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Paris-Est Marne-la-Vallée; mailto: <bally@univ-mlv.fr>

2Dipartimento di Matematica, Università di Roma-Tor Vergata; mailto: <caramell
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Preface

From the theoretical point of view, these notes follow the ones written by Vlad
Bally [1]. In addition, examples of applications of Malliavin calculus coming
from Finance are developed. This has been the main contribution of Luana
Lombardi, who worked on these arguments in 2008 to achieve an internship
required by her PhD project.

Lucia Caramellino



Chapter 1

Abstract Integration by
Parts Formula

In this chapter we introduce in an abstract way the main tool of Malliavin
calculus we are going to study, that is integration by parts formulas, and we
stress some important consequences: the use for computing sensitivities, as well
as for representing the density and the conditional expectation. For the sake
of simplicity, we split such an introduction in two sections, giving the one-
dimensional case and the multidimensional one.

1.1 The one dimensional case

Let (Ω,F ,P) denote a probability space and let E stand for the expectation
under P.
The sets Ckc (Rd) and Ckb (Rd) denote the space of functions f : Rd → R which
are continuously differentiable up to order k, with compact support and with
bounded derivatives respectively. When the functions are infinitely differen-
tiable, we similarly set C∞

c (Rd) and C∞
b (Rd).

Definition 1.1.1. Let F,G : Ω → R be integrable random variables. We say
that the integration by parts formula IP(F ;G) holds if there exists an integrable
random variable H(F ;G) such that

IP(F ;G) : E(ϕ′(F )G) = E(ϕ(F )H(F ;G)), ∀ϕ ∈ C∞
c (R). (1.1)

Moreover, we say that the integration by parts formula IPk(F ;G) holds if there
exists an integrable random variable Hk(F ;G) such that

IPk(F ;G) : E(ϕ(k)(F )G) = E(ϕ(F )Hk(F ;G)), ∀ϕ ∈ C∞
c (R) (1.2)

Remark 1.1.2. • By using standard regularization results (e.g. by mollifiers),
the test functions C∞

c (R) in IPk(F ;G) can be replaced by Ckc (R) or also by
C∞
b (R) and Ckb (R).

• Obviously, IP1(F ;G) means IP(F ;G) and H(F ;G) = H1(F ;G). Moreover,
if IP(F ;G) and IP(F ;H(F ;G)) hold, then IP2(F ;G) holds with H2(F ;G) =
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H(F ;H(F ;G)). A similar statement holds for higher order derivatives. As an
example, in IPk(F, ; 1) this leads us to define Hk(F, 1) ≡ Hk(F ) by recurrence:

H0(F ) = 1, Hk(F ) = H(F ;Hk−1(F )), k ≥ 1.

• If IP(F,G) holds then E(H(F,G)) = 0: take G = 1 in (1.1). Moreover, the
weight H(F ;G) in IP(F ;G) is not unique: for any random variable R such that
E(ϕ(F )R) = 0 (that is, E(R |F ) = 0 a.s.) one may use H(F ;G) + R as well
(in fact, what is unique is E(H(F,G) |F )). In numerical methods this plays an
important role because if one wants to compute E(ϕ(F )H(F ;G)) using a Monte
Carlo method then one would like to work with a weight which gives minimal
variance (see e.g. Fournié et al. [9]). Note also that in order to perform a Monte
Carlo algorithm one has to simulate F and H(F ;G). In some particular cases
H(F ;G) may be computed directly, using some methods ad hoc. But Malliavin
calculus gives a systematic access to the computation of this weight. Typically,
in the applications F is the solution of some stochastic equation and H(F ;G)
appears as an aggregate of differential operators (in Malliavin’s sense) acting
on F. These quantities are also related to some stochastic equations and so one
may use some approximations of these equations in order to produce concrete
algorithms.

Let us give a simple example. Take F = ∆ and G = g(∆) where f, g are some
differentiable functions and ∆ is a centered gaussian random variable of variance
σ. Then

E(f ′(∆)g(∆)) = E
(
f(∆)

[
g(∆)

∆

σ
− g′(∆)

])
(1.3)

so IP(F ;G) holds true with H(F ;G) = g(∆)∆σ − g′(∆). This follows from a
direct application of the standard integration by parts, but in the presence of

the gaussian density p(x) = 1√
2πσ2

exp(− x2

2σ ) :

E(f ′(∆)g(∆)) =

∫
f ′(x)g(x)p(x)dx

= −
∫
f(x)(g′(x)p(x) + g(x)p′(x))dx

= −
∫
f(x)

[
g′(x) + g(x)

p′(x)

p(x)

]
p(x)dx

= E
(
f(∆)

[
g(∆)∆σ − g′(∆)

])
Malliavin calculus produces the weights H(F ;G) for a large class of random
variables - (1.3) represents the simplest example of this kind - but this is not the
subject of this section. Here we give some consequences of the above property.

1.1.1 The sensitivity problem

In many applications one considers quantities of the form E(ϕ(F x)) where F x

is a family of random variables indexed on a finite dimensional parameter x. A
typical example is F x = Xx

t which is a diffusion process starting from x. In order
to study the sensitivity of this quantity with respect to the parameter x, one
has to prove that x 7→ E(ϕ(F x)) is differentiable and to evaluate the derivative.
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There are two ways to tackle this problem: using a pathwise approach or an
approach in law.
The pathwise approach supposes that x 7→ F x(ω) is differentiable for almost
every ω (and this is the case for x 7→ Xx

t (ω) for example) and ϕ is differentiable
also. Then ∂xE(ϕ(F x)) = E(ϕ′(F x)∂xF x). But this approach breaks down if ϕ
is not differentiable. The second approach overcomes this difficulty using the
smoothness of the density of the law of F x. So, in this approach one assumes that
F x ∼ px(y)dy and x 7→ px(y) is differentiable for each y. Then ∂xE(ϕ(F x)) =∫
ϕ(y)∂xp

x(y)dy =
∫
ϕ(y)∂x ln p

x(y)px(y)dy = E(ϕ(F x)∂x ln px(F )). Sometimes
engineers call ∂x ln p

x(F ) the score function. But of course this approach works
when one knows the density of the law of F x. The integration by parts formula
IP(F x, ∂xF

x) permits to write down the equality

∂xE(ϕ(F x)) = E(ϕ′(F x)∂xF x) = E(ϕ(F x)H(F x; ∂xF
x))

without having to know the density of the law of F x. It is worth remarking
that the above equality holds true even if ϕ is not derivable because there are
no derivatives in the first and last term - in fact one may use some regularization
arguments and then pass to the limit. Therefore the quantity of interest is the
weightH(F x; ∂xF

x).Malliavin calculus is a machinery allowing to compute such
quantities for a large class of random variables for which the density of the law
is not known explicitly (for example, diffusion processes). This is the approach
in Fournié et al. [8] and [9] to the computation of Greeks (sensitivities of the
price of European and American options with respect to certain parameters) in
Mathematical Finance problems.

1.1.2 The density of the law

Hereafter, the notation 1A(x) or 1x∈A stands for the indicator function, that is
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

Lemma 1.1.3. Suppose that F satisfies IP(F ; 1). Then the law of F is abso-
lutely continuous with respect to the Lebesgue measure and the density of the
law is given by

p(x) = E(1[x,∞)(F )H(F ; 1)). (1.4)

Moreover, p is continuous and p(x) → 0 as |x| → ∞.

Proof. The formal argument is the following: since δ0(y) = ∂y1[0,∞)(y) one
uses IP(F ; 1), so that

E(δ0(F − x)) = E(∂y1[0,∞)(F − x))

= E(1[0,∞)(F − x)H1(F ; 1)) = E(1[x,∞)(F )H(F ; 1)).

In order to let this reasoning rigorous, one has to regularize the Dirac function.
So we take a positive function ϕ ∈ C∞

c (R) with the support equal to [−1, 1]
and such that

∫
ϕ(y)dy = 1 and for each δ > 0 we define ϕδ(y) = δ−1ϕ(yδ−1).

Moreover we define Φδ to be the primitive of ϕδ, i.e. Φδ(y) =
∫ y
−∞ ϕδ(z)dz, and

we construct some random variables θδ of law ϕδ(y)dy which are independent
of F . Since θδ weakly converges to 0 as δ → 0, for each f ∈ C∞

c (R) we have

E(f(F )) = lim
δ→0

E(f(F − θδ)). (1.5)
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Setting Λ as the law of F , we can write

E(f(F − θδ)) =

∫ ∫
f(u− v)ϕδ(v)dvdΛ(u) =

∫ ∫
f(z)ϕδ(u− z)dzdΛ(u)

=

∫
f(z)E(ϕδ(F − z))dz =

∫
f(z)E(Φ′

δ(F − z))dz

=

∫
f(z)E(Φδ(F − z)H(F ; 1))dz.

Now, Φδ is uniformly bounded in δ and Φδ(y) → 1[x,∞)(y), as δ → 0 for a.e.
y. Then using Lebesgue dominated convergence theorem we pass to the limit
in the above relationship and we obtain

E(f(F )) =
∫
f(z)E(1[z,∞)(F )H(F ; 1))dz

for any f ∈ C∞
c (R), so that z 7→ E(1[z,∞)(F )H(F ; 1)) is the probability density

function of F , which is also continuous. In fact, if zn → z one has 1[zn,∞)(F ) →
1[z,∞)(F ) a.s. So, by applying the Lebesgue dominated convergence theorem,
one has p(zn) = E(1[zn,∞)(F )H(F ; 1)) → E(1[z,∞)(F )H(F ; 1)) = p(z), i.e. p
is a continuous function. Finally, if z → +∞ then 1[z,∞)(F ) → 0 a.s. and
then p(z) → 0. If instead z → −∞, one uses the same argument but to the
representation

p(x) = −E(1(−∞,x)(F )H(F ; 1)) (1.6)

which follows from the fact that 1[x,+∞) = 1 − 1(−∞,x) and by recalling that
E(H(F ; 1)) = 0 (see Remark 1.1.2). �

Remark 1.1.4. [Bounds] Suppose that H(F ; 1) is square integrable. Then,
using Chebishev’s inequality

p(x) ≤
√
P(F ≥ x) ∥H(F ; 1)∥2 .

In particular limx→∞ p(x) = 0 and the convergence rate is controlled by the
tails of the law of F. For example if F has finite moments of order p this gives
p(x) ≤ C x−p/2. In significant examples, such as diffusion processes, the tails
have even exponential rate. So the problem of the upper bounds for the density
is rather simple (on the contrary, the problem of lower bounds is much more
challenging). The above formula gives a control for x → ∞. In order to obtain
similar bounds for x→ −∞ one has to employ formula (1.6).

We go now further and treat the problem of the derivatives of the density
function.

Lemma 1.1.5. Suppose that IPi(F ; 1), i = 1, . . . , k + 1 holds true. Then the
density p is k times differentiable and

p(i)(x) = (−1)iE(1(x,∞)(F )Hi+1(F ; 1)), i = 0, 1, . . . , k. (1.7)

Proof. Let i = 1. We define Ψδ(x) =
∫ x
−∞ Φδ(y)dy, so that Ψ′′

δ = ϕδ, and we
come back to the proof of Lemma 1.1.3. By using IP2(F, 1) we have

E(ϕδ(F − z)) = E(Ψ′′
δ ) = E(Ψδ(F − z)H2(F ; 1)),
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so that

E(f(F − θδ) =

∫
f(z)E(Ψδ(F − z)H2(F ; 1))dz.

Since limδ→0 Ψδ(F − z) = (F − z)+ we obtain

E(f(F )) =
∫
f(z)E((F − z)+H2(F ; 1))dz

and so
p(z) = E((F − z)+H2(F ; 1)).

The pleasant point in this new integral representation of the density is that
z 7→ (F − z)+ is differentiable. Taking derivatives in the above formula gives

p′(z) = −E(1[z,∞)(F )H2(F ; 1))

and the proof is completed for i = 1. In order to deal with higher order deriva-
tives, one uses more integration by parts in order to obtain

p(z) = E(ηi(F − z)Hi+1(F ; 1))

where ηi is an i times differentiable function such that η
(i)
i (x) = (−1)i1[0,∞)(x).

�

Remark 1.1.6. [Bounds] The integral representation formula (1.7) permits
to obtain upper bounds of the derivatives of the density p. In particular, suppose
that F has finite moments of any order and that IPi(F ; 1) holds true for every
i ∈ N and Hi(F ; 1) is square integrable. Then p is infinitely differentiable and∣∣p(i)(x)∣∣ ≤ √

P(F > x) ∥Hi(F ; 1)∥2 ≤ C x−q/2 for every q ∈ N. So p ∈ S , the
Schwartz space of rapidly decreasing functions.

[Integration by parts & densities] Lemma 1.1.5 shows that there is an in-
timate relationship (quasi equivalence) between the integration by parts formula
and the existence of a “good” density of the law of F. In fact, suppose that
F ∼ p(x)dx, where p is differentiable and p′(F ) is integrable. Then, for every
f ∈ C∞

c (R)

E(f ′(F )) =

∫
f ′(x)p(x)dx = −

∫
f(x)p′(x)dx

= −
∫
f(x)

p′(x)

p(x)
1(p>0)(x)p(x)dx

= −E
(
f(F )

p′(F )

p(F )
1(p>0)(F )

)
.

So IP(F, 1) holds with H(F ; 1) = −p′(F )
p(F ) 1(p>0)(F ) ∈ L1 (because p′(F ) ∈

L1(Ω)). By iteration, we obtain the following chain of implications:

IPk+1(F, 1) holds true
⇓

p is k times differentiable and p(k)(F ) ∈ L1(Ω)
⇓

IPk(F, 1) holds true and Hk(F ; 1) = (−1)k p
(k)(F )
p(F ) 1(p>0)(F ) ∈ L1(Ω).

5



1.1.3 Conditional expectations

The computation of conditional expectations is crucial for numerically solving
certain non linear problems coming from dynamical programming algorithms.
Several authors (see Fournié et al. [9], Lions and Regnier [15], Bally et al.
[3], Kohatsu-Higa and Petterson [11], Bouchard et al. [6]) have employed for-
mulas based on Malliavin calculus techniques in order to compute conditional
expectations. In this section we give the abstract form of this formula.

Lemma 1.1.7. Let F and G be real random variables such that IP(F ; 1) and
IP(F ;G) hold true. Then

E(G | F = x) =
E(1[x,∞)(F )H(F ;G))

E(1[x,∞)(F )H(F ; 1))
(1.8)

with the convention that the term in the right hand side is null when the denom-
inator is null.

Proof. Let θ(x) stand for the term in the right hand side of the above equality.
We have to check that for every f ∈ C∞

c (R) one has E(f(F )G) = E(f(F )θ(F )).
Using the regularizing functions from the proof of Lemma 1.1.3 we write

E(θ(F )f(F )) =

∫
f(z)θ(z)p(z)dz

=

∫
f(z)E(1[0,∞)(F − z)H(F ;G))dz

= lim
δ→0

∫
f(z)E(Φδ(F − z)H(F ;G))dz

= lim
δ→0

∫
f(z)E(Gϕδ(F − z))dz

= E
(
G lim
δ→0

∫
f(z)ϕδ(F − z)dz

)
= E(Gf(F ))

and the proof is completed. �

1.2 The multidimensional case

In this section we deal with a d dimensional random variable F = (F 1, . . . , F d).
The results concerning the density of the law and the conditional expectation
are quite similar. Let us introduce some notations. For i = 1, . . . , d, we set
∂i ≡ ∂

∂xi
. For a multi-index α = (α1, . . . , αk) ∈ {1, . . . , d}k, we denote |α| = k

and ∂α = ∂α1 · · · ∂αk
with the convention that ∂0 is just the identity. The

integration by parts formula is now the following.

Definition 1.2.1. Let F : Ω → Rd and G : Ω → R be integrable random
variables. Let α ∈ {1, . . . , d}k, k ∈ N, be a multi-index. We say that the
integration by parts formula IPα(F ;G) holds if there exists an integrable random
variable Hα(F ;G) such that

IPα(F ;G) : E(∂αϕ(F )G) = E(ϕ(F )Hα(F ;G)), ∀ϕ ∈ C∞
c (R). (1.9)
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Again, for |α| = k, the set C∞
c (Rd) can be replaced by Ckc (Rd), C∞

b (Rd) or also
Ckb (Rd).
Let us give a simple example which turns out to be central in Malliavin calculus.
Take F = f(∆1, . . . ,∆m) and G = g(∆1, . . . ,∆m) where f, g are some differ-
entiable functions and ∆1, . . . ,∆m are independent, centered gaussian random
variables with variance σ1, . . . , σm respectively.
We denote ∆ = (∆1, . . . ,∆m). Then for each i = 1, . . . ,m

E
( ∂f
∂xi

(∆)g(∆)
)
= E

(
f(∆)

[
g(∆)

∆i

σi
− ∂g

∂xi
(∆)

])
, (1.10)

as an immediate consequence of (1.3) and of the independence of ∆1, . . . ,∆m.
It then follows that IP{i}(∆; g(∆)) holds for every i = 1, . . . , d.

We give now the result concerning the density of the law of F.

Proposition 1.2.2. i) Suppose that IP(1,2...,d)(F ; 1) holds true. Then the den-
sity p of F exists and is given by

p(x) = E(1I(x)(F )H(1,2...,d)(F ; 1)) (1.11)

where I(x) =
∏d
i=1[x

i,∞). In particular p is continuous.
ii) Suppose that for every multi-index α, IPα(F ; 1) holds true. Then ∂αp exists
and is given by

∂αp(x) = (−1)|α|E(1I(x)(F )H(α+1)(F ; 1)) (1.12)

where (α + 1) =: (α1 + 1, . . . , αd + 1). Moreover, if Hα(F ; 1) ∈ L2(Ω) and F
has finite moments of any order then p ∈ S , S being the Schwartz space of
the infinitely differentiable functions which decrease rapidly to infinity, together
with all the derivatives.

Proof. The formal argument for i) is based on δ0(y) = ∂(1,...,1)1I(0)(y) and the
integration by parts formula. In order to let it rigorous one has to regularize
the Dirac function as in the proof of Lemma 1.1.3. In order to prove ii) one
employs the same “pushing back Schwartz distribution” argument as in the
proof of Lemma 1.1.5. Finally, in order to obtain bounds we write

|∂αp(x)| ≤
√
P(F 1 > x1, . . . , F d > xd)

∥∥H(α+1)(F ; 1)
∥∥
2
.

If x1 > 0, . . . , xd > 0, the Chebishev’s inequality yields |∂αp(x)| ≤ Cq |x|−q for
every q ∈ N. If the coordinates of x are not positive we have to use a variant of
(1.12) which involves (−∞, xi] instead of (xi,∞). �
The result concerning the conditional expectation reads as follows.

Proposition 1.2.3. Let F = (F 1, . . . , F d) and G be two random variables such
that either IP(1,2...,d)(F ; 1) and IP(1,2...,d)(F ;G) hold true. Then

E(G | F = x) =
E(1I(x)(F )H(1,2...,d)(F ;G))

E(1I(x)(F )H(1,2...,d)(F ; 1))
(1.13)

with the convention that the term in the right hand side is null when the denom-
inator is null.

Proof. The proof is the same as for Lemma 1.1.7, by using the regulariza-
tion function ϕδ(x) =

∏d
i=1 ϕδ(x

i) and Φδ(x) =
∏d
i=1 Φδ(x

i) and the fact that
∂(1,...,1)Φδ(x) = ϕδ(x). �
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Chapter 2

Brownian Malliavin calculus

2.1 The finite dimensional case

In this section we introduce the finite dimensional simple functionals and the
finite dimensional simple process; we define the Malliavin derivative and the
Skorohod integral for these finite dimensional objects and we derive their general
important properties, as the duality formula, the chain rule, the Clark-Ocone
formula and the integration by parts formula.
We will use here the space Ckp (Rd) of the functions f : Rd → R whose derivatives
up to order k exist, are continuous and with polynomial growth. Similarly we
define C∞

p (Rd).

2.1.1 Main definitions and properties

Let W = (W 1, . . .W d) be a d dimensional Brownian Motion defined on a prob-
ability space (Ω,F ,P) and we assume that the underlying filtration {Ft}t∈[0,1]

w.r.t. W is a Brownian motion, is the one generated by W and augmented
by the P-null sets. To simplify the notations, we suppose for the moment that
d = 1, the multidimensional case to be deserved later in Section 2.3.
For each n, k ∈ N we denote tkn = k2−n and

∆k
n =W (tk+1

n )−W (tkn), k = 0, . . . , 2n − 1.

We denote ∆n = (∆0
n, . . . ,∆

2n−1
n ). Notice that ∆n is a multidimensional

Gaussian r.v., taking values in R2n , with independent components: ∆n ∼
N (0, 2−nI2n×2n) (where N (m,Γ) denotes the Gaussian law with mean m and
covariance matrix Γ and Id×d the d× d identity matrix).

Definition 2.1.1. A simple functional of order n is a random variable of the
form F = f(∆n) where f ∈ C∞

p (R2n). We denote the space Sn of the simple
functionals of order n by

Sn = {F = f(∆n) : f ∈ C∞
p (R2n)}

and define the space of all simple functionals as

S =
∪
n∈N

Sn.
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Remark 2.1.2. 1. Sn ⊂ Sn+1, in fact we have

[tkn, t
k+1
n ) = [t2kn+1, t

2k+1
n+1 )

∪
[t2k+1
n+1 , t

2k+2
n+1 ),

so that F = f(. . . ,∆k
n, . . .) = f(. . . ,∆2k

n+1 +∆2k+1
n+1 , . . .).

2. S ⊂ Lp(Ω,F1,P) for all p ≥ 1, as a consequence of the fact that f has
polynomial growth and that any Gaussian r.v. has finite moment of any
order.

3. S is a linear dense subset of L2(Ω,F1,P). There are several ways to show
the validity of this assertion, we leave a possible proof in Appendix 2.6 (see
next Proposition 2.6.4).

Definition 2.1.3. A process U : [0, 1]× Ω → R is called a simple process of
order n if for any k = 0, . . . , 2n − 1, there exists a process Uk ∈ Sn such that

Ut(ω) =
2n−1∑
k=0

Uk(ω)1[tkn,t
k+1
n )(t).

We denote by Pn the space of the simple processes of order n, i.e.

Pn =
{
U : [0, 1]× Ω → R : Ut(ω) =

2n−1∑
k=0

Uk(ω)1[tkn,t
k+1
n )(t);Uk ∈ Sn

}
and the space of all simple processes is given by

P =
∪
n∈N

Pn.

Since Uk ∈ Sn, one has Uk = uk(∆
0
n, . . . ,∆

2n−1
n ), where uk ∈ C∞

p (R2n). There-
fore, uk depends on all the increments of the Brownian Motion, so that a simple
process is generally not adapted. But, one has that U is adapted if and only if
Uk = uk(∆

0
n, . . . ,∆

k−1
n ) for any k = 0, . . . , 2n − 1.

Remark 2.1.4. 1. Sn ⊂ Sn+1 implies that Pn ⊂ Pn+1.

2. For each fixed ω ∈ Ω, t 7→ Ut(ω) is an element of L2([0, 1],B[0, 1], dt), and
in general belongs to Lp([0, 1],B[0, 1], dt) for any p ≥ 1. Then, if U, V ∈ P
we can define the scalar product on this space by using the standard one
on L2([0, 1]), that is

⟨U, V ⟩ =
∫ 1

0

Us Vsds.

Notice that ⟨U, V ⟩ depends on ω and moreover, is an a.s. finite r.v.

3. For the sake of simplicity, set H1 = L2([0, 1],B[0, 1], dt) = {φ : [0, 1] →
R ;

∫ 1

0
|φs|2ds <∞} and

Lp(H1) =
{
U : Ω → H1 : E(∥U∥pH1

) = E
([ ∫ 1

0

| Us |2 ds
] p

2
)
<∞

}
.

Then P ⊂ Lp(H1) for all p ∈ N.

4. P is a dense subset of L2(H1) ≡ L2(Ω× [0, 1],F1 × B([0, 1]),P× dt).
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2.1.2 Differential operators. First properties

We can now introduce the Malliavin derivative and its adjoint operator, the
Skorohod integral.

Definition 2.1.5. The Malliavin derivative of a r.v. F = f(∆n) ∈ Sn is
the simple process {DtF}t∈[0,1] ∈ Pn given by

DtF =
2n−1∑
k=0

∂f

∂xk
(∆n)1[tkn,t

k+1
n )(t).

We recall that xk represents the increment ∆k
n =Wtk+1

n
−Wtkn

.

From the definition, we have that DtF = ∂F
∂∆k

n
for t ∈ [tkn, t

k+1
n ). If we denote

∆t
n = ∆k

n when t ∈ [tkn, t
k+1
n ), ∆t

n represents the increment of W corresponding
to t. Therefore, we can use the following notation:

DtF =
∂F

∂∆t
n

(∆n) ≡
∂f

∂∆k
n

(∆0
n,∆

1
n, . . . ,∆

2n−1
n ), as t ∈ [tkn, t

k+1
n ).

Notice that the definition is well posed, in the sense that the operator D does
not depend on n. In fact, for F ∈ Sn ⊂ Sn+1 we have

∂F

∂∆k
n

(∆n) =
∂F

∂∆2k
n+1

(∆n+1) =
∂F

∂∆2k+1
n+1

(∆n+1), (2.1)

because t ∈ [tkn, t
k+1
n ) = [t2kn+1, t

2k+1
n+1 ) ∪ [t2k+1

n+1 , t
2k+2
n+1 ) and F = f(. . . ,∆k

n, . . .) =

f(. . . ,∆2k
n+1 +∆2k+1

n+1 , . . .). Therefore, (2.1) allows to define

D : S =
∪
n

Sn → P =
∪
n

Pn

as follows:

DtF =
∂F

∂∆t
n

(∆n), as t ∈ [0, 1].

Definition 2.1.6. The Skorohod integral is defined as the operator

δ : P → S, δ(U) =

2n−1∑
k=0

(
uk(∆n)∆

k
n − ∂uk

∂xk
(∆n)

1

2n

)
where U =

∑2n−1
k=0 uk(∆n)1[tkn,t

k+1
n ) ∈ Pn ⊂ P.

Note that the definition again does not depend on n and so it is correct.

Remark 2.1.7. (Skorohod integral vs Ito integral) We have already noticed
that a process U ∈ Pn is Ft-adapted if and only if uk(∆n) does depend only on
the variables ∆1

n, . . . ,∆
k−1
n . Consequently, ∂uk

∂xk = 0 and in such a case,

δ(U) =
2n−1∑
k=0

uk(∆n)∆
k
n =

∫ 1

0

UsdWs,

that is, δ(U) coincide with the Ito integral w.r.t. W . This shows that the
Skorohod integral aims to be an extension of the Ito integral over the set of non
adapted processes.
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We can now prove the link between Malliavin derivatives and Skorohod integrals
and investigate some immediate properties of such operators.

Proposition 2.1.8. (i) [Duality] For any F ∈ S and U ∈ P one has

E(⟨DF,U⟩) = E(Fδ(U)).

(ii) [Chain rule] Let F = (F 1, . . . Fm) where F i ∈ S, i = 1, . . .m and Φ ∈
C∞
p (Rm). Then Φ(F ) ∈ S and

DΦ(F ) =

m∑
i=1

∂xiΦ(F )DF i.

(iii) [Skorohod integral of a special product] Let U ∈ P and F ∈ S. Then

δ(FU) = Fδ(U)− ⟨DF,U⟩.

Proof. (i) Let n denote an integer such that F ∈ Sn and U ∈ Pn. Then,

E(⟨DF,U⟩) = E
( 2n−1∑
k=0

∂f

∂xk
(∆n)uk(∆n)×

1

2n

)
.

∆n is a vector of i.i.d. Gaussian r.v.’s with variance hn = 1/2n. Then, we can
use (1.10) and we obtain

E
( ∂f

∂xk
(∆n)uk(∆n)

)
= E

(
f(∆n)

[
uk(∆n)

∆k
n

hn
− ∂uk
∂xk

(∆n)
])
.

By replacing everything we obtain

E(⟨DF,U⟩) = E
(
f(∆n)

2n−1∑
k=0

[
uk(∆n)∆

k
n − ∂uk

∂xk
(∆n)

1

2n

])
= E(Fδ(U)).

The proof of (ii) is straightforward.

(iii) Take G ∈ S. By using the duality formula and the chain rule, we have

E[Gδ(FU)] = E[⟨DG,FU⟩] = E[⟨FDG,U⟩]
= E[⟨D(GF )−GDF,U⟩] = E[⟨D(GF ), U⟩]− E[G⟨DF,U⟩]
= E[GFδ(U)]− E[⟨DF,U⟩].

Then, E[Gδ(FU)] = E[G(Fδ(U) − ⟨DF,U⟩)] for any G ∈ S, and (iii) immedi-
ately follows. 2

We are now ready to prove a first integration by parts formula in the Malliavin
sense. For F = (F 1, . . . , Fm), with F i ∈ S for any i = 1, . . . ,m, set σF as the
following m×m symmetric matrix:

σijF = ⟨DF i, DF j⟩ =
∫ 1

0

DtF
iDtF

jdt, i, j = 1, . . . ,m.

σF is called the Malliavin covariance matrix associated to F . It is a
positive definite matrix, because for any ξ ∈ Rm one has

⟨σF ξ, ξ⟩ =
m∑

i,j=1

σijF ξ
iξj =

∫ 1

0

m∑
i,j=1

DtF
iξiDtF

jξjdt =

∫ 1

0

∣∣∣ m∑
i=1

DtF
iξi

∣∣∣2dt ≥ 0.
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Proposition 2.1.9. [MIbP formula] Let F = (F 1, . . . , Fm) and G be such
that F 1, . . . , Fm, G ∈ S. Suppose that σF is invertible and let γF denote the
inverse of σF . Suppose moreover that det γF ∈ S. Then for every ϕ ∈ C1

b (Rm)

E
( ∂ϕ
∂xi

(F )G
)
= E(ϕ(F )Hi(F ;G))

with

Hi(F ;G) = δ
( m∑
j=1

γjiF GDF
j
)

Proof. By using the chain rule, we can write

⟨Dϕ(F ), DF j⟩ =
m∑
q=1

∂ϕ

∂xq
(F )⟨DF q, DF j⟩ =

m∑
q=1

∂ϕ

∂xq
(F )σqjF , j = 1, . . . ,m.

Since σF is invertible with inverse matrix γF , we can write

∂ϕ

∂xi
(F ) =

m∑
j=1

⟨Dϕ(F ), DF j⟩γjiF , i = 1, . . . ,m.

Therefore,

E
( ∂ϕ
∂xi

(F )G
)

= E
( m∑
j=1

⟨Dϕ(F ), DF j⟩γjiF G
)

= E
(
⟨Dϕ(F ),

m∑
j=1

DF jγjiF G⟩
)

= E
(
ϕ(F )δ

( m∑
j=1

DF jγjiF G
))

and the above steps make sense because all the r.v.’s and processes involved are,
by hypothesis, in the right spaces. 2

2.2 The infinite dimensional case

The duality formula is the one to be used in order to show that the operators D
and δ are closable and this last property allows one to extend them to the infinite
dimensional case, that is for r.v.’s and processes non necessarily depending on
the increments of the Brownian motion but depending on the whole path.
Let us start from the following facts. We have seen that

D : S ⊂ L2(Ω) → P ⊂ L2(H1) and δ : P ⊂ L2(H1) → S ⊂ L2(Ω).

The operators δ andD are linear but unbounded, i.e. it does not exist a constant
C such that for any F ∈ S one has

∥DF∥2L2(H1)
= E

(∫ 1

0

|DsF |2ds
)
≤ C∥F∥2L2(Ω).

Anyway, we can state the following property:

12



Lemma 2.2.1. D and δ are both closable, that is

i) if {Fn}n ⊂ S is such that limn Fn = 0 in L2(Ω) and limnDFn = U in L2(H1)
then U = 0;

ii) if {Un}n ⊂ P is such that limn Un = 0 in L2(H1) and limn δ(Un) = F in
L2(Ω) then F = 0.

Proof. i) Take {Fn}n ⊂ S such that limn Fn = 0 in L2(Ω) and limnDFn = U
in L2(H1). Since P is dense in L2(H1), it is sufficient to prove that E(⟨U, V ⟩) = 0
for any V ∈ P . In fact, if V ∈ P , by using the duality formula one has

E(⟨U, V ⟩) = lim
n

E(⟨DFn, V ⟩) = lim
n

E(Fnδ(V )) = 0

The proof of ii) is similar. 2

2.2.1 The set Domp(D) = D1,p

We first introduce a suitable set on which the Malliavin derivative D is well
defined and then, extending the set S of the simple functionals.

Definition 2.2.2. Let p ∈ N. We say that F ∈ Domp(D) = D1,p if there exists
a sequence {Fn}n ⊂ S such that

limn Fn = F in Lp(Ω) and limnDFn = U in Lp(H1) for some U ∈ Lp(H1).

In this case we define DF = U = limnDFn in Lp(H1).

Since ∥ ·∥p′ ≤ ∥·∥p and ∥ ·∥Lp′ (H1)
≤ ∥·∥Lp(H1) for p ≥ p′, we have D1,p ⊂ D1,p′ .

We put

D1,∞ = Dom∞D =
∩
p∈N

D1,p.

We observe that D1,2 does not depend on the sequence Fn, n ∈ N because D
is closable, but is not an algebra. We note that D1,∞ is an algebra and the
definition of DF does not depend on p.
We define a norm ∥ · ∥1,p on D1,p by

∥F∥p1,p = ∥F∥pp + ∥DF∥pLp(H1)
≡ E(|F |p) + E

((∫ 1

0

|DtF |2dt
)p/2)

.

Notice that for p = 2, the norm ∥ · ∥1,2 is the one resulting from the scalar
product

⟨F,G⟩1,2 = E(FG) + E
(∫ 1

0

DsF DsGds
)
.

Moreover, D1,2 is a Hilbert space.

Remark 2.2.3. • F ∈ S
∥·∥1,p

if there exists Fn ∈ S, n ∈ N such that Fn →
F in Lp(Ω) and (Fn)n∈N is a Cauchy sequence in ∥ · ∥1,p;

• it then follows that D1,p ≡ Domp(D) = S
∥·∥1,p

;
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• Domp(D) is complete, i.e. every Cauchy sequence in Domp(D) converges
to an element of Domp(D). Indeed consider a Cauchy sequence (Fn)n∈N
with respect to ∥ · ∥1,p. This sequence is also a Cauchy one with respect to
∥ · ∥p and we know that Lp is complete, so there exists F ∈ Lp(Ω) such
that Fn → F in ∥ · ∥p. Since Fn ∈ Domp(D) we may find a sequence of a

simple functionals F
′

n s.t. ∥Fn − F
′

n∥1,p ≤ 1
n so that (F

′

n)n∈N is a Cauchy

sequence with respect to ∥ · ∥1,p and F
′

n → F in ∥ · ∥p. So F ∈ Domp(D).

2.2.2 The set Domp(δ)

Again, we introduce a suitable set on which the Skorohod integral δ is well
defined and then, extending the set P of the simple processes. We start similarly
to Definition 2.2.2.

Definition 2.2.4. Let p ∈ N. We say that U ∈ Domp(δ) if there exists a
sequence Un ∈ P, n ∈ N such that

limn Un = U in Lp(H1) and limn δ(Un) = F in Lp(Ω) for some F ∈ Lp(Ω).

In this case we define δ(U) = F = limn δ(Un) in L
p(Ω).

On P , we consider the norm

∥U∥δ,p = ∥U∥Lp(H1) + ∥δ(U)∥p

and we have
Domp(δ) = P

∥·∥δ,p
.

2.2.3 Properties

Sometimes it is unpleasant to compute Malliavin derivatives or Skorohod inte-
grals through limits. We necessarily need a criterion, for example as follows

Proposition 2.2.5. [Criterion]

(i) Let F ∈ L2(Ω). Suppose that there exists a sequence Fn ∈ D1,2 s.t.

i limn Fn = F in L2(Ω)

ii supn ∥Fn∥1,2 ≤ C <∞.

Then F ∈ Dom2(D) and ∥F∥1,2 ≤ C. Moreover, if supn ∥Fn∥1,p ≤ Cp
then ∥F∥1,p ≤ Cp.

(ii) Let U ∈ L2(H1). Suppose that there exists a sequence Un ∈ Dom2(δ) s.t.

i limn Un = U in L2(Hd)

ii supn ∥Un∥δ,2 ≤ C <∞.

Then U ∈ Dom2(δ) and ∥U∥δ,2 ≤ C. Moreover if supn ∥Un∥δ,p ≤ Cp then
∥U∥δ,p ≤ Cp.
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Proof. (i) Any bounded set in a Hilbert space is relatively compact, so we
may find F

′ ∈ D1,2 s.t. Fn → F
′
weakly. We use Mazur’s lemma1:for each

n ∈ N there exists kn and λnk ≥ 0, k = n, . . . , kn, s.t.
∑kn
k=n λ

n
k = 1 and

Fn :=
∑kn
k=n λ

n
kFk → F

′
strongly with respect to ∥ · ∥1,2 and, in particular in

L2(Ω). Notice that

∥F − Fn∥2 = ∥
kn∑
k=n

λnk (F − Fk)∥2 ≤
kn∑
k=n

λk∥F − Fk∥2 ≤ sup
k≥n

∥F − Fk∥2 −→ 0.

It follow that F
′
= F and so F ∈ D1,2. We also have

∥F∥1,2 = lim
n

∥Fn∥1,2 ≤ lim
n

kn∑
k=n

λnk∥Fn∥1,2 ≤ C.

Let us now prove the assertion concerning the p-norm. Passing to a subsequence
we may assume that |Fn − F | → 0 a.s. Since supn ∥Fn∥1,p ≤ Cp we may use
uniformly integrability in order to derive Fn → F with respect to ∥ · ∥1,p′
for p′ < p. Then ∥F∥1,p′ ≤ supn ∥Fn∥1,p′ ≤ supn ∥Fn∥1,p ≤ Cp. And finally,
∥F∥1,p ≤ supp′<p ∥F∥1,p′ ≤ Cp.

Similar arguments give (ii). 2

We have seen in the finite dimensional framework that the Malliavin integration
by parts formula can be achieved once some properties are verified, in particular
the duality relationship, the chain rule and, for practical purposes, the Skorohod
integral of a special product. In other words, if Proposition 2.1.8 continues to
hold. The answer is positive, and in fact one has

Proposition 2.2.6. (i) [Duality] For F ∈ Dom2(D) and U ∈ Dom2(δ),

E(⟨DF,U⟩) = E(Fδ(U)).

(ii) [Chain rule] Let F = (F 1, . . . Fm) where F i ∈ D1,2, i = 1, . . .m and
Φ ∈ C1

b (Rm). Then Φ(F ) ∈ D1,2 and

DΦ(F ) =
m∑
i=1

∂xiΦ(F )DF i.

If F i ∈ D1,∞ then the conclusion is true for ϕ ∈ C1
p(Rm).

(iii) [Skorohod integral of a special product] Let u ∈ Dom2(δ) and F ∈
D1,2 such that Fu ∈ Dom2(δ). Then

δ(FU) = Fδ(U)− ⟨DF,U⟩.
1Mazur’s lemma. Let (X, ∥·∥) denote a Banach space and {un}n ⊂ X such that un → u

weakly (that is, f(un) → f(u) for each continuous linear functional f). Then there exists a
function N : N → N and for any n ∈ N some numbers {α(n)k ; k = 1, . . . , N(n)} such that

α(n)k > 0 for any k = 1, . . . , N(n),
∑N(n)

k=1 α(n)k = 1 and such that the convex combination

vn =
∑N(n)

k=1 α(n)kuk strongly converges to u0, i.e. ∥vn − u0∥ → 0 as n → ∞.
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Proof. (i) For F ∈ Dom2(D) and U ∈ Dom2(δ), take {Fn}n ⊂ S and {Un}n ⊂
P such that, as n→ ∞,

Fn → F, δ(Un) → δ(U) in L2(Ω) and DFn → DF,Un → U in L2(H1).

By applying the duality relationship between S and P (Proposition 2.1.8),

E(⟨DF,U⟩) = lim
n→∞

E(⟨DFn, Un⟩) = lim
n→∞

E(Fnδ(Un)) = E(Fδ(U)).

(ii) Let us first prove that if F k ∈ S for any k = 1, . . . ,m and Φ ∈ C1
b (Rm) then

Φ(F ) ∈ D1,2 and the chain rule holds. In fact, let {Φn}n ⊂ C∞
b (Rm) ⊂ C∞

p (Rm)
denote a sequence such that ∥Φn − Φ∥∞ → 0 and ∥∇Φn − ∇Φ∥∞ → 0 as
n → ∞. Since Φn(F ) ∈ S, the chain rule holds by Proposition 2.1.8. Now,
∥Φn(F )− Φ(F )∥2 ≤ ∥Φn − Φ∥∞ → 0 and for each k one has

∥∂xkΦn(F )DF
k − ∂xkΦ(F )DFk

∥∥
L2(H1)

≤ ∥∇Φn −∇Φ∥∞∥DkF∥L2(H1) → 0

and this gives the statement.

Suppose now that F k ∈ D1,2 for any k = 1, . . . ,m and Φ ∈ C1
b (Rm). We then

take {F kn}n ⊂ S such that ∥F kn − F k∥1,2 → 0. Since Φ has bounded derivatives
we immediately obtain ∥Φ(Fn) − Φ(F )∥2 → 0. Moreover, from the first part
of the proof we know that DΦ(Fn) =

∑m
k=1 ∂xkΦ(Fn)DF

k
n . Then, we have to

prove that for each k,

∥∂xkΦ(Fn)DF
k
n − ∂xkΦ(F )DF k∥L2(H1) → 0.

We can write

∥∂xkΦ(Fn)DF
k
n − ∂xkΦ(F )DF k∥L2(H1) ≤ an + bn

where

an =
∥∥∂xkΦ(Fn)

(
DF kn −DF k

)∥∥
L2(H1)

bn =
∥∥(∂xkΦ(Fn)− ∂xkΦ(F )

)
DF k

∥∥
L2(H1)

Concerning an, since ∂xkΦ is bounded, one has

an ≤ const∥DF kn −DF k∥L2(H1) → 0.

As for bn, first notice that

b2n = E
(
|∂xkΦ(Fn)− ∂xkΦ(F )|2

∫ 1

0

|DtF
k|2dt

)
Now, if we pass to any subsequence s.t. Fn → F a.s. and use Lebesgue’s

theorem, we immediately obtain b2n = E(|∂xkΦ(Fn)− ∂xkΦ(F )|2
∫ 1

0
|DsF

k|2) →
0.

(iii) Let G ∈ S. Using the duality formula we can write

E[Gδ(FU)] = E[
∫ 1

0
DsG× F × Usds]

= E[
∫ 1

0
(Ds(FG)−GDsF )× Usds]

= E[GFδ(U)]− E[G
∫ 1

0
DsF × Usds].

This relation is true for all G ∈ S, so we have the thesis. 2
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Remark 2.2.7. Notice that if F i ∈ D1,∞, i = 1, . . . ,m, then we can use
Holder’s inequality (in particular, to show that bn → 0 as n → ∞ in the above
proof of (ii) in Proposition 2.2.6) and then we get that the chain rule holds also
for Φ ∈ C1

p(Rm).

Actually, the chain rule holds also in other situation, for example under the re-
quirement that Φ is only Lipschitz continuous (see e.g. Nualart [18], Proposition
1.2.3, p. 30).

Example 2.2.8. Let F ∈ D1,∞ be such that eF ∈ Lp for any p. Then eF ∈ D1,2

and
DeF = eFDF.

In fact, let {ψn}n≥1 ⊂ C∞
c (R) be a sequence such that ψn(x) = 1 if |x| ≤ n,

ψn(x) = 0 if |x| > n+ 1, 0 ≤ ψn ≤ 1 for any x and supn supx |ψ′
n(x)| <∞. Set

now Gn = ψn(F )e
F . Notice that Gn = Ψn(F ) with Ψn(x) = ψn(x)e

x ∈ C∞
c (R),

so that Gn ∈ D1,2 and the chain rule holds:

DGn = Ψ′
n(F )DF = eFDF

(
ψ′
n(F ) + ψn(F )

)
.

Then, it is sufficient to prove that Gn → eF in L2(Ω) and DGn → eFDF in
L2(H1). In fact, we have

∥Gn − eF ∥22 = E
(
e2F |ψn(F )− 1|2

)
.

But, e2F |ψn(F ) − 1|2 → 0 a.s. and e2F |ψn(F ) − 1|2 ≤ 2e2F ∈ L1, so that by
Lebesgue’s dominated convergence theorem one has ∥Gn − eF ∥22 → 0. As for
the second statement, by Hölder’s inequality we have

∥Gn − eFDF∥2L2(H1)
= E

(∫ 1

0

e2F |DsF |2 |ψ′
n(F ) + ψn(F )− 1|2 ds

)
≤ E

(
e2pF |ψ′

n(F ) + ψn(F )− 1|2p ds
)1/p∥DF∥2L2q(H1)

where p, q > 0, 1
p + 1

q = 1. By using arguments similar to the ones developed

above, one has E
(
e2pF |ψ′

n(F ) +ψn(F )− 1|2p ds
)
→ 0, and the statement holds.

2.2.4 Examples

We give here some leading examples.

Example 2.2.9. [Brownian motion] Take F = Wt, as t ∈ [0, 1]. Then
F ∈ Dom2(D) and

DsWt = 1s≤t.

In fact, we can write (⌊·⌋ denoting the integer part)

Wt =

⌊2nt⌋∑
k=0

(Wtk+1
n

−Wtkn
) +Wt −W ⌊2nt⌋

2n
.

Now, since

i Fn :=
∑⌊2nt⌋
k=0 (Wtk+1

n
−Wtkn

) →Wt in L
2(Ω) as n→ ∞,
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ii Fn ∈ D1,2 and DsFn = 1
s≤ ⌊2nt⌋

2n
→ 1s≤t = U in L2(H1) as n→ ∞,

it immediately follows that DsWt exists and is equal to 1s≤t.

Example 2.2.10. [Ito integral of square integrable functions] Let ϕ ∈
L2([0, 1]) and set W (ϕ) :=

∫ 1

0
ϕrdWr. Then, W (ϕ) ∈ D1,2 and

DsW (ϕ) = ϕ(s).

The proof is a consequence of the following steps.

step 1 Let ϕ be a step function on the dyadic intervals, i.e.

ϕ(s) =
2n−1∑
k=0

ϕk1[tkn,t
k+1
n )(s).

ThenW (ϕ) =
∑2n−1
k=0 ϕk∆

k
n is a simple functional and we compute directly

the derivative: DsW (ϕ) = ϕk(s) = ϕ(s).

step 2 Let ϕ ∈ L2(0, 1) be a continuous function. Then, there exists a sequence
{ϕn}n of step functions such that ϕn → ϕ in L2(0, 1) as n → ∞. Now,
step 1 ensures us that

DsW (ϕn) = ϕn(s)

Since ϕn → ϕ in L2(0, 1), the statement immediately follows.

step 3 The generalization to general functions ϕ belonging to L2(0, 1) follows
from the fact that the set of the continuous functions on (0, 1) is a dense
subset of L2(0, 1).

Example 2.2.11. For ϕℓ ∈ L2(0, 1), ℓ = 1, . . . ,m, and for Φ ∈ C1
p(Rm), set

F = Φ
(∫ 1

0

ϕ1(s)dWs, . . . ,

∫ 1

0

ϕm(s)dWs

)
.

Then F ∈ D1,2 and

DsF =

m∑
k=1

∂xkΦ
(∫ 1

0

ϕ1(s)dWs, . . . ,

∫ 1

0

ϕm(s)dWs

)
ϕk(s).

The proof is an immediate consequence of Example 2.2.10 and the chain rule.

Remark 2.2.12. Example 2.2.11 is particularly important if one is interested
in studying the link with the definition of Malliavin derivatives as done in many
texts, as for example the widely well-known one by Nualart [18]. There, the set
of simple processes S is given by the random variables F of the form

F = f
(∫ 1

0

ϕ1(s)dWs, . . . ,

∫ 1

0

ϕn(s)dWs

)
where n ∈ N, f ∈ C∞

c (Rn) and ϕi ∈ H1 = L2([0, 1]B([0, 1]), dt) Then, for F as
above, the Malliavin derivative is defined as

DtF =

n∑
k=1

∂xkf
(∫ 1

0

ϕ1(s)dWs, . . . ,

∫ 1

0

ϕn(s)dWs

)
ϕk(t). (2.2)
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Furthermore, on S one sets

∥F∥21,2 = ∥F∥2L2(Ω) + ∥DF∥2L2(Ω×[0,1])

and defines D1,2 = S
∥·∥1,2

. Now, Exercise 2.3.7 allows one to prove that this
definition of Malliavin derivative agrees with the one already presented in these
notes.

Remark 2.2.13. Consider a smooth functional of the form

F = f(Wt1 , . . . ,Wtn)

with f ∈ C∞
p and 0 < t1 < · · · < tn ≤ 1, so that

DtF =

n∑
i=1

∂xif(Wt1 , . . . ,Wtn)1t≤ti

Then, for h ∈ H1 = L2([0, 1],B([0, 1]), dt) one has

⟨DF, h⟩ =

∫ 1

0

n∑
i=1

∂xif(Wt1 , . . . ,Wtn)1t≤tihtdt

=

n∑
i=1

∂xif(Wt1 , . . . ,Wtn)

∫ ti

0

htdt

= lim
ε→0

f(Wt1 + ε
∫ t1
0
htdt, . . . ,Wtn + ε

∫ t1
0
htdt)− f(Wt1 , . . . ,Wtn)

ε

Therefore, for any h ∈ H1 one gets

⟨DF, h⟩ = d

dε
F
(
ω + ε

∫ ·

0

h(t)dt
)∣∣∣
ε=0

that is, for such F ’s the Malliavin derivative DF is linked to the directional
derivative of F in the directions of the Cameron Martin space H1 = {φ ∈
C([0, 1],R) : φt =

∫ t
0
hsds, for h ∈ L2([0, 1])}.

Example 2.2.14. [Lebesgue and Ito integrals] Let U denote an adapted

process such that E(
∫ 1

0
|Ur|2dr) <∞. Set

I0(U) =

∫ 1

0

Urdr and I1(U) =

∫ 1

0

UrdWr.

We assume that for each fixed r ∈ [0, 1], Ur ∈ D1,2 and

i supr≤1 ∥Ur∥1,2 <∞;

ii setting τn(r) = ⌊r2n⌋/2n and Unr = Uτn(r), then∫ 1

0

∥Ur − Unr ∥21,2dr =
∫ 1

0

E
(
|Ur − Uτn(r)|

2 +

∫ 1

0

|DsUr −DsUτn(r)|
2ds

)
dr → 0

as n→ ∞.
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Then, Ii(U) ∈ D1,2 for i = 0, 1 and one has:

DsI0(U) = Ds

∫ 1

0

Urdr =

∫ 1

s

DsUrdr (2.3)

and

DsI1(U) = Ds

∫ 1

0

UrdWr = Us +

∫ 1

s

DsUrdWr (2.4)

In fact, suppose first i = 1. Then,

I1(U
n) =

2n−1∑
k=0

Uk/2n∆
k
n.

Therefore,

DsI1(U
n) =

2n−1∑
k=0

Ds

(
Uk/2n∆

k
n

)
= U⌊2ns⌋/2n +

2n−1∑
k=⌊2ns⌋

DsUk/2n∆
k
n

and notice that

DsI1(U
n) → Us +

∫ 1

s

DsUrdWr in L2(Ω) as n→ ∞

because of i. Now, by ii, we have I1(U
n) → I1(U) in L2(Ω). Using i, we obtain

supn ∥I1(Un)∥1,2 < ∞. Then we can use the criterion in Proposition 2.2.5 in
order to get I1(U) ∈ D1,2. Now, since we know that I1(U) ∈ D1,2, we have
DI1(U) = limn→∞DI1(U

n) in L2(Ω), and (2.4) is proved. Concerning (2.3),
one can proceed in a similar way.

Example 2.2.15. We show here the Malliavin differentiability of the maximum
of a Brownian motion. Let us put M = sups≤1Ws (we test the time interval
[0, 1] but nothing changes for more general intervals) and we show that DtM =
I[0,τ ](t), where τ is the a.s. unique point at which W attains its maximum.
For any n ∈ N, we put Mn = maxk=0,...,2n Wk/2n . Notice that Mn → M
a.s. and2 |Mn − M |2 ≤ 4M2 ∈ L1(Ω), so that by the Lebesgue dominated
convergence theorem one hasMn →M in L2(Ω). Thus, it remains to show that
Mn ∈ D1,2 and DtMn → 1[0,τ ](t) in L

2([0, 1]× Ω).

By setting ϕn : R2n+1 → R, ϕn(x) = max(x0, . . . , x2
n

), then obviously Mn =
ϕn(W0,W1/2n , . . . , W1). The function ϕn is not a C1

p function, so the chain
rule in Proposition 2.2.6 cannot be immediately applied. However, ϕn is a
Lipschitz continuous function and its partial derivatives exist a.e., so smoothing
arguments allow to state the validity of the chain rule (see e.g. Nualart [18],
Proposition 1.2.3, p. 30): Mn = ϕn(W0,W1/2n , . . . ,W1) ∈ D1,2 and

DtMn =
2n∑
k=0

∂ϕn
∂xk

(W0,W1/2n , . . . ,W1)DtWk/2n

=

2n∑
k=0

∂ϕn
∂xk

(W0,W1/2n , . . . ,W1) 1t<k/2n .

2Recall the reflecting principle for a Brownian motion: for any x > 0, one has
P(supt≤T Wt > x) = 2P(WT > x). For T = 1 one gets P(M > x) = 2P(W1 > x) and

then M has a probability density function given by fM (x) =
√

2/π exp(−x2/2)1x>0, which
tells us that M ∈ Lp for any p.
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We set A0 = {ϕn(x) = x0} and, as k = 1, . . . , 2n, Ak = {ϕn(x) ̸= x0, . . . ,
ϕn(x) ̸= xk−1, ϕn(x) = xk}. Then, ∂xkϕn(x) = 1Ak

(x) a.e., so that we can
write

DtMn =
2n∑
k=0

1(W0,W1/2n ,...,W1)∈Ak
1t<k/2n = 1[0,τn](t)

where τn denotes the a.s. unique point among the k/2n’s such that Mn =Wτn .
Straightforward computations allow to see that

E
(∫ 1

0

|DtMn − 1[0,τ ](t)|2 dt
)
= E(|τn − τ |).

Now, τn → τ a.s. because W has continuous paths - notice that this proves the
a.s. uniqueness of τ - and |τn− τ | ≤ 2, so E(|τn− τ |) → 0, which in turn implies
that DtMn → 1[0,τ ](t) in L

2([0, 1]× Ω). Then,

DtM = 1[0,τ ](t).

Example 2.2.16. We compute here the Skorohod integral of the Brownian
bridge process on [0, 1], which corresponds in some sense to a Brownian motion
forced to be in two fixed points x and y at time 0 and 1 respectively. There are
several ways to introduce such a process; for example, the Brownian bridge can
be seen as

u(t) = x+ t(y − x) +Wt − tW1,

where B is a one dimensional Brownian motion. Then, by recalling that Skoro-
hod and Ito integrals coincide on adapted processes, one has

δ(u) = xW1 + (y − x)

∫ 1

0

t dWt +

∫ 1

0

Wt dWt − δ(vW1),

where v(t) = t. By using (iii) of Proposition 2.2.6, δ(vW1) = W1

∫ 1

0
t dWt −∫ 1

0
DtW1 t dt =W1

∫ 1

0
t dWt− 1

2 . Moreover, by Ito’s formula applied to f(Wt) =

W 2
t and to g(t,Wt) = tWt one gets

∫ 1

0
Wt dWt =

1
2 (W

2
1 − 1) and

∫ 1

0
t dWt =

W1 −
∫ 1

0
Wt dt respectively. Then

δ(u) = yW1 + (W1 + x− y)

∫ 1

0

Wt dt−
1

2
W 2

1 .

2.2.5 The Clark-Ocone formula

We recall the martingale representation formula: if F ∈ L2(Ω,F1,P) then there
exists a real valued and Ft-adapted process ϕ ∈ L2(Ω× [0, 1],F1×B([0, 1]),P×
dt) such that F = E(F ) +

∫ 1

0
ϕsdWs. When the random variable F is Malliavin

derivable, one can write down explicitly the process ϕ. In fact, one has

Proposition 2.2.17. [Clark-Ocone formula] If F ∈ D1,2 then

F = E(F ) +
∫ 1

0

E(DtF |Ft)dWt.
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Proof. Without loss of generality we can assume that E(F ) = 0 (otherwise,
we work with F − E(F )), so that by the Brownian martingale representation

theorem one has F =
∫ 1

0
ϕsdWs for some Ft-adapted process in L2(Ω× [0, 1]).

Let us set Pad the subset of the simple processes P which are Ft-adapted. For

U ∈ Pad one has δ(U) =
∫ 1

0
UsdWs, so that

E(Fδ(U)) = E
(∫ 1

0

ϕsdWs

∫ 1

0

UsdWs

)
= E

(∫ 1

0

ϕsUsds
)
.

On the other hand, by the duality one has

E(Fδ(U)) = E(⟨DF,U⟩) = E
(∫ 1

0

DsFUsds
)

= E
(∫ 1

0

E(DsF |Fs)Usds
)
.

It then follows that

⟨U, ϕ− E(D·F |F·)⟩L2(Ω×[0,1]) = E
(∫ 1

0

Us

(
ϕs − E(DsF |Fs)

)
ds
)
= 0

for any U ∈ Pad. The statement now follows by noticing that the closure of
Pad w.r.t. the norm in L2(Ω × [0, 1]) is given by all the Ft-adapted processes
belonging to L2(Ω× [0, 1]). �

Corollary 2.2.18. 1. If F ∈ D1,2 then F is a.s. constant if and only if DF = 0.

2. If A ∈ F1 then 1A ∈ D1,2 if and only if either P(A) = 1 or P(A) = 0. As a
consequence, D1,2 is strictly included in L2(Ω,F1,P).

Proof. The proof of 1. is immediate from the Clark-Ocone formula. As for
2., if 1A ∈ D1,2 then by the chain rule we get D1A = D(12

A) = 21AD1A.
Now, if D1A ̸= 0 then 1 = 21A which is impossibile. Then, D1A = 0, that
is 1A = const which is true if either P(A) = 1 or P(A) = 0. The converse is
immediate. �
As an example, tale A = {Wt > 0} and F = 1A. Then F ∈ L2(Ω,F1,P),
because E(F 2) = P(Wt > 0) = 1/2 while 1A /∈ D1,2, so that D1,2 is actually
strictly included in L2(Ω,F1,P).

2.2.6 The set Domp(L)

We introduce here the Ornstein-Uhlembeck operator L. On the class of simple
functionals S one has

L : S → S, LF = −δ(DF ).

The following duality relationship holds:

E(FLG) = −E(⟨DF,DG⟩) = E(LFG).

Similar arguments give that L is closable, so that one can give the following
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Definition 2.2.19. F ∈ Dom(L) ≡ Dom2(L) if there exists a sequence of sim-
ple functionals {Fn}n such that Fn → F in L2(Ω) and LFn → G in L2(Ω),
for some G ∈ L2(Ω). We then we define LF := G = limn LFn. If the
above convergence holds in Lp(R), p ≥ 2 we say that F ∈ Domp(L). We
put Dom∞(L) = ∩p≥2Domp(L)

Obviously, for F ∈ Dom(L) one again has LF = −δ(DF ). Moreover, on S we
may define the norm

∥F∥L,p = ∥F∥p + ∥LF∥p

so that Domp(L) = S
∥·∥L,p

. The following chain rule holds:

Proposition 2.2.20. Let F = (F 1, . . . Fm) where F i ∈ Dom∞(L), i = 1, . . .m
and Φ ∈ C∞

p (Rm). Then Φ(F ) ∈ Dom∞L and

LΦ(F ) =
m∑
i=1

∂xiΦ(F )LF i +
m∑

i,j=1

∂xi∂xjΦ(F )⟨DF i, DF j⟩.

The proof is left as an exercise.

Remark 2.2.21. Consider m ≥ 1 paths ϕ1, . . . , ϕm in H1 and set F i =W (ϕi)

=
∫ 1

0
ϕisdWs. Such r.v.’s play a crucial role in Malliavin calculus (see also next

Appendix 2.6) and in this special context, they allow to give a rough interpreta-
tion of the denomination “Ornstein-Uhlembeck operator” given to L = −δ(D).
But for a deeper motivation, we refer to the interesting initial part of the book
of Sanz-Solé [19].

Set aij = ⟨ϕi, ϕj⟩ =
∫ 1

0
ϕisϕ

j
s ds and notice that this is a symmetric, non negative

definite m × m matrix, so that it has a square root σ (that is, σ is a m × m
matrix such that σσ∗ = a). Now, for F i =W (ϕi) one has DF i = ϕi. Therefore,
LF i = −δ(ϕi) = −W (ϕi) = −F i and ⟨DF i, DF j⟩ = ⟨ϕi, ϕj⟩ = aij. Then for
any f ∈ C∞

p (Rm), Proposition 2.2.20 gives

Lf(F ) = −
m∑
i=1

F i∂xif(F ) +

m∑
i,j=1

aij∂2xixjf(F )

Now, the analogous operator on Rm, that is

L f(x) = −
m∑
i=1

xi∂xif(x) +
m∑

i,j=1

aij∂2xixjf(x)

is the infinitesimal generator of the diffusion process X on Rm evolving as

dXt = −Xtdt+
√
2σ dWt

which is an Ornstein-Uhlembeck process.

2.2.7 The integration by parts formula

An important consequence of the duality formula is the integration by parts
formula.
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Definition 2.2.22. Let F = (F 1, . . . , Fm) with F i ∈ D1,2. The Malliavin
covariance matrix of F is defined as the symmetric positive definite matrix
given by

σijF = ⟨DF i, DF j⟩ =
∫ 1

0

DsF
iDsF

jds.

We introduce the non-degeneracy assumption:

(N-D) E((detσF )−p) <∞,∀p ∈ N. (2.5)

If (N-D) is holds then σF is almost surely invertible and we denote γF = σ−1
F .

The integration by parts formula reads as follows:

Theorem 2.2.23. [MIbP formula] Let F = (F 1, . . . , Fm) with F i ∈ D1,∞

and G ∈ D1,∞. Suppose also that σi,jF ∈ D1,∞, (N-D) holds for F and that
DFi ∈

∩
p∈NDomp(δ), i = 1, . . .m. Then for every ϕ ∈ C1

p(Rm) we have

E(∂iϕ(F )G) = E(ϕ(F )Hi(F,G)), i = 1, . . . ,m (2.6)

where

Hi(F,G) =
m∑
j=1

δ(GγijF DF
j) = −

m∑
j=1

(
Gγi,jF LF j + ⟨D(Gγi,jF ), DF j⟩

)
. (2.7)

Proof. First, let us notice that the second equality in (2.7) follows from the
Skorohod integral of a special product property (see (iii) of Proposition 2.2.6).
Using the chain rule we can write that

Dsϕ(F ) = ∇ϕ(F )DsF.

Then,

⟨Dϕ(F ), DF i⟩H1 =
(
σF∇ϕ(F )

)i
,

which yields
∂iϕ(F ) = ⟨Dϕ(F ), (γFDF )i⟩.

By using the duality formula, one gets

E(∂iϕ(F )G) = E(⟨Dϕ(F ), G(γFDF )i⟩) = E(ϕ(F )δ(G(γFDF )i)

and the statement holds. 2

2.3 Multidimensional Brownian motion

In this section we deal with a d-dimensional Brownian motionW = (W 1, . . .W d)
defined on a complete probability space (Ω,F , P ), where F = {Ft}t∈[0,1] is the
one generated by W and augmented by the P-null sets.
The definitions of Malliavin derivative and Skorohod integral, as well as the
resulting properties, can be extended as in the standard calculus. It is easy to
describe what are the main ideas. For example, we have seen that the Malliavin
derivative is given by

DtF =
∂F

∂∆Wt
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where the above derivative has to be intended “in some sense”. Now, since we
have now a d-dimensional Brownian motion, and then d independent Brownian
motions, such derivative becomes now “a gradient” since in principle it can be
done w.r.t. all the d directions:

DtF = (D1
tF, . . . ,D

d
tF ), Di

tF =
∂F

∂∆W i
t

, i = 1, . . . , d.

Now, concerning the Skorohod integral, it will be again the adjoint opera-
tor. Since the principal tool is the duality relationship, that is E(⟨DF,U⟩) =
E(Fδ(U)), it is clear that the domain of the operator δ is necessarily based on
processes taking values on Rd. And moreover, for adapted processes the Skoro-
hod and the Ito integral will agree: for an adapted process Ut = (U1

t , . . . , U
d
t )

with the usual properties giving the Ito integrability,

δ(U) =

∫ 1

0

d∑
i=1

U itdW
i
t .

But let us start by introducing the notations.

For n, k ∈ N, we denote tkn = k2−n and

∆k,i
n =W i(tk+1

n )−W i(tkn), k = 0, . . . , 2n − 1 and i = 1, . . . d.

We set now
∆k
n = (∆k,1

n , . . . ,∆k,d
n )∗, k = 0, . . . , 2n − 1.

(the symbol ∗ denoting the transpose). Let us recall that, as i, k vary, the r.v.’s
∆k,i
n are i.i.d. and ∆k,i

n ∼ N (0, 1
2n ). Therefore, ∆n = (∆0

n, . . . ,∆
2n−1
n ) ∈ Rd×2n

is a d× 2n matrix.

Now, a simple functional of order n is a random variable of the form F =
f(∆n) where f ∈ C∞

p (Rd×2n). The space of the simple functionals of order n is

Sn = {F = f(∆n) : f ∈ C∞
p (Rd×2n)}.

We set S =
∪
n Sn as the set of all the simple functionals.

A process U : [0, 1] × Ω → Rd is called a simple process of order n if
Ut = (U1

t , . . . , U
d
t ) with

U it (ω) =

2n−1∑
k=0

U ik1[tkn,t
k+1
n )(t), U ik ∈ Sn, k = 0, . . . , 2n − 1, i = 1, . . . , d.

It is worth to notice that Ut is a r.v. taking values on Rd. Recall that the
requirement U ik ∈ Sn allows to write the ith component U i of a simple process
of order n as

U it (ω) =

2n−1∑
k=0

uik(∆n)1[tkn,t
k+1
n )(t), uik ∈ C∞

p (Rd×2n), k = 0, . . . , 2n − 1.

as i = 1, . . . , d. Again, a simple process of order n is adapted if and only if

uik(∆n) ≡ uik(∆
0
n, . . . ,∆

2n−1
n ) = uik(∆

0
n, . . . ,∆

k−1
n )
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for any k and i.
We set P dn as the set of the simple processes of order n and P d =

∪
n P

d
n as the

set of all the simple processes.
For each fixed ω ∈ Ω, t 7→ Ut is an element of L2([0, 1],B[0, 1], dt,Rd) = {φ :

[0, 1] → Rd : φ is Borel measurable and
∫ 1

0
|φ(s)|2ds < ∞} := Hd. Then, on

P d we can define the scalar product by using the usual one on L2: for U, V ∈ P d,

⟨U, V ⟩ =
∫ 1

0

d∑
i=1

U is × V is ds.

Notice the resulting value is a r.v.
Now, let us denote

Lp(Hd) =
{
U : Ω → Hd : E[∥U∥pHd

] = E
((∫ 1

0

d∑
i=1

| U is |2 ds
) p

2
)
<∞

}
.

Then, P d ⊂ Lp(Hd) for all p ∈ N.

Definition 2.3.1. The Malliavin derivative of a variable F = f(∆n) ∈ Sn
is the simple process {DtF}t∈[0,1] ∈ P dn given by

DtF = (D1
tF, . . .D

d
tF ),

where

Di
tF =

2n−1∑
k=0

∂f

∂xk,i
(∆n)1[tkn,t

k+1
n )(t), i = 1, . . . , d.

Notice that Di
t is the Malliavin derivative described in the previous section if

one considers the Brownian motion W i. In some sense, in order to define Di
t

one has to freeze all the random sources expect for the ith one. That is why Di
t

is often called as the Malliavin derivative in the ith direction of the Brownian
motion.

Definition 2.3.2. The Skorohod integral is defined as the operator

δ : P d → S, δ(U) =
d∑
i=1

δi(U i)

where, as i = 1, . . . , d, for U it =
∑2n−1
k=0 uik(∆n)1[tkn,t

k+1
n )(t),

δi(U i) =
2n−1∑
k=0

(
uik(∆n)∆

k,i
n − ∂uik

∂xk,i
(∆n)

1

2n

)
.

Again, δi(U i) agrees with the one-dimensional definition of the Skorohod inte-
gral: simply, work on the ith Brownian motion W i, or equivalently, on the ith
direction of the Brownian motion W .
Notice also that whenever U is adapted, ∂uk

∂xk,i = 0, for any i, so that

δ(U) =

d∑
i=1

2n−1∑
k=0

uk(∆n)∆
k,i
n =

∫ 1

0

d∑
i=1

U isdW
i
s ,
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that is the Skorohod integral coincides with the Ito one.

Similarly to what developed in Section 2.1.2, one has the same result as in
Proposition 2.1.8, i.e.

Proposition 2.3.3. (i) [Duality] For any F ∈ S and U ∈ P ,

E(⟨DF,U⟩) = E(Fδ(U))

(ii) [Chain rule] Let F = (F 1, . . . Fm) where F i ∈ S, i = 1, . . .m and Φ ∈
C1
b (Rm). Then Φ(F ) ∈ S and

DiΦ(F ) =
m∑
ℓ=1

∂xℓΦ(F )DiF ℓ, i = 1, . . . , d.

(iii) [Skorohod integral of a special product] For U ∈ P d and F ∈ S,

δ(FU) = Fδ(U)− ⟨DF,U⟩.

The proofs are identical to the ones of Proposition 2.1.8. In particular, the
duality relationship allow to extend the operators in the infinite dimensional
case. In fact, by developing the same arguments as in Section 2.2, one can
immediately prove that the operators D and δ are closable. Then,

D : D1,2 ⊂ L2(Ω) → L2(Hd) and δ : Dom2(δ) ⊂ L2(Hd) → L2(Ω).

All properties in Proposition 2.3.3 can be extended and read as follows.

Proposition 2.3.4. (i) [Duality] For any F ∈ D1,2 and U ∈ Dom2(δ),

E(⟨DF,U⟩) = E(Fδ(U))

(ii) [Chain rule] Let F = (F 1, . . . Fm) where F i ∈ D1,2, i = 1, . . .m and
Φ ∈ C1

b (Rm). Then Φ(F ) ∈ S and

DiΦ(F ) =
m∑
ℓ=1

∂xℓΦ(F )DiF ℓ, i = 1, . . . , d.

(iii) [Skorohod integral of a special product] For U ∈ Dom2(δ) and F ∈
D1,2 such that FU ∈ Dom2(δ),

δ(FU) = Fδ(U)− ⟨DF,U⟩.

Again, the proof follows by density arguments similar to the ones developed in
Proposition 2.2.6.

Concerning the examples discussed in Section 2.2.4, let us see what happens in
the multidimensional case (the proofs are similar, so we omit them).

Example 2.3.5. [Brownian motion - see Example 2.2.9] Take F = W i
t , as

t ∈ [0, 1]. Then F ∈ Dom2(D) and

Dj
sW

i
t = 1i=j1s≤t.
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Example 2.3.6. [Ito integral of square integrable functions - see Example

2.2.10] Let ϕ ∈ L2([0, 1]) and set W j(ϕ) :=
∫ 1

0
ϕrdW

j
r . Then, W j(ϕ) ∈ D1,2

and

Di
sW

j(ϕ) =

{
ϕ(s) if i = j
0 otherwise

Example 2.3.7. [See Example 2.2.11] For ϕjℓ ∈ L2(0, 1), ℓ = 1, . . . ,m and
j = 1, . . . , d, and for Φ ∈ C1

p(Rm), set

F = Φ
( d∑
j=1

∫ 1

0

ϕj1(s)dW
j
s , . . . ,

d∑
j=1

∫ 1

0

ϕjm(s)dW j
s

)
.

Then F ∈ D1,2 and

Di
sF =

m∑
k=1

∂xkΦ
( d∑
j=1

∫ 1

0

ϕj1(s)dW
j
s , . . . ,

d∑
j=1

∫ 1

0

ϕjm(s)dW j
s

)
ϕik(s).

Example 2.3.8. [Ito integrals - see Example 2.2.14] Let U denote an adapted

process such that E(
∫ 1

0
|Ur|2dr) <∞. Set

I0(U) =

∫ 1

0

Urdr and for i = 1, . . . , d, Ii(U) =

∫ 1

0

UrdW
i
r .

We assume that for each fixed r ∈ [0, 1], Ur ∈ D1,2 and

i supr≤1 ∥Ur∥1,2 <∞;

ii setting τn(r) = ⌊r2n⌋/2n and Unr = Uτn(r), then∫ 1

0

∥Ur − Unr ∥21,2dr =
∫ 1

0

E
(
|Ur − Uτn(r)|

2 +

∫ 1

0

|DsUr −DsUτn(r)|
2ds

)
dr → 0

as n→ ∞.

Then, Ii(U) ∈ D1,2 for any i = 0, 1, . . . , d and one has:

Dj
sI0(U) = Dj

s

∫ 1

0

Urdr =

∫ 1

s

Dj
sUrdr (2.8)

and as i = 1, . . . , d,

Dj
sIi(U) = Dj

s

∫ 1

0

UrdW
i
r =


Us +

∫ 1

s

Di
sUrdW

i
r if i = j∫ 1

s

Dj
sUrdW

i
r if i ̸= j

(2.9)

As for the Ornstein-Uhlembeck operator L, on the class of simple functionals S
one has

L : S → S, LF = −δ(DF ) = −
d∑
i=1

δi(D
iF ),

so that
E(FLG) = −E(⟨DF,DG⟩) = E(LFG).
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Then, one proves that L is closable, so that DompL = S
∥·∥L,p

, where for F ∈ S,

∥F∥L,p = ∥F∥p + ∥LF∥p.

Again, Dom∞L = ∩p≥2DompL and the chain rule holds for L, that is

Proposition 2.3.9. Let F = (F 1, . . . Fm) where F i ∈ Dom∞L, i = 1, . . .m
and Φ ∈ C∞

p (Rm). Then Φ(F ) ∈ Dom∞L and

LΦ(F ) =
m∑
i=1

∂xiΦ(F )LF i +
m∑

i,j=1

∂xi∂xjΦ(F )⟨DF i, DF j⟩.

As for the Clark-Ocone formula, one gets the same results, that is

Proposition 2.3.10. 1. [Clark-Ocone formula] If F ∈ D1,2 then

F = E(F ) +
d∑
k=1

∫ 1

0

E(Dk
t F |Ft)dW

k
t .

2. If F ∈ D1,2 then F is a.s. constant if and only if DF = 0.

3. If A ∈ F1 then 1A ∈ D1,2 if and only if either P(A) = 1 or P(A) = 0.

Let us now discuss the MIbP formula. Let us start by introducing the Malliavin
covariance matrix and the non-degeneracy assumption (N-D) in the multidi-
mensional case.

Definition 2.3.11. Let F = (F 1, . . . , Fm) with F ℓ ∈ D1,2. The Malliavin
covariance matrix is the symmetric positive definite matrix defined by3

σℓjF = ⟨DF ℓ, DF j⟩ =
∫ 1

0

d∑
i=1

Di
sF

ℓ ×Di
sF

jds.

We say that σF fulfils the non degeneracy assumption if

E((detσF )−p) <∞,∀p ∈ N. (2.10)

If (2.10) is true then σF is almost surely invertible. We denote γF = σ−1
F . Then,

Theorem 2.3.12. [MIbP formula] Let F = (F 1, . . . , Fm) with F ℓ ∈ D1,∞

and G ∈ D1,∞. Suppose also that σF i,j ∈ D1,∞, DjF ℓ
∩
p∈NDomp(δ), j = 1, . . . d

and the non degeneracy condition (2.5) holds for F. Then for every ϕ ∈ C1
b (Rm)

we have

E(∂iϕ(F )G) = E(ϕ(F )Hi(F,G)), i = 1, . . . ,m (2.11)

where

Hi(F,G) =

m∑
j=1

δ(GγijF DF
j) = −

m∑
j=1

(
Gγi,jF LF j + ⟨D(Gγi,jF ), DF j⟩

)
. (2.12)

3For any ξ ∈ Rm one has

⟨σF ξ, ξ⟩ =
m∑

ℓ,j=1

σℓj
F ξℓξj =

∫ 1

0

m∑
ℓ,j=1

d∑
i=1

Di
tF

ℓξℓ Di
tF

jξjdt =
d∑

i=1

∫ 1

0

∣∣∣ m∑
ℓ=1

Di
tF

ℓξℓ
∣∣∣2dt ≥ 0

so that σF is actually a non negative definite matrix.
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We also have the following easy generalization. Consider ξi = (ξi1, . . . , ξim)
with ξi ∈ Dom∞(δ) for any i = 1, . . . ,m. For F = (F 1, . . . , Fm), and set

σijF,ξ = ⟨DF i, ξj⟩ =
d∑
k=1

∫ 1

0

Dk
sF

iξj(s)ds

Then, one can easily adapt the proof of the Malliavin integration by parts
formula in order to get the following

Proposition 2.3.13. [Generalized MIbP formula] Let F = (F 1, . . . , Fm)
with F i ∈ D1,∞ and let ξi = (ξi1, . . . , ξim) with ξi ∈ Dom∞(δ) for any i =
1, . . . ,m. Suppose that σijF,ξ ∈ D1,∞ for any i, j = 1, . . . ,m and E(|detσF,ξ|−p)
<∞ for any p. Then for every G ∈ D1,∞ and ϕ ∈ C1

p(Rm) we have

E(∂ℓϕ(F )G) = E(ϕ(F )Hξ
ℓ (F,G)), ℓ = 1, . . . ,m (2.13)

where

Hξ
ℓ (F,G) =

m∑
j=1

δ(GγℓjF,ξDF
j) = −

m∑
j=1

(
Gγi,jF,ξLF

j + ⟨D(Gγi,jFξ), DF
j⟩
)

(2.14)

being γF,ξ = σ−1
F,ξ.

2.4 Higher order derivatives and integration by
parts formulas

The higher order derivatives are defined in the same way as the first order
derivatives: to begin one defines them on the simple functionals and then pass
to the limit in order to obtain an extension. For F ∈ Sn we define

D
(i,j)
t1t2 F = Di

t1D
j
t2F =

∂2

∂∆t1,i
n ∂∆t2,j

n

F

where ∆t,ℓ
n = ∆k,ℓ

n for any t ∈ [tkn, t
k+1
n ). It is easy to see that the definition

does not depend on n. It is clear that now

D(i,j) : S → Lp([0, 1]2,B([0, 1]2),Leb2)

where Lebn denotes the Lebesgue measure on Rn. Moreover we have the fol-
lowing duality relation: for U1, U2 ∈ P we have

E
(∫ 1

0

∫ 1

0

D
(i,j)
t1t2 FU1(t1)U2(t2)dt1dt2

)
= E

(
F

∫ 1

0

(∫ 1

0

U1(t1)U2(t2)d̂W
i
t1

)
d̂W j

t2

)
where in the above formula d̂Wt denotes the Skorohod integral. We do not give
a more explicit expression of the above double integral. But recall that U1 and
U2 are simple processes, then it is clear that the above random variable is in
any Lp. Using the above formula one can check that D(i,j) is closable. Then
one defines the domain of the second order derivative and the extension of this
operator as usual. The notation is rather heavy so we prefer to give directly the
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space of second order differentiable functionals by using the Sobolev norms. We
define on S the norm

∥F∥p2,p = ∥F∥pp + E
((∫ 1

0

d∑
i=1

|Di
tF |2dt

)p/2)
+

+E
((∫

[0,1]2

d∑
i,j=1

|D(i,j)
t1t2 F |

2dt1dt2

)p/2)
and we put

D2,p = S
∥·∥2,p

and D2,∞ = ∩pD2,p.

In order to define higher order derivatives we proceed similarly. We consider a
multi-index α = (α1, . . . , αk) ∈ {1, . . . , d}k and we denote |α| = k . Then, for
F ∈ S we define

Dα
t1,...,tk

F = Dα1
t1 · · ·Dαk

tk
F =

∂k

∂∆t1,α1
n · · · ∂∆tk,αk

n

F

and one has
Dα : S → Lp([0, 1]k,B([0, 1]k),Lebk).

We use a duality argument in order to check that Dα is closable and we define
the extension of the operator. Finally we define on S the norm

∥F∥pk,p = ∥F∥pp +
k∑
r=1

E
((∫

[0,1]r

∑
|α|=r

|Dα
t1···trF |

2dt1 · · · dtr
)p/2)

.

and we set

Dk,p = S
∥·∥k,p

, Dk,∞ = ∩pDk,p and D∞ = ∩kDk,∞.

The space D∞ is the “good” space where to work because one is able to iterate
the integration by parts formulas. It represents the analogues of C∞ in the
standard analysis. Moreover, D∞ is an algebra.

Example 2.4.1. [Refined Clark-Ocone formula] If F ∈ D2,2 then one has

F = E(F )︸ ︷︷ ︸
I

+

∫ 1

0

E(DsF )dWs︸ ︷︷ ︸
II

+

∫ 1

0

(∫ s

0

E(DrDsF |Fr)dWr

)
dWs︸ ︷︷ ︸

III

which tells us that any F ∈ D2,2 can be split as the sum of three terms: a
constant (term I), a Gaussian random variable (term II - notice that E(DsF )
is a deterministic square integrable function) and an iterated Ito integral (term
III). Let us prove the above formula. By the Clark-Ocone formula one has

F = E(F ) +
∫ 1

0

E(DsF |Fs)dWs

= E(F ) +
∫ 1

0

E(DsF )dWs +

∫ 1

0

(
E(DsF |Fs)− E(DsF )

)
dWs
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Now, for each s, DsF ∈ D1,2, so that the Clark-Ocone formula gives

DsF = E(DsF ) +

∫ 1

0

E(DrDsF |Fr)dWr.

Therefore,

E(DsF |Fs)− E(DsF ) = E
(∫ 1

0

E(DrDsF |Fr)dWr

∣∣∣Fs

)
=

∫ s

0

E(DrDsF |Fr)dWr.

By inserting above, the statement holds. If F ∈ D∞, in principle such a proce-
dure might be iterated infinitely many times and therefore F could be represented
as the infinite sum of iterated Ito integrals (of any order) of deterministic func-
tions. This actually holds for any F ∈ L2(Ω,F1,P) and is strictly connected
to the Wiener chaos expansion (for details, see e.g. Nualart [18] or Sanz-Solé
[19]).

A recurrence procedure based on the previous integration by parts formulas gives
(recall that σF denotes the Malliavin covariance matrix and γF its inverse):

Theorem 2.4.2. Suppose that F 1, . . . , F d ∈ D∞ and G ∈ D∞. Suppose also
that σi,jF ∈ D∞ and the non degeneracy condition (2.5) holds for F. Then for
every multi-index α one has

E(∂αf(F )G) = E(f(F )Hα(F,G)) (2.15)

where for |α| = 1, i.e. α = {i} as i = 1, . . . , d, Hα(F,G) = Hi(F,G) is given by

Hi(F,G) =
m∑
j=1

δ(GγijF DF
j) = −

m∑
j=1

(
Gγi,jF LF j + ⟨D(Gγi,jF ), DF j⟩

)
.

and for |α| = k > 1

Hα(F,G) = Hαk
(F,H(α1,...,αk−1)(F,G)).

Moreover, Hα(F ;G) ∈ ∩p∈NL
p. In particular, for any k and p, there exist q

and a constant C depending on k, p and d such that

∥Hα(F,Gψ)∥p ≤ Cα∥G∥k,q(1 + ∥F∥2,q)ℓp,d
(
1 + E

(
|detσF |−q

)1/q)
where α is such that |α| = k.

The proof is omitted. In particular, the last inequality comes form Hölder’s
inequality and Meyer’s inequality (for details, see e.g. Nualart [18] or Sanz-Solé
[19]).

2.5 Diffusion processes

Let X denote the diffusion process solution to

Xi
t = xi +

∫ t

0

bi(Xs)ds+

d∑
j=1

∫ t

0

σij(Xs)dW
j
s , i = 1, . . . ,m. (2.16)
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Assumption 2.5.1. Suppose that for i = 1, . . . ,m and j = 1, . . . , d, σij , b
i have

sub-linear growth, belong to C2(Rm) and the first and second derivatives are
bounded.

Notice that under Assumption 2.5.1 one has:

• x 7→ b(x) and x 7→ σ(x) have sub-linear growth and are Lipschitz contin-
uous on the compact sets;

• setting, for (x, z) ∈ Rm × Rm, i = 1, . . . ,m and j = 1, . . . , d,

b̄i(x, z) =
m∑
k=1

∂xkbi(x)zk and σ̄ij(x, z) =
m∑
k=1

∂xkσij(x)z
k,

also (x, z) 7→ b̄(x, z) and (x, z) 7→ σ̄(x, z) have sub-linear growth and are
Lipschitz continuous on the compact sets.

We have then the following result.

Theorem 2.5.2. Let Assumption 2.5.1 hold. Then, for i = 1, . . . ,m, Xi
t ∈ D1,p

for any p. Moreover, for a fixed ℓ = 1, . . . , d and s > 0, the Malliavin derivative
process Dℓ

sX
i
t , is equal to zero if t < s and if t ≥ s, it is the solution to

Dℓ
sX

i
t = σiℓ(Xs) +

∫ t

s

m∑
k=1

∂xkbi(Xr)D
ℓ
sX

k
r dr

+
d∑
j=1

∫ t

s

m∑
k=1

∂xkσij(Xr)D
ℓ
sX

k
r dW

j
r .

(2.17)

Proof. We sketch the main steps of the proof, which is a natural development
of the one seen in Example 2.3.8 (and in fact, in some sense it is given by formula
(2.9)). Let n ∈ N and X̄n ≡ X̄ be the Euler scheme of step 2−n, defined by

X̄i(tk+1
n ) = X̄i(tkn) + bi(X̄(tkn))

1

2n
+ σij(X̄(tkn))∆

k,j
n (2.18)

and X̄(0) = x. We also interpolate on [tkn, t
k+1
n ) by keeping the coefficients

σij(X̄(tkn)) and b
i(X̄(tkn)) to be constant but we allow the Brownian motion and

the time to move. This means that X̄(t) solves the SDE

X̄(t) = x+

∫ t

0

b(X̄(τs))ds+
d∑
j=1

∫ t

0

σj(X̄(τs))dW
j
s

where τs = tkn for s ∈ [tkn, t
k+1
n ). Notice that X̄(t) ∈ D1,2. In fact, for t ∈

[tkn, t
k+1
n ) one has

X̄i(t) = xi +
k−1∑
h=0

bi(X̄(thn))
1

2n
+ bi(X̄(tkn))

(
t− tkn

)
+
k−1∑
h=0

d∑
j=1

σij(X̄(thn))∆
h,j
n +

d∑
j=1

σij(X̄(tkn))
(
W j
t −W j

tkn

)

33



So, X̄t is a quite smooth functional of the increments of the Brownian motion
on the dyadic intervals and increments of the type W j

t −W j
tkn
, for t ∈ [tkn, t

k+1
n ).

By the chain rule, one has

Dℓ
sX̄

i(t) = xi +

k−1∑
h=0

Dℓ
sb
i(X̄(thn))

1

2n
+Dℓ

sb
i(X̄(tkn))

(
t− tkn

)
+
k−1∑
h=0

d∑
j=1

Dℓ
s

(
σij(X̄(thn))∆

h,j
n

)
+

d∑
j=1

Dℓ
s

(
σij(X̄(ttn))

(
W j
t −W j

tkn

))
It immediately follows that Dℓ

sX̄
i(t) = 0 if s > t. If instead s ≤ t, one has

Dℓ
sb
i(X̄(thn)) =

m∑
q=1

∂xqbi(X̄(thn))D
ℓ
sX̄

q(thn)

Dℓ
s

(
σij(X̄(thn))∆

h,j
n

)
=

m∑
q=1

∂xqσij(X̄(thn))D
ℓ
sX̄

q(thn)∆
h,j
n + σij(X̄(thn))D

ℓ
s∆

h,j
n

and similarly for the term in which the increment Wt − Wtkn
appears. Since

Dℓ
sX̄

q(thn) = 0 for any h such that thn < s and Dℓ
s∆

h,j
n = 1s∈[thn,t

h+1
n )1ℓ=j , we

can resume by writing

Dℓ
sX̄

i(t) = σiℓ(X̄(τs)) +

∫ t

0

m∑
q=1

∂xqbi(X̄(τr))D
ℓ
sX̄

q(τr)dr

+
d∑
j=1

∫ t

s

m∑
q=1

∂xqσij(X̄(τr))D
ℓ
sX̄

q(τr)dW
j
r ,

So, in order to prove that Xt ∈ D1,p, we have to prove that X̄(t) converges
in Lp(Ω) to X(t) - and this is a standard result concerning the Euler scheme
approximation (see e.g. Kloeden and Platen [10]) - and that DX̄(t) converges
in Lp(Hd) to some limit, and this will be DXt.
Assume now that s is fixed and let Qs(t), t ≥ s be the solution of the d ×m-
dimensional SDE

Qℓ,is (t) = σiℓ(Xs) +

∫ t

0

m∑
q=1

∂xqbi(Xr)Q
ℓ,q
s (r)dr

+

d∑
j=1

∫ t

s

m∑
q=1

∂xqσij(Xr)Q
ℓ,q
s (r)dW j

r ,

Notice that the solution Qℓ,is (t) exists: in fact, the [very] multi-dimensional pro-
cess (X(t), Qs(t)) as t ≥ s is a diffusion process solving a SDE whose drift and
diffusion coefficients satisfy the usual properties allowing to get existence and
uniqueness of the solution (in fact, by Assumption 2.5.1 we get the Lipschitz
continuity on compact sets and the sublinear growth for the [very] multidimen-
sional drift and diffusion coefficient associated to the pair (X(t), Qs(t))). Then
Dℓ
sX̄

i(t), t ≥ s is the Euler scheme for Qℓ,is (t), t ≥ s and so standard arguments
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give
∥∥DsX̄(t)−Qs(t)

∥∥
p
≤ Cp2

−n/2,∀p > 1. A quick inspection of the argu-

ments leading to this inequality shows that Cp does not depend on s. Define
now Qs(t) = DsX̄(t) = 0 for t ≤ s. Then, we obtain

E
(∣∣∣ ∫ 1

0

|Qs(t)−DsX̄(t)|2ds
∣∣∣p/2) = E

(∣∣∣ ∫ t

0

|Qs(t)−DsX̄(t)|2ds
∣∣∣p/2)

≤ Cp
2n/2

→ 0 as n→ ∞.

Therefore, Xt ∈ D1,p and DsX(t) = Qs(t). Recall that for a fixed t, the path
s 7→ DsX(t) is an element of L2([0, 1]) and so is determined ds-a.e. But we have
here a precise version Qs(t) such that t 7→ Qs(t), for t ≥ s, is continuous and
solves a SDE. So, from now on we will refer to the Malliavin derivative of X(t)
as to the solution of (2.17) as s ≤ t and DsX(t) = 0 for s > t. 2

We can represent the Malliavin derivative also in another way. Let us first recall
the following important result.

Theorem 2.5.3. Let Assumption 2.5.1 holds. Then the dependence of the
diffusion X on the initial datum x is C1 and setting Yt = ∂xXt, that is

Y ijt =
∂Xi

t

∂xj
, i, j = 1, . . . ,m,

then Y is the solution to the following SDE

Yt = I +

∫ t

0

∂b(Xs)Ysds+
d∑
j=1

∫ t

0

∂σj(Xs)YsdW
j
s ,

where ∂b and ∂σj denote the m×m matrix fields defined as

(∂b)ik = ∂kb
i and (∂σj)

ik = ∂kσ
i
j , i, k = 1, . . . ,m, j = 1 . . . , d

respectively. Moreover, the inverse matrix valued process Zt = Y −1
t exists and

satisfies

Zt = I −
∫ t

0

Zs

(
∂b(Xs)−

d∑
j=1

(∂jσ)
2
)
ds−

d∑
j=1

∫ t

0

Zs∂σj(Xs)dW
j
s ,

The proof is omitted. But, let us remark that it follows a technique similar to
the one used in Theorem 2.5.2: take the Euler scheme for X, prove that it is
C1 in the initial datum, find the SDE associated to Ȳ = ∂X̄ and then pass to
the limit.

We can now state the following result:

Proposition 2.5.4. Let Assumption 2.5.1 hold and let Yt = ∂Xt. Then, one
has

DsXt = YtY
−1
s σ(Xs)1t>s.

Proof. For t ≥ s set Qt = YtZsσ(Xs). By Ito’s formula,

Qt = σ(Xs) +

∫ t

s

∂b(Xr)Qrdr +
d∑
j=1

∫ t

0

∂σj(Xr)QrdW
j
r ,

which is, from (2.17), the same equation satisfied by DsXt. 2
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Example 2.5.5. [Geometric Brownian motion-Black&Scholes model]
Let X solve the SDE

dXi
t = µiXi

tdt+

d∑
j=1

σijX
i
tdW

j
t , X

i
0 = xi, i = 1, . . . ,m. (2.19)

Let us stress that µ and σ are supposed to be constant. A suitable use of the
Ito’s formula give the exact solution:

Xi
t = xi exp

{(
µi − 1

2

d∑
j=1

(σij)
2
)
t+

d∑
j=1

σijW
j
t

}
, i = 1, . . . ,m. (2.20)

Then, following Example 2.2.8, one can apply the chain rule, so that

Dj
sX

i
t = σijX

i
t 1{t>s}. (2.21)

But we can arrive to the same result by using Proposition 2.5.4: Assumption
2.5.1 is trivially fulfilled and (2.20) gives

∂Xt = Yt = diag
[X1

t

x1
, . . . ,

Xm
t

xm

]
and then Y −1

s = diag
[ x1
X1
s

, . . . ,
xm

Xm
s

]
then, as t > s,

Dj
sX

i
t =

m∑
k=1

(YtY
−1
s )ik(σ(Xs))kj =

Xi
t

xi
xi

Xi
s

σijX
i
s = σij X

i
t .

2.6 Appendix. Wiener chaos decomposition

For the sake of simplicity of notations, we assume here that W is a one-
dimensional Brownian motion. For the general case, see e.g. Nualart [18] or
Sanz-Solé [19]. Recall that Ft is the σ-algebra generated by the Brownian
motion up to time t and completed with the P-null sets.
For n ∈ N, let Hn denote the nth Hermite polynomial, that is

H0(x) = 1, Hn(x) =
(−1)n

n!
e

x2

2
dn

dxn

(
e

−x2

2

)
if n ≥ 1. (2.22)

Such polynomials give the power series expansion in t of the function F (x, t) =

exp(tx− t2

2 ):

F (x, t) = etx−
t2

2 = e
x2

2 − (x−t)2

2 = e
x2

2

∞∑
n=0

tn

n!

dn

dtn

(
e−

(x−t)2

2

)∣∣∣
t=0

=

∞∑
n=0

Hn(x)t
n.

As an immediate consequence, for n ≥ 1 one has:

H ′
n(x) = Hn−1(x) (2.23)

(n+ 1)Hn+1(x) = xHn(x)−Hn−1(x) (2.24)

Hn(−x) = (−1)nHn(x) (2.25)

Indeed, (2.23) and (2.24) follow from ∂xF = tF and ∂tF = (x − t)F , while
(2.25) follow from F (−x, t) = F (x,−t).
The link between Hermite polynomials and Gaussian random variables is given
by the following
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Lemma 2.6.1. Let (X,Y ) denote a Gaussian r.v. on R2, with E(X) = E(Y ) =
0 and Var(X) = Var(Y ) = 1. Then

E(Hn(X)Hm(Y )) =

{
0 if n ̸= m
1

n!
eE(XY ) if n = m

As a consequence, {Hn}n defines a sequence of orthogonal polynomials in L2(R,
B(R), µ1), where µ1 denotes the standard Gaussian measure on R.

Proof. Notice first that the covariance matrix Γ of the r.v. (X,Y ) is given by
Γ11 = Γ22 = 1 and Γ12 = Γ21 = E(XY ). Now, for any s, t ∈ R, one has

E(F (X, s)F (Y, t)) = E
(
exp

(
sX − s2

2

)
exp

(
tY − t2

2

))
= estE(XY ).

Taking the (n+m)th derivative ∂ns ∂
m
t for s = t = 0, on the l.h.s. we get

∂ns ∂
m
t E(F (X, s)F (Y, t))

∣∣∣
s=t=0

= E
(
∂ns F (X, s)

∣∣∣
s=0

∂mt F (Y, t)
∣∣∣
t=0

)
= n!m!E(Hn(X)Hm(Y ))

On the r.h.s. we easily have ∂ns ∂
m
t e

stE(XY )|s=t=0 = 0 if n ̸= m, otherwise
∂ns ∂

n
t e

stE(XY )|s=t=0 = n! eE(XY ), and the statement follows. Finally, if X = Y ,
one gets ∫

R
Hn(x)Hm(x)µ1(dx) =

1

n!
1n=m

where µ1 denotes the standard Gaussian measure on R, so that {Hn}n defines
a sequence of orthogonal polynomials in L2(R, B(R), µ1). �

For ϕ ∈ H1 we set W (ϕ) =
∫ 1

0
ϕtdWt and we define span{eW (ϕ) ; ϕ ∈ H1} the

subspace of L2(Ω,F1,P) given by the r.v.’s which are linear combinations of
r.v.’s of the form eW (ϕ). Then,

Lemma 2.6.2. span{eW (ϕ) ; ϕ ∈ H1} is a dense subspace of L2(Ω,F1,P).

Proof. It is sufficient to prove that if X ∈ L2(Ω,F1,P) is such that E(XeW (ϕ))
= 0 for any ϕ ∈ H1 then X = 0 a.s. In fact, since ϕ 7→ W (ϕ) is linear, one has
also

E(Xe
∑m

i=1 λiW (ϕi)) = 0

for any m ≥ 1, λ1, . . . , λm ∈ R and ϕ1, . . . ϕm ∈ H1. Therefore, the Laplace
transform of the random vector (W (ϕ1), . . . ,W (ϕm)) done w.r.t. the signed
measure PX(A) = E(X1A), A ∈ F1, is null. Then, (W (ϕ1), . . . ,W (ϕm)) has a
null law under PX , that is

E(X1(W (ϕ1),...,W (ϕm))∈B) = 0 for any B ∈ Rm.

Consequently (recall that (Wt1 , . . . ,Wtm) = (W (ϕ1), . . . ,W (ϕm)) when ϕi(t) =
1t≤ti), E(X1A) = 0 for any A ∈ F1, that is X = 0 a.s. �
We set now

H0 = R, Hn = span{Hn(W (ϕ)) ; ϕ ∈ H1} if n ≥ 1. (2.26)
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The set Hn is called the nth Wiener chaos. By Lemma 2.6.1

E(Hn(W (ϕ))Hm(W (ψ))) = 0 if n ̸= m

for any ϕ, ψ ∈ H1, so that Hn and Hm are orthogonal subspaces of L2(Ω,F1,P)
if n ̸= m. Moreover, the following important result holds

Theorem 2.6.3. [Wiener chaos decomposition] The space L2(Ω,F1,P)
can be decomposed into the infinite orthogonal sum of the subspaces Hn:

L2(Ω,F1,P) =
∞⊕
n=0

Hn.

For F ∈ L2(Ω,F1,P), the representation F =
∑∞
n=0 Fn with Fn ∈ Hn is called

the Wiener chaos decomposition of F .

Proof. It is sufficient to prove that if X is orthogonal to each Hn then X = 0
a.s. In particular, one has that E(XHn(W (ϕ))) = 0 for any n and ϕ ∈ H1.
Without loss of generality, we may assume that ∥ϕ∥H1 = 1. Now, xn can be seen
as a linear combination of Hk(x) for k ≤ n and then we have E(X(W (ϕ))n) = 0
for each n, so that

E(XeW (ϕ)) = 0

for any ϕ ∈ H1. By Lemma 2.6.2, we immediately obtain that X is orthogonal
to L2(Ω,F1,P), and then X = 0 a.s. �
As a consequence, we obtain

Proposition 2.6.4. The set S of the simple functional is a dense subset in
L2(Ω,F1,P).

Proof. In view of the Wiener chaos decomposition, it is sufficient to prove that
any r.v. in Hn can be approximated in L2(Ω,F1,P) by a sequence of r.v.’s in S,
for any n. This in turn follows by proving that any r.v.’s of the type Hn(W (ϕ))
is the L2(Ω,F1,P)-limit of r.v.’s in S. As a consequence, it is sufficient to
prove that all the r.v.’s of the form (W (ϕ))n, with n ≥ 1 and ϕ ∈ H1, can be
approximated in L2(Ω,F1,P) by a sequence in S. Now, let us prove this last
assertion.

Since ϕ ∈ H1, there exists a sequence piecewise constant functions {ϕN}N of

the type ϕN (t) =
∑2N−1
k=0 ck,N1t∈[tkN ,t

k+1
N ) such that ϕN → ϕ in H1. One has

W (ϕN ) =
2N−1∑
k=0

ck,N∆k
N

so that (W (ϕN ))n ∈ S for any N . We show now that (W (ϕN ))n → (W (ϕ))n in
L2(Ω,F1,P) as N → ∞. For this, we use the estimate4

|yn − xn| ≤ n|y − x|(|x|+ |y|)n−1.

4For any differentiable function f one has f(y) − f(x) = (y − x)
∫ 1
0 f ′(x + t(y − x))dt.

Taking f(ξ) = ξn, one gets |yn − xn| ≤ |y − x|
∫ 1
0 n|x + t(y − x)|n−1dt. By recalling that

|x+ t(y − x)| ≤ |x|+ |y| for t ∈ [0, 1], one obtains the desired inequality.
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So, we obtain

E
((

(W (ϕ))n − (W (ϕN ))n
)2) ≤ n2E

(
|W (ϕ)−W (ϕN )|2 ×

×(|W (ϕ)|+ |W (ϕN )|)2(n−1)
)

≤ n2
√
E
(
|W (ϕ− ϕN )|4

)
×

×
√
E
(
(|W (ϕ)|+ |W (ϕN )|)4(n−1)

)
≤ Cn

√
E
(
|W (ϕ− ϕN )|4

)
×

×
√
E
(
|W (ϕ)|4(n−1)

)
+ E

(
|W (ϕN )|4(n−1)

)
where Cn denotes a suitable positive constant. Now, for ψ ∈ H1 one has
E(|W (ψ)|k) = dk∥ψ∥kH1

where dk denotes the moment of order k of a standard
Gaussian r.v. Therefore, by setting again Cn as a suitable positive constant, we
get

E
((

(W (ϕ))n − (W (ϕN ))n
)2) ≤ Cn∥ϕ− ϕN∥2H1

×
(
∥ϕ∥4(n−1)

H1
+ ∥ϕN∥4(n−1)

H1

)1/2

which converges to 0 as N → ∞, and the statement holds. �
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Chapter 3

Applications to Finance

We describe here only some cases of use of Malliavin calculus techniques in
Finance, giving representation formulas for the replicating portfolio, for the
sensitivities and the conditional expectation. The last two ones are used in
practice to set up Monte Carlo methods: for the computation of the Greeks and
to build up Monte Carlo algorithms for the pricing of American style options.
Let us stress that we reduce here our discussion to the Gaussian Malliavin
calculus. In fact, we do not consider other sources for the noise. Nevertheless,
it is worth to say that many recent research papers in Finance allow the presence
of jumps in the model for the underlying asset prices and, in particular, jump-
diffusions are taken into account. In such a case, one could develop also a
Malliavin calculus in the direction of the jump times and/or the jump amplitudes
of the compounded Poisson process modelling the noise coming from the jumps.
For details, we refer to the papers [2] and [4] by Bally, Bavouzet-Morel and
Messaoud.

3.1 The Clark-Ocone formula and the replicat-
ing portfolio

Let {St}t denote the underlying asset price process, evolving following

dSit = µi(St)S
i
tdt+

d∑
j=1

σij(St)S
i
tdW

j
t , i = 1, . . . , d (3.1)

with S0 = x. If the drift term µ and the volatility matrix field σ are assumed to
be bounded and Lipschitz continuous, the sde (3.1) admits a unique solution.

From a financial point of view, we assume that the short interest rate process
is constant, that is rt = r > 0, σ is invertible and furthermore, the matrix
a(x) = σσ∗(x) is uniformly elliptic. Under these assumptions, there exists a
unique equivalent martingale measure P∗, under which the discounted asset
price process is a martingale. Therefore, we can assume to work directly under
P∗, so that the underlying asset price process St and the associated discounted
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one S̃t = e−rtSt evolve as

dSit = rSitdt+

d∑
j=1

σij(St)S
i
tdW

j
t , i = 1, . . . , d (3.2)

dS̃it =
d∑
j=1

σij(St)S̃
i
tdW

j
t , i = 1, . . . , d (3.3)

respectively. By Ito’s formula, as i = 1, . . . , d one has

Sit = xi exp
(∫ t

0

(
r − 1

2

d∑
j=1

σij(Su)
2
)
du+

∫ t

0

d∑
j=1

σij(Su)dW
j
u

)
,

S̃it = xi exp
(
−
∫ t

0

1

2

d∑
j=1

σij(Su)
2du+

∫ t

0

d∑
j=1

σij(Su)dW
j
u

)
.

Such formulas show that if x ∈ Rd+ then St and S̃t take values in Rd+.
Let (H,T ) denote a European option, that is: T is the maturity time and H is
a non negative FT -measurable random variable representing the payoff of the
contingent claim. A replicating portfolio for such an option is given by a process

Vt = ϕ0t e
rt +

d∑
i=1

ϕitS
i
t

such that:

- [technical assumptions] ϕ0, ϕ1, . . . , ϕd are adapted processes such that ϕ0 ∈
L2([0, T ]) a.s. and ϕi ∈ L2([0, 1]× Ω) for any i = 1, . . . d;

- [self-financing] dVt = rϕ0t e
rtdt+

∑d
i=1 ϕ

i
tdS

i
t , t < T

- [admissibility] Vt ≥ 0 a.s. for a.e. t ≤ T ;

- [replicating] VT = H a.s.

Now, if H is square integrable1 a replicating portfolio for (H,T ) exists and is
given by

Vt = E(e−r(T−t)H |Ft).

The value Vt is also the (non arbitrage) price of the option (H,T ) as seen at time
t. This closes the problem of the price, but what about the hedging problem?
That is, how to find the shares ϕ0, ϕ1, . . . , ϕd to invest in order to replicate the
option? The answer is the following.
First, the discounted portfolio Ṽt = e−rtVt satisfies the sde

dṼt =

d∑
i=1

ϕitdS̃
i
t =

d∑
j=1

d∑
i=1

ϕitσ
i
j(St)S̃

i
tdW

j
t . (3.4)

1We stress that we are working under the risk neutral measure, so the square integrability
and the further expectation giving the price have to be intended under such a measure.
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Moreover, in the developments giving the non arbitrage price of the option, one
has that

Ṽt = E(e−rTH |Ft)

is a square integrable Brownian martingale, so that it can be represented as

Ṽt = V0 +

∫ t

0

d∑
j=1

Φjs dW
j
s (3.5)

where Φi is an adapted process such that Φi ∈ L2([0, 1]× Ω), i = 1, . . . , d.
Therefore, (3.4) and (3.5) give

Φjt =

d∑
i=1

ϕitσ
i
j(St)S̃

i
t j = 1, . . . , d

so that

ϕit =
1

S̃it

d∑
j=1

Φjtσ
−1
ji (St) i = 1, . . . , d. (3.6)

Notice that once ϕ1, . . . , ϕd and V are known then also ϕ0 is known:

ϕ0t = Ṽt −
d∑
i=1

ϕitS̃
i
t .

So, the only unpleasant point is that (3.6) gives the replicating strategy ϕ1, . . . ,
ϕd in terms of the processes Φ1, . . . ,Φd which in turn are given by the repre-
sentation theorem for Brownian martingales only in an abstract form. But, if
the payoff satisfies some regularity properties in Malliavin sense then the Clark
Ocone formula allows to conclude. In fact,

Proposition 3.1.1. If H ∈ D1,2 then

ϕit =
e−r(T−t)

Sit

d∑
j=1

E
(
Dj
tH |Ft

)
σ−1
ji (St) i = 1, . . . , d

Proof. By the Clark-Ocone formula one has

e−rTH = E(e−rTH) + e−rT
∫ T

0

d∑
j=1

E
(
Dj
sH |Fs

)
dW j

s

so that

Ṽt = E
(
e−rTH |Ft

)
= E(e−rTH) + e−rT

∫ t

0

d∑
j=1

E
(
Dj
sH |Fs

)
dW j

s .

Then, in (3.5) one has

Φjt = e−rTE
(
Dj
tH |Ft

)
, j = 1, . . . , d, t ∈ [0, T ]

and (3.6) gives the result. �
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As an example, suppose that H = Ψ(ST ). This is a case in which the option
price can be written in terms of a price-function. In fact, by using the Markov
property, one has

Vt = P (t, St) where P (t, ξ) = e−r(T−t)E
(
Ψ(St,ξT )

)
.

Now, if one requires that σ ∈ C2
b then S ∈ D1,∞ and if moreover Ψ ∈ C1

p(Rd)
then H = Ψ(ST ) ∈ D1,2. So, in this case one has

Dj
tH =

d∑
k=1

∂kΨ(ST )D
j
tS

k
T .

Now, from Proposition 2.5.4 one has DtST = YTZtσ̂(St), in which Y = ∂S
denotes the first variation process of S, Z = Y −1 and σ̂ denote the diffu-
sion coefficient associated to S, that is σ̂ij(x) = σij(x)x

i. Now, setting Λ(x) =

diag[x1, . . . , xd] one has σ̂(x) = Λ(x)σ(x), so that

DtST = YTZtΛ(St)σ(St), t ≤ T

and then

Dj
tH =

d∑
k=1

∂kΨ(ST )
(
YTZtΛ(St)σ(St)

)kj
=

(
∇Ψ(ST )YTZtΛ(St)σ(St)

)j
.

By Proposition 3.1.1, as i = 1, . . . , d the replicating strategy is then given by

ϕit =
e−r(T−t)

Sit

d∑
j=1

E
((

∇Ψ(ST )YTZtΛ(St)σ(St)
)j |Ft

)
σ−1
ji (St)

Now, we have

ϕit =
e−r(T−t)

Sit
E
((

∇Ψ(ST )YTZtΛ(St)σ(St)σ
−1(St)

)i |Ft

)
=

e−r(T−t)

Sit
E
((

∇Ψ(ST )YTZtΛ(St)
)i |Ft

)
=

e−r(T−t)

Sit

d∑
q=1

E
((

∇Ψ(ST )YT
)q |Ft

)
Zqit S

i
t

and finally

ϕit = e−r(T−t)E
((

∇Ψ(ST )YTZt
)i |Ft

)
(3.7)

But we can go further in the interpretation of the strategy. In fact, notice that

YT = ∂ST ≡ ∂xS
0,x
T = ∂xS

t,S0,x
t

T = ∂ξS
t,ξ
T |ξ=S0,x

t
· ∂xS0,x

t = ∂ξS
t,ξ
T |ξ=S0,x

t
· Yt

so that
YTZt = ∂ξS

t,ξ
T |ξ=S0,x

t
.
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Therefore, by using the Markov property in (3.7), we get

ϕit = e−r(T−t)E
((

∇Ψ(St,ξT )∂ξS
t,ξ
T

)i|ξ=S0,x
t

|Ft

)
= e−r(T−t)E

((
∇Ψ(St,ξT )∂ξS

t,ξ
T

)i)|ξ=S0,x
t

= e−r(T−t)∂ξiE
(
Ψ(St,ξT )

)
|ξ=S0,x

t

that is
ϕit = ∆i(t, St) where ∆i(t, ξ) = ∂ξiP (t, ξ)

P (t, ξ) being the price-function associated to the option H = Ψ(ST ).

By resuming, the Clark Ocone formula gives the replicating strategy in terms
of Malliavin derivatives. If the payoff function Ψ is smooth enough then the
replicating strategy is given by the Delta function, a fact which is known also
for payoff functions which are not smooth (e.g. for digital type options).

3.2 Sensitivity computation

Let us first give a brief informal introduction to the concept of financial Greek.
Suppose to have a financial asset St and that its dynamic under the risk neutral
measure follows

dSt = rdt+ σ(St)StdWt, S0 = x, (3.8)

where W is an one dimensional Brownian Motion and for simplicity we assume
that the spot rate r is constant.
Consider a European option whose payoff depends only on the final value of the
underling asset price, that is it is a function of ST . The price of such an option
of maturity T and payoff function ϕ is given by

Π = E(e−rTϕ(ST )). (3.9)

A Greek is the derivative of the option price with respect to a prescribed pa-
rameter, i.e. it is a measure of the sensibility of the option price with respect
to such a parameter.
Greeks are very important in Mathematical Finance because they could be
used to measure the stability of the option (see e.g. the Vega Greek, that is the
derivative of the option price with respect to the volatility σ) or to describe the
replicating portfolio (see e.g. the ∆, i.e. the derivative of the option price with
respect to x, that is the initial value of S).
In general, if we denote with α the parameter we are interested in, one aims to
compute

∂αΠ(e−rTϕ(ST )). (3.10)

If we can use the rule of interchange between expectation and differentiation,
we would have

∂αΠ = ∂αE(e−rTϕ(ST )) = E(e−rTϕ′(ST )∂αST ). (3.11)

(in which we have supposed α ̸= r, otherwise also the derivative of e−rT has
to be taken into account). When this expression does not have a closed form
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formula, but ϕ is differentiable, Monte Carlo simulations or finite difference
methods can be used in order to approximate the Greek directly using (3.11).
Unfortunately in various cases the payoff function is singular and in this case
the finite difference method do not work very well. Then one can resort to the
use of the “Malliavin integration by parts formula”. In this case we obtain

∂αΠ = E(e−rTϕ
′
(ST )∂αST ) = E(e−rTϕ(ST )H(ST , ∂αST )), (3.12)

Moreover, if the MIbP formula holds then the equality holds for any smooth
function so that if the function ϕ is not differentiable but can be suitably ap-
proximated by differentiable functions, then the equality between the left and
the right hand side in (3.12) continues to hold, so that one has

∂αΠ = E(e−rTϕ(ST )Θα), (3.13)

with Θα = H(ST , ∂αST ). Now, if the weight Θα can be written or at least ap-
proximated in a good way and in particular, can be simulated, one can perform
a Monte Carlo method, giving

∂αΠ ≃ e−rT

Q

Q∑
q=1

ϕ(SqT )Θ
q
α),

where {SqT }q and {Θqα}q denote independent replications of ST and Θα respec-
tively and Q has to be chosen sufficiently large.

3.2.1 The delta

Let X here denote a diffusion process, solving to

Xi
t = xi +

∫ t

0

bi(Xs)ds+

d∑
j=1

∫ t

0

σij(Xs)dW
j
s , i = 1, . . . , d. (3.14)

Notice that we are supposing d = m, i.e. X and W take value both on Rd.
What we are going to state can be generalized also if such a condition does not
hold. But, for the sake of simplification, we avoid such a complication.

Proposition 3.2.1. Let Assumption 2.5.1 hold and, in addition, suppose that

the diffusion coefficient σ is invertible and that E(
∫ T
0
|σ−1(Xs)Ys|2+δds) < ∞

for some δ > 0, in which Y denotes, as usual, the first variation process (Y kit =
∂xkXi

t). Let G ∈ D1,∞ be a r.v. which does not depend on x. Then for any
measurable function ϕ with polynomial growth one has

∂xiE(ϕ(XT )G) = E(ϕ(XT )Θ
G
i ), i = 1, . . . , d,

ΘGi =
1

T

d∑
ℓ=1

(
G

∫ T

0

(σ−1(Xs)Ys)
ℓi dW ℓ

s −
∫ T

0

Dℓ
sG(σ

−1(Xs)Ys)
ℓi ds

)
. (3.15)

Proof. Suppose first that ϕ ∈ C1
b , the general case to be deserved later. Then,

we can pass the derivative inside the expectation, so that

∂xiE(ϕ(XT )G) = E
( d∑
k=1

∂xkϕ(XT ) ∂xiXk
t G

)
= E

( d∑
k=1

∂xkϕ(XT )Y
ki
T G

)
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By using Proposition 2.5.4, YT = DsXTσ
−1(Xs)Ys for any s < T , and then

d∑
k=1

∂xkϕ(XT )Y
ki
T =

d∑
k=1

∂xkϕ(XT ) (DsXTσ
−1(Xs)Ys)

ki

=
d∑
k=1

∂xkϕ(XT )
d∑
ℓ=1

Dℓ
sX

k
T (σ

−1(Xs)Ys)
ℓi

=
d∑
ℓ=1

d∑
k=1

∂xkϕ(XT )D
ℓ
sX

k
T (σ

−1(Xs)Ys)
ℓi

=
d∑
ℓ=1

Dℓ
sϕ(XT )(σ

−1(Xs)Ys)
ℓi

in which we have used the chain rule. Therefore,

d∑
k=1

∂xkϕ(XT )Y
ki
T =

1

T

∫ T

0

d∑
k=1

∂xkϕ(XT )Y
ki
T ds

=
1

T

∫ T

0

d∑
ℓ=1

Dℓ
sϕ(XT )(σ

−1(Xs)Ys)
ℓi ds.

Now, by applying the duality we get

E
( d∑
k=1

∂xkϕ(XT )Y
ki
T G

)
= E(ϕ(XT )Θ

G
i )

where

ΘGi =

d∑
ℓ=1

δℓ
( 1

T
(σ−1(X·)Y·)ℓiG

)
Finally, σ−1(Xs)Ys is adapted, so that

ΘGi =
1

T

d∑
ℓ=1

(
G

∫ T

0

(σ−1(Xs)Ys)
ℓidW ℓ

s −
∫ T

0

Dℓ
sG(σ

−1(Xs)Ys)
ℓids

)
.

If ϕ is not in the class C1
b , the statement follows by using standard density ar-

guments: one can regularize ϕ with some suitable mollifier and by using density
arguments, the statement follows. 2

As a consequence, in the Black and Scholes model we obtain

Corollary 3.2.2. Suppose bi(x) = µixi and σji (x) = σijx
i, i, j = 1, . . . , d, with

σ invertible. Then the weights Θi’s in Theorem 3.2.1 are given by

ΘGi =
1

Txi

d∑
ℓ=1

(σ−1)ℓi

(
GW ℓ

T −
∫ T

0

Dℓ
sGds

)
, i = 1, . . . d.
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Proof. Setting Γ(x) = diag[x1, . . . , xd], one has σ(x) = Γ(x)σ, where σ is
the volatility matrix, so that σ−1(Xs) = σ−1Γ−1(Xs). Moreover, since Y ijs =
∂xjXi

s, we can write shortly Ys = Γ(Xs) Γ
−1(x). Therefore

σ−1(Xs)Ys = σ−1Γ−1(Xs) Γ(X) Γ(x) = σ−1Γ−1(x),

so that

ΘGi =
1

T

d∑
ℓ=1

∫ T

0

δℓ
(
(σ−1(Xs)Ys)ℓiG

)
=

1

Txi

d∑
ℓ=1

(σ−1)ℓiδ
ℓ(G)

=
1

Txi

d∑
ℓ=1

(σ−1)ℓi

(
GW ℓ

T −
∫ 1

0

Dℓ
sGds

)
and the statement holds. 2

As a consequence, one has

Proposition 3.2.3. Suppose bi(x) = µixi and σji (x) = σijx
i, i, j = 1, . . . , d,

with σ invertible. Then for any ϕ with polynomial growth, for i, j = 1, . . . , d one
has

∂xiE(ϕ(XT )) = E(ϕ(XT )Λ
∆
i ) ∂2xixjE(ϕ(XT )) = E(ϕ(XT )Λ

Γ
ij)

where

Λ∆
i =

1

Txi

d∑
ℓ=1

(σ−1)ℓiW
ℓ
T (3.16)

ΛΓ
ij =

1

T
Λ∆
i Λ

∆
j − 1

Txixj

d∑
ℓ=1

(σ−1)ℓi(σ
−1)ℓj − 1i=j

1

xi
Λ∆
i (3.17)

Proof. The proof of (3.16) is immediate from Corollary 3.2.2 applied to G = 1.
As for the gamma, notice that

∂2xixjE(ϕ(XT )) = ∂2xjE(ϕ(XT )Λ
∆
i ) = ∂xjE(ϕ(XT )

1

xi
xiΛ∆

i )

Now, Gi = xiΛ∆
i is independent of x, so that

∂2xixjE(ϕ(XT )) =
1

xi
∂xjE(ϕ(XT )Gi)− 1i=j

1

x2i
E(ϕ(XT )Gi)

and in particular,

ΛΓ
ij = ΘGi

j − 1i=j
1

xi
Λ∆
i .

By applying again Corollary 3.2.2, one immediately obtains (3.17). �
Let us write explicitly the weights allowing to represent the delta and gamma
Greeks in dimension d = 1, 2 for the Black and Scholes model.

- Dimension d = 1. Here, one immediately obtains

Λ∆ =
WT

xT σ
and ΛΓ = (Λ∆)2 − 1

Tx2σ2
− Λ∆

x
.
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- Dimension d = 2. In dimension 2, the volatility matrix is usually written as
a sub-diagonal one:

σ =

(
σ1 0

σ2ρ σ2
√
1− ρ2

)
where σi stands for the volatility of the ith asset, i = 1, 2, and ρ ∈ (−1, 1) gives
the correlation between the Gaussian noises. Then,

σ−1 =
1

σ1σ2
√
1− ρ2

(
σ2

√
1− ρ2 0

−σ2ρ σ1

)
so that

Λ∆
1 =

W 1
T

√
1− ρ2 −W 2

T ρ

x1Tσ1
and Λ∆

2 =
W 2
T

x2Tσ2
√

1− ρ2
.

As for the gamma weight, one has

ΛΓ
ii =

1

T
(Λ∆

i )
2 − 1

T (xi)2σ2
i

√
1− ρ2

− 1

xi
Λ∆
i , i = 1, 2

ΛΓ
12 = ΛΓ

21 =
1

T
Λ∆
1 Λ

∆
2 +

ρ

Tx1x2σ1σ2
√
1− ρ2

For example, for a digital change option, we have

price = e−rtE∗(1S1
T>S

2
T
)

and the delta and gamma Greeks are given by

∆i = ∂xi

(
e−rtE∗(1S1

T>S
2
T
)
)
= e−rtE∗(1S1

T>S
2
T
Λ∆
1 ) i = 1, 2

Γij = ∂2xixj

(
e−rtE∗(1S1

T>S
2
T
)
)
= e−rtE∗(1S1

T>S
2
T
ΛΓ
ij) i, j = 1, 2

where E∗ denotes the expectation under the risk neutral measure (i.e., the one
under which (S1, S2) evolves following the Black and Scholes model with µ1 =
µ2 = r).

3.2.2 Some other examples

We discuss here some examples giving sensitivities for the price of suitable Eu-
ropean options.

Delta for Asian options in the Black&Scholes model (d = 1)

Assume that S follows the Black Scholes dynamics:

dSt = rStdt+ σStdWt, S0 = x.

Here, we compute the delta weight for Asian type options, that is options whose

payoff is a function ϕ of the time mean over [0, T ]: 1
T

∫ T
0
Sudu. For simplicity,

set F = 1
T

∫ T
0
Sudu. One has

∂xE(ϕ(F )) = E(ϕ′(F )∂xF ) (3.18)
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where

∂xF =
1

T

∫ T

0

∂xSu du =
1

T

∫ T

0

Su
x
du.

Now, one has

DuF =
1

T
Du

∫ T

0

Stdt =
1

T

∫ T

u

DuStdt =
σ

T

∫ T

u

Stdt

and (∫ T

0

Sudu
)2

=

∫ T

0

d

dt

((∫ t

0

Sudu
)2)

dt =

∫ T

0

2
(∫ t

0

Sudu
)
Stdt

= 2

∫ T

0

Su

∫ T

u

Stdtdu =
2T

σ

∫ T

0

SuDuFdu.

Therefore

∂xF =
1

Tx

∫ T

0

Sudu =
2

σx
∫ T
0
Sudu

∫ T

0

SuDuFdu

and

ϕ′(F )∂xF =
2

σx

∫ T

0

Su∫ T
0
Stdt

ϕ′(F )DuFdu =
2

σx

∫ T

0

Su∫ T
0
Stdt

Duϕ(F )du

By inserting in (3.18) and by applying the duality one gets

E
(
ϕ′(F )∂xF

)
= E

(∫ T

0

2Su

σx
∫ T
0
Stdt

Duϕ(F )du
)
= E

(
ϕ(F )Λ∆

)
where

Λ∆ = δ
( 2S·

σx
∫ T
0
Stdt

)
.

By using the property for product, we get

Λ∆ =
2

σx

[ 1∫ T
0
Stdt

∫ T

0

StdWt −
∫ T

0

StDt

( 1∫ T
0
Stdt

)
dt
]

=
2

σx

[ 1∫ T
0
Stdt

∫ T

0

StdWt +

∫ T

0

St
Dt

∫ T
0
Sudu

(
∫ T
0
Stdt)2

dt
]

=
2

σx

[ 1∫ T
0
Stdt

∫ T

0

StdWt +

∫ T

0

St
σ
∫ T
t
Sudu

(
∫ T
0
Stdt)2

dt
]

Consider the last addendum. One has:∫ T

0

St
σ
∫ T
t
Sudu

(
∫ T
0
Stdt)2

dt =
σ

(
∫ T
0
Stdt)2

∫ T

0

−1

2

d

dt

((∫ T

t

Sudu
)2)

dt =
σ

2
.

Therefore

Λ∆ =
2

σx

[ 1∫ T
0
Stdt

∫ T

0

StdWt +
σ

2

]
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Moreover, from dSt = rStdt+ σStdWt we get∫ T

0

StdWt =
1

σ

[
ST − x− r

∫ T

0

Sudu
]

so that

Λ∆ =
2

σx

[ST − x− r
∫ T
0
Sudu

σ
∫ T
0
Stdt

+
σ

2

]
=

2

σx

[ST − x

σTF
− r

σ
+
σ

2

]
Sensitivity w.r.t. the correlation in a stochastic volatility model

Assume that S evolves as the following stochastic volatility version of the Black
Scholes dynamics:

dSt = rStdt+ ηtStdW
1
t , S0 = x

dηt = κ(θ − ηt)dt+ βdW 2
t ,

where W 1 and W 2 are two correlated Brownian motions with

d⟨W 1,W 2⟩t = ρdt, ρ ∈ [−1, 1].

We consider a digital option that has payoff 1[K,∞)(ST ) and we want to compute
the sensitivity of the option price w.r.t. ρ.
In this case is not possible to use Proposition 3.2.1 directly. So, one can proceed
as follows.
First, one sets

W 1
t =

√
1− ρ2B1

t + ρB2
t , W 2

t = B2
t

where B1 and B2 are two independent Brownian Motions (in fact, if B =
(B1, B2) is given by the inverse transformation, it is straightforward to show
that it is a 2-dimensional Brownian motion). Therefore, the SDE for S and η
becomes

dSt = rStdt+ ηtSt(
√
1− ρ2dB1

t + ρdB2
t ), S0 = x

dηt = κ(θ − ηt)dt+ βdB2
t .

Notice that ST can be written as (apply Ito’s formula)

ST = x exp
{∫ t

0

(r − 1

2
η2s)ds+

√
1− ρ2

∫ T

0

ηtdB
1
t + ρ

∫ T

0

ηtdB
2
t

}
. (3.19)

Now, for any smooth function ϕ, one has

∂ρE(ϕ(ST )) = E(ϕ′(ST )∂ρST ). (3.20)

By (3.19) one gets easily

∂ρST = ST

(∫ T

0

ηtdB
2
t −

ρ√
1− ρ2

∫ T

0

ηtdB
1
t

)
= ST G, (3.21)

with

G =

∫ T

0

ηtdB
2
t −

ρ√
1− ρ2

∫ T

0

ηtdB
1
t . (3.22)
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We use the chain rule -D exp(F ) = exp(F )DF,- the relation Di
s(
∫ T
0
ϕrdW

i
r) =

ϕ(s) and the relation (3.21) in order to obtain

D1
sST = STD

1
s

(√
1− ρ2

∫ T

0

ηtdB
1
t + ρ

∫ T

0

ηtdB
2
t

)
= ST (

√
1− ρ2 × ηs) = ∂ρST

ηs
√
1− ρ2

G

= ∂ρST
ηs
√
1− ρ2

G
.

(3.23)

so that

D1
sϕ(ST ) = ϕ′(ST )D

1
sST = ϕ′(ST )∂ρST

ηs
√
1− ρ2

G
.

Therefore

ϕ′(ST )∂ρST =
G

ηs
√
1− ρ2

D1
sϕ(ST ) =

1

T
√

1− ρ2

∫ T

0

D1
sϕ(ST )

G

ηs
ds.

We use now the duality formula with respect to B1 and we obtain

E(ϕ′(ST )∂ρST ) =
1

T
√
1− ρ2

E
(∫ T

0

D1
sϕ(ST )

G

ηs
ds
)
= E(ϕ(ST )Θρ)

where

Θρ =
1

T
√
1− ρ2

δ1

(G
η

)
Now, by using the properties of the Skorohod integral of a special product and
for adapted processes, one has

δ1

(G
η

)
= Gδ1

(1
η

)
−
∫ T

0

D1
sG

1

ηs
ds =

∫ T

0

η−1
s dB1

s −
∫ T

0

D1
sG

1

ηs
ds.

Moreover, it easy to see that

D1
sG = − ρ√

1− ρ2
ηs,

so that, in conclusion, we can say that

∂ρE(ϕ(ST )) = E(ϕ(ST )Θρ)

with

Θρ = G

∫ T

0

η−1
s dB1

s +
ρT√
1− ρ2

.

Sensitivity w.r.t. the volatility for change options

Let S1 and S2 be two financial assets following

dS1
t = rS1

t dt+ σ1S
1
t dW

1
t , S1

0 = x1

dS2
t = rS2

t dt+ σ2S
2
t dW

2
t , S2

0 = x2

51



where W 1 and W 2 are two correlated Brownian Motions with d⟨W 1,W 2⟩t =
ρdt, ρ ∈ (−1, 1).
Consider an option which pays one dollar if S1

T > S2
T , i.e. the payoff is ϕ =

1{S1
T>S

2
T }. We want here to compute the sensitivity w.r.t. the volatility, for

example ∂σ1Π.
First we write

W 1
t =

√
1− ρ2B1

t + ρB2
t , W 2

t = B2
t

where B1 and B2 are two independent Brownian Motions. Then W 1 and W 2

are Brownian Motions with correlation ρ and the SDE associated to (S1, S2)
becomes

dS1
t = rS1

t dt+ σ1S
1
t

(√
1− ρ2dB1

t + ρdB2
t

)
, S1

0 = x1

dS2
t = rS2

t dt+ σ2S
2
t dB

2
t , S2

0 = x2

At time T one has

S1
T = x1 exp

{(
r − 1

2σ
2
1

)
T + σ1

√
1− ρ2B1

T + σ1ρB
2
T

}
S2
T = x2 exp

{(
r − 1

2σ
2
2

)
T + σ2B

2
T )

}
We now put

ST =
S1
T

S2
T

=
x1

x2
exp

{1

2
(σ2

1 − σ2
2)T + σ1

√
1− ρ2B1

T + (σ1ρ− σ2)B
2
T

}
, (3.24)

so we want compute
∂σ1E(1[1,∞)(ST )).

Setting Π = E(ϕ(ST )), we have

∂σ1Π = E[ϕ(ST )∂σ1ST ]. (3.25)

Notice that
∂σ1ST = ST (

√
1− ρ2B1

T + ρB2
T ) (3.26)

then

ST =
∂σ1ST

(
√
1− ρ2B1

T + ρB2
T )
. (3.27)

Now,

D1
sST = STD

1
s(σ1

√
1− ρ2B1

T + (σ1ρ− σ2)B
2
T )

= ST (σ1
√
1− ρ2) = ∂σ1ST

(σ1
√
1− ρ2)

(
√
1− ρ2B1

T + ρB2
T )
,

so that

D1
s(ϕ(ST )) = ϕ′(ST )D

1
sST = ϕ′(ST )∂σ1ST

σ1
√
1− ρ2√

1− ρ2B1
T + ρB2

T

.
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Therefore

ϕ′(ST )∂σ1ST = D1
s(ϕ(ST ))

√
1− ρ2B1

T + ρB2
T

σ1
√
1− ρ2

. (3.28)

By using the duality formula with respect to B1, we have

E(ϕ′(ST )∂σ1ST ) = E
( 1

T

∫ T

0

D1
s(ϕ(ST ))(

√
1− ρ2B1

T + ρB2
T )

σ1
√
1− ρ2

ds
)

=
1

Tσ1
√

1− ρ2
E(ϕ(ST )δ1(G))

where
G =

√
1− ρ2B1

T + ρB2
T .

Now, δ1(G) = Gδ1(1)−
∫ T
0
D1
sGds and since D1

sG =
√
1− ρ21s<T we obtain

δ1(G) = (
√
1− ρ2B1

T + ρB2
T )B

1
T − T

√
1− ρ2.

In conclusion, ∂σ1Π = E(ϕ(ST )Θσ) with

Θσ =
(
√
1− ρ2B1

T + ρB2
T )B

1
T − T

√
1− ρ2

Tσ1
√
1− ρ2

3.3 Conditional expectation

To avoid a too technical machinery, we consider here only the case of the Black
and Scholes model. The general case can be considered as well, see e.g. the
paper by Bouchard, Ekeland and Touzi [6].

Consider the risk neutral world, so that X is driven by

dXi
t = (r − ηi)Xi

tdt+
d∑
j=1

σijX
i
tdW

j
t , with Xi

0 = xi, i = 1, . . . , d

where: x = (x1, . . . , xd) ∈ Rd+ denotes the vector of the initial asset values;
r is the (constant) spot rate and η ∈ Rd being the vector of the dividends
of the option; σ denotes the d × d volatility matrix which we suppose to be
non-degenerate; W is a d-dimensional correlated Brownian motion.
Without loss of generality, one can suppose that σ is a sub-triangular matrix,
that is σij = 0 whenever i < j, and that W is a standard d-dimensional Brow-
nian motion. Thus, any component of Xt can be written as

Xi
t = xi exp

(
hit+

i∑
j=1

σijW
j
t

)
, i = 1, . . . , d (3.29)

where from now on we set hi = r − ηi − 1
2

∑i
j=1 σ

2
ij , i = 1, . . . , d. The aim is to

study the conditional expectation, that is

E(Φ(Xt) |Xs = α),
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where 0 < s < t, α ∈ Rd+ and Eb(Rd) denotes the class of the measurable
functions with polynomial growth, that is |Φ(y)| ≤ C(1 + |y|m) for some m.
In few words, to this goal it suffices to consider an auxiliary process X̃ with
independent components for which a formula for the conditional expectation
immediately follows as a product. In a second step, such a formula can be
adapted to the original process X by means of an (invertible) function giving
X from the auxiliary process X̃.

3.3.1 Diagonalization procedure and first formulas

To our purposes, let us set

X̃i
t = xi exp

(
hi t+ σiiW

i
t

)
, i = 1, . . . , d. (3.30)

As a first result, we study a transformation allowing to handle the new process
X̃ in place of the original process X:

Lemma 3.3.1. For any t ≥ 0 there exists an invertible function Ft(·) : Rd+ →
Rd+ such that Xt = Ft(X̃t) and X̃t = Gt(Xt), where (set

∏0
j=1

def
= 1)

F it (y) = yi
i−1∏
j=1

(yj
xj
e−h

jt
)σ̃ij

and Git(z) = zi
i−1∏
j=1

( zj
xj
e−h

jt
)σ̂ij

(3.31)

as i = 1, . . . , d and y, z ∈ Rd+, where

σ̃ij =
σij
σjj

, i, j = 1, . . . , d, and σ̂ = σ̃−1 (3.32)

The proof is straightforward and we omit it. Let us add a further result.

Lemma 3.3.2. Suppose d = 1: Xt = x eµt+σWt , being µ ∈ R, x, σ ∈ R+ and
W a one dimensional Brownian motion. Suppose f, g : R → R, where f has a
polynomial growth and g has a continuous derivative. Then for any 0 < s < t
one has:

E(f(Xt) g
′(Xs)) = E

(
f(Xt)g(Xs)

∆Ws,t

σs(t− s)Xs

)
where ∆Ws,t = (t− s)(Ws+σ s)− s(Wt−Ws). As a consequence, for any fixed
α ∈ R, the following formulas hold:

E(f(Xt) g
′(Xs − α)) = E

(
f(Xt)

g(Xs − α)

σs(t− s)Xs
∆Ws,t

)
.

Proof. The proof consists in applying twice the MIbP formula, first on the
time interval [0, s] and secondly over [s, t].

1) MIbP formula over [0, s].

One has Drg(Xs) = g′(Xs)σXs for any r < s. Therefore,

g′(Xs) =

∫ s

0

Drg(Xs)

σsXs
dr

54



and by duality,

E(f(Xt)g
′(Xs)) = E

(∫ s

0

Drg(Xs) ·
f(Xt)

σsXs
dr
)
= E

(
g(Xs)δ

(f(Xt)

σsXs

))
= E

(
g(Xs)

[f(Xt)

σsXs
Ws −

∫ s

0

Dr

(f(Xt)

σsXs

)
dr
])

in which we have used the fact that δ(F ) = Fδ(1) −
∫ s
0
DrF dr = FWs −∫ s

0
DrF dr applied to F = f(Xt)/(σsXs). Now, recalling that DrXu = σXu for

r < u, one obtains

Dr

(f(Xt)

σsXs

)
= −f(Xt)

1

sXs
+ f ′(Xt)

Xt

sXs

Then,

E(f(Xt)g
′(Xs)) = E

(
f(Xt)g(Xs)

Ws + σs

σsXs

)
− E

(
f ′(Xt)g(Xs)

Xt

Xs

)
︸ ︷︷ ︸

(*)

.

We have now to handle the term (*), which is “bad” because of the presence of
the derivative of f : we are now going to drop it.

2) MIbP formula over [s, t].

By using arguments similar to the ones developed above but over [s, t], we can
write

E
(
f ′(Xt)g(Xs)

Xt

Xs

)
= E

(∫ t

s

g(Xs)

σ(t− s)Xs
Drf(Xt) dr

)
= E

(
f(Xt)δ

( g(Xs)

σ(t− s)Xs

))
= E

(
f(Xt)

g(Xs)

σ(t− s)Xs
(Wt −Ws)

)
in which we have used the fact thatDr(g(Xs)/(σ(t−s)Xs)) = 0 for any r ∈ (s, t).
By inserting this term in place of the term (*), in conclusion we obtain

E(g′(Xs) f(Xt)) = E
(
f(Xt)g(Xs)

[ ∆Ws,t

σs(t− s)Xs

])
.

Let us observe that to achieve this representation one has implicitly assumed
that f is regular (C1), which is not true in general. But this is not really a
problem: one can regularize f with some suitable mollifier and by using density
arguments, the statement follows. 2

We are now ready to state the main result of this section

Theorem 3.3.3. [Representation formulas I: without localization] Let
0 < s < t, Φ ∈ Eb(Rd) and α ∈ Rd+ be fixed. Set: X̃s = Gs(Xs) and α̃s = Gs(α),
Gs being defined in (3.31), H(ξ) = 1ξ≥0, ξ ∈ R, σ̂ as in (3.32) and

∆W i
s,t = (t− s)(W i

s + σiis)− s(W i
t −W i

s), i = 1, . . . , d. (3.33)
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Then, the following representation formula for the conditional expectation holds:

E(Φ(Xt) |Xs = α) =
Ts,t[Φ](α)
Ts,t[1](α)

where

Ts,t[f ](α) = E
(
f(Xt)

d∏
i=1

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
. (3.34)

Proof. Let us set Φ̃t(y) ≡ Φ̃(y) = Φ◦Ft(y), y ∈ Rd+, being Ft defined in (3.31).

Since Xt = Ft(X̃t) for any t, one obviously has

E(Φ(Xt) |Xs = α) = E(Φ̃(X̃t) | X̃s = Gs(α)),

(recall that Gs = F−1
s ). Thus, setting α̃s = Gs(α), it is sufficient to prove that

E(Φ̃(X̃t) | X̃s = α̃s) =
T̃s,t[Φ̃](α̃)
T̃s,t[1](α̃)

(3.35)

where

T̃s,t[f ](α̃) = E
(
f(X̃t)

d∏
i=1

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
Let us firstly suppose that Φ̃(y) = Φ̃1(y1) · · · Φ̃d(yd), that is Φ̃ can be separated
in the product of d functions each one depending only on a single variable and
belonging to Eb(R). In such a case, one obviously has

E(Φ̃(X̃t) | X̃s = α̃s) =
d∏
i=1

E
(
Φ̃i(X̃

i
t)
∣∣∣ X̃i

s = α̃is

)
.

Now, let us consider E(Φ̃i(X̃i
t) | X̃i

s = α̃is), for any fixed i = 1, . . . , d. Let {hn}n
be a sequence of C∞ probability density functions on R weakly converging to
the Dirac mass in 0 as n→ ∞. Then one can write

E(Φ̃i(X̃i
t) | X̃i

s = α̃is) = lim
n→∞

E(Φ̃i(X̃i
t)hn(X̃

i
s − α̃is))

E(hn(X̃i
s − α̃is)).

Setting Hn the probability distribution function associated with hn, we have to
handle something like E(f(X̃i

t)H
′
n(X̃

i
s − α̃is)). Since the process X̃i is of the

same type studied in Lemma 3.3.2, we can apply it:

E(f(X̃i
t)H

′
n(X̃

i
s − α̃is)) = E

(
f(X̃i

t)
Hn(X̃

i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
,

where ∆W i
s,t = (t− s)(W i

s + σiis)− (t− s)(W i
t −W i

s). By using the Lebesgue
dominated convergence theorem, one has

E(Φ̃i(X̃i
t) | X̃i

s = α̃is) = lim
n→∞

E
(
Φ̃i(X̃

i
t)
Hn(X̃

i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
E
(Hn(X̃

i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)

=

E
(
Φ̃i(X̃

i
t)

H(X̃i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
E
( H(X̃i

s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

)
,
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where H(ξ) = limδ→0Hδ(ξ) = 1ξ≥0. Therefore,

E(Φ̃(X̃i
t) | X̃s = α̃s) =

d∏
i=1

E(Φ̃i(X̃i
t) | X̃i

s = α̃is) =
T̃s,t[Φ̃](α̃)
T̃s,t[1](α̃)

so that (3.35) holds when Φ̃(y) = Φ̃1(y1) · · · Φ̃d(yd). In the general case, the
statement holds by using density arguments: for any Φ̃ ∈ Eb(Rd) there exists
a sequence of functions {Φ̃n}n ⊂ Eb(Rd) such that Φ̃n(X̃t) → Φ̃(X̃t) in L2

and such that each Φ̃n is a linear combination of functions which separate the
variables as above. Since representation (3.35) holds for any Φ̃n, it finally holds
for Φ̃ as well, as it immediately follows by passing to the limit. 2

3.3.2 Localized formulas

Let us now discuss formulas involving localization functions. If we restrict our
attention to product-type localizing function, then we can first state a localized
formula for the operators Ts,t[f ](α).
Set L1 = {ψ : R → [0,+∞) ; ψ ∈ C1(R), ψ(+∞) = 0 and

∫
R ψ(t) dt = 1},

and Ld = {ψ : Rd → [0,+∞) ; ψ(x) =
∏d
i=1 ψi(x

i), ψi ∈ L1, for any i}.
One has

Theorem 3.3.4. [Representation formulas II: with localization] For any
0 ≤ s < t, Φ ∈ Eb, α ∈ Rd+ and for any ψ ∈ Ld, one has

E
(
Φ(Xt)

∣∣∣Xs = α
)
=

Tψs,t[Φ](α)
Tψs,t[1](α)

where

Tψs,t[f ](α) = E
(
f(Xt)

d∏
i=1

[
ψi(Xs − α)) +

(H −Ψi)(X̃
i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

])
(3.36)

where Ψi denotes the probability distribution function associated with ψi: Ψi(y)
=

∫ y
−∞ ψi(ξ)dξ.

Proof. The proof follows from the elementary fact: in dimension d = 1, Lemma
3.3.2 gives

E(f(Xt) g
′(Xs − α)) = E(f(Xt) (g −Ψ)′(Xs − α)) + E(f(Xt)ψ(Xs − α))

= E
(
f(Xt)(g −Ψ)(Xs − α)

∆Ws,t

σs(t− s)Xs

)
+E(f(Xt)ψ(Xs − α))

so that

E(f(Xt) g
′(Xs − α)) = E

(
f(Xt)

[
ψ(Xs − α) + (g −Ψ)(Xs − α)

∆Ws,t

σs(t− s)Xs

])
Now, by using this equality, the proof of Theorem 3.3.3 can be repeated and
the statement holds. 2
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Remark 3.3.5. Notice that, in principle, one could take different localizing
functions for each operator, that is:

E
(
Φ(Xt)

∣∣∣Xs = α
)
=

Tψ1

s,t[Φ](α)

Tψ2

s,t[1](α)

Let us add some more details about the localizing function.
First, one has to consider it because in practice (for example to price American
contingent claims) the non localized formula does not work (in fact, the pricing
algorithm blows up).
Then, the question is: how to choose it? Let us give a discussion about this.
The proofs of the following statements are omitted and can be found in Bally,
Caramellino and Zanette [3].
Let us start from the result in Theorem 3.3.4: to compute E(Φ(Xt) |Xs = α)
one has to evaluate

Tψs,t[f ](α) = E
(
f(Xt)

d∏
i=1

[
ψi(X̃

i
s − α̃is) +

(H −Ψi)(X̃
i
s − α̃is)

σiis(t− s)X̃i
s

∆W i
s,t

])
,

with f = Φ and f = 1. Such an expectation is evaluated in practice through the
empirical mean from many replications. The aim is now to choose the localizing
function ψ allowing to reduce the variance. To this purpose, one can follow
the optimization criterium introduced in the one-dimensional case by Kohatsu-
Higa and Petterson [11]. It deals in looking for the localizing function ψ which
minimizes the integrated variance, given by

Ifd (ψ) =

∫
Rd

E
(
f2(Xt)

d∏
i=1

[
ψi(X̃

i
s − α̃i) +

(H −Ψi)(X̃
i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

]2)
dα̃,

(3.37)
up to the constant (with respect to the localizing function ψ) term coming out

from Tψs,t[f ](α) = Ts,t[f ](α). Then the following result holds:

Proposition 3.3.6. Set L1 = {ψ : R → [0,+∞) ; ψ ∈ C1(R), ψ(+∞) =

0 and
∫
R ψ(t) dt = 1}, and Ld = {ψ : Rd → [0,+∞) ; ψ(x) =

∏d
i=1 ψi(x

i),
ψi ∈ L1, for any i}. Then

inf
ψ∈Ld

Ifd (ψ) = Ifd (ψ
∗)

where ψ∗(x) =
∏d
j=1 ψ

∗
j (x

j), with ψ∗
j (ξ) = λ∗j e

−λ∗
j |ξ|/2 is a Laplace probability

density function on R and λ∗j = λ∗j [f ] enjoys the following system of nonlinear
equations:

λ∗j
2 =

E
(
f2(Xt)Θ

2
s,t;j

∏
i : i ̸=j

[
λ∗i

2 +Θ2
s,t;i

])
E
(
f2(Xt)

∏
i : i ̸=j

[
λ∗i

2 +Θ2
s,t;i

]) , j = 1, . . . , d, (3.38)

where Θs,t;i = ∆W i
s,t/(σiis(t− s)X̃i

s), i = 1, . . . , d.

In the case f = 1, the optimal values can be explicitly written:
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Corollary 3.3.7. One has

λ∗j [1] =
e−h

js+σ2
jjs

xj

√
t+ σ2

jjs(t− s)

σ2
jjs(t− s)

, j = 1, . . . , d.

For practical purposes, numerical evidence shows that the choice λ∗ = 1/
√
t− s

works good enough, thus avoiding to weight the algorithm with the computa-
tion of further expectations. When f = 1, this kind of behavior is clear from
Corollary 3.3.7. In the general case, the theoretical justification is given by the
following

Proposition 3.3.8. For any j = 1, . . . , d, one has λ∗j [f ] = O(1/
√
t− s) as

t→ s. Moreover, if f is continuous, then

lim
σ→0

lim
t→s

λ∗j [f ]

λ∗j [1]
= 1.
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