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Abstract

We prove Freidlin-Wentzell Large Deviation estimates under rather minimal assump-
tions. This allows to derive Wentzell-Freidlin Large Deviation estimates for diffusions on
the positive half line with coefficients that are neither bounded nor Lipschitz continuous,
in particular for the CIR and the CEV models.
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1 Introduction

The classical Freidlin-Wentzell Large Deviation estimates are concerned with the asymp-
totics of a family of Stochastic Differential Equations of the type

dY ε
t = bε(Y

ε
t )dt+ εσε(Y

ε
t )dBt

Y ε
0 = x

(1.1)

as ε → 0+. Usually (see [3] e.g.) they are stated for coefficients bε ≡ b and σε ≡ σ
non depending of ε and under the requirement for b and σ to be bounded and (globally)
Lipschitz continuous.

Recently applications to finance have attracted the attention to the study of models
that are based on diffusion processes whose state space is the positive half line. Instances
of these situations are e.g. the CEV model

drt = α(b− rt) dt+ ρ rγt dBt, r0 > 0 (1.2)

where 1
2 ≤ γ ≤ 1 and in particular the CIR model that corresponds to the case γ = 1

2 . The
coefficients here are neither bounded nor Lipschitz continuous.

The problem of deriving Freidlin-Wentzell Large Deviations for diffusions of the form
(1.2) has been studied in [4], where the case of a diffusion coefficient of the form σ(x) = ρ

√
x

and a general drift is taken into account.
In this paper we give two results. First we prove Freidlin-Wentzell estimates for co-

efficients bε σε possibly depending on ε and under assumptions of local boundedness and
local Lipschitz continuity. These results are derived using an extension of the classical
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transfer technique and are not entirely new, as they are based substantially on the work
of Priouret [5] and the refinements of [2]. Then, using these extended estimates we obtain
Freidlin-Wentzell estimates for positive diffusions including, among others, those of the type
(1.2).

To summarize our results for the case of positive diffusions, let Xε the solution of the
SDE with values in R+

dXε
t = b(Xε

t ) dt+ εσ(Xε
t ) dBt, Xε

0 = x > 0 (1.3)

We make the following assumption:

(A1.1) a) The diffusion coefficient σ : [0,+∞[→ R+ is Hölder continuous with exponent
γ ≥ 1

2 , is locally Lipschitz continuous on ]0,+∞[, vanishes at 0 and has a sublinear growth
at ∞.

b) The drift b : [0,+∞[→ R is locally Lipschitz continuous, has a sublinear growth at
∞ and b(0) > 0.

Remark that Assumption (A1.1) implies the existence of δ > 0, β > 0 such that σ(x) ≤ δ
√
x

and b(x) ≥ β respectively in a right neighborhood of 0. (A1.1) ensures that (1.3) has a
unique pathwise solution (see Theorem 3.5, chap.XIX [6]). Our main result is

Theorem 1.2 Let Xε be the solution of (1.3) in the time interval [0, T ] with x > 0. Then
under (A1.1) it holds

lim sup
ε→0

ε2 log P(Xε ∈ F ) ≤ − inf
ψ∈F

J(ψ) (1.4)

lim inf
ε→0

ε2 log P(Xε ∈ G) ≥ − inf
ψ∈G

J(ψ) (1.5)

for every closed set F ⊂ Cx([0, T ],R+) and open set G ⊂ Cx([0, T ],R+), where

J(ψ) =
1

2

∫ T

0

(ψ̇t − b(ψt))
2

σ(ψt)2
dt (1.6)

(with the understanding J(ψ) = +∞ if ψ is not differentiable).

In order to make a comparison with the above mentioned result of [4], we are able to consider
a more general class of diffusion coefficients but we need to assume that the starting point
x is strictly positive, whereas in [4] the case x = 0 was taken into account. Also we need to
assume b(0) > 0, whereas in [4] the weaker assumption b(0) ≥ 0 was required.

Remark finally that the technique developed here can possibly be applicable in more
general situations (multidimensional diffusions on a wedge e.g.).

The plan of the paper is as follows. In §2 we prove general Freidlin-Wentzell estimates
for coefficients that are not necessarily Lipschitz continuous and bounded. They are also
allowed to depend on ε. In §3 we apply the results of §2 and prove Freidlin-Wentzell
estimates for diffusions on the half-line as stated in Theorem 1.2. Finally, in order to be
self-contained, we put some proofs in §4.

2 Large Deviation estimates

In this section we give a proof of the Freidlin-Wentzell Large Deviation estimates with
the aim of making the assumptions as weak as possible. The idea which was originally
of Azencott [1] reduces to the remark that Ito’s mapping, associating the Brownian path
to the corresponding path of the solution of a Stochastic Differential Equation, is not, in
general, continuous but is regular enough to develop a kind of contraction procedure.
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2.1 The main result

For T > 0, let Cm = C ([0, T ],Rm) denote the space of continuous paths on [0, T ] taking
values in Rm, endowed with the topology of uniform convergence. We set Cm

x as the closed
hyperplane of the paths starting at x ∈ Rm. Let H m = H ([0, T ],Rm) be the subspace of
Cm
0 of paths that are absolutely continuous and whose derivative is square integrable on

[0, T ] and endowed with the Hilbert norm | |1, that is

|h|21 = ∥ḣs∥2L2 =

∫ T

0
|ḣs|2 ds.

Let us set, for h ∈ Cm
x For h ∈ H k we set

I(h) =

{
1
2 |h|

2
1 if h ∈ H k

+∞ otherwise

The classical Schilder’s theorem [7] states that I is the rate function of the Large Deviation
Principle on C k

0 satisfied by a Brownian motion with a small parameter. Let, for f ∈ Cm,

∥f∥t = sup
0≤s≤t

|fs|, ∥f∥ = ∥f∥T , B(f, ρ) = {g, ∥g − f∥ ≤ ρ}

For ε > 0, let bε : Rm → Rm and σε : Rm → Rm × Rk families of vector and matrix
fields respectively. Let B a k-dimensional Brownian motion on some probability space
(Ω,F , (Ft)t,P) and Y ε the solution of the Stochastic Differential Equation (SDE) (1.1).
Let us consider the following assumption.

(A2.3) There exist a vector field b : Rm → Rm and a matrix field σ : Rm → Rm ×Rk such
that

a) for every h ∈ H k and x ∈ Rm the ordinary differential equation

ġt = b(gt) + σ(gt)ḣt
g0 = x

(2.7)

has a unique solution on [0, T ].
b) Let Sx(h) denote the solution of (2.7). Therefore Sx : H k → Cm

x . For any a > 0,
the restriction of Sx to the compact set Ka = {|h|1 ≤ a} is continuous with respect to
the uniform norm: for any {hn}n ⊂ Ka such that ∥hn − h∥ →n→∞ 0 with h ∈ Ka then
∥Sx(hn)− Sx(h)∥ →n→∞ 0.

c) (The quasi-continuity property) For every R > 0, ρ > 0, a > 0, c > 0 there exist
ε0 > 0, α > 0 such that, if ε < ε0,

P
(
∥Y ε − g∥ > ρ, ∥εB − h∥ ≤ α

)
≤ e−R/ε

2
(2.8)

uniformly for |h|1 ≤ a and |x| ≤ c, where g = Sx(h).

Assumption (A2.3) c) means that if the Brownian path is such that ∥εB − h∥ ≤ α, then
the corresponding path of the diffusion Y ε is near the path g = Sx(h) with a probability
converging to 1 as ε → 0 at a high exponential rate. If bε, σε do not depend of ε then
(A2.3) c) would be trivially true if Ito’s mapping, associating the Brownian path to the
corresponding path of the solution of a SDE were continuous, which is the case in some
situations, mostly in dimension 1. It can be viewed as a weak continuity property of Ito’s
mapping. For this property to be true it will be necessary that the coefficients bε, σε converge
suitably to b, σ respectively. Then
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Theorem 2.4 Suppose that bε, σε are locally Lipschitz continuous and the SDE (1.1) has
a strong solution for every ε > 0. Then if (A2.3) holds, the family {Y ε}ε satisfies a Large
Deviation Principle on Cm

x with inverse speed ε2 and (good) rate function

λ(g) = inf
{
I(h);Sx(h) = g

}
,

with the understanding λ(g) = +∞ if
{
I(h);Sx(h) = g

}
is empty. This means that

lim sup
ε→0

ε2 log P(Xε ∈ F ) ≤ − inf
ψ∈F

λ(ψ) (2.9)

lim inf
ε→0

ε2 log P(Xε ∈ G) ≥ − inf
ψ∈G

λ(ψ) (2.10)

for every closed set F ⊂ Cx([0, T ],Rm) and open set G ⊂ Cx([0, T ],Rm) and that the level
sets of λ are compact.

The idea of exploiting the quasi-continuity properties of Ito’s mapping goes back to Azencott
[1]. For a proof of Theorem 2.4 at this level of generality one can refer to Priouret [5] or to
Baldi and Chaleyat-Maurel [2]. In order to be self contained we give a sketch of the proof
in §4.

In the next section we give exlicit conditions on the coefficients bε, σε that ensure that
Assumption (A2.3) is satisfied.

2.2 The Large Deviation transfer

Let us first give conditions ensuring that (A2.3) a) and b) hold.

Lemma 2.5 If b and σ are locally Lipschitz continuous and have a sublinear growth at
infinity, then (A2.3) a) and (A2.3) b) hold. Moreover, for every compact set K ⊂ Rm and
a > 0 there exists H > 0 such that

sup
x∈K

sup
h : |h|1≤a

∥Sx(h)∥ ≤ H. (2.11)

Proof. Existence and uniqueness of the solutions of (2.7) are standard facts. Let us prove
(2.11), which will follow from a standard application of Gronwall lemma. Let C0 ≥ 0 be
such that |b(x)| ≤ C0(1 + |x|), |σ(x)| ≤ C0(1 + |x|). Setting g = Sx(h), we have by the
Cauchy-Schwarz inequality

|gt| ≤ |x|+ C0

∫ t

0
(1 + |gs|) ds+ C0

∫ t

0
(1 + |gs|)|ḣs| ds ≤

≤ |x|+ C0

√
T
(∫ t

0
(1 + |gs|)2 ds

)1/2
+ C0a

(∫ t

0
(1 + |gs|)2 ds

)1/2
.

Taking the square and denoting by R the radius of a sphere centered at the origin and
containing the compact set K,

|gt|2 ≤ 2|x|2 + 2C2
0 (
√
T + a)2

∫ t

0
(1 + |gs|)2 ds ≤

≤ 2R2 + 4C2
0T (

√
T + a)2 + 4C2

0 (
√
T + a)2

∫ t

0
|gs|2 ds
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so that Gronwall lemma gives the bound

|gt|2 ≤
(
2R2 + 4C2

0T (
√
T + a)2

)
exp

(
4C2

0 (
√
T + a)2T

)
:= H

for every t ∈ [0, T ].
Let us prove (A2.3) b). Let h1, h2 ∈ Ka = {|h|1 ≤ a} and gi = Sx(hi), i = 1, 2. From

(2.11) we have ∥gi∥ ≤ H. Recall also that in the ball of radius H and centered at the origin
b and σ are bounded (constant M) and Lipschitz continuous (constant L). Then,

g1(t)− g2(t) =

=

∫ t

0
(b(g1(s))− b(g2(s))) ds+

∫ t

0
(σ(g1(s))− σ(g2(s)))ḣ1(s) ds+

+

∫ t

0
σ(g2(s))(ḣ1(s)− ḣ2(s)) ds

(2.12)

By the next Lemma 2.6 if |h1|1 ≤ a, |h2|1 ≤ a, for every ε > 0 there exists δ > 0 such that
if ∥h1 − h2∥ < δ ∣∣∣ ∫ t

0
σ(g2(s))(ḣ1(s)− ḣ2(s)) ds

∣∣∣ < ε

Therefore

|g1(t)− g2(t)| ≤

≤ ε+ L

∫ t

0
|g1(s)− g2(s)| ds+ L

∫ t

0
|g1(s)− g2(s)| · |ḣ1(s)| ds ≤

≤ ε+ L

∫ t

0
|g1(s)− g2(s)| ds+ L

(∫ t

0
|g1(s)− g2(s)| ds

)1/2(∫ t

0
|ḣ1(s)| ds

)1/2
≤

≤ ε+ L(
√
T + a)

(∫ t

0
|g1(s)− g2(s)|2 ds

)1/2

(2.13)

Therefore, if ∥h1 − h2∥ < δ,

|g1(t)− g2(t)|2 ≤ 2ε2 + 2L2(
√
T + a)2

∫ t

0
|g1(s)− g2(s)|2 ds (2.14)

and by Gronwall lemma

|g1(t)− g2(t)|2 ≤ 2ε2e2L
2(
√
T+a)2t

which allows to conclude.

Lemma 2.6 Let Ψ be a bounded (constant M) Lipschitz function (constant L) and h1, h2 ∈
H k, g2 = Sx(h2) with |h1|1 ≤ a, |h2|1 ≤ a. Then for every ε > 0 there exists δ > 0 such
that if ∥h1 − h2∥ < δ ∣∣∣ ∫ t

0
Ψ(g2(s))(ḣ1(s)− ḣ2(s)) ds

∣∣∣ < ε
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Proof. Let us assume first that Ψ is differentiable. As |Ψ′(x)| ≤ L, Ψ being Lipschitz
continuous, we have integrating by parts,∣∣∣ ∫ t

0
Ψ(g2(s))(ḣ1(s)− ḣ2(s)) ds

∣∣∣ =
=

∣∣∣Ψ(g2(t))(h1(t)− h2(t))−
∫ t

0

d

ds
Ψ(g2(s))(h1(s)− h2(s)) ds

∣∣∣ ≤
≤M∥h1 − h2∥+ L∥h1 − h2∥

∫ t

0
|ġ2(s)| ds ≤

≤ ∥h1 − h2∥
(
M + L

∫ t

0

∣∣b(g2(s)) + σ(g2(s))ḣ2(s)
∣∣ ds) ≤

≤ ∥h1 − h2∥
(
M + LMT + LM

∫ t

0
|ḣ2(s)| ds

)
≤

≤M∥h1 − h2∥
(
1 + LT + L

√
T |h2|1

)
≤M∥h1 − h2∥

(
1 + L(T + a

√
T )

)
and the statement is proved. In general Ψ is not differentiable but it is easy to approximate
it with a regular function. Let ϕ ∈ C∞ such that

∫
Rm ϕ = 1, ϕ(x) = 0 if |x| > 1 and

0 ≤ ϕ ≤ 1. For η > 0, set ϕη(x) =
1
ηmϕ(

x
η ). Then ϕη is a mollifier and if

Ψη(x) := Ψ ∗ ϕη(x) =
∫
Rm

Ψ(z)ϕη(x− z) dy =

∫
Rm

Ψ(x− z)ϕη(z) dz ,

then Ψη is differentiable (C∞, actually). Ψη is still Lipschitz continuous with Lipschitz
constant equal to L, as

|Ψη(x)−Ψη(y)| ≤
∫
Rm

|Ψ(x− z)−Ψ(y − z)|ϕη(z) dz ≤ L|x− y|
∫
Rm

ϕη(z) dz = L|x− y|

and also bounded with the same bound M as Ψ, so that by the first part of the proof∣∣∣ ∫ t

0
Ψη(g2(s))(ḣ1(s)− ḣ2(s)) ds

∣∣∣ ≤M∥h1 − h2∥
(
1 + L(T + a

√
T )

)
. (2.15)

Remark that the bound in the right hand side only depends on L and M (and not on η).
It is straightforward that |Ψη(x)−Ψ(x)| ≤ Lη so that∣∣∣ ∫ t

0
(Ψ(g2(s))(ḣ1(s)− ḣ2(s)) ds−

∫ t

0
Ψη(g2(s))(ḣ1(s)− ḣ2(s)) ds

∣∣∣ ≤
≤

∫ t

0
|Ψ(g2(s))−Ψη(g2(s))| · |ḣ1(s)− ḣ2(s)| ds ≤ L

√
T η|h1 − h2|1 ≤

≤ 2ηLa
√
T

therefore, by the first part of the proof,∣∣∣ ∫ t

0
Ψ(g2(s))(ḣ1(s)− ḣ2(s)) ds

∣∣∣ ≤M∥h1 − h2∥
(
1 + L(T + a

√
T )

)
+ 2ηLa

√
T

and η being arbitrary the proof is complete.
�

We now tackle the problem of giving reasonable conditions under which Assumption (A2.3)
c) holds. A natural set of hypotheses (we dot claim that it is the only one) is
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(A2.7) b and σ are locally Lipschitz continuous, have a sublinear growth at infinity and
are such that

lim
ε→0+

|bε(y)− b(y)| = 0

lim
ε→0+

|σε(y)− σ(y)| = 0
(2.16)

uniformly on compact sets.

We prove now that Assumption (A2.7) implies Assumption (A2.3) c). In order to do this
we recall the following result.

Lemma 2.8 Let c, cε : [0, T ]× Rm → R be vector fields such that

|cε(s, x)|+ |c(s, x)| ≤ ϕ(s), 0 ≤ s ≤ T (2.17)

|c(s, y)− c(s, z)| ≤ ψ(s)|y − z|, 0 ≤ s ≤ T (2.18)

for some function ϕ ∈ L2([0, T ]) and ψ ∈ L1([0, T ]) respectively and such that

lim
ε→0

∫ T

0
sup
y

|cε(s, y)− c(s, y)| ds = 0 (2.19)

Let σε, σ be k ×m matrix fields such that σ is Lipschitz continuous, bounded (bound M)
and such that (2.16) holds uniformly in y ∈ Rm. Let Xε, γ the solutions of

Xε
t = x+

∫ t

0
cε(s,X

ε
s ) ds+ ε

∫ t

0
σε(s,X

ε
s ) dBs

γt = x+

∫ t

0
c(s, γs) ds (2.20)

respectively. Then for every R > 0, ρ > 0, a1 > 0 there exists ε0 > 0, α > 0 such that for
every x ∈ Rm and ϕ, ψ such that

∥ϕ∥L2 ≤ a1, ∥ψ∥L1 ≤ a1,

we have
P
(
∥Xε − γ∥ > ρ, ∥εB∥ ≤ α

)
≤ e−R/ε

2

for every ε < ε0.

Lemma 2.8 is actually Proposition 1.2 in Baldi and Chaleyat-Maurel [2]. In order to be self
contained we sketch its proof in §4.

We can now state the following theorem, which is an extension of Theorem III 2.4 of
Azencott [1] (see also Priouret [5] or Baldi and Chaleyat-Maurel [2]).

Theorem 2.9 Under (A2.7), for every R > 0, ρ > 0, a > 0, c > 0 there exist ε0 > 0, α > 0
such that, if ε < ε0,

P
(
∥Y ε − g∥ > ρ, ∥εB − h∥ ≤ α

)
≤ e−R/ε

2
(2.21)

where h ∈ H k and g = Sx(h), uniformly for |h|1 ≤ a and |x| ≤ c. Moreover if b and σ
are bounded and the convergence in (2.16) is uniform in y, then (2.8) is uniform in (the
starting point) x.
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Proof. Let

Lε = exp
(1
ε

∫ T

0
ḣs dBs −

1

2ε2

∫ T

0
|ḣs|2 ds

)
and Pε the probability on (Ω,FT ) having density Lε with respect to P. By Girsanov’s
theorem, under Pε the process Bε

t = Bt − 1
ε ht is a Brownian motion for 0 ≤ t ≤ T and Y ε

solves
dY ε

t = cε(t, Y
ε
t ) dt+ εσε(Y

ε
t )dB

ε
t

Y ε
0 = x

where cε(t, y) = bε(y) + σε(y)ḣt. We set c(t, y) = b(y) + σ(y)ḣt and suppose, at first,
that σ and b are bounded (constant M), Lipschitz continuous (constant L) and that the
convergence in (2.16) is uniform. Then

|cε(s, x)|+ |c(s, x)| ≤ 2M(1 + |ḣs|)
|c(s, y)− c(s, z)| ≤ L(1 + |ḣs|)|y − z|

and
sup
y

|cε(s, y)− c(s, y)| ≤ (1 + |ḣs|) sup
y
{|bε(y)− b(y)|+ |σε(y)− σ(y)|}

Then the hypotheses of Lemma 2.8 are verified and for every R′ > 0 there exists ε0 > 0, α >
0 such that if ε < ε0 and

Aε = {∥Y ε − g∥ > ρε, ∥εBε∥ ≤ α}

then

Pε(Aε) < exp
(
−R

′

ε2

)
. (2.22)

As

dP

dPε
= L−1

ε = exp
(
−1

ε

∫ T

0
ḣs dBs +

1

2ε2

∫ T

0
|ḣs|2 ds

)
=

= exp
(
−1

ε

∫ T

0
ḣs dB

ε
s −

1

2ε2

∫ T

0
|ḣs|2 ds

)
from Cauchy-Schwarz’s inequality

P(Aε) =

∫
Aε

L−1
ε dPε ≤ Pε(Aε)

1/2Eε[(L−1
ε )2]1/2, (2.23)

Eε being the expectation under Pε. Now

Eε[(L−1
ε )2] = Eε

[
exp

(
−2

ε

∫ T

0
ḣs dBs +

1

ε2

∫ T

0
|ḣs|2 ds

)]
=

= Eε
[
exp

(
−2

ε

∫ T

0
ḣs dBs +

2

ε2

∫ T

0
|ḣs|2 ds

)]
︸ ︷︷ ︸

=1

× exp
(
1
ε |h|

2
1

)
=

= exp
(
1
ε |h|

2
1

)
(2.24)

Therefore, for every h with |h|1 ≤ a,

P(Aε) < exp
(
−R

′ − a2

2

1

ε2

)
8



which actually gives (2.8).
It remains to drop the hypotheses of boundedness and global Lipschitz continuity for

b and σ and of the uniformity of the convergence in (2.16). This can be done easily using
the following localization argument. The idea is very simple: the event {∥Y ε − g∥ > ρ}
only depends on the value of the coefficients in a neighborhood of the path g, therefore in
a bounded set, where they are Lipschitz continuous and bounded.

Indeed recall that by Lemma 2.5 the set of paths g that solve (2.7) as h varies in
{|h|1 ≤ a} and x in a compact set K ⊂ Rm, remains inside an open ball of radius H and
centered at the origin in Rm. Now let

b̃ε(y) =

{
bε(y) if |y| < H + 2ρ

bε(
y
|y|H) if |y| ≥ H + 2ρ

and in a similar way b̃, σ̃ε and σ̃. The new coefficients b̃, b̃ε σ̃ε and σ̃ are obviously bounded,
Lipschitz continuous and of course

lim
ε→0+

|b̃ε(y)− b̃(y)| = lim
ε→0+

|σ̃ε(y)− σ̃(y)| = 0

uniformly in y ∈ Rm. Moreover, let Ỹ ε and g̃ denote the solutions of

Ỹ ε
t = x+

∫ t

0
b̃ε(Ỹ

ε
s )ds+

∫ t

0
εσ̃ε(Ỹ

ε
s )dBs

g̃t = x+

∫ t

0
b̃(g̃s)ds+

∫ t

0
σ̃(g̃s)ḣsds

respectively. Then of course g̃ ≡ g and, as b̃ε ≡ bε and σ̃ε ≡ σε in the ball of radius H +2ρ,
Y ε and Ỹ ε coincide up the exit from this ball and

{∥Y ε − g∥ > ρ} = {∥Ỹ ε − g∥ > ρ}

Therefore,

{∥Y ε − g∥ > ρ, ∥εB − h∥ ≤ δ} = {∥Ỹ ε − g̃∥ > ρ, ∥εB − h∥ ≤ δ}

which concludes the proof.

It should be stressed that in this section we proved Freidlin-Wentzell estimates under rather
minimal assumptions. In particular

• it is not necessary for the coefficients to be bounded or globally Lipschitz continuous.
Only local Lipschitz continuity is needed. Of course in this case some additional assumption
is needed in order to ensure the existence of global solutions. The assumption of sublinear
growth for b can be removed in presence of assumptions (of the type of contractivity)
ensuring that there is no explosion and that the solutions of the system (2.7) remain inside
a compact set as h remains in a bounded set of H k and x in a compact set of Rm. Large
Deviation estimates can also been obtained in the case of explosion, (see [1] e.g.), but this
is beyond the scope of these notes.

• Both coefficients of Y ε can depend on ε and it is not required for them to enjoy uniform
(in ε) properties of regularity or of boundedness or of sublinear growth. They only need
to be locally Lipschitz continuous and to ensure that the SDE (1.1) has a unique strong
solution for every ε.
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3 Pathwise Large Deviations for positive diffusions

In this section we prove Theorem 1.2. Under Assumption (A1.1) it is clear that the rate
function

λ(g) = inf{1
2 |h|1, Sx(h) = g}

is given by (1.6), as Sx(h) = g is equivalent to ḣt = (ġt − b(gt))/σ(gt). Theorem 1.2 is
therefore a consequence of Theorem 2.4, as soon as we show that (A2.3) is satisfied.

Proposition 3.10 Let Xε the solution of (1.3) and assume that Assumption (A1.1) is
satisfied. Then Assumption (A2.3) holds.

Proof. Suppose that we can prove that there exists a compact set K ⊂]0,+∞[ such that
for every h ∈ H1([0, T ]) with |h|1 ≤ a and for every x in some compact set of ]0,+∞[ the
corresponding solutions g of (2.7) remain in K. Let δ > 0 such that the neighborhood of

radius δ, Kδ, of K is such that Kδ ⊂]0,+∞[, then the same localization argument as at
the end of the proof of Theorem 2.9 would allow to conclude. We already know (Lemma
2.5) that these solutions remain in a bounded set. We must therefore only prove that there
exists η > 0 such that gt ≥ η for every t ≤ T . This is proved in the next Proposition 3.11.

Proposition 3.11 Under (A1.1) the equation

ψ̇t = b(ψt) + σ(ψt)ḣt (3.25)

ψ0 = x0

for h ∈ H1[0, T ], x0 > 0, admits a unique solution for t ∈ [0, T ] for every T > 0. Moreover
for every compact set K ⊂ R+ and a > 0 there exists η > 0 such that ψt ≥ η for every
x0 ∈ K, and |h|1 ≤ a.

The proof of this proposition follows from the following elementary computations of calculus
of variations.

Lemma 3.12 For any absolutely continuous paths ψ with a square integrable derivative,
let

JT (ψ) =

∫ T

0
L (ψt, ψ̇t) dt, L (ψ, ψ̇) =

(ψ̇ − b(ψ))2

2σ(ψ)2

where b and σ are strictly positive continuous functions on ]0,+∞[ (JT = +∞ possibly).
Let

V (x) = inf
T>0

inf
ψ0=x0
ψT=x

JT (ψ) (3.26)

the associated free time cost function, where x0 > 0 is a fixed starting point. Then for
0 < x < x0 it holds

V (x) = −2

∫ x

x0

b(z)

σ(z)2
dz (3.27)

Proof. Let

H(x, p) = sup
v∈R

(
vp− L (x, v)

)
= sup

v∈R

(
vp− (v − b(x))2

2σ(x)2

)
(3.28)

the associated Hamiltonian. A straightforward computation yields

H(x, p) = b(x)p+
1

2
σ(x)2p2
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the supremum in the right hand side of (3.28) being attained at v∗ = σ(x)2p + b(x). This
implies that

H(x, p) + L (x, v) ≥ vp, for every v, p and x > 0 (3.29)

and
H(x, p) + L (x, v) = vp, if v = v∗ = σ(x)2p+ b(x) (3.30)

Let us denote by V1 the right hand side of (3.27). Then it is immediate that, for x ≤ x0,
V1 is the largest solution of the Hamilton-Jacobi equation{

H(x,w′) = 0

w(x0) = 0
(3.31)

that is {
w′(x)

(
b(x) + 1

2 σ(x)
2w′(x)

)
= 0

w(x0) = 0
(3.32)

Let 0 < x < x0 and let us first prove that V1(x) ≤ V (x). Let ψ an absolutely continuous
path such that ψ0 = x0, ψT = x. We can assume that ψt ̸= x0 for every t > 0. Otherwise
we replace ψ by the path ψ̃ defined by ψ̃t = ψt+t∗ , t

∗ being t∗ = max{t, ψt = x0}. Then the
new path ψ̃ satisfies ψ̃0 = ψt∗ = x0, ψ̃T−t∗ = x, ψ̃t ̸= x0 for t > 0 and JT−t∗(ψ̃) ≤ JT (ψ),
as the integrand L is positive. By the same argument we can also assume that ψt ̸= x for
every t < T .

As ψ takes its values in the interval [x, x0] and V1 is differentiable with bounded deriva-
tive in this interval, the function t → V1(ψt) is absolutely continuous for t ∈ [0, T ] and
d
dt V1(ψt) = V ′

1(ψt)ψ̇t. Thanks to (3.29) applied to x = ψs, p = V ′
1(ψs), v = ψ̇s,

V1(x) =

∫ T

0

d

ds
V1(ψs) ds =

∫ T

0
V ′
1(ψs)ψ̇s ds ≤

≤
∫ T

0

(
H(ψs, V

′
1(ψs)︸ ︷︷ ︸

=0

+L (ψs, ψ̇s)
)
ds = JT (ψ)

(3.33)

This being true for every absolutely continuous path ψ with a square integrable derivative
and such that ψ0 = x0, ψT = x and for every T > 0, this proves that

V1(x) ≤ inf
T>0

inf
ψ0=x0
ψT=x

JT (ψ) = V (x) .

In order to obtain the opposite inequality, let ξ the solution of{
ξ̇t = −b(ξt)
ξ0 = x0

As b is assumed to be strictly positive, there exists T > 0 such that ξT = x (recall that
x < x0). It is immediate that

σ(ξs)
2V ′

1(ξs) + b(ξs) = −b(ξs) = ξ̇s

so that, thanks to (3.30),

V ′
1(ξs)ξ̇s = H(ξs, V

′
1(ξs)) + L (ξs, ξ̇s) .

11



The same argument as in (3.33) gives now an equality, that is

V1(x) = JT (ξ) .

Therefore V1(x) ≥ V (x) which completes the proof of (3.27).
�

In particular, if b(x) ≡ β > 0 and σ(x) = ρ
√
x, we find

V (x) = −2
β

ρ2
log

x

x0

which implies that for every absolutely continuous path ψ joining x0 to x < x0 in the time
interval [0, T ], we have

1

2

∫ T

0

(ψ̇t − β)2

ρ2ψt
dt ≥ −2

β

ρ2
log

x

x0
· (3.34)

Remark that this quantity diverges as x→ 0+.

Proof of Proposition 3.11. We must prove that the solutions of (3.25) for |h|1 ≤ a stay
away from 0. This will be a consequence of Lemma 3.12 (and in particular of (3.34)) and
of a comparison argument.

Let x̄ > 0 such that b(x) ≥ β > 0 and σ(x) ≤ δ
√
x for some β > 0, δ > 0 and for

x ∈ [0, x̄] (recall Assumption (A1.1)). For a compact set K ⊂]0,+∞[, possibly taking a
smaller value for x̄, we can assume also that x̄ < x0 for every x0 ∈ K.

Let ξ, 0 < ξ < x̄, such that −2 β
δ2

log x̄
ξ > a2 and let us prove that if |h|1 ≤ a then ψt > ξ

for every t ≤ T . Actually, otherwise, there would exist two times t1 < t2 such that ψt1 = x̄
for some t1 ≤ T , ψt2 = ξ and ψt ≤ x̄ for t1 ≤ t ≤ t2 (recall that ξ ≤ x̄ < x0). Then

|h|21 =
1

2

∫ T

0

(ψ̇t − b(ψt))
2

σ(ψt)2
dt ≥ 1

2

∫ t2

t1

(ψ̇t − b(ψt))
2

σ(ψt)2
dt .

As b(x) ≥ β > 0 and σ(x) ≤ δ
√
x for x ≤ x̄, by Lemma 3.12,

1

2

∫ t2

t1

(ψ̇t − b(ψt))
2

σ(ψt)2
dt ≥ −2

∫ ξ

x̄

b(y)

σ(y)2
dy ≥ 2

∫ x̄

ξ

β

δ2y
dy = −2

β

δ2
log

x̄

ξ
> a2

which is in contradiction with the assumption |h|1 ≤ a. This proves also that the solution ψ
stays away from 0, so that it has a unique solution, as the coefficients b and σ are assumed
to be Lipschitz continuous on ]0,+∞).

4 Appendix: proofs of Theorem 2.4 and Lemma 2.8

Proof of Theorem 2.4. Thanks to Assumption (A2.3) b) in the definition

λ(g) = inf
{
1
2 |h∥1;Sx(h) = g

}
,

the infimum is attained unless λ(g) = +∞. Actually if λ(g) = a, then we have also

λ(g) = inf
{
1
2 |h∥1;Sx(h) = g, 12 |h∥1 ≤ a+ 1

}
,

12



and it suffices now to remark that in the uniform norm the set {Sx(h) = g} is closed thanks
to (A2.3) b), {|h∥1 ≤ a+ 1} is compact and h→ 1

2 |h∥1 is lower semi continuous.
The same argument proves that λ is lower semi-continuous with compact level sets, as

{λ ≤ a} turns out to be the image of Ca = {1
2 |h∥1 ≤ a}, which is compact in the uniform

norm, through the transformation Sx, whose restriction to Ca is continuous in the uniform
norm.

We must prove the lower and upper bounds: if, for every Borel set A ⊂ Cx([0, T ],R+),

Λ(A) := inf
g∈A

λ(g)

then we must prove that

lim sup
ε→0

ε2 log P(Y ε ∈ F ) ≤ −Λ(F ) (4.35)

lim inf
ε→0

ε2 log P(Y ε ∈ G) ≥ −Λ(G) (4.36)

for every closed set F ⊂ Cx([0, T ],R+) and open set G ⊂ Cx([0, T ],R+)

Lower bound. Let δ > 0 and g ∈ G such that λ(g) ≤ Λ(G) + δ and h ∈ H k such that
Sx(h) = g and 1

2 |h|
2
1 = λ(g). Thus if ρ > 0 is such that the neighborhood of radius ρ of g

in Cm
x is contained in G, then for every α > 0

P(Y ε ∈ G) ≥ P
(
∥Y ε − g∥ < ρ

)
≥ P

(
∥Y ε − g∥ < ρ, ∥εB − h∥ < α

)
=

= P
(
∥εB − h∥ < α

)
− P

(
∥Y ε − g∥ > ρ, ∥εB − h∥ < α

)
Now for every α > 0, thanks to the classical Schilder estimate [7],

lim
ε→0

ε2 log P
(
∥εB − h∥ < α

)
≥ −1

2
|h|21 = −λ(g) ≥ −Λ(G)− δ .

By (A2.3) c), for α > 0 small enough,

lim sup
ε→0

ε2 log P
(
∥Y ε − g∥ > ρ, ∥εB − h∥ < α

)
< −R

with R > Λ(G) + 1, so that

lim
ε→0

ε2 log P(Y ε ∈ G) ≥ −Λ(G)− δ

which, δ being arbitrary, allows to conclude.

Upper bound. If Λ(F ) = 0 there is nothing to prove. Otherwise let 0 < a < Λ(F ) and
consider the compact sets (in Cm

x and C k
0 respectively)

Ka = {g ∈ Cm
x ;λ(g) ≤ a}

Ca = {h ∈ C k
0 ;

1
2 |h|

2
1 ≤ a}

Then Ka∩F = ∅ and, F being closed and Ka compact, for every g ∈ Ka there exists ρ = ρg
such that B(g, ρ) ∩ F = ∅. For every h ∈ Ca the path g = Sx(h) belongs to Ka and, by
(A2.3) c), there exists α = αh such that

P
(
∥Y ε − g∥ > ρ, ∥εB − h∥ < α

)
≤ e−R/ε

2
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for ε ≤ ε0 = ε0,h. The balls B(h, αh), h ∈ Ca, form an open cover of Ca which is compact,
so that there exist h1, . . . , hr such that B(hi, αi), i = 1, . . . , r is a finite subcover of Ca. Let
A =

∪r
i=1B(hi, αi) and gi = Sx(hi). Then

P(Y ε ∈ F ) ≤ P
(
Y ε ∈ F, εB ∈ A

)
+ P

(
εB ∈ Ac

)
(4.37)

Now, again thanks to Schilder estimates ([7]), as Ac is a closed set such that 1
2 |h|

2
1 > a for

every h ∈ A,
P
(
εB ∈ Ac

)
≤ e−a/ε

2

for small ε whereas, if gi = Sx(hi),

P
(
Y ε ∈ F, εB ∈ A

)
≤

r∑
i=1

P
(
Y ε ∈ F, ∥εB − hi∥ < αi

)
≤

≤
r∑
i=1

P
(
∥Y ε − gi∥ > ρi, ∥εB − hi∥ < αi

)
so that, again for small ε and a possibly smaller αi,

P
(
Y ε ∈ A

)
≤ re−R/ε

2
+ e−a/ε

2

which, for R > a gives
lim sup
ε→0

ε2 log P
(
Y ε ∈ A

)
≤ −a

for every a < Λ(F ), which allows to conclude.
�

Proof of Lemma 2.8. We have

Xε
t − γt =

∫ t

0
cε(s,X

ε
s )− c(s,Xε

s ) ds+

∫ t

0
c(s,Xε

s )− c(s, γs) ds+ ε

∫ t

0
σε(X

ε
s ) dBs

For small ε, thanks to (2.19),∣∣∣ ∫ t

0
cε(s,X

ε
s )− c(s,Xε

s ) ds
∣∣∣ ≤ ρ

2
e−a1T

whereas (2.18) gives∣∣∣ ∫ t

0
c(s,Xε

s )− c(s, γs) ds
∣∣∣ ≤ ∫ t

0
|ψ(s)||Xε

s − γs| ds ≤
∫ t

0
|ψ(s)| · ∥Xε − γ∥s ds

(recall that ∥Xε − γ∥s = supu≤s |Xε
s − γs|). Therefore, if Uε(t) = ε

∫ t
0 σε(Xs) dBs ,

∥Xε − γ∥t ≤
ρ

2
e−a1T + ∥Uε∥+

∫ t

0
|ψ(s)| · ∥Xε − γ∥s ds

and from Gronwall Lemma, for ∥ψ∥L1 ≤ a1,

∥Xε − γ∥ ≤ ρ

2
+ ∥Uε∥ ea1T

Thus
P
(
∥Xε − γ∥ > ρ, ∥εB∥ ≤ α

)
≤ P

(
∥Uε∥ > ρ

2 e
−a1T , ∥εB∥ ≤ α

)
The conclusion comes now from Lemma 4.13 below.
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Lemma 4.13 (Assumptions and notations of Lemma 2.8) Let Uε(t) = ε
∫ t
0 σε(Xs) dBs as

above. Then for every R > 0, ρ > 0 there exist ε0, α > 0 such that, if ε < ε0

ε2 log P
(
∥Uε∥ > ρ, ∥εB∥ ≤ α

)
≤ −R

Proof. For every n > 0 let

t0 = 0, t1 =
T
n , . . . , tk =

kT
n , . . . tn = T

be a discretization of [0, T ] and define the approximations

Xε,n
t = Xε

tk
if tk ≤ t < tk+1 .

We have {
∥Uε∥ > ρ, ∥εB∥ ≤ α

}
⊂ A ∪B ∪ C

where

A =
{
∥Xε −Xε,n∥ > β

}
B =

{
sup
t≤T

∣∣∣ε∫ t

0

(
σε(X

ε
s )− σε(X

ε,n
s )

)
dBs

∣∣∣ > ρ
2 , ∥X

ε −Xε,n∥ ≤ β
}

C =
{
sup
t≤T

∣∣∣ε ∫ t

0
σε(X

ε,n
s ) dBs

∣∣∣ > ρ
2 , ∥X

ε −Xε,n∥ ≤ β, ∥εB∥ ≤ α
}

In order to give an upper bound for P(B) we split B = B1 ∪B2 ∪B3 where

B1 =
{
sup
t≤T

∣∣∣ε∫ t

0

(
σε(X

ε
s )− σ(Xε

s )
)
dBs

∣∣∣ > ρ
6 ,
}

B2 =
{
sup
t≤T

∣∣∣ε∫ t

0

(
σ(Xε

s )− σ(Xε,n
s )

)
dBs

∣∣∣ > ρ
6 , ∥X

ε −Xε,n∥ ≤ β
}

B3 =
{
sup
t≤T

∣∣∣ε∫ t

0

(
σε(X

ε,n
s )− σ(Xε,n

s )
)
dBs

∣∣∣ > ρ
6 ,
}

As, thanks to (2.16), for every η > 0 there exists ε0 > 0 such that for ε < ε0

sup
y

∣∣σε(y)− σ(y)
∣∣ ≤ η ,

the exponential inequality gives for small η

P(B1) ≤ 2m exp
(
− ρ2

72Tη2
1

ε2

)
< e−R/ε

2

P(B3) ≤ 2m exp
(
− ρ2

72Tη2
1

ε2

)
< e−R/ε

2

Then, as σ is supposed to be Lipschitz continuous (constant KL) on B2 it holds |σ(Xε
s ) −

σ(Xε,n
s )| ≤ KLβ and again the exponential inequality gives, for small β,

P(B2) ≤ 2m exp
(
− ρ2

72TK2
Lβ

2

1

ε2

)
< e−R/ε

2
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Thus
P(B) ≤ 3e−R/ε

2
(4.38)

for ε < ε0 and small β, independently of n. As for C, on the set {∥εB∥ ≤ α} it holds

∣∣∣ε∫ t

0
σε(X

ε,n
s ) dBs

∣∣∣ = ∣∣∣ε n−1∑
k=0

σ(Xε
tk
)(Btk+1∧t −Btk∧t)

∣∣∣ ≤ 2Mnα

which gives C = ∅ if α < ρ
4Mn0

. As for A

P(∥Xε −Xε,n∥ > β) = P
(n−1∪
k=0

{
sup

tk≤t<tk+1

|Xε
t −Xε

tk
| > β

})
≤

≤
n−1∑
k=0

{
P
(

sup
tk≤t<tk+1

∣∣∣ ∫ t

tk

cε(s,X
ε
s ) ds

∣∣∣+ sup
tk≤t<tk+1

ε
∣∣∣ ∫ t

tk

σε(X
ε
s ) dBs

∣∣∣ > β
}
.

By Cauchy-Schwarz inequality∣∣∣ ∫ t

tk

cε(s,X
ε
s ) ds

∣∣∣ ≤ √
T

n

(∫ T

0
|ϕ(s)|2 ds

)1/2
≤ a1

√
T

n

so that for n ≥ n0 large enough, independently of ε, the events{
sup

tk≤t<tk+1

∣∣∣ ∫ t

tk

cε(s,X
ε
s ) ds

∣∣∣ > β

2

}
, k = 0, . . . , n− 1

are empty. Moreover, from the exponential inequality of martingales

P
(

sup
tk≤t<tk+1

ε
∣∣∣ ∫ t

tk

σε(X
ε
s ) dBs

∣∣∣ > β

2

)
≤ 2m exp

(
− nβ2

8M2T

1

ε2

)
.

Thus, for n > n0 and ε > 0,

ε2 log P
(
∥Xε −Xε,n∥ > β

)
≤ ε2 log(2mn)− nβ2

8M2T

and the quantity in the right hand side, for a possibly larger value of n0, is smaller than
−R for every ε ≤ 1. This together with (4.38) allows to conclude.
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