical one: one
has to construct a grid, then to solve at each time step a linear problem and finally to add the
input f(t, x, u(t, x)). A terminology difference however: the probabilist would say that he computes
a conditional expectation instead of saying that he solves a linear PDE. But the problem remains
the same: computing a large number of conditional expectations, and this is not trivial.

The question is now if a probabilistic point of view provides a new approach to this kind of
problems. And the answer is affirmative. These last years, essentially motivated by problems in
mathematical finance - and the most striking one is pricing American options in large dimension -
several new ideas appeared in this field. Roughly speaking they may be divided in three families.
In the first one, a tree is built up in order to obtain a discretization of the underlying diffusion on
a grid. This family includes the algorithm by Broadie and Glasserman [11], by Barraquand and
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Martineau [6], the quantization algorithm in [3] and [4], as well as the Chevance one [13]. The
second idea is to use regression on a truncated basis of L2 in order to compute the conditional
expectations, as done by Longstaff and Schwartz [20] and by Tsisiklis and Van Roy [24]. Finally
in [14], [15], [19], [8] and [9], the authors obtain representations for the conditional expectation
using Malliavin calculus and then employ them in order to perform a Monte Carlo method. The
peculiarity of this last approach is that it appears as a pure Monte Carlo method despite the
nonlinearity.
In addition to solving PDE’s (which amounts to pricing an option in the financial frame), a second
problem of interest is to compute the sensitivity of the solution with respect to some parameter
(hedging and Greeks, in financial language). It seems that Malliavin calculus is an especially
promising tool for solving such a problem. It has been used by Lions and Reigner [19], who follow
the third method, as well as in [5] where the quantization algorithm is employed.

The present paper deals with the last method based on Malliavin calculus. Although this approach
works for a large class of nonlinear problems, we focus on the American option pricing/hedging,
which amounts to solve obstacle problems for PDE’s. This seems to be a significant test on the
efficiency of the method and several papers related to this subject appeared in the last time. Our
aim is to give a general view on this topic (with simplified proofs), to present concrete examples
and to discuss the numerical results. A special interest is given to reduction of variance techniques,
based on localization and control variables, and to the impact in concrete simulation.

It worth to mention that as long as one restricts himself to the Black Scholes model (which of
course is of interest in Mathematical Finance) the computations related to Malliavin calculus are
rather explicit and elementary. This allows us to give here an approach which is self contained and
accessible to readers who are not familiar with the rather heavy machinery of Mallavin calculus.
In the case of a general diffusion the same reasonings work as well, but of course one has to employ
the Malliavin calculus in all the generality. And consequently, the explicit formulas which are
available in the Balck Scholes model become heavier (in particular, they involve the inverse of the
Malliavin covariance matrix). The presentation that we give here is based on one more remark:
the results obtained in the one dimensional case extend easily (using an elementary geometrical
argument) to the multidimensional case. This significantly simplifies the proofs.

The paper is organized as follows. In Section 2 we present the problem, in Section 3 we give the
results (representation formulas for conditional expectations and for the strategy) and in Section 4
we discuss the optimal localization. Finally, Section 5 is devoted to the description of the algorithm
based on this approach and to numerical tests.

2 Pricing/hedging American options

An American option with maturity T , is an option whose holder can exercise his right of option
in any time up to T . Let X denote the process of the underlying asset prices, which is supposed
to be a diffusion process on R

d, and Φ(Xs) denote the cash-flow associated with the option. The
price as seen at time t of such an American option is given by

P (t, x) = sup
τ∈Tt,T

Et,x

(
e−

∫
τ

t
rs dsΦ(Xτ )

)
(1)

where Tt,T stands for the set of all the stopping times taking values on [t, T ] and r is the (deter-
ministic) spot rate.
The solution of this optimal stopping problem has been provided by using the theory of the Snell
envelopes: the first optimal stopping time is given by

τ∗t = inf{s ∈ [t, T ] ; P (s,Xs) = Φ(Xs)}
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and the function P (t, x), giving the price of the option, solves the following (nonlinear) PDE:

(∂t + L)P (t, x) − r P (t, x) = 0

whenever P (t, x) > Φ(x), with the final condition P (T, x) = Φ(x), where L is the infinitesimal
generator of X.
It is worth to say that a rigorous statement is much more difficult because in general one has not
sufficient regularity for P (that is, C1 in t and C2 in x) on one hand and on the other one, the
behavior of the solution P in a neighborhood of the free boundary {(t, x) ; P (t, x) = Φ(x)} is rather
delicate to describe (it gives a supplementary term in the PDE). This leads to a weak formulation
of the problem. The first one was given in terms of variational inequalities by Bensoussan and
Lions [7]; in El Karoui et al. [16], one can find a formulation in viscosity sense and in [1], Bally et
al. give a formulation in Sobolev sense.
In practice, the numerical evaluation of P (0, x), that is the price as seen at time 0, is done by
using a Bellman dynamic programming principle. Indeed, let 0 = t0 < t1 < . . . < tn = T be a dis-
cretization of the time interval [0, T ], with step size equal to ∆t = T/n, and let (X̄k∆t)k=0,1,...,n an
approximation of (Xt)t∈[0,T ], that is X̄k∆t ' Xk∆t. The price P (k∆t, X̄k∆t) can be approximated
by means of the quantity P̄k∆t(X̄k∆t), given by the following recurrence equality:

Theorem 2.1 Given ∆t = T/n ∈ (0, 1), define P̄n∆t(X̄k∆t) = Φ(X̄n∆t) and for any k = n −
1, n− 2, . . . , 1, 0,

P̄k∆t(X̄k∆t) = max
(
Φ(X̄k∆t) , e

−r∆t
E

(
P̄(k+1)∆t(X̄(k+1)∆t)

∣∣∣ X̄k∆t

))
.

Then P̄k∆t(X̄k∆t) ' P (k∆t,Xk∆t).

The above statement is heuristic and a rigorous formulation supposes to precise the hypothesis on
the diffusion coefficients and on the regularity of the obstacle. This is done by Bally and Pagés
[4] (roughly speaking, the error is of order

√
∆t if one has few regularity and of order ∆t if more

regularity holds).
As a consequence, one can numerically evaluate the delta ∆(t, x) = ∂xP (t, x) of an American
option. This is important because ∆(t, x) gives the sensibility of the price with respect to the
initial underlying asset price and also it allows to hedge the option. By considering the case t = 0,
then the following approximation ∆̄0(x) of ∆(0, x) can be stated.

Proposition 2.2 For any ∆t = T/n ∈ (0, 1), set

Γ∆t = {α ∈ R
d ; P̄∆t(α) < Φ(α)},

where P̄∆t(α) = max(Φ(α) , e−r∆t E(P̄2∆t(X̄2∆t) | X̄∆t = α)). Then, by setting

∆̄(α) = ∂α Φ(α)1Γ∆t
+ e−r∆t∂α E

(
P̄2∆t(X̄2∆t)

∣∣∣ X̄∆t = α
)
1Γc

∆t
and

∆0(x) = Ex

(
∆̄(X̄∆t)

)

where ∂α denotes the gradient, one has ∆(0, x) ' ∆̄0(x)

Such an assertion is heuristic and a rigorous statement, including error bounds, turns out to be a
more difficult problem (one may find in Bally et al. [5] bounds given in a weak sense, that is in
L2([0, T ], dt)).
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Such results state that in order to numerically compute the price P (0, x) and its delta ∆(0, x), it is
sufficient to approximate a family of conditional expectations and their derivatives, thus allowing
one to set up Monte Carlo simulations.
In Section 3, we study formulas allowing to represent conditional expectations like E(F (Xt) |Xs =
α) and its derivative ∂αE(F (Xt) |Xs = α) written in terms of a suitable ratio of non-conditioned
expectations, that is

E

(
F (Xt)

∣∣∣Xs = α
)

=
E(F (Xt)π

α
s )

E(παs )

∂αE

(
F (Xt)

∣∣∣Xs = α
)

=
E(F (Xt)π

1,α
s )E(παs ) − E(F (Xt)π

α
s )E(π1,α

s )

E(παs )2

(2)

being παs and π1,α
s suitable weights, which could also depend on suitable localizing functions. In

Section 4 we discuss an optimality criterium for the choice of the localizing functions, which play
an important role for practical purposes, as already studied and observed by Kohatsu-Higa and
Petterson [18] and by Bouchard, Ekeland and Touzi [8].
Representations (2) can be used for the practical purpose of the pricing of American options
as follows. In fact, since the weights παs and π1,α

s can be written explicitly, expectations like
E(f(Xt)π

α
s ) or E(f(Xt)π

1,α
s ) can be approximated through the associated empirical means and

used to numerically compute the price P (0, x) and its delta ∆(0, x) by using Theorem (2.1) and
Proposition 2.2, thus avoiding the problem of the approximation of the transition density and
of the discretization of the path space. This plan gives also the considerable gain to provide a
Monte Carlo algorithm for the evaluation of P (0, x) and ∆(0, x) which makes use of only one set
of simulated trajectories. Let us remark that, using this approach, the valuation of the delta is
not made through finite difference approximations but it is performed by means of representation
formulas written in terms of expectations. We postpone to Section 5 a comprehensive description
of the algorithm and its numerical behavior.

Finally, here we consider price and delta, then representation formulas for the conditional ex-
pectation and its gradient. It is worth to point out that one could also take into account other
sensibilities (Greeks). In fact, similar techniques can be applied in order to obtain representation
formulas for other derivatives of the conditional expectation: the second derivative (gamma), the
derivative w.r.t. the spot rate r (theta), as well as the derivative w.r.t. the volatility σ (vega).

3 Representation formulas for the conditional expectation
and its gradient

Let X be the underlying asset price process, driven by the Black and Scholes model, that is

dXi
t = (r − ηi)Xi

tdt+

d∑

j=1

σijX
i
tdW

j
t , with Xi

0 = xi, i = 1, . . . , d

where: x = (x1, . . . , xd) ∈ R
d
+ denotes the vector of the initial asset values; r is the (constant)

spot rate and η ∈ R
d being the vector of the dividends of the option; σ denotes the d× d volatility

matrix which we suppose to be non-degenerate; W is a d-dimensional correlated Brownian motion.
Without loss of generality, one can suppose that σ is a sub-triangular matrix, that is σij = 0
whenever i < j, and that W is a standard d-dimensional Brownian motion. Thus, any component

6



of Xt can be written as

Xi
t = xi exp

(
hit+

i∑

j=1

σijW
j
t

)
, i = 1, . . . , d (3)

where from now on we set hi = r−ηi− 1
2

∑i
j=1 σ

2
ij , i = 1, . . . , d. The aim is to study the conditional

expectation and its gradient, that is

E(Φ(Xt) |Xs = α) and ∂αE(Φ(Xt) |Xs = α), Φ ∈ Eb(Rd),

respectively, where 0 < s < t, α ∈ R
d
+ and Eb(Rd) denotes the class of the measurable functions

with polynomial growth, that is |Φ(y)| ≤ C(1 + |y|m) for some m.

In few words, to this goal it suffices to consider an auxiliary process X̃ with independent components
for which a formula for the conditional expectation immediately follows as a product. In a second
step, such a formula can be adapted to the original process X by means of an (inversible) function

giving X from the auxiliary process X̃. We will study such kind of formulas in Section 3.1 and 3.2,
where also a discussion on the connections with the paper by Lions and Regnier [19] is presented.
It is worth remarking that the formulas are not new, since they have been studied for example also
in Fournié, Lasry, Lebouchoux and Lions [15] and in Bouchard, Ekeland and Touzi [8]. Anyway,
we give here a very simple approach and also propose elementary and immediate proofs, which are
postponed to the Appendix (see Section 6.1).

3.1 Diagonalization procedure and first formulas

To our purposes, let `t = (`1t , . . . , `
d
t ) be a fixed C1 function and let us set

X̃i
t = xi exp

(
hi t+ `it + σiiW

i
t

)
, i = 1, . . . , d. (4)

As a first result, we study a transformation allowing to handle the new process X̃ in place of the
original process X:

Lemma 3.1 For any t ≥ 0 there exists an invertible function Ft(·) : R
d
+ → R

d
+ such that Xt =

Ft(X̃t) and X̃t = F−1
t (Xt). In details, Ft and its inverse Gt = F−1

t are given by (set
∏0
j=1

def
= 1)

F it (y) = e−
∑ i

j=1 σ̃ij`
j
t yi

i−1∏

j=1

(yj
xj
e−h

jt
)σ̃ij

and Git(z) = e`
i
t zi

i−1∏

j=1

( zj
xj
e−h

jt
)σ̂ij

, (5)

for i = 1, . . . , d and y, z ∈ R
d
+, where

σ̃ij =
σij
σjj

, i, j = 1, . . . , d, and σ̂ = σ̃−1 (6)

Proof. Let t, `, x be fixed. From (4) we have W i
t = (ln(X̃i

t/x
i)−hi t−`it)/σii, i = 1, . . . , d. Inserting

this in (3), one obtains

Xi
t = xi exp

(
hi t−

i∑

j=1

σij
σjj

(hj t+ `jt )
) i∏

j=1

(X̃j
t

xj

)σij/σjj
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Thus, by setting σ̃ij = σij/σjj , i, j = 1, . . . , d and by using the notation ln ξ = (ln ξ1, . . . , ln ξd),
for ξ = (ξ1, . . . , ξd) ∈ R

d, then Ft = (F 1
t , . . . , F

d
t ) satisfies

lnFt(y) = −σ̃ `t + σ̃ ln y + (I − σ̃)(lnx+ ht)

and, by setting σ̂ = σ̃−1, its inverse function is given by

lnF−1
t (z) = `t + σ̂ ln z + (I − σ̂)(lnx+ ht).

Notice that σ̂ is easy to compute because σ̃ is a triangular matrix. Moreover, σ̂ is itself triangular
and σ̂ii = 1 for any i.

2

Remark 3.2 It is worth to stress that the introduction of X̃ is done in order to be able to handle
a process with independent components. Therefore, X̃ has no interesting practical meaning in the
one-dimensional case, where one simply has X̃t = e`t Xt and Xt = e−`t X̃t.

Theorem 3.3 (Representation formulas I: without localization) Let 0 < s < t, Φ ∈ Eb(Rd)
and α ∈ R

d
+ be fixed. Set: X̃s = Gs(Xs) and α̃s = Gs(α), Gs being defined in (5), H(ξ) = 1ξ≥0,

ξ ∈ R, σ̂ as in (6) and

∆W i
s,t = (t− s)(W i

s + σiis) − s(W i
t −W i

s), i = 1, . . . , d. (7)

i) The following representation formula for the conditional expectation holds:

E

(
Φ(Xt) |Xs = α

)
=

Ts,t[Φ](α)

Ts,t[1](α)

where

Ts,t[f ](α) = E

(
f(Xt)

d∏

i=1

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
. (8)

ii) The following representation formula for the gradient of the conditional expectation holds:
for j = 1, . . . , d,

∂αj E

(
Φ(Xt) |Xs = α

)
=

j∑

k=1

σ̂kj
α̃ks
αj

× Gs,t;k[Φ](α)Ts,t[1](α) − Ts,t[Φ](α)Gs,t;k[1](α)

Ts,t[1](α)2
,

where, as k = 1, . . . , d,

Gs,t;k[f ](α) = −E

(
f(Xt)

H(X̃k
s − α̃ks )

σkks(t− s)(X̃k
s )2

[ (∆W k
s,t)

2

σkks(t− s)
+ ∆W k

s,t −
t

σkk

]
×

×
d∏

i=1,i 6=k

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
.

(9)

Let us now give some observations:
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Remark 3.4 • When d = 1, the choice ` = 0, which means simply to take X̃ = X, simplifies
the above formulas for the operator Ts,t[f ](α) and Gs,t[f ](α) as follows:

Ts,t[f ](α) = E

(
f(Xt)

H(Xs − α)

σs(t− s)Xs
∆Ws,t

)

Gs,t[f ](α) = −E

(
f(Xt)

H(Xs − α)

σs(t− s)X2
s

[ (∆Ws,t)
2

σs(t− s)
+ ∆Ws,t −

t

σ

])
.

• If no correlation is assumed among the assets, that is if the volatility matrix σ is diagonal,
then σ̂ = Idd×d. Thus, the sum appearing for the evaluation of ∂αj E(F (Xt) |Xs = α)

reduces to the single term with k = j, with coefficient α̃js/α
j = e`

j
s , which in turn is equal to

1 whenever ` = 0.

Let us give some commentary remarks about the significance of the drift-function `t.

A way to choose the drift ` is in order in order to have Gs(α) = α, which is the implicit choice
made by Lions and Regnier in [19]. The corresponding ` is computed in the following

Proposition 3.5 α is a fixed point for the transformation Gs if and only if ` = `∗, where `∗ is

any path having value at time s given by (set
∑0
j=1

def
= 0)

`∗s
i =

i−1∑

j=1

σ̂ij

(
hj s− ln

αj

xj

)
, i = 1, . . . , d,

σ̂ being defined in (6). In particular, if `t = ρ t then Gs(α) = α if and only if ρ = ρ∗s, where

ρ∗s
i =

i−1∑

j=1

σ̂ij

(
hj − 1

s
ln
αj

xj

)
, i = 1, . . . , d.

Proof. The proof is immediate: by (5) one can shortly write lnGs(z) = `s+σ̂ ln z+(I−σ̂)(lnx+hs),
thus α = Gs(α) if and only if (set ln(α/x) as the vector whose ith entry is ln(αi/xi))

`s = `∗s =
(
σ̂ − I

)(
h s− ln

α

x

)
.

2

Remark 3.6 It is worth noticing that if originally σ is diagonal, then σ̃ = I, so that α = Gs(α)
if and only if `∗s = 0, as it must obviously follow. In any case, α = Gs(α) gives always `∗s

1 = 0,
because of the fact that σ̃11 = 1. Moreover, the choice ` = `∗ gives a considerable simplification of
the function Ft and its inverse Gt, which become

F it (y) = yi

i−1∏

j=1

(
yj

xj

(xj
αj

)t/s)σ̃ij

and Git(z) = zi
i−1∏

j=1

(
zj

xj

(xj
αj

)t/s)σ̂ij

, i = 1, . . . , d.

Now, the formulas given by Lions and Regnier [19] take into account the process X̂ whose compo-
nents are defined as

X̂i
t = xi exp

(
hi t+

i−1∑

j=1

σijw
j
t + σiiW

i
t

)
, i = 1, . . . , d

9



where (as usual,
∑0
j=1(·) := 0 and) wt solves the system

i∑

k=1

σikw
k
t = lnαi − lnxi − hi t, i = 1, . . . , d. (10)

It is worth remarking that X̂ has independent components, as well as X̃. The formula given in
[19] for the conditional expectation states the following:

E

(
Φ(Xt) |Xs = α

)
=

Ls,t[Φ](α)

Ls,t[1](α)
, where Ls,t[f ](α) = E

(
f(Xt)

d∏

i=1

H(X̂i
s − αi)

σiis(t− s)X̂i
s

∆W i
s,t

)
.

(11)

Thus, both formulas depend on an auxiliary process with independent components (X̃ and X̂
respectively), which in turn is determined by the introduction of a new drift (` and w respectively,
the latter being defined through (10)). Furthermore, the formulas giving the operators Ts,t and
Ls,t, allowing to write down the conditional expectation, can be summarized as follows: setting

As,t[f ](α) = E

(
f(Xt)

d∏

i=1

H(Y i − gi(α))

σiis(t− s)Y i
∆W i

s,t

)
,

then

• choose Y = X̃s and g(α) = Gs(α) in order to obtain As,t[f ](α) = Ts,t[f ](α);

• choose Y = X̂s and g(α) = α in order to obtain As,t[f ](α) = Ls,t[f ](α).

Thus, the connection between the two approaches is simple: if one sets `1t = 0 and for i = 2, . . . , d,

`it =
∑i−1
j=1 σijw

j
t , then it is straightforward to see that condition (10) equals to the condition studied

in Proposition 3.5, that is α̃s = Gs(α) = α. This means that if `s is chosen as in Proposition 3.5,
the two formulas are actually identical. Therefore, the approach studied here is some more general
than the one developed by Lions and Regnier.

Another way to choose ` might be done in order to minimize the variance (or the integrated one)
of the random variable whose expectation gives the operator Ts,t[f ](α) or Gs,t;k[f ]. Unfortunately,
this procedure gives a dependence on ` in such a way that the percentage ratio between the mean
and the square root of the variance is independent of `. In terms of the Central Limit Theorem,
this means that this kind of optimization gives a nonsense. For details, see [2].

Let us resume the above observations in the following

Remark 3.7 In principle one could take ` arbitrarily, so that for practical purposes the simple
choice `(t) = ρ t seems to be good enough. Concerning the (now) constant ρ, up to now two main
choices for ` can be suggested:

- ρ = 0: this simplifies the process X̃;

- ρ = ρ∗, with ρ∗ as in Proposition 3.5: as observed, this gives a formula for the conditional
expectation in point of fact identical to the one provided by Lions and Reigner in [19].

3.2 Localized formulas

Let us now discuss formulas involving localization functions. If we restrict our attention to product-
type localizing function, then we can first state a localized formula for the operators Ts,t[f ](α) and
Gs,t;j [f ](α) and then for the conditional expectation and its gradient. In fact, one first has

10



Lemma 3.8 Let ψ(x) =
∏d
i=1 ψi(x

i), x = (x1, . . . , xd) ∈ R
d, with ψi ≥ 0 and

∫
R
ψi(ξ)dξ = 1.

Then the operators Ts,t and Gs,t;j, defined in (8) and (9) respectively, can be localized as follows:

Ts,t[f ](α) = T
ψ
s,t[f ](α) and Gs,t;k[f ](α) = G

ψ
s,t;j [f ](α), k = 1, . . . , d,

where

T
ψ
s,t[f ](α) = E

(
f(Xt)

d∏

i=1

[
ψi(Xs − α)) +

(H − Ψi)(X̃
i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

])
(12)

and

G
ψ
s,t;k[f ](α) = −E

(
f(Xt)

[
ψk(X̃

k
s − α̃ks )

∆W k
s,t

σkks(t− s)X̃k
s

+

+
(H − Ψk)(X̃

k
s − α̃ks )

σkks(t− s)(X̃k
s )2

( (∆W k
s,t)

2

σkks(t− s)
+ ∆W k

s,t −
t

σkk

)]
×

×
d∏

i=1,i 6=k

[
ψi(X̃

i
s − α̃is) +

(H − Ψi)(X̃
i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

])
.

(13)

where Ψi denotes the probability distribution function associated with ψi: Ψi(y) =
∫ y
−∞

ψi(ξ)dξ.

By using the localized version for the operators, the localized representation formulas for the
conditional expectation and its gradient immediately follows:

Theorem 3.9 (Representation formulas II: with localization) For any 0 ≤ s < t, Φ ∈ Eb,
α ∈ R

d
+ and for any ψ ∈ Ld, one has

E

(
Φ(Xt)

∣∣∣Xs = α
)

=
T
ψ
s,t[Φ](α)

T
ψ
s,t[1](α)

and, as j = 1, . . . , d,

∂αj E

(
Φ(Xt)

∣∣∣Xs = α
)

=

j∑

k=1

σ̂kj
α̃ks
αj

×
G
ψ
s,t;k[Φ](α)Tψs,t[1](α) − T

ψ
s,t[Φ](α)Gψ

s,t;k[1](α)

T
ψ
s,t[1](α)2

,

where the operators T
ψ
s,t[f ](α) and G

ψ
s,t;k[f ](α) are defined in (12) and (13) respectively.

Remark 3.10 In principle, one could take different localizing functions for each operator, that is:

E

(
Φ(Xt)

∣∣∣Xs = α
)

=
T
ψ1

s,t[Φ](α)

T
ψ2

s,t[1](α)

∂αj E

(
Φ(Xt)

∣∣∣Xs = α
)

=

j∑

k=1

σ̂kj
α̃ks
αj

×
G
ψ3

s,t;k[Φ](α)Tψ4

s,t[1](α) − T
ψ5

s,t[Φ](α)Gψ6

s,t;k[1](α)

T
ψ7

s,t[1](α)2
.

See next section for a discussion on localizing functions. Furthermore, what observed in Remark
3.4 holds here as well: if σ is diagonal, the sum giving ∂αj E(Φ(Xt) |Xs = α) reduces to the single

term with k = j, with coefficient α̃j/αj = e`
js, which is equal to 1 if ` = 0.
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4 Optimal localizing functions

Let us discuss here on the choice of the localizing functions.
By referring to Theorem 3.9, in order to compute E(Φ(Xt) |Xs = α) one has to evaluate

T
ψ
s,t[f ](α) = E

(
f(Xt)

d∏

i=1

[
ψi(X̃

i
s − α̃is) +

(H − Ψi)(X̃
i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

])
,

with f = Φ and f = 1. Such an expectation is practically evaluated by means of the empirical
mean obtained through many independent replications. The aim is now to choose the localizing
function ψ allowing to reduce the variance. To this purpose, we follow the optimization criterium
introduced in the one-dimensional case by Kohatsu-Higa and Petterson [18], which has been used
also by Bouchard, Ekeland and Touzi [8]. It consists in looking for the localizing function ψ which
minimizes the integrated variance, given by

Ifd (ψ) =

∫

Rd

E

(
f2(Xt)

d∏

i=1

[
ψi(X̃

i
s − α̃i) +

(H − Ψi)(X̃
i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

]2)
dα̃, (14)

up to the constant (with respect to the localizing function ψ) term coming out from T
ψ
s,t[f ](α) =

Ts,t[f ](α). Then the following result holds:

Proposition 4.1 Set L1 = {ψ : R → [0,+∞) ; ψ ∈ C1(R), ψ(+∞) = 0 and
∫

R
ψ(t) dt = 1}, and

Ld = {ψ : R
d → [0,+∞) ; ψ(x) =

∏d
i=1 ψi(x

i), where ψi ∈ L1, for any i}. Then

inf
ψ∈Ld

Ifd (ψ) = Ifd (ψ∗)

where ψ∗(x) =
∏d
j=1 ψ

∗
j (x

j), with ψ∗
j (ξ) = λ∗j e

−λ∗

j |ξ|/2 is a Laplace probability density function on
R and λ∗j = λ∗j [f ] enjoys the following system of nonlinear equations:

λ∗j
2 =

E

(
f2(Xt)Θ2

s,t;j

∏
i : i6=j

[
λ∗i

2 + Θ2
s,t;i

])

E

(
f2(Xt)

∏

i : i6=j

[
λ∗i

2 + Θ2
s,t;i

]) , j = 1, . . . , d, (15)

where Θs,t;i = ∆W i
s,t/(σiis(t− s)X̃i

s), i = 1, . . . , d.

Proof. Notice first that we can write Ifd (ψ) = Ifd (ψ1, . . . , ψd), with ψ1, . . . , ψd ∈ L1. In order

to compute the derivative in the direction (ψ̂1, 0, . . . , 0), where ψ̂1 = ψ̂1(x1) is some arbitrary
function, we reduce the computation to the one-dimensional case. In fact, for a fixed f , let us put
f̃t(y) ≡ f̃(y) = f ◦ Ft(y), y ∈ R

d
+ and Ft being defined in (5). Setting

f̃2
1 (x1) =

∫

Rd−1

dα̃2 . . . dα̃dE
(
f̃2(x1, X̃2

t , . . . , X̃
d
t )

d∏

i=2

[
ψi(X̃

i
s − α̃i) + (H − Ψi)(X̃

i
s − α̃i)Θs,t;i

]2)

then

Ifd (ψ) =

∫

R

dα̃1
E

(
f̃2
1 (X̃1

t )
[
ψ1(X̃

1
s − α̃1) + (H − Ψ1)(X̃

1
s − α̃1)Θs,t;1

]2)
= If11 (ψ1).
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By interchanging the order of integration and by considering the change of variable β = X̃1
s − α̃1,

one has

If11 (ψ1) = E

∫

R

f2
1 (X̃1

t )
(
ψ1(β) + (H − Ψ1)(β)Θs,t;1

)2

dβ.

Now, set ε ∈ R and let ψ̂1 ∈ L1(R) be such that for any small ε then ψ1 + εψ̂1 ∈ L1. Setting

Ψ̂1(x) =
∫ x
−∞

ψ̂1(ξ) dξ, one has

∂Ifd (ψ)

∂ψ1
(ψ̂1) = (If11 )′(ψ1)(ψ̂1) = lim

ε→0

1

ε

(
If11 (ψ1 + εψ̂1) − If1 (ψ1)

)

= 2E

∫

R

f2
1 (X̃1

t )
(
ψ̂1(β) − Ψ̂1(β)Θs,t;1

)(
ψ1(β) + (H − Ψ1)(β)Θs,t;1

)
dβ.

We look for a function ψ∗
1 in L1 such that (If11 )′(ψ∗

1)(ψ̂1) = 0 for any ψ̂1 satisfying the conditions
above. Consider the first term of the (last) r.h.s.: by using the standard integration by parts

formula (recall that Ψ̂′
1 = ψ̂1), we can write

∫

R

ψ̂1(β) f2
1 (X̃1

t )
(
ψ1(β)+(H−Ψ1)(β)Θs,t;1

))
dβ = Ψ̂1(β) f̃2

1 (X̃1
t )

(
ψ1(β)+(H−Ψ1)(β)Θs,t;1

)∣∣∣
+∞

−∞

−
∫

R

Ψ̂1(β) f̃2
1 (X1

t ) ∂β

(
ψ1(β) + (H − Ψ1)(β)Θs,t;1

)
dβ

Now, since Ψ̂1(β) → 0 as β → −∞ and ψ1 is a (quite smooth) probability density function, then
ψ1(β) + (H − Ψ1)(β) → 0 as β → +∞ and the first term nullifies. Moreover, ∂β(ψ1(β) + (H −
Ψ1)(β)Θs,t;1) = ψ′

1(β) + (δ0 − ψ1)(β)Θs,t;1, being δ0 the Dirac mass in 0. Thus, we obtain

(If11 )′(ψ1)(ψ̂1) = −2E

∫

R

Ψ̂1(β) f̃2
1 (X̃1

t )
(
ψ′

1(β) + (H − Ψ1)(β)Θ2
s,t;1

)
dβ − 2Ψ̂1(0)E(f̃2

1 (X̃1
t )Θs,t;1)

= −2

∫

R

Ψ̂1(β) E

(
f̃2
1 (X̃1

t )
(
ψ′

1(β) + (H − Ψ1)(β)Θ2
s,t;1

))
dβ,

where we have used E(f̃2
1 (X̃1

t )Θs,t;1) = 0, proved in a) of Corollary 6.2. Since Ψ̂1 is the primitive

function of an almost arbitrarily integrable function, we can say that (If11 )′(ψ1)(ψ̂1) = 0 for any

ψ̂1 if and only if

E

(
f̃2
1 (X̃1

t )
(
(H − Ψ1)(β)Θ2

s,t;1 + ψ′
1(β)

))
= 0

for (almost) any β. This gives rise to an ordinary differential equation: setting

λ∗1
2 =

E(f̃2
1 (X̃t)Θ2

s,t;1)

E(f̃2
1 (Xt))

and v(β) = Ψ1(β), then it must be: v′′(β) − λ∗1
2 v(β) + λ∗1

2H(β) = 0. The solution is simply
v(β) = c1 e

λ∗

1β + c2 e
−λ∗

1β + 1 if β > 0 and v(β) = c3 e
λ∗

1β + c4 e
−λ∗

1β if β < 0, with c1, . . . , c4 ∈ R

and λ∗1 =
√
λ∗1

2. Now, by imposing that v(+∞) = 1, v(−∞) = 0 and v′(β) has to be a continuous

probability density function, we finally get the solution v∗: v∗(β) = 1 − 1
2 e

−λ∗

1β if β > 0 and

v∗(β) = 1
2 e

λ∗

1β if β < 0.
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Since everything is symmetric, we obtain similar equations and solutions for the remaining coor-
dinates 2, . . . , d, so that the following system hold: for j = 1, . . . , d,

ψ∗
j (β) =

λ∗

j

2 e−λ
∗

j |β|, β ∈ R,

λ∗j
2 =

∫
Rd−1 dα̃−j E

(
f2(Xt)Θ2

s,t;j

∏
i : i6=j

[
ψ∗
i (X̃

i
s − α̃i) + (H − Ψ∗

i )(X̃
i
s − α̃i)Θs,t;i

]2)

∫
Rd−1 dα̃−j E

(
f2(Xt)

∏
i : i6=j

[
ψ∗
i (X̃

i
s − α̃i) + (H − Ψ∗

i )(X̃
i
s − α̃i)Θs,t;i

]2)

where “dα̃−j” means that one has to integrate with respect to all the variables except for α̃j .
Let us now show that ψ∗ is actually a minimum. Straightforward computations allow to write

d∑

k,j=1

∂2Ifd
∂ψ̂k∂ψ̂j

(ψ∗)(ψ̂k, ψ̂j) = 4E

∫

Rd

f̃(X̃t)
2
( d∑

m=1

(ψ̂m(βm) − Ψ̂m(βm)Θs,t;m)
)2

×

×
d∏

i=1

(
ψ∗
i (βi) + (H − Ψ∗

i )(βi)Θs,t;i

)2

dβ

which is positive, so that ψ∗ is a minimum.

It remains now to give a better representation of the integrals giving the optimal values λ∗. Notice
that one has to handle something like

∫

Rd−1

dα̃−j E

(
f2(Xt)π

2
s,t;j

∏

i : i6=j

[
ψ∗
i (X̃

i
s − α̃i) + (H − Ψ∗

i )(X̃
i
s − α̃i)Θs,t;i

]2)

= E

(
f2(Xt)π

2
s,t;j

∫

Rd−1

dα̃−j

∏

i : i6=j

[
ψ∗
i (X̃

i
s − α̃i) + (H − Ψ∗

i )(X̃
i
s − α̃i)Θs,t;i

]2)
,

with πs,t;j = Θs,t;j or πs,t;j = 1. Let us consider the integral inside the expectation: by recalling
that ψ∗

i (ξ) = λ∗i e
−λ∗

i |ξ|/2, then (H − Ψ∗
i )(ξ) = sign(ξ) e−λ

∗

i |ξ|/2, so that

∫

Rd−1

dα̃−j

[
ψ∗
i (X̃

i
s − α̃i) + (H − Ψ∗

i )(X̃
i
s − α̃i)Θs,t;i

]2

=
∏

i : i6=j

∫

R

dα̃i
1

4
e−2λ∗

i |X̃i
s−α̃

i|
[
λ∗i + sign(X̃i

s − α̃i)Θs,t;i

]2

=
∏

i : i6=j

1

4λ∗i
[λ∗i

2 + Θ2
s,t;i]

By inserting everything, one obtains

∫

Rd−1

dα̃−j E

(
f2(Xt)π

2
s,t;j

∏

i : i6=j

[
ψ∗
i (X̃

i
s − α̃i) + (H − Ψ∗

i )(X̃
i
s − α̃i)Θs,t;i

]2)

=
1

4dλ∗1 · · ·λ∗d
E

(
f2(Xt)π

2
s,t;j

∏

i : i6=j

[λ∗i
2 + Θ2

s,t;i]
)
,

and the statement follows straightforwardly.

2
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In the above optimization criterium, in principle one could consider a measure more general than
the Lebesgue one, namely to replace dα̃ with µ(dα̃) in (14). For example, since α̃ represents a

possible value for X̃s, then it would be more significant to consider µ(dα̃) as a lognormal measure,
or at least a normal one (with suitable mean and covariance matrix). Then, it is worth to say
that everything runs in the same way. But unfortunately, one arrives to an ordinary differential
equation (as in the proof of Proposition 4.1) which has not an explicit solution, that is for a general
µ it is not possible to write down explicitly the optimal localizing function.

Remark 4.2 The nonlinear system giving the optimal parameters λ∗j = λ∗j [f ] can be rewritten as

λ∗j [f ]2 =

E

(
f2(Xt)

t+ σ2
jjs(t− s)

σ2
jjs(t− s)(X̃j

s )2

∏

i : i6=j

[
λ∗i [f ]

2
+

t+ σ2
iis(t− s)

σ2
iis(t− s)(X̃i

s)
2

])

E

(
f2(Xt)

∏

i : i6=j

[
λ∗i [f ]

2
+

t+ σ2
iis(t− s)

σ2
iis(t− s)(X̃i

s)
2

]) , j = 1, . . . , d. (16)

Indeed, consider first the expectation in the numerator of (15). By conditioning with respect to

W j, one has to evaluate E(f̄2
j (X̃j

t )Θ2
s,t;j), being

f̄2
j (xj) = E

(
f̃2(X̃1

t , . . . , X̃
j−1
t , xj , X̃j+1

t , . . . , X̃d
t )

∏

i : i6=j

[λ∗i
2 + Θ2

s,t;i]
)
.

By using b) of Corollary 6.2, one has

E(f̄2
j (X̃j

t )Θ2
s,t;j) = E

(
f̄2
j (X̃j

t )
t+ σ2

jjs(t− s)

σ2
jjs(t− s)(X̃j

s )2

)
,

so that

E

(
f2(Xt)Θ2

s,t;j

∏

i : i6=j

[λ∗i
2 + Θ2

s,t;i]
)

= E

(
f2(Xt)

t+ σ2
jjs(t− s)

σ2
jjs(t− s)(X̃j

s )2

∏

i : i6=j

[λ∗i
2 + Θ2

s,t;i]
)
.

Now, by conditioning with respect to W k as k 6= j and by iterating this procedure, one obtains

E

(
f2(Xt)Θ2

s,t;j

∏

i : i6=j

[λ∗i
2 + Θ2

s,t;i]
)

= E

(
f2(Xt)

t+ σ2
jjs(t− s)

σ2
jjs(t− s)(X̃j

s )2

∏

i : i6=j

[
λ∗i

2 +
t+ σ2

iis(t− s)

σ2
iis(t− s)(X̃i

s)
2

])
.

Similarly,

E

(
f2(Xt)

∏

i : i6=j

[λ∗i
2 + Θ2

s,t;i]
)

= E

(
f2(Xt)

∏

i : i6=j

[
λ∗i

2 +
t+ σ2

iis(t− s)

σ2
iis(t− s)(X̃i

s)
2
]
)
,

so that formula (16) holds.

Remark 4.3 For f = 1 the corresponding optimal values of the parameters λj can be exactly
computed and are given by (recall that x1, . . . , xd are the initial underlying asset prices)

λ∗j [1] =
e−(hjs+`js)+σ2

jjs

xj

√
t+ σ2

jjs(t− s)

σ2
jjs(t− s)

, j = 1, . . . , d.
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Indeed, whenever f = 1, by Remark 4.2, one has (recall that the X̃i’s are independent)

λ∗j [1]2 = E

( t+ σ2
jjs(t− s)

σ2
jjs(t− s)(X̃j

s )2

)
, j = 1, . . . , d.

Now, since X̃j
s = xj exp(hjs+ `js+σjjW

j
s ), one has E((X̃j

s )
−2) = (xj)−2e−2(hjs+`js)

E(e−2σjjW
j
s ) =

(xj)−2e−2(hjs+`js)e2σ
2
jjs, and the above formula immediately follows.

For practical purposes, numerical evidence shows that the choice λ∗ = 1/
√
t− s works good enough,

thus avoiding to weight the algorithm with the computation of further expectations. When f = 1,
this kind of behaviour is clear from Remark (4.3). In the general case, we can state the following

Proposition 4.4 For any j = 1, . . . , d, one has λ∗j [f ] = O(1/
√
t− s) as t → s. Moreover, if f is

continuous, then

lim
σ→0

lim
t→s

λ∗j [f ]

λ∗j [1]
= 1.

Proof. Let us set:

ν∗j = λ∗j [f ]2 σ2
jjs(t− s) and ν̄j = λ∗j [1]2 σ2

jjs(t− s),

as j = 1, . . . , d. By (16), ν∗ = (ν∗1 , . . . , ν
∗
d) is such that for any j = 1, . . . , d,

ν∗j =

E

(
f2(Xt)

t+ σ2
jjs(t− s)

(X̃j
s )2

∏

i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

]

E

(
f2(Xt)

∏

i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

])

and since the above quantity is bounded as (t− s) → 0, it then follows that ν∗j = O(1/(t− s)), or

equivalently λ∗j [f ] = O(1/
√
t− s).

Let us now discuss what happens whenever also σ → 0. One has (X̃j
s )

−2 = (xj)−2 exp(−2hjs
−2`js − 2σjjW

j
s ) = (xj)−2 exp(−2hjs − 2`js + 2σ2

jj) exp(−2σ2
jj − 2σjjW

j
s ). Setting exp(−2σ2

jj −
2σjjW

j
s ) = 1 + Y js , we can write, as j = 1, . . . , d, (see Remark 4.3)

t+ σ2
jjs(t− s)

(X̃j
s )2

= ν̄j (1 + Y js ),

so that

ν∗j = ν̄j

E

(
f2(Xt)(1 + Y js )

∏
i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

])

E

(
f2(Xt)

∏

i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

])

and

ν∗j
ν̄j

= 1 +

E

(
f2(Xt)Y

j
s

∏
i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

])

E

(
f2(Xt)

∏

i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

]) .
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Now, by applying twice the Lebesgue dominated convergence theorem, one has (recall that f is
continuous and Y js → 0 a.s. as σ → 0)

lim
σ→0

lim
t↓s

E

(
f2(Xt)Y

j
s

∏
i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

])

E

(
f2(Xt)

∏

i : i6=j

[
ν∗i +

t+ σ2
iis(t− s)

(X̃i
s)

2

]) = 0,

and the statement holds.

2

Similar arguments can be used in order to handle the problem of minimizing the variance coming
out from the expectation giving the operators G

ψ
s,t;k[f ](α) (see (12)). To this purpose, let us recall

that

G
ψ
s,t;k = −E

(
f(Xt)

[
ψk(X̃

k
s − α̃k)Θs,t;k + (H − Ψk)(X̃

k
s − α̃k)Υs,t;k

]
πs,t;k((X̃s − α̃)−k)

)
,

where

Θs,t;k =
∆W k

s,t

σkks(t− s)X̃k
s

, Υs,t;k =
1

σkks(t− s)(X̃k
s )2

( (∆W k
s,t)

2

σkks(t− s)
+ ∆W k

s,t −
t

σkk

)
(17)

and

πs,t;k((X̃s − α̃)−k) =

d∏

i=1,i 6=k

(
ψi(X̃

i
s − α̃i) +

(H − Ψi)(X̃
i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)

where, for β ∈ R
d, the notation β−k means the vector on R

d−1 having the same coordinates of β
except for the kth one. In the one dimensional case, one simply has to drop the subscript k, take
α̃ = α and set πs,t;k(α̃−k) ≡ 1. Thus, if we set

Jf ;k
d (ψ) =

∫

Rd

E

(
f2(Xt)

[
ψk(X̃

k
s − α̃k)Θs,t;k + (H − Ψk)(X̃

k
s − α̃k)Υs,t;k

]2

π2
s,t;k((X̃s − α̃)−k)

)
dα̃

then the following result holds:

Proposition 4.5 Let Υs,t;k and Θs,t;k be as in (17). Setting Ld = {ψ : R
d → [0,+∞) ; ψ(x) =∏d

i=1 ψi(x
i), where ψi ∈ L1, for any i}, then

inf
ψ∈Ld

Jf ;k
d (ψ) = Jf ;k

d (ψ∗;k)

where ψ∗;k(x) =
∏d
j=1 ψ

∗
j;k(x

j), with ψ∗
j;k(ξ) =

µ∗

j;k

2 e−µ
∗

j;k |ξ| is a Laplace probability density func-
tion and µ∗

j;k = µ∗
j;k[f ] are given by:

i) in the one dimensional case (k = j = 1), one has:

µ∗ = µ∗[f ] =




E

(
f2(Xt)Υ2

s,t

)

E

(
f2(Xt)Θ2

s,t

)




1/2

;
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ii) in the multidimensional case, for any fixed k = 1, . . . , d, the µ∗
j;k’s solve the nonlinear system,

as j = 1, . . . , d:

(µ∗
k;k)

2 =
E

(
f2(Xt)Υ2

s,t;k

∏d
i=1,i 6=k

[
(µ∗
i;k)

2 + Θ2
s,t;j

])

E

(
f2(Xt)Θ2

s,t;i

∏d
i=1,i 6=k

[
(µ∗
i;k)

2 + Θ2
s,t;i

]) and for j 6= k :

(µ∗
j;k)

2 =
E

(
f2(Xt)

(
(µ∗
k;k)

2Θ2
s,t;k + Υ2

s,t;k

)
Θ2
s,t;j

∏d
i=1,i 6=j,k

[
(µ∗
i;k)

2 + Θ2
s,t;i

])

E

(
f2(Xt)

(
(µ∗
k;k)

2Θ2
s,t;k + Υ2

s,t;k

) ∏d
i=1,i 6=j,k

[
(µ∗
i;k)

2 + Θ2
s,t;i

]) .

The proof of Proposition 4.5 uses the same technique as in the proof Proposition 4.1 and is
postponed to Section 6.2 of the Appendix. Again, numerical evidences show that the choice
µ∗
j;k = 1/

√
t− s works good enough.

Finally, let us conclude the discussion on the optimal localizing function with a short consideration.
For simplicity, let us consider the one dimensional case. The main problem is a good estimate of
E(Φ(Xt) |Xs = α), which can be rewritten as

E(Φ(Xt) |Xs = α) = E

(
Φ(Xt)

πψs,t

E(πψs,t)

)
, πψs,t = ψ(Xs − α) +

(H − Ψ)(Xs − α)

σs(t− s)Xs
∆Ws,t

(one could also complicate things by considering two different localizing functions in the above
ratio). So, another reasonable way to proceed might take into account the variance coming out

from the weight πψs,t/E(πψs,t). But since it is written in terms of a ratio, at this stage it does not
seem feasible to obtain results giving the associated optimal localizing function ψ.

5 The algorithm for pricing/hedging American options

We give here a detailed presentation of the use of the representation formulas in the applied
context of the pricing and hedging of American options. Afterwards, we show some numerical
results coming out by applying the algorithm in practice.

5.1 How to use the formulas in practice

The algorithm is devoted to the numerical evaluation of the price P (0, x) and the delta ∆(0, x) of
an American option with payoff function Φ and maturity T , on underlying assets whose price X
evolves following the Black-Scholes model (3).
Let 0 = t0 < t1 < . . . < tn = T be a discretization of the time interval [0, T ], with step size equal to
ε = T/n. By using Theorem 2.1 and Proposition 2.2, the price P (0, x) is approximated by means
of P̄0(x), where P̄kε(Xkε), as k = 0, 1, . . . , n, is iteratively defined as:

P̄nε(Xnε) = Φ(Xnε) ≡ Φ(XT ) and as k = n− 1, . . . , 1, 0

P̄kε(Xkε) = max
{

Φ(Xkε) , e
−rε

E

(
P̄(k+1)ε(X(k+1)ε)

︸ ︷︷ ︸
♣

∣∣∣Xkε

)}
(18)
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and the delta ∆(0, x) is approximated by using the following plan: setting

∆̄(Xε) =





∂α Φ(α)
∣∣∣
α=Xε

if P̄ε(Xε) < Φ(Xε)

e−rε ∂α E

(
P̄2ε(X2ε)

∣∣∣Xε = α
)

︸ ︷︷ ︸
♠

∣∣∣
α=Xε

if P̄ε(Xε) > Φ(Xε)

then ∆̄0(x) = Ex

(
∆̄(Xε)

)
.

(19)

The conditional expectations (terms ♣) and their derivatives (terms ♠) will be computed through
the formulas previously given, by means of unconditioned expectations which in turn are numeri-
cally evaluated by averaging on N simulated paths.

Remark 5.1 In the context of the geometric Brownian motion, the process X can be exactly
simulated. So, we do not need any approximation X̄kε of Xkε, and thus we write directly Xkε.
Furthermore, it is worth remarking that the algorithm allows to use the same sample in order to
compute all the conditional expectations, as it will follows.

Since the algorithm is backward, for the simulation we consider the Brownian bridge law (recall
that for 0 < s < t, the law of Ws given Wt = y is a gaussian law with mean s/t y and variance
s(t− s)/t I). Therefore,

- at time T = nε, we simulate Wnε as usual: Wnε =
√
nεUn, with Un = (U1

n, . . . , U
d
n), U in ∼

N(0, 1), i = 1, . . . , d, all independent;

- as k = n − 2, . . . , 1, we simulate by the Brownian bridge property: Wkε = k/(k + 1)W(k+1)ε +√
kε/(k + 1) Uk, with Uk = (U1

k , . . . , U
d
k ), U ik ∼ N(0, 1), i = 1, . . . , d, independent.

Thus, the basic data in the algorithm are given by

U = {U i,qk ; k = 1, . . . , n︸ ︷︷ ︸
time

, i = 1, . . . , d︸ ︷︷ ︸
dimension

, q = 1, . . . , N︸ ︷︷ ︸
sample

} (20)

and U gives all the samples we are interested in, that is:

• (W i,q
kε )i=1,...,d; k=1,...,n, q = 1, . . . , N : as i = 1, . . . , d,

for k = n : W i,q
nε =

√
nεU i,qn , and

for k = n− 1, . . . , 1 : W i,q
kε =

k

k + 1
W i,q

(k+1)ε +

√
k

k + 1
ε U i,qk ;

(21)

• (Xi,q
kε )i=1,...,d; k=0,...,n, q = 1, . . . , N : for k = n, n− 1, . . . , 1,

Xi,q
kε = xi e

(r−ηi−
1
2

∑ i
j=1 σ

2
ij)kε+

∑ i
j=1 σijW

i,q

kε , i = 1, . . . , d (22)

and Xi,q
0 = xi, i = 1, . . . , d (as an example, Figure 1 shows a set of simulated paths of X);

• {∆W i,q
k }i=1,...,d; k=1,...,n−1, q = 1, . . . , N (giving a sample for ∆Ws,t): for k = n, n− 1, . . . , 1,

∆W i,q
k = ε(W i,q

kε + σiikε) − kε(W i,q
(k+1)ε −W i,q

kε ), 1, . . . , d; (23)
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time=1

time=0

X
q

1

Figure 1 An example of the tree turning out by simulating 10 paths of the process X on [0, 1].

• (X̃i,q
kε )i=1,...,d; k=0,...,n, q = 1, . . . , N : for k = n, . . . , 1,

X̃i,q
kε = xi e

(r−ηi−
1
2

∑ i
j=1 σ

2
ij)kε+`

i,q

k
kε+σii W

i,q

kε , i = 1, . . . , d, (24)

and X̃i,q
0 = xi, i = 1, . . . , d. Obviously, if d > 1 one needs to introduce the drift `, which

could vary according to the time interval of interest [kε, (k+1)ε] and also on the position of

X at time kε (see Remark 3.7). So, X̃i,q
kε can be simulated once the following set L is chosen:

L = {`i,qk ; k = 1, . . . , n− 1︸ ︷︷ ︸
time

, i = 1, . . . , d︸ ︷︷ ︸
dimension

, q = 1, . . . , N︸ ︷︷ ︸
sample

}.

The pricing algorithm can be summarized step by step as follows.

- Step n: simulation of W q
nε and Xq

nε as in (21) and (22); then, computation of P̄tn(Xq
nε):

P̄tn(Xq
nε) = Φ(Xq

nε) q = 1, . . . , N.

- Step n−1: simulation of W q
(n−1)ε, X

q
(n−1)ε, ∆W q

n−1 and X̃q
(n−1)ε as in (21), (22), (23) and (24);

then, computation of P̄(n−1)ε(X
q
(n−1)ε):

P̄(n−1)ε(X
q
(n−1)ε) = max

(
Φ(Xq

(n−1)ε) , e
−r ε

E(P̄nε(Xnε) |X(n−1)ε = Xq
(n−1)ε)

)

for q = 1, . . . , N , where the expectation is evaluated by the formulas in the previous sections,
for example

E(P̄nε(Xnε) |X(n−1)ε = Xq
(n−1)ε) =

T
n−1[P̄nε](X

q
(n−1)ε)

Tn−1[1](Xq
(n−1)ε)

where, for f = P̄nε, 1,

T
n−1[f ](Xq

(n−1)ε) = E

(
f(Xnε)

d∏

i=1

H(X̃i
(n−1)ε − α̃i)

X̃i
(n−1)ε

∆W i
(n−1)ε,nε

)∣∣∣
α̃=Xq

(n−1)ε

Notice that T
n−1[f ](Xq

(n−1)ε) is the mean of a random variable for which one has N trials,

so that it is numerically computed by the law of large numbers:

T
n−1[f ](Xq

(n−1)ε) =
1

N

N∑

q′=1

f(Xq′

nε)

d∏

i=1

H(X̃i,q′

(n−1)ε − X̃i,q
(n−1)ε)

X̃i,q′

(n−1)ε

∆W i,q′

n−1.
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- Step k, k = n− 2, . . . , 1: as in step n− 1, with k in place of n− 1.

At step 1, from (19) one has to add the following computation for the delta:

∆̄(Xq
ε ) =





∂α Φ(α)
∣∣∣
α=Xq

ε

if P̄ε(X
q
ε ) < Φ(Xq

ε )

e−rε ∂α E

(
P̄2ε(X2ε)

∣∣∣Xε = α
)∣∣∣
α=Xq

ε

if P̄ε(X
q
ε ) > Φ(Xq

ε )

where ∂α E(P̄2ε(X2ε) |Xε = α)|α=Xq
ε

is computed by using the formulas in the previous
sections, for example:

∂αj E

(
F (X2ε) =

∣∣∣Xε = α
)∣∣∣
α=Xq

ε

=

j∑

m=1

σ̂mj
X̃m,q
ε

Xj,q
ε

× Gs,t;m[F ](Xq
ε )Ts,t[1](Xq

ε ) − Ts,t[F ](Xq
ε )Gs,t;m[1](Xq

ε )

Ts,t[1](Xq
ε )2

,
(25)

with s = ε and t = 2ε. Ts,t and Gs,t;m, given by (8) and (9) respectively, are weighted
expectations of random variables for which we have N samples, so they are evaluated in
practice by means of the associated empirical mean.

At the end, the samples (P̄ε(X
q
ε ), ∆̄(Xq

ε ))q=1,...,N are available.

- Step 0: computation of the price and the delta:

P̄0(x) = max
(
Φ(x), e−r∆t 1

N

N∑

q=1

P̄ε(X
q
ε )

)
and ∆̄0(x) =

1

N

N∑

q=1

∆̄(Xq
ε ).

Let us point out that, for the sake of simplicity, the description takes into account the non localized
formulas. In practice, it is much better to use localizing functions, so one should use the formulas
coming from Theorem 3.9. Obviously, nothing changes and for the choice of the localizing functions,
we refer to the discussion in Section 4.

Furthermore, in order to reduce the variance, one could use a control variable. Unfortunately,
there is not a standard way to proceed in this direction but in the case of American option, it is
quite natural to think to the associated European one. The idea is the following.
For a fixed initial time t and underlying asset price x, let us set P am(t, x) and P eu(t, x) as the
price of an American and European option respectively, with the same payoff Φ and maturity T .
We define

P (t, x) = P am(t, x) − P eu(t, x).

Then it is easy to see that

P (t,Xt) = sup
τ∈Tt,T

E

(
e−r(τ−t)Φ̂(τ,Xτ )

∣∣∣Ft
)

where Tt,T stands for the set of all the stopping times taking values on [t, T ] and Φ̂ is defined by

Φ̂(t, x) = Φ(x) − P eu(t, x)

(notice the obstacle Φ̂(t, x) is now dependent on the time variable also, and is such that Φ̂(T, x) =
0). Thus, for the numerical valuation of P (0, x), one can set up a dynamic programming principle

in point of fact identical to the one previously described, provided that Φ is replaced by Φ̂(t, x).
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Once the estimated “price” P̄0(x) and “delta” ∆̄0(x) are computed, the approximation of the price
and delta of the American option is then given by

P̄ am
0 (x) = P̄0(x) + P eu(0, x) and ∆̄am

0 (x) = ∆̄0(x) + ∆eu(0, x)

respectively. Notice that the new obstacle has to be evaluated at each time step: in order to set
up this program, one has to compute the price/delta of an European option on Φ. This can be
done exactly for some call or put options, for which prices and deltas are known in closed form,
otherwise one can proceed by simulation for their computation.

5.2 Numerical experiments

Here, we numerically study the behavior of the pricing/hedging algorithm described in Section 5.1.
In order to have comparable results, a symmetric case is considered, where the deltas are all equal.
Thus, the initial values are assumed to be all equal, and the same for the volatilities; we also set
equal to zero both the dividend rates and the correlations among the assets. The parameters are:
initial values x1 = . . . = xd = 100; volatilities σ11 = . . . = σdd = 0.2; exercise price K = 100;
maturity T = 1 year; risk-free interest rate r = ln(1.1).
We consider the following examples.

- Standard one dimensional American put, payoff Φ(x) = (K − x)+, see Table 1.

The “true” reference price and delta are issued by the binomal Black-Scholes Richardson
extrapolation tree-method [10] (BBSR-P and BBSR-∆ in the table), with 1000 steps.

- Put on the minimum of 2 assets, payoff Φ(x) = (K − min(x1, x2))+, see Table 2.

The “true” reference price and deltas are obtained by the Villeneuve-Zanette finite difference
algorithm [25] (VZ-P and VZ-∆ in the table), with 500 time-space steps.

- Put on the geometric mean of 5 assets: payoff Φ(x) = (K − (
∏5
i=1 xi)

1/5)+, see Table 3.

The peculiarity of the payoff allows one to benchmark the results with the one-dimensional
American BBSR tree-method [10] (BBSR-P and BBSR-∆ in the table), with 1000 steps.

We have considered Nmc = 500, 1000, 5000, 10000, 20000 number of Monte Carlo iterations and
varying time periods n (n = 10, 20, 50 in dimension d = 1, 2 and n = 5, 10, 20 for d = 5). In the
tables, P̄ and ∆̄ denote the approximating price and delta respectively, and the “true” reference
price and delta are reported. For the sake of comparison with other existing Monte Carlo methods,
in the case of the standard American put (Table 1) also the price and delta provided by the
Barraquand-Martineau [6] and the Longstaff-Schwartz [20] algorithm1 are reported (prices and
deltas are denoted as BM-P , BM-∆ and LS-P , LS-∆, respectively).
In any experiment, the price of the associated Europen option has been used as a control variable.
Moreover, also the localization has been taken into account, as a Laplace-type probability density
function (see Section 4). In order to relax the computational executing time, we have always used
the parameter of the localizing function equal to 1/

√
ε, being ε = T/n, where T stands for the

maturity and n is the number of time periods. Concerning the auxiliary drift `, we have chosen
both ` = 0 and ` as in Proposition 3.5 (see Remark 3.7 for details). Actually, the results are not
influenced by the two possibilities: the outcomes are quite identical.

1The Barraquand and Martineau algorithm takes into account a space-grid, while the Longstaff and
Schwartz algorithm uses least-squares approximation techniques: we have considered the ones implemented
in the software Premia, see http://cermics.enpc.fr/~premia
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Nmc P̄ BBSR-P BM-P LS-P ∆̄ BBSR-∆ BM-∆ LS-∆

500 4.807 5.611 4.914 -0.378 -0.316 -0.284

10 time 1000 4.795 5.147 4.714 -0.387 -0.325 -0.232

periods 5000 4.804 4.918 5.038 4.710 -0.384 -0.387 -0.287 -0.258

10000 4.818 4.973 4.747 -0.387 -0.279 -0.254

20000 4.823 4.928 4.816 -0.388 -0.270 0.265

500 4.896 5.469 5.025 -0.398 -0.284 -0.237

20 time 1000 4.896 5.198 4.903 -0.385 -0.261 -0.251

periods 5000 4.864 4.918 5.086 4.765 -0.385 -0.387 -0.281 -0.256

10000 4.873 5.076 4.843 -0.392 -0.272 -0.262

20000 4.875 5.057 4.868 -0.387 -0.278 -0.269

500 4.936 5.347 5.165 -0.384 -0.261 -0.258

50 time 1000 4.951 5.904 5.118 -0.384 -0.270 -0.3018

periods 5000 4.897 4.918 5.184 4.880 -0.386 -0.387 -0.283 -0.263

10000 4.904 5.181 4.859 -0.392 -0.273 -0.263

20000 4.910 5.149 4.907 -0.389 -0.281 -0.278

Table 1: Standard American put

Nmc P̄ VZ-P ∆̄1 ∆̄2 VZ-∆

500 10.298 -0.288 -0.296

10 time 1000 10.283 -0.295 -0.294

periods 5000 10.271 10.306 -0.295 -0.297 -0.295

10000 10.277 -0.297 -0.297

20000 10.263 -0.296 -0.295

500 10.388 -0.302 -0.294

20 time 1000 10.371 -0.293 -0.292

periods 5000 10.350 10.306 -0.295 -0.296 -0.295

10000 10.349 -0.296 -0.297

20000 10.327 -0.296 -0.297

500 10.511 -0.306 -0.287

50 time 1000 10.443 -0.288 -0.289

periods 5000 10.416 10.306 -0.300 -0.299 -0.295

10000 10.424 -0.297 -0.299

20000 10.403 -0.298 -0.297

Table 2: American put on the minimum of 2 assets

5.3 Final comments

The numerical values for the price and delta in Table 1, 2 and 3, show good accordance with the
“true” values. Notice that this holds for a not high number of both time periods (n = 10) and
Monte Carlo iterations (Nmc = 500, 1000). Moreover, the tables suggest that, as the dimension
increases, the convergence in terms of Nmc is slower when the number of time periods is high. This
could be explained if one knew the theoretical error, for which at the moment there are no results.
However, Bouchard and Touzi in [9] (Theorem 6.3) have proved that, in a very similar simulation
scheme (in particular, using localizing functions giving formulas rather different from the ones as
in Lemma 3.8), the maximum of all the Lp distances between the true conditional expectations
and the associated regression estimators is of order ε−d/(4p)N−1/(2p) as ε→ 0 (recall that ε is the
discretization time-step, N is the number of simulations and d stands for the dimension - notice
that there is a dependence on the dimension as well). In particular, the maximum of the variances
is of order ε−d/4N−1/2 as ε→ 0. This would suggest that as the dimension increases, one should
increase also the number of Monte Carlo iterations in order to achieve good results.
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Nmc P̄ BBSR-P ∆̄1 ∆̄2 ∆̄3 ∆̄4 ∆̄5 BBSR-∆

500 1.525 -0.0752 -0.0741 -0.0824 -0.0767 -0.0708

5 time 1000 1.535 -0.0743 -0.0739 -0.0744 -0.0687 -0.0784

periods 5000 1.528 1.583 -0.0738 -0.0794 -0.0750 -0.0727 0.0761 -0.0755

10000 1.537 -0.0775 -0.0765 -0.0786 -0.0759 -0.0780

20000 1.541 -0.0777 -0.0777 -0.0797 0.0779 -0.0783

500 1.716 -0.0781 -0.0766 -0.0868 -0.0934 -0.0708

10 time 1000 1.684 -0.0763 -0.0756 -0.0839 -0.0786 -0.0823

periods 5000 1.740 1.583 -0.0878 -0.0864 -0.0870 -0.0825 -0.0863 -0.0755

10000 1.737 -0.0864 -0.0842 -0.0872 -0.0865 -0.0878

20000 1.727 -0.0838 0.0871 -0.0867 -0.084 -0.0842

500 1.800 -0.0777 -0.0754 -0.0681 -0.0827 -0.0643

20 time 1000 1.846 -0.0851 -0.0872 -0.0753 -0.0720 -0.0768

periods 5000 1.907 1.583 -0.0864 -0.0833 0.0919 -0.0933 -0.0983 -0.0755

10000 1.880 0.0918 -0.0882 -0.0890 -0.0829 0.0849

20000 1.879 -0.0847 -0.0913 -0.0911 -0.0907 -0.0872

Table 3: American put on the geometric mean of 5 assets

Table 4, referring to the simplest case of the one dimensional American put, concerns what happens
if one does not consider the localization function and/or the control variable.

Nmc P̄ :
yes localization

no control variable

no localization

yes control variable

no localization

no control variable

500 5.056 4.615 4.024

1000 4.873 4.725 4.272

5000 4.717 10.417 124.148

10000 4.773 14.330 10437.562

20000 4.829 10.224 219.259

Table 4: Standard American Put, 10 time periods (“true” price: 4.918)

First of all, Table 4 points out that the algorithm numerically does not work if the localization
is not taken into account. On the contrary, the use of the localization, even without any control
variables, gives unstable but rather reasonable prices. Thus, Table 1, 2, 3 and 4 allow to deduce
that the introduction of the control variable together with the localization then brings to more
stable results, with quite satisfactory precision both for prices and deltas also with a small number
of Monte Carlo iterations (Nmc = 500, 1000).

Let us discuss about the CPU time arising from the running of the algorithm. The computations
have been performed in double precision on a PC Pentium IV 1.8 GHz with 256 Mb of RAM.
Figure 2 shows the computational time spent for the one dimensional American put option. As
expected, this Monte Carlo procedure has a rather high CPU time cost, which empirically comes
out to be quadratic with respect to the number of simulations.
We can conclude that this method is interesting but uncompetitive with respect to other Monte
Carlo methods, such as the Barraquand-Martineau [6] and the Longstaff-Schwartz [20] ones, in
terms of computing time. Nevertheless, differently from these procedures (which do not provide
an ad hoc way for the Greeks: they are computed simply by finite differences), this method allows
to efficiently obtain the delta. In [12], a suitable combination of this procedure with other Monte
Carlo ones is developed, giving interesting numerical results also in terms of computing time costs.
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Figure 2 Required CPU time (in seconds) in terms of Monte Carlo iterations.

6 Appendix

6.1 Proofs of the result in Section 3

Let us first consider the following result, concerning the one-dimensional case:

Lemma 6.1 Let Xt = x eµt+σWt , being µ a deterministic drift. Suppose f, g : R → R, where f
has a polynomial growth and g has a continuous derivative, and ϕ : R

3 → R with continuous first
derivatives. Then for any 0 < s < t one has:

E(f(Xt) g
′(Xs)ϕ(Xs,Ws,Wt))

= E

(
f(Xt)g(Xs)

[
ϕ(Xs,Ws,Wt)

∆Ws,t

σs(t− s)Xs
− ϕx(Xs,Ws,Wt) −

ϕy(Xs,Ws,Wt)

σXs

])
,

where ∆Ws,t = (t− s)(Ws + σ s) − s(Wt −Ws).
As a consequence, for any fixed α ∈ R, the following formulas hold:

i) E(f(Xt) g
′(Xs − α)) = E

(
f(Xt)

g(Xs − α)

σs(t− s)Xs
∆Ws,t

)
;

ii) E

(
f(Xt)

g′(Xs − α)

σs(t− s)Xs
∆Ws,t

)
= E

(
f(Xt)

g(Xs − α)

σs(t− s)X2
s

[ (∆Ws,t)
2

σs(t− s)
+ ∆Ws,t −

t

σ

])
.

Proof.

i) The proof consists in applying twice the Malliavin Integration by Parts (MIbP) formula, first
on the time interval [0, s] and secondly over [s, t].

1) Use of the MIbP formula over [0, s].

If Dr denotes the Malliavin derivative (recall that Drg(Xs) = “ ∂∆Wr
”g(Xs) = g′(Xs)DrXs), one

has Drg(Xs) = g′(Xs)σXs for any r < s. Therefore, g′(Xs) =
∫ s
0
Drg(Xs)/(σsXs) dr and

E(f(Xt)g
′(Xs)ϕ(Xs,Ws,Wt)) = E

( ∫ s

0

Drg(Xs) ·
f(Xt)

σsXs
ϕ(Xs,Ws,Wt) dr

)

= E

(
g(Xs)

∫ s

0

f(Xt)

σsXs
ϕ(Xs,Ws,Wt) dWr

)
,

where the latter equality comes from the application of the MIbP formula over [0, s] (notice that
the stochastic integral above is a Skorohod one). Now, recalling the property

∫ s
0
GdWr = GWs −∫ s

0
DrGdr, one obtains
∫ s

0

f(Xt)

σsXs
ϕ(Xs,Ws,Wt) dWr =

f(Xt)

σsXs
ϕ(Xs,Ws,Wt)Ws −

∫ s

0

Dr

(f(Xt)

σsXs
ϕ(Xs,Ws,Wt)

)
dr
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= f(Xt)
[
ϕ(Xs,Ws,Wt)

Ws + σs

σsXs
− 1

σXs

(
ϕx(Xs,Ws,Wt)σXs+ϕy(Xs,Ws,Wt)+ϕz(Xs,Ws,Wt)

)]

−f ′(Xt)ϕ(Xs,Ws,Wt)
Xt

Xs
,

so that

E(f(Xt)g
′(Xs)) = E

(
f(Xt)g(Xs)

[
ϕ(Xs,Ws,Wt)

Ws + σs

σsXs
− 1

σXs
(ϕx(Xs,Ws,Wt)σXs

+ϕy(Xs,Ws,Wt) + ϕz(Xs,Ws,Wt))
])

− E

(
f ′(Xt)g(Xs)ϕ(Xs,Ws,Wt)

Xt

Xs

)
.

We have obtained a term which is “bad” because of the presence of the derivative of f : we are
now going to drop it.

2) Use of MIbP formula over [s, t]

By using arguments similar to the ones developed above, we can write

E

(
f ′(Xt)g(Xs)ϕ(Xs,Ws,Wt)

Xt

Xs

)
= E

(∫ t

s

g(Xs)ϕ(Xs,Ws,Wt)

σ(t− s)Xs
Drf(Xt) dr

)

= E

(
f(Xt)

∫ t

s

g(Xs)ϕ(Xs,Ws,Wt)

σ(t− s)Xs
dWr

)
= E

(
f(Xt)

g(Xs)

σ(t− s)Xs

∫ t

s

ϕ(Xs,Ws,Wt) dWr

)

(the term g(Xs)/(σ(t−s)Xs) has been put outside the integral because it is Fs-measurable). Again
using the property

∫ s
0
GdWr = GWs −

∫ s
0
DrGdr, one obtains

E

(
f ′(Xt)g(Xs)ϕ(Xs,Ws,Wt)

Xt

Xs

)

= E

(
f(Xt)g(Xs)

[
ϕ(Xs,Ws,Wt)

Wt −Ws

σ(t− s)Xs
− ϕz(Xs,Ws,Wt)

σXs

])
.

By inserting this term, in conclusion we obtain

E(g′(Xs) f(Xt)ϕ(Xs,Ws,Wt))

= E

(
f(Xt)g(Xs)

[
ϕ(Xs,Ws,Wt)

∆Ws,t

σs(t− s)Xs
− ϕx(Xs,Ws,Wt) −

ϕy(Xs,Ws,Wt)

σXs

])
,

Let us observe that to achieve this representation one has implicitly assumed that f is regular
(C1), which is not true in general. But this is not really a problem: one can regularize f with
some suitable mollifier and by using density arguments, the statement follows.

Finally, equality in i) holds by taking ϕ ≡ 1 and ii) follows by considering ϕ(Xs,Ws,Wt) = ∆Ws,t.

2

As a consequence, we can state the following result, which comes out to be useful in the proof of
the results in Section 4:

Corollary 6.2 Let Xt = x eµt+σWt be as in Lemma 6.1. Then for any f : R → R with polynomial
growth and 0 < s < t, one has

a) E

(
f(Xt)

∆Ws,t

σs(t− s)Xs

)
= 0;
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b) E

(
f(Xt)

[ ∆Ws,t

σs(t− s)Xs

]2)
= E

(
f(Xt)

t+ σ2s(t− s)

σ2s(t− s)(Xs)2

)
.

Proof. Statement a) immediately follows by taking g = 1 and ϕ = 1 in Lemma 6.1.
Concerning b), first taking g = 1 and ϕ = 1 in Lemma 6.1, one has

E

(
f(Xt)

[ ∆Ws,t

σs(t− s)Xs

]2)
= −E

(
f(Xt)

[ ∆Ws,t

σs(t− s)(Xs)2
− t

σ2s(t− s)(Xs)2

])
.

Now, by taking ϕ = 1 and g(x) = 1/x in Lemma 6.1, one has

E

(
f(Xt)

1

X2
s

)
= −E

(
f(Xt)

∆Ws,t

σs(t− s)(Xs)2

)
.

By inserting this term in the equality above, statement b) immediately follows.

2

We are now ready to prove the results in Section 3.

Proof of Theorem 3.3. i) Let us set Φ̃t(y) ≡ Φ̃(y) = Φ ◦ Ft(y), y ∈ R
d
+, being Ft defined in (5).

Since Xt = Ft(X̃t) for any t, one obviously has

E

(
Φ(Xt)

∣∣∣Xs = α
)

= E

(
Φ̃(X̃t)

∣∣∣ X̃s = Gs(α)
)
,

(recall that Gs = F−1
s ). Thus, setting α̃s = Gs(α), it is sufficient to prove that

E

(
Φ̃(X̃t)

∣∣∣ X̃s = α̃s

)
=

T̃s,t[Φ̃](α̃)

T̃s,t[1](α̃)
(26)

where

T̃s,t[f ](α̃) = E

(
f(X̃t)

d∏

i=1

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)

Now, let us firstly suppose that Φ̃(y) = Φ̃1(y1) · · · Φ̃d(yd), that is Φ̃ can be separated in the product
of d functions each one depending only on a single variable and belonging to Eb(R). In such a case,
one obviously has

E

(
Φ̃(X̃t)

∣∣∣ X̃s = α̃s

)
=

d∏

i=1

E

(
Φ̃i(X̃

i
t)

∣∣∣ X̃i
s = α̃is

)
.

Now, let us consider E

(
Φ̃i(X̃

i
t)

∣∣∣ X̃i
s = α̃is

)
, for any fixed i = 1, . . . , d. Let hδ be a C∞ density

function on R which weakly converges to the Dirac mass in 0 as δ → 0. Then one can write

E

(
Φ̃i(X̃

i
t)

∣∣∣ X̃i
s = α̃is

)
= lim
δ→0

E(Φ̃i(X̃
i
t)hδ(X̃

i
s − α̃is))

E(hδ(X̃i
s − α̃is)).

Setting Hδ the probability distribution function associated with hδ, we have to handle something
like E(f(X̃i

t)H
′
δ(X̃

i
s − α̃is)). Since the process X̃i is of the same type studied in Lemma 6.1, we

can apply its part i):

E(f(X̃i
t)H

′
δ(X̃

i
s − α̃is)) = E

(
f(X̃i

t)
Hδ(X̃

i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
,
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where ∆W i
s,t = (t−s)(W i

s+σiis)−(t−s)(W i
t−W i

s). By using the Lebesgue dominated convergence
theorem, one has

E

(
Φ̃i(X̃

i
t)

∣∣∣ X̃i
s = α̃is

)
= lim
δ→0

E

(
Φ̃i(X̃

i
t)
Hδ(X̃

i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)

E

(Hδ(X̃
i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
,

=

E

(
Φ̃i(X̃

i
t)

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)

E

( H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
,

where H(ξ) = limδ→0Hδ(ξ) = 1ξ≥0. Therefore,

E

(
Φ̃(X̃i

t)
∣∣∣ X̃s = α̃s

)
=

d∏

i=1

E

(
Φ̃i(X̃

i
t)

∣∣∣ X̃i
s = α̃is

)

=

d∏

i=1

E

(
Φ̃i(X̃

i
t)

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)

E

( H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

) =
T̃s,t[Φ̃](α̃)

T̃s,t[1](α̃)
,

so that (26) holds when Φ̃(y) = Φ̃1(y1) · · · Φ̃d(yd). In the general case, the statement holds by

using a density argument: for any Φ̃ ∈ Eb(Rd) there exists a sequence of functions {Φ̃n}n ⊂ Eb(Rd)
such that Φ̃n(X̃t) → Φ̃(X̃t) in L2 and such that each Φ̃n is a linear combination of functions which

separate the variables as above. Since representation (26) holds for any Φ̃n, it finally holds for Φ̃
as well, as it immediately follows by passing to the limit.

ii) First, notice that, by (5), σ̂kjα̃
k
s/α

j = ∂αjGks(α) = ∂αj α̃k. Thus, by considering Ts,t[f ](α) as a

function of α̃s (as it is!), that is Ts,t[f ](α) = T̃s,t[f ](α̃)|α̃=α̃s
, then we only have to show that

Gs,t;k[f ](α) = ∂α̃k T̃s,t[f ](α̃) = ∂α̃kE

(
f̃(X̃t)

d∏

i=1

H(X̃i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)
,

where we have set f̃(X̃t) = f ◦ Ft(X̃t). By conditioning w.r.t. all the coordinates of X̃t except for

the kth one, and by recalling that X̃ has independent components, one has

T̃s,t[f ](α̃) = E

(
E

(
f̃−k(X̃

k
t )

H(X̃k
s − α̃k)

σkks(t− s)X̃k
s

∆W k
s,t

)∣∣∣
x̃j=X̃

j
t ,j 6=k

×
d∏

i=1,i 6=k

H(X̃i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)
,

being f̃−k(X̃
k
t ) = f̃(x̃1, . . . , x̃k−1, X̃k

t , x̃
k+1, . . . x̃d). Thus,

∂α̃k T̃s,t[f ](α̃) = E

(
∂α̃kE

(
f̃−k(X̃

k
t )

H(X̃k
s − α̃k)

σkks(t− s)X̃k
s

∆W k
s,t

)∣∣∣
x̃j=X̃j

t ,j 6=k
×

×
d∏

i=1,i 6=k

H(X̃i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)
.

It remains to give a representation for the derivative inside the expectation.
Let us take hδ as a C∞ probability density function weakly convergent, as δ → 0, to the Dirac
mass in 0. This means that the associated distribution function Hδ weakly converges, as δ → 0,
to H. Let us set

T̃
k,δ
s,t [f ](α̃) = −E

(
f̃−k(X̃

k
t )

H(X̃k
s − α̃k)

σkks(t− s)X̃k
s

∆W k
s,t

)
.
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Obviously, T̃
k,δ
s,t [f ](α̃) → T̃

k
s,t[f ](α̃) as δ → 0, but also, by using (almost) standard density argu-

ments, one can easily show that

lim
δ→0

∂α̃k T̃
k,δ
s,t [f ](α̃) = ∂α̃kT

k
s,t[f ](α).

So, let us work with ∂α̃kT
k,δ
s,t [f ](α̃): by using the one dimensional results given by ii) of Lemma

6.1, one has

∂α̃kT
k,δ
s,t [f ](α̃) = E

(
f̃−k(X̃

k
t )

Hδ(X̃
k
s − α̃k)

σkks(t− s)(X̃k
s )2

[ (∆W k
s,t)

2

σkks(t− s)
+ ∆W k

s,t −
t

σ

])

By passing to the limit and rearranging everything, the formula holds.

2

We can now prove the localized version of the operators giving the conditional expectation and its
gradient.

Proof of Lemma 3.8. Set f̃(X̃t) = f ◦ Ft(X̃t). By conditioning w.r.t. all the coordinates of X̃t

except for the first one, and by recalling that X̃ has independent components, one has

Ts,t[f ](α) = E

(
E

(
f̃−1(X̃

1
t )

H(X̃1
s − α̃1

s)

σ11s(t− s)X̃1
s

∆W 1
s,t

)∣∣∣
x̃j=X̃j

t ,j 6=1
×

d∏

i=1,i 6=1

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
,

where we have set f̃−1(X̃
k
t ) = f̃(X̃1

t , x̃
2, . . . x̃d). Now, we can write

E

(
f̃−1(X̃

1
t )

H(X̃1
s − α̃1

s)

σ11s(t− s)X̃1
s

∆W 1
s,t

)
= E

(
f̃−1(X̃

1
t )

Ψ1(X̃
1
s − α̃1

s)

σ11s(t− s)X̃1
s

∆W 1
s,t

)

+E

(
f̃−1(X̃

1
t )

(H − Ψ1)(X̃
1
s − α̃1

s)

σ11s(t− s)X̃1
s

∆W 1
s,t

)
.

By i) of Lemma 6.1,

E

(
f̃−1(X̃

1
t )

Ψ1(X̃
1
s − α̃1

s)

σ11s(t− s)X̃1
s

∆W 1
s,t

)
= E(f̃−1(X̃

1
t )ψ1(X̃

1
s − α̃1

s)),

so that

E

(
f̃−1(X̃

1
t )

H(X̃1
s − α̃1

s)

σ11s(t− s)X̃1
s

∆W 1
s,t

)
= E

(
f̃−1(X̃

1
t )

[
ψ1(X

1
s − α̃1

s) +
(H − Ψ)(X̃1

s − α̃1
s)

σ11s(t− s)X̃1
s

∆W 1
s,t

])

and thus

Ts,t[f ](α) = E

(
f(Xt)

[
ψ1(X

1
s − α̃1

s) +
(H − Ψ1)(X̃

1
s − α̃1

s)

σ11s(t− s)X̃1
s

∆W 1
s,t

] d∏

i=1,i 6=1

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
.

Now, by considering the conditioning w.r.t. X̃1
t , X̃

3
t , . . . , X̃

d
t and by using similar arguments, one

obtains

Ts,t[f ](α) = E

(
f(Xt)

2∏

j=1

[
ψj(X

j
s−α̃js)+

(H − Ψj)(X̃
j
s − α̃js)

σjjs(t− s)X̃j
s

∆W j
s,t

] d∏

i=1,i 6=1,2

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
.
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By iterating the procedure on the remaining components, one arrives to the end.

Concerning Gs,t;k, the statement can be proved in the same way, by using the statement ii) of

Lemma 6.1. Indeed, by conditioning w.r.t. all the coordinates except for the kth one, one first
arrives to

Gs,t;k[f ](α) = −E

(
f(Xt)

[
ψk(X̃

k
s − α̃ks )

∆W k
s,t

σkks(t− s)X̃k
s

+

+
H(X̃k

s − α̃ks ) − Ψk(X̃
k
s − α̃ks )

σkks(t− s)(X̃k
s )2

( (∆W k
s,t)

2

σkks(t− s)
+ ∆W k

s,t −
t

σkk

)]
×

×
d∏

i=1,i 6=k

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

])
.

Now, by conditioning w.r.t. all the coordinates except for the jth one, with j 6= k, and by using
now part i) of Lemma 6.1, the final formula can be achieved.

2

6.2 Proof of Proposition 4.5

Proof of Proposition 4.5. We give here only a sketch of the proof, since it is quite similar to the
proof of Proposition 4.1.
First, suppose d = 1. Take ψ̂ ∈ L1(R) such that for any small ε then ψ + εψ̂ ∈ L1. Setting

Ψ̂(x) =
∫ x
−∞

ψ̂(t) dt, one has (as in the proof of Proposition 4.1)

(Jf1 )′(ψ)(ψ̂) = 2E

∫

R

f2(Xt)
(
ψ̂(β)Θs,t − Ψ̂(β)Υs,t

)(
ψ(β)Θs,t + (H − Ψ)(β)Υs,t

)
dβ.

= −2

∫

R

Ψ̂(β) E

(
f2(Xt)

(
ψ′(β)Θ2

s,t + (H − Ψ)(β)Υ2
s,t

))
dβ.

By setting

µ∗2 =
E(f2(Xt)Υ2

s,t)

E(f2(Xt)Θ2
s,t)

and v(β) = Ψ(β), one has to solve the ordinary differential equation v′′(β)−µ∗2 v(β)+µ∗2H(β) =
0. This gives ψ∗(β) = ∂βv(β) = µ∗ e−µ

∗|β|/2. Now, it is immediate to see that ψ∗ gives the
minimum, so the statement follows in dimension 1.

Consider now the case d > 1. For simplicity, let us assume k = 1: by symmetry arguments, the
general case will be clear. Also, let us set f̃t(y) ≡ f̃(y) = f ◦ Ft(y), y ∈ R

d
+ and Ft as in (5).

First, we compute the derivative of Jf ;1
d (ψ) in the direction (ψ̂1, 0, . . . , 0). Setting

f̃2
1 (x1) =

∫

Rd−1

dα̃−1E

(
f̃2(x1, X̃2

t , . . . , X̃
d
t )

d∏

i=2

[
ψi(X̃

i
s − α̃i) +

(H − Ψi)(X̃
i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

]2)

then

Jf ;1
d (ψ) =

∫

R

dα̃1
E

(
f̃2
1 (X̃1

t )
[
ψ1(X̃

1
s − α̃1)Θs,t;1 + (H − Ψ1)(X̃

1
s − α̃1)Υs,t;1

]2)
= J f̃11 (ψ1).
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Now, since we are here interested in the behavior in the direction (ψ̂1, 0, . . . , 0), we can employ the
one dimensional result, getting immediately the solution: ψ∗

1(β) = µ∗
1 e

−µ∗

1 |β|/2, β ∈ R, with

µ∗
1
2 =

E

(
f̃2
1 (X̃1

t )Υ2
s,t;1

)

E

(
f̃2
1 (X̃1

t )Θ2
s,t;1

)

=

∫
Rd−1 dα̃−1E

(
f2(Xt)Υ2

s,t;1

∏d
i=2

[
ψi(X̃

i
s − α̃i) +

(H − Ψi)(X̃
i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

]2)

∫
Rd−1 dα̃−1E

(
f2(Xt)Θ2

s,t;1

∏d
i=2

[
ψi(X̃i

s − α̃i) +
(H − Ψi)(X̃

i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

]2)

We consider now the behavior in the direction (0, ψ̂2, 0, . . . , 0). Setting

f̃2
2 (x2) =

∫

Rd−1

dα̃−2E

(
f̃2(X̃1

t , x
2, . . . , X̃d

t )
[
ψ1(X̃

1
s − α̃1)Θs,t;1 + (H − Ψ1)(X̃

1
s − α̃1)Υs,t;1

]2

×

×
d∏

i=3

[
ψi(X̃

i
s − α̃i) +

(H − Ψi)(X̃
i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

]2)

then

Jf ;1
d (ψ) =

∫

R

dα̃2
E

(
f̃2
2 (X̃2

t )
[
ψ2(X̃

2
s − α̃2) + (H − Ψ2)(X̃

2
s − α̃2)

∆W 2
s,t

σ22s(t− s)X̃2
s

]2)
= I f̃21 (ψ2),

where I f̃1 (·) is the one handled in Proposition 4.1. By using similar arguments, one obtains ψ∗
2(β) =

µ∗
2 e

−µ∗

2 |β|/2, β ∈ R, with

µ∗
2
2 =

E

(
f̃2
2 (X̃2

t )
[

∆W 2
s,t

σ22s(t−s)X̃2
s

]2)

E

(
f̃2
2 (X̃2

t )
)

=

∫
Rd−1 dα̃−2E

(
f2(Xt) Γ(X̃1

s − α̃1)2
[

∆W 2
s,t

σ22s(t−s)X̃2
s

]2 ∏d
i=3

[
ψi(X̃

i
s − α̃i) +

(H−Ψi)(X̃
i
s−α̃

i)

σiis(t−s)X̃i
s

∆W i
s,t

]2)

∫
Rd−1 dα̃−2E

(
f2(Xt)Γ(X̃1

s − α̃1)2
∏d
i=3

[
ψi(X̃i

s − α̃i) +
(H−Ψi)(X̃i

s−α̃
i)

σiis(t−s)X̃i
s

∆W i
s,t

]2)

where

Γ(X̃1
s − α̃1) ≡ Γψ1(X̃1

s − α̃1) = ψ1(X̃
1
s − α̃1)Θs,t;1 + (H − Ψ1)(X̃

1
s − α̃1)Υs,t;1

Now, for the remaining coordinates one can apply similar arguments. Thus, by summarizing, one
has that ψ∗(ξ) =

∏d
j=1 ψ

∗
j (ξj), ξ = (ξ1, . . . , ξd) ∈ R

d, with ψ∗
j (ξj) = µ∗

j e
−µ∗

j |ξj |/2, ξj ∈ R and
µ∗
j = µ∗

j [f ], are given by:

µ∗
1
2 =

∫
Rd−1 dβ−1E

(
f2(Xt)Υ2

s,t;1

∏d
i=2

[
ψ∗
i (β

i) +
(H−Ψ∗

i )(βi)

σiis(t−s)X̃i
s

∆W i
s,t

]2)

∫
Rd−1 dβ−1E

(
f2(Xt)Θ2

s,t;1

∏d
i=2

[
ψ∗
i (β

i) +
(H−Ψ∗

i
)(βi)

σiis(t−s)X̃i
s

∆W i
s,t

]2) and for j = 2, . . . , d :

µ∗
j
2 =

∫
Rd−1 dβ−jE

(
f2(Xt) Γ∗(β1)2

[
∆W j

s,t

σjjs(t−s)X̃
j
s

]2 ∏d
i=2,i 6=j

[
ψ∗
i (β

i) +
(H−Ψ∗

i )(βi)

σiis(t−s)X̃i
s

∆W i
s,t

]2)

∫
Rd−1 dβ−jE

(
f2(Xt)Γ∗(β1)2

∏d
i=2,i 6=j

[
ψ∗
i (β

i) +
(H−Ψ∗

i
)(βi)

σiis(t−s)X̃i
s

∆W i
s,t

]2)
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where Γ∗(β1) ≡ Γψ
∗

1 (β1) = ψ∗
1(β1)Θs,t;1 + (H − Ψ∗

1)(β
1)Υs,t;1. Now, in order to give a more

interesting representation for the µ∗’s, it is easy to show that (see also the proof of Proposition
4.1)

∫

R

(
ψ∗
i (β

i) +
(H − Ψ∗

i )(β
i)

σiis(t− s)X̃i
s

∆W i
s,t

)2

dβi =
1

4µ∗
i

(
µ∗
i
2 +

[ ∆W i
s,t

σiis(t− s)X̃i
s

]2)
,

∫

R

Γ∗(β1)2 dβ1 =
1

4µ∗
1

(
µ∗

1
2Θ2

s,t;1 + Υ2
s,t;1

)
,

so that the µ∗’s have to solve the nonlinear system

µ∗
1
2 =

E

(
f2(Xt)Υ2

s,t;1

∏d
i=2

[
µ∗
i
2 +

[
∆W i

s,t

σiis(t−s)X̃i
s

]2])

E

(
f2(Xt)Θ2

s,t;1

∏d
i=2

[
µ∗
i
2 +

[
∆W i

s,t

σiis(t−s)X̃i
s

]2]) and for j = 2, . . . , d :

µ∗
j
2 =

E

(
f2(Xt)

(
µ∗

1
2Θ2

s,t;1 + Υ2
s,t;1

)[
∆W j

s,t

σjjs(t−s)X̃
j
s

]2 ∏d
i=2,i 6=j

[
µ∗
i
2 +

[
∆W i

s,t

σiis(t−s)X̃i
s

]2])

E

(
f2(Xt)

(
µ∗

1
2Θ2

s,t;1 + Υ2
s,t;1

) ∏d
i=2,i 6=j

[
µ∗
i
2 +

[
∆W i

s,t

σiis(t−s)X̃i
s

]2]) .

Finally, it is straightforward to see that ψ∗ actually gives the minimum.

2
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Aléatoires, n. 628, Université Paris VI.
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