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Preface

From the theoretical point of view, these notes follow the ones written by Vlad
Bally [1]. In addition, examples of applications of Malliavin calculus coming
from Finance are developed. This has been the main contribution of Luana
Lombardi, who worked on these arguments in 2008 to achieve an internship
required by her PhD project.

Lucia Caramellino



Chapter 1

Abstract Integration by
Parts Formula

In this chapter we introduce in an abstract way the main tool of Malliavin
calculus we are going to study, that is integration by parts formulas, and we
stress some important consequences: the use for computing sensitivities, as well
as for representing the density and the conditional expectation. For the sake
of simplicity, we split such an introduction in two sections, giving the one-
dimensional case and the multidimensional one.

1.1 The one dimensional case

Let (Q, #,P) denote a probability space and let E stand for the expectation
under P.

The sets C*(R?) and CF(R?) denote the space of functions f : R? — R which
are continuously differentiable up to order k, with compact support and with
bounded derivatives respectively. When the functions are infinitely differen-
tiable, we similarly set C2°(R%) and Cg°(R9).

Definition 1.1.1. Let F,G : Q — R be integrable random variables. We say
that the integration by parts formula IP(F'; G) holds if there exists an integrable
random variable H(F'; G) such that

IP(F;G): E(¢'(F)G) =E(¢(F)H(F;G)), Vo€ CT(R). (1.1)

Moreover, we say that the integration by parts formula IPy(F'; G) holds if there
exists an integrable random variable H,(F; G) such that

IPL(F;G):  E(@W(F)G) =E((F)Hi(F;G)), VpeCER) (12)

Remark 1.1.2. e By using standard reqularization results (e.g. by mollifiers),
the test functions C2°(R) in IPy(F;G) can be replaced by CX(R) or also by
C°(R) and CE(R).

o Obviously, IP1(F;G) means IP(F;G) and H(F;G) = H,(F;G). Moreover,
if IP(F;G) and IP(F; H(F;G)) hold, then IPy(F;G) holds with Ha(F;G) =



H(F;H(F;Q)). A similar statement holds for higher order derivatives. As an
example, in 1Py (F,; 1) this leads us to define Hy(F,1) = H(F) by recurrence:

Ho(F)=1, Hy(F)=H(F;H,_(F)), k>1.

e IfIP(F,G) holds then E(H(F,G)) = 0: take G =1 in (1.1). Moreover, the
weight H(F; G) in IP(F'; G) is not unique: for any random variable R such that
E(¢(F)R) = 0 (that is, E(R|F) = 0 a.s.) one may use H(F;G) + R as well
(in fact, what is unique is E(H(F,G) | F)). In numerical methods this plays an
important role because if one wants to compute E(¢p(F)H (F;G)) using a Monte
Carlo method then one would like to work with a weight which gives minimal
variance (see e.g. Fournié et al. [9]). Note also that in order to perform a Monte
Carlo algorithm one has to simulate F' and H(F;G). In some particular cases
H(F;G) may be computed directly, using some methods ad hoc. But Malliavin
calculus gives a systematic access to the computation of this weight. Typically,
in the applications F' is the solution of some stochastic equation and H(F';Q)
appears as an aggregate of differential operators (in Malliavin’s sense) acting
on F. These quantities are also related to some stochastic equations and so one
may use some approximations of these equations in order to produce concrete
algorithms.

Let us give a simple example. Take FF = A and G = g(A) where f, g are some
differentiable functions and A is a centered gaussian random variable of variance
0. Then

E((A)9(a)) = E(S(8)[o(2)5 ~ g'(8)]) (1.3)

so IP(F; @) holds true with H(F;G) = g(A)2 — ¢/(A). This follows from a
direct application of the standard 1ntegrat10n by parts, but in the presence of

the gaussian density p(z) = \/2j exp(—5 ) :

B(/(Q)9(a) = [ 1@
- / P (@p(a) + gl ()
P (x)
—- [ 1@)]g(@) + 9@
=E(f(a) [g( -g1)])
Malliavin calculus produces the weights H(F';G) for a large class of random

variables - (1.3) represents the simplest example of this kind - but this is not the
subject of this section. Here we give some consequences of the above property.

1.1.1 The sensitivity problem

In many applications one considers quantities of the form E(¢(F*)) where F*
is a family of random variables indexed on a finite dimensional parameter x. A
typical example is F'* = X which is a diffusion process starting from z. In order
to study the sensitivity of this quantity with respect to the parameter x, one
has to prove that z — E(¢(F?)) is differentiable and to evaluate the derivative.



There are two ways to tackle this problem: using a pathwise approach or an
approach in law.

The pathwise approach supposes that @ — F®(w) is differentiable for almost
every w (and this is the case for z — X[ (w) for example) and ¢ is differentiable
also. Then 0,E(¢(F?®)) = E(¢'(F*)0,F*). But this approach breaks down if ¢
is not differentiable. The second approach overcomes this difficulty using the
smoothness of the density of the law of F'*. So, in this approach one assumes that
F? ~ p®(y)dy and x — p®(y) is differentiable for each y. Then 9, E(¢p(F*)) =
J ¢W)0:p™ (y)dy = [ ¢(y)0: Inp®(y)p®(y)dy = E($(F*)0; Inp” (F)). Sometimes
engineers call 9, Inp®(F') the score function. But of course this approach works
when one knows the density of the law of F*. The integration by parts formula
IP(F*,0,F®) permits to write down the equality

OuB(A(F")) = E(¢'(F")0, F") = E(¢(F*)H(F"; 0, F"))

without having to know the density of the law of F*. It is worth remarking
that the above equality holds true even if ¢ is not derivable because there are
no derivatives in the first and last term - in fact one may use some regularization
arguments and then pass to the limit. Therefore the quantity of interest is the
weight H(F?*; 0, F®). Malliavin calculus is a machinery allowing to compute such
quantities for a large class of random variables for which the density of the law
is not known explicitly (for example, diffusion processes). This is the approach
in Fournié et al. [8] and [9] to the computation of Greeks (sensitivities of the
price of European and American options with respect to certain parameters) in
Mathematical Finance problems.

1.1.2 The density of the law

Hereafter, the notation 1 4(z) or 1,¢4 stands for the indicator function, that is
la(z)=1ifx e Aand 14(z) =01if z ¢ A.

Lemma 1.1.3. Suppose that F' satisfies IP(F;1). Then the law of F is abso-
lutely continuous with respect to the Lebesgue measure and the density of the
law is given by

p(x) = E(Lp 00) (F)H(F; 1)) (1.4)

Moreover, p is continuous and p(x) — 0 as |x| = oo.

Proof. The formal argument is the following: since do(y) = 9yl (y) one
uses IP(F; 1), so that

E(0o(F —x)) = E(9y1j,00)(F — )
=E(Ljp,00)(F — 2)Hy(F; 1)) = E(14,00) (F)H(F; 1)).

In order to let this reasoning rigorous, one has to regularize the Dirac function.
So we take a positive function ¢ € C°(R) with the support equal to [—1,1]
and such that [ ¢(y)dy =1 and for each § > 0 we define ¢;5(y) = 6 'p(yd—1).
Moreover we define ®5 to be the primitive of ¢s, i.e. Ps(y) = f;yoo ¢s(z)dz, and
we construct some random variables 05 of law ¢s(y)dy which are independent
of F. Since 05 weakly converges to 0 as § — 0, for each f € C°(R) we have

E(f(F)) = lim E(/(F — 05)). (15)



Setting A as the law of F', we can write

E(f(F —05)) = //fu—v¢5 )dvdA(u //f Voo (1 — 2z)dzdA(u)

/f E(s(F —zdz—/f )

/ f(2)E(®s(F — 2)H(F;1))d=.

Now, ®; is uniformly bounded in 6 and ®s(y) = 1z 00)(y), as & — 0 for a.e.
y. Then using Lebesgue dominated convergence theorem we pass to the limit
in the above relationship and we obtain

/ FEEL o) (F)H(F; 1))dz

for any f € C°(R), so that z — E(1[, o) (F)H(F;1)) is the probability density
function of F', which is also continuous. In fact, if z, — z one has 1., ) (F) —
l[z’oo) (F) a.s. So, by applying the Lebesgue dominated convergence theorem,
one has p(zn) = ]E(]-[zn,oo)(F)H(F7 1)) - ]E(l[z,oo)(F)H(Fv 1)) = p(Z), ie. p
is a continuous function. Finally, if 2 — 400 then 1. .)(F) — 0 a.s. and
then p(z) — 0. If instead z — —o0, one uses the same argument but to the
representation

P(x) = —E(L(—o0)(F)H(F;1)) (1.6)

which follows from the fact that 1j, ;o) = 1 — 1(_o ) and by recalling that
E(H(F;1)) =0 (see Remark 1.1.2). O

Remark 1.1.4. [Bounds] Suppose that H(F';1) is square integrable. Then,
using Chebishev’s inequality

z) < VP(F =) [H(F; 1),

In particular lim,_, o p(x) = 0 and the convergence rate is controlled by the
tails of the law of F. For example if F' has finite moments of order p this gives
p(z) < Cx=P/2. In significant examples, such as diffusion processes, the tails
have even exponential rate. So the problem of the upper bounds for the density
is rather simple (on the contrary, the problem of lower bounds is much more
challenging). The above formula gives a control for x — oco. In order to obtain
similar bounds for x — —oo one has to employ formula (1.6).

We go now further and treat the problem of the derivatives of the density
function.

Lemma 1.1.5. Suppose that IP;(F;1),i = 1,...,k + 1 holds true. Then the
density p is k times differentiable and

p(z) = (—1)"1E(1<x,oo)(F)Hi+1(F; 1), i=0,1,....k. (1.7)

Proof. Let i = 1. We define ¥s(z f ®5(y)dy, so that Y = ¢s, and we
come back to the proof of Lemma 1 1.3. By using IP5(F, 1) we have

E(¢s(F — 2)) = E(¥5) = E(5(F — 2)Hy(F; 1)),



so that
BU(F = 05) = | FE(WS(F — 2) HalFi 1))dz,

Since lims_,o Us(F — z) = (F — z)4+ we obtain

MﬂFnzjfum«F—wﬂbwu»w

and so
p(2) = E((F — )4+ Hz(F; 1)).

The pleasant point in this new integral representation of the density is that
z = (F — z)4 is differentiable. Taking derivatives in the above formula gives

p'(2) = —E(1,00)(F)H2(F; 1))

and the proof is completed for ¢ = 1. In order to deal with higher order deriva-
tives, one uses more integration by parts in order to obtain

p(z) = E(ni(F — 2)Hiy1 (F3 1))
where 7; is an 4 times differentiable function such that 172@ (2) = (=1)"1p,00)(2).
U

Remark 1.1.6. [Bounds] The integral representation formula (1.7) permits
to obtain upper bounds of the derivatives of the density p. In particular, suppose
that F has finite moments of any order and that 1P;(F; 1) holds true for every
i € N and H;(F;1) is square integrable. Then p is infinitely differentiable and
‘p(i)(x)| < P(F > ) | Hi(F;1)||l, < Cx~92 for every ¢ € N. So p € 7, the
Schwartz space of rapidly decreasing functions.

[Integration by parts & densities] Lemma 1.1.5 shows that there is an in-
timate relationship (quasi equivalence) between the integration by parts formula
and the existence of a “good” density of the law of F. In fact, suppose that
F ~ p(x)dx, where p is differentiable and p'(F) is integrable. Then, for every

f € C=(R)
/f@m<

- [ 1@

- —E(f(F)

E(f'(F))

8
N

U

8

— - [ @/ @)da

’B\
—
&

1 x)p(x)dx
p(l’) (p>0)( )p( )
P'(F)

p(F)
So IP(F,1) holds with H(F;1) = —%l(pw)(F) € L' (because p'(F) €

LY(Q)). By iteration, we obtain the following chain of implications:

L) (F)).

P11 (F, 1) holds true

I
p is k times differentiable and p*)(F) € L*(Q)
I
TP, (F,1) holds true and Hy(F;1) = (~1)*2 1o (F) € L}(9).



1.1.3 Conditional expectations

The computation of conditional expectations is crucial for numerically solving
certain non linear problems coming from dynamical programming algorithms.
Several authors (see Fournié et al. [9], Lions and Regnier [15], Bally et al.
[3], Kohatsu-Higa and Petterson [11], Bouchard et al. [6]) have employed for-
mulas based on Malliavin calculus techniques in order to compute conditional
expectations. In this section we give the abstract form of this formula.

Lemma 1.1.7. Let F and G be real random variables such that TP(F;1) and
IP(F; G) hold true. Then

BCIF=2= g1, @)

(1.8)
with the convention that the term in the right hand side is null when the denom-
inator s null.

Proof. Let 6(z) stand for the term in the right hand side of the above equality.
We have to check that for every f € C2°(R) one has E(f(F)G) = E(f(F)0(F)).
Using the regularizing functions from the proof of Lemma 1.1.3 we write

BOIF) = [ £:)00():
= /f E(1{o,00) (F — 2)H(F; G))d»
= lim / FE@5(F — 2)H(F; G))dz
— lim [ FE(GoN(F - 2))ds
— 5(Glim [ F)0s(F - 2)dz) =BG (F))

and the proof is completed. [

1.2 The multidimensional case

In this section we deal with a d dimensional random variable F' = (F*!, ... F?).
The results concerning the density of the law and the conditional expectation
are qu1te similar. Let us introduce some notations. For i = 1,...,d, we set
0 = d . For a multi-index a = (ay,...,ax) € {1,...,d}*, we denote |a| = k
and 8 = O, - Oq, with the convention that Jy is just the identity. The
integration by parts formula is now the following.

Definition 1.2.1. Let F : Q@ — R? and G : Q — R be integrable random
variables. Let o € {1,...,d}*, k € N, be a multi-indexr. We say that the
integration by parts formula IP . (F; G) holds if there exists an integrable random
variable H,(F; G) such that

IPo(F;G) s E(0ag(F)G) = E(9(F)Ha(F;G)), Vo € CZ(R).  (1.9)



Again, for |a| = k, the set C2°(R?) can be replaced by C*(R%), C£°(R?) or also
CF(R9),

Let us give a simple example which turns out to be central in Malliavin calculus.
Take F' = f(Al,...,A™) and G = g(Al,...,A™) where f,g are some differ-
entiable functions and A',..., A™ are independent, centered gaussian random

variables with variance o',..., o™ respectively.
We denote A = (Al,...,A™). Then for each i = 1,...,m

af B AP Og
E( 5 (8)9(2)) = E(£(2)[9(8) = - 52%(2)]). (1.10)
as an immediate consequence of (1.3) and of the independence of Al ... A™.

It then follows that IP ;1 (A; g(A)) holds for every i = 1,...,d.
We give now the result concerning the density of the law of F.

Proposition 1.2.2. i) Suppose that IP(y 5. qy(F;1) holds true. Then the den-
sity p of F' exists and is given by

p(x) =E( @) (F)H 2.4 (F; 1)) (1.11)

where I(x) = H?Zl[xi7 00). In particular p is continuous.
i) Suppose that for every multi-index o, IP,(F;1) holds true. Then Op exists
and is given by

Oap(x) = (1)1 E(1;(0)(F)H(as1) (F; 1)) (1.12)

where (o + 1) =: (a1 + 1,...,aq + 1). Moreover, if Hy(F;1) € L?(Q) and F
has finite moments of any order then p € ., % being the Schwartz space of
the infinitely differentiable functions which decrease rapidly to infinity, together
with all the derivatives.

Proof. The formal argument for 7) is based on do(y) = 91,....1) L 1(0)(y) and the
integration by parts formula. In order to let it rigorous one has to regularize
the Dirac function as in the proof of Lemma 1.1.3. In order to prove ii) one
employs the same “pushing back Schwartz distribution” argument as in the
proof of Lemma 1.1.5. Finally, in order to obtain bounds we write

|Oap ()| < \/]P’(Fl >zl Fd > a?) [ Hgqr)(F5 1), -

If 21 > 0,...,2% > 0, the Chebishev’s inequality yields |9,p(z)| < Cy x| for
every q € N. If the coordinates of « are not positive we have to use a variant of
(1.12) which involves (—oo, 2°] instead of (z*,00). O
The result concerning the conditional expectation reads as follows.
Proposition 1.2.3. Let F = (F',...  F?%) and G be two random variables such
that either IP(1 5. q)(F;1) and IP (5. 4)(F; G) hold true. Then
_ E(Li@(F)Hap...a)(F; G))
E(1;()(F)H12....q)(F; 1))

with the convention that the term in the right hand side is null when the denom-
inator is null.

E(G | F = ) (1.13)

Proof. The proof is the same as for Lemma 1.1.7, by using the regulariza-
tion function ¢s(z) = Hle ds(x?) and Pg(x) = Hle ®s5(2") and the fact that

OV ®s(x) = ¢5(x). O



Chapter 2

Brownian Malliavin calculus

2.1 The finite dimensional case

In this section we introduce the finite dimensional simple functionals and the
finite dimensional simple process; we define the Malliavin derivative and the
Skorohod integral for these finite dimensional objects and we derive their general
important properties, as the duality formula, the chain rule, the Clark-Ocone
formula and the integration by parts formula.

We will use here the space C]’; (R%) of the functions f : R? — R whose derivatives
up to order k exist, are continuous and with polynomial growth. Similarly we
define C2°(R?).

2.1.1 Main definitions and properties

Let W = (W1 ... W%) be a d dimensional Brownian Motion defined on a prob-
ability space (€2,.7,P) and we assume that the underlying filtration {.%; };¢[0,1)
w.r.t. W is a Brownian motion, is the one generated by W and augmented
by the P-null sets. To simplify the notations, we suppose for the moment that
d = 1, the multidimensional case to be deserved later in Section 2.3.

For each n,k € N we denote t*¥ = k27" and

AR =W —w k), k=0,...,2" - 1.

We denote A,, = (A% ... A2"-1). Notice that A, is a multidimensional

n?
Gaussian 1.v., taking values in R?", with independent components: A, ~

N(0,27"I3n«on) (where N (m,T') denotes the Gaussian law with mean m and
covariance matrix I' and Ijxq the d x d identity matrix).

Definition 2.1.1. A simple functional of order n is a random variable of the
form F = f(A,) where [ € C’;O(R27L). We denote the space S, of the simple
functionals of order n by

Sp={F=f(A,): [ € C(R*)}

and define the space of all simple functionals as

S={J S

neN



Remark 2.1.2. 1. S, C Spy1, in fact we have
[t ) = 5 ) IS 6253),
sothat F = f(...,AF )= f(...,A% —s—Ai’fﬁl,...).

2.8 C LP(Q,.Z1,P) for allp > 1, as a consequence of the fact that f has
polynomial growth and that any Gaussian r.v. has finite moment of any
order.

3. S is a linear dense subset of L*>(Q, %1, P). There are several ways to show
the validity of this assertion, we leave a possible proof in Appendiz 2.6 (see
next Proposition 2.6.4).

Definition 2.1.3. A process U : [0,1] x Q = R is called a simple process of
order n if for any k= 0,...,2"™ — 1, there exists a process Uy € S, such that

2" —1

Ut(w) = Z Uk(w)]‘[tﬁ,tffl)(t)‘
k=0

We denote by P, the space of the simple processes of order n, i.e.

2" —1

P, = {U: 0,1] x Q = R: Up(w) = kz_o Up(@) Ly 1) (1) Uy € sn}

and the space of all simple processes is given by
P={]JP.
neN

Since Uy, € Sy, one has Uy = u,(AY, ..., A2" 1), where uy € C;,X’(RQ"). There-
fore, uy depends on all the increments of the Brownian Motion, so that a simple
process is generally not adapted. But, one has that U is adapted if and only if
Up = up(A%, ... A1) for any £k =0,...,2" — 1.

Remark 2.1.4. 1. S, C Spy1 implies that P, C Ppy1.

2. For each fizedw € Q, t — Uy(w) is an element of L([0,1], 20, 1], dt), and
in general belongs to LP([0,1], A[0,1],dt) for anyp > 1. Then, if U,V € P
we can define the scalar product on this space by using the standard one
on L?([0,1]), that is

1
(U,V) :/ Us Vsds.
0
Notice that (U, V) depends on w and moreover, is an a.s. finite r.v.

3. For the sake of simplicity, set Hy = L?([0,1], 2[0,1],dt) = {¢ : [0,1] —
R; fol lps|?ds < o} and

IP(H,) = {U L Q= Hy B(|U)%,) = ]E([/Ol AL ds]%> < oo}.

Then P C LP(Hy) for all p € N.
4. P is a dense subset of L?>(H;) = L*(2 x [0,1], 71 x 2([0,1]),P x dt).



2.1.2 Differential operators. First properties

We can now introduce the Malliavin derivative and its adjoint operator, the
Skorohod integral.

Definition 2.1.5. The Malliavin derivative of a r.v. F = f(A,) € S, is
the simple process { D¢ F'}ycj0,1) € Pn given by

2" —1 (‘3f
DtF: Z w(An)l[tﬁ’tlrgﬁ»l)(t‘).
k=0

We recall that 2* represents the increment A* = Wi — Wi

From the definition, we have that D,F = -2E for t € [tF tF+1). If we denote

W nsrn
Al = AF when t € [tk tF+1) Al represents the increment of W corresponding
to t. Therefore, we can use the following notation:
DiF = ——(A,) = (A% AL ... A2 7Y as t e [th Rt
3A% n 8Aﬁ n n n nr»'n

Notice that the definition is well posed, in the sense that the operator D does
not depend on n. In fact, for F' € S,, C S,,+1 we have

OF OF oF
— =——(A = ———(An+1), 2.1
because t € [th th+l) = [t%ﬁl,ti’fll) U [ti’fﬁl,tiﬁ?) and F = f(...,AF ..)) =

o AZE 4 Ai’fﬂl, ...). Therefore, (2.1) allows to define

D:S:USH—>P:UP”

as follows: OF
DtF = @(An), ast € [07 1}
Definition 2.1.6. The Skorohod integral is defined as the operator
2= ou 1
. — k_ TUk il
§: PS8, 8U)= kzzo (uk(An)An = (An)2n)

where U = Zi:_ol uk(An)l[tk k1) € P, C P.
Note that the definition again does not depend on n and so it is correct.

Remark 2.1.7. (Skorohod integral vs Ito integral) We have already noticed
that a process U € P, is F-adapted if and only if ux(A,,) does depend only on

the variables AL, ... AF=1. Consequently, % =0 and in such a case,
2" —1 1
SU) =Y ue(An)AL :/ UsdW,
k=0 0

that is, 6(U) coincide with the Ito integral w.r.t. W. This shows that the
Skorohod integral aims to be an extension of the Ito integral over the set of non
adapted processes.

10



We can now prove the link between Malliavin derivatives and Skorohod integrals
and investigate some immediate properties of such operators.

Proposition 2.1.8. (i) [Duality] For any F € S and U € P one has
E((DF,U)) = E(F5(U)).

(ii) [Chain rule] Let F = (F!,...F™) where F' € S;i = 1,...m and ® €
CP(R™). Then ®(F) € S and

F)= Zm: 0, ®(F)DF".

(#it) [Skorohod integral of a special product] LetU € P and F € S. Then
S(FU) = Fé(U) — (DF,U).
Proof. (i) Let n denote an integer such that F' € S,, and U € P,,. Then,

2" —1
B(pr) =5( 3 O (A x ).

A, is a vector of i.i.d. Gaussian r.v.’s with variance h, = 1/2". Then, we can
use (1.10) and we obtain

of _ AL Ou,
E( 2 (Anur(an)) =E(f(A) [uk(An)an - an]).
By replacing everything we obtain

2" —1

Ju 1
E(DF.U) =E(f(An) Y [ur(@n)Al = 5050 ] ) = EF6@)).
k=0 r
The proof of (i7) is straightforward.
(ii7) Take G € S. By using the duality formula and the chain rule, we have

E[G(FU)] = E[(DG,FU)| = E[(FDG,U)]
= E[D(GF)— GDF,U)] = E[(D(GF),U)] - E[G(DF,U)]
= E[GFs(U)] - E(DF,U)].

Then, E[GS(FU)] = E[G(F6(U) — (DF,U))] for any G € S, and (4i7) immedi-
ately follows. a

We are now ready to prove a first integration by parts formula in the Malliavin
sense. For F' = (F! ..., F™), with F' € S for any i = 1,...,m, set o as the
following m x m symmetric matrix:

o = (DF', DF’) /DtFZDtFJdt ij=1,...,m.

or is called the Malliavin covariance matrix associated to F. It is a
positive definite matrix, because for any £ € R one has
m

(op€, €)= Y ope'e = / Z D,F'¢' D, F/¢ldt = / ‘ZDtFT

ij=1 0 ;=1

dt > 0.
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Proposition 2.1.9. [MIbP formula] Let F = (F',...,F™) and G be such
that F',...,F™ G € S. Suppose that or is invertible and let yr denote the
inverse of or. Suppose moreover that detyp € S. Then for every ¢ € CL(R™)

B( 2 (F)G) = E((F)Hi(F; G)

with

Hi(F;G) = 6( Z vﬁGDFj)
j=1

Proof. By using the chain rule, we can write

O¢
aq

qg=1

(D$(F), DF7) = (FY{DF1,DF’) = ia—d’ F)e¥, j=1,...,m.

Since o is invertible with inverse matrix vz, we can write

09
oz’

F)=> (D¢(F),DFi)v}i, i=1,...,m.
j=1

Therefore,

E(?ﬁ (F)G) - ]E(g(ms(F), DFJ’M‘;‘G)

E(<D¢<F),iDFW?G>)
- ]E(¢(F)6( i DFH?G))

and the above steps make sense because all the r.v.’s and processes involved are,
by hypothesis, in the right spaces. a

2.2 The infinite dimensional case

The duality formula is the one to be used in order to show that the operators D
and ¢ are closable and this last property allows one to extend them to the infinite
dimensional case, that is for r.v.’s and processes non necessarily depending on
the increments of the Brownian motion but depending on the whole path.

Let us start from the following facts. We have seen that

D:SclL*Q) —PclL?*H,) and §:PcCL*H)—ScL*Q).

The operators § and D are linear but unbounded, i.e. it does not exist a constant
C such that for any F' € S one has

1
IDFI sy = B( [ 1DPPds) < CIF oy

Anyway, we can state the following property:

12



Lemma 2.2.1. D and § are both closable, that is

i) if {Fn}n C S is such that lim, F,, = 0 in L*(Q) and lim,, DF,, = U in L*(H,)
then U = 0;

ii) if {Un}n C P is such that lim, U, = 0 in L?(H;) and lim, §(U,) = F in
L3(Q) then F = 0.

Proof. i) Take {F,}, C S such that lim, F,, = 0 in L?(Q) and lim,, DF,, = U
in L?(H;). Since P is dense in L?(H}), it is sufficient to prove that E((U,V)) = 0
for any V € P. In fact, if V € P, by using the duality formula one has

E((U,V)) = imE((DF,, V)) = imE(F,5(V)) = 0

The proof of ii) is similar. O

2.2.1 The set Dom,(D) = D"?

We first introduce a suitable set on which the Malliavin derivative D is well
defined and then, extending the set S of the simple functionals.

Definition 2.2.2. Let p € N. We say that F € Dom,(D) = D? if there exists
a sequence {F,}, C S such that

lim, F, = F in LP(Q) and lim,, DF,, = U in LP(Hy) for some U € L?(Hy).
In this case we define DF = U = lim,, DF,, in LP(H,).

Since || [l < II-llp and | -llwr s,y < |1+l (21y) for p > 9/, we have D € D
We put
DY = Doma.D = ﬂ DP.
peEN

We observe that D!2 does not depend on the sequence F,,n € N because D
is closable, but is not an algebra. We note that D% is an algebra and the
definition of DF' does not depend on p.

We define a norm || - [|1, on D' by

L p/2
IFI, = IFI+ IDEIE, 4, = E(FP) +E( ( / IDFdt) ).

Notice that for p = 2, the norm || - ||1,2 is the one resulting from the scalar
product

1
(F,G)12 = E(FG) + IE(/ D,F DsGds).
0
Moreover, D2 is a Hilbert space.

Remark 2.2.3. o Fe ?Ml"’ if there exists F,, € S,n € N such that F,, —
F in LP(Q) and (F,)nen is a Cauchy sequence in || - ||1,p;

e it then follows that DP = Dom, (D) = ?H'HLP;
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e Domy(D) is complete, i.e. every Cauchy sequence in Domy(D) converges
to an element of Domy(D). Indeed consider a Cauchy sequence (F),)nen
with respect to || - ||1,p. This sequence is also a Cauchy one with respect to
| - llp and we know that LP is complete, so there exists F' € LP(S) such
that F,, — F in || - ||p. Since F,, € Dom,(D) we may find a sequence of a
simple functionals F,, s.t. |F, — F,|l1p < L 50 that (F ) pen is a Cauchy
sequence with respect to || - |1, and F. = Fin|- llp- So F' € Dom, (D).

2.2.2 The set Dom,(9)

Again, we introduce a suitable set on which the Skorohod integral § is well
defined and then, extending the set P of the simple processes. We start similarly
to Definition 2.2.2.

Definition 2.2.4. Let p € N. We say that U € Domy(J) if there exists a
sequence U, € P,n € N such that

lim, U, = U in LP(H;) and lim, §(U,,) = F in LP(2) for some F € LP(Q).
In this case we define 6(U) = F = lim,, §(U,,) in LP(Q).
On P, we consider the norm

U

6.0 = Ul Loy + 16(U) I

and we have
Domp(é) — F”H&P
2.2.3 Properties

Sometimes it is unpleasant to compute Malliavin derivatives or Skorohod inte-
grals through limits. We necessarily need a criterion, for example as follows

Proposition 2.2.5. [Criterion)]
(i) Let F € L*(Q). Suppose that there exists a sequence F,, € D%?2 s.t.
i lim, F,, = F in L?(Q)
ii sup, [|[Fulli2 < C < .

Then F € Domsy(D) and ||F||12 < C. Moreover, if sup,, |Fnl1,p, < Cp
then ||F||1,p < Cp.

(ii) Let U € L*(H,). Suppose that there exists a sequence U, € Doma(6) s.t.

i lim, U, = U in L2(H,)
5,2 <(C < oo

ii sup, [|Un

Then U € Domy(8) and ||U|ls2 < C. Moreover if sup,, ||Uy|ls,p, < Cp then
1Ulls.p < Cp.

14



Proof. (¢) Any bounded set in a Hilbert space is relatively compact, so we
may find F € DY2 st. F, - F weakly. We use Mazur’s lemma':for each
n € N there exists k, and A} > 0,k = n,...,k,, s.t. Z:’;n AR =1 and

F, = ::n A\PFj, — F' strongly with respect to || - |12 and, in particular in
L?(Q2). Notice that

kn kn
IF = Folla =Y AE = F)ll2 < > MllF = Fella < sup |F' = Fill2 — 0.
k=n k=n =n

It follow that F' = F and so F € DY2. We also have

o
[F 12 =lm [[Fpll2 <lm Y AR[|Fali2 < C.
n n

k=n

Let us now prove the assertion concerning the p-norm. Passing to a subsequence
we may assume that [F,, — F| — 0 a.s. Since sup,, |[Fy|1, < Cp we may use
uniformly integrability in order to derive F,, — F with respect to | - |1,
for p’ < p. Then ||F|l1, < sup, [|[Fulliy < sup, [[Fnllip < Cp. And finally,
1El1p < supycp [ Fllpr < G

Similar arguments give (ii). O

We have seen in the finite dimensional framework that the Malliavin integration
by parts formula can be achieved once some properties are verified, in particular
the duality relationship, the chain rule and, for practical purposes, the Skorohod
integral of a special product. In other words, if Proposition 2.1.8 continues to
hold. The answer is positive, and in fact one has

Proposition 2.2.6. (i) [Duality] For F' € Domsy(D) and U € Doms(9),

E((DF,U)) = E(F5(U)).

(i) [Chain rule] Let F = (F',...F™) where F' € DY2i = 1,...m and
® € C}H(R™). Then ®(F) € D2 and

D®(F) = i 0, ®(F)DF".

If F' € DY then the conclusion is true for ¢ € C; (R™).

(#it) [Skorohod integral of a special product] Let u € Domsg(d§) and F €
DY2 such that Fu € Doms(3). Then

§(FU) = F§(U) — (DF,U).

IMazur’s lemma. Let (X, ||-||) denote a Banach space and {un}n C X such that u, — u
weakly (that is, f(un) — f(u) for each continuous linear functional f). Then there exists a
function N : N — N and for any n € N some numbers {a(n)x; k = 1,..., N(n)} such that

a(n)g >0 for any k=1,...,N(n), Z,iv:(?) a(n)kr = 1 and such that the convex combination

Up = Zgz(yf) a(n)uk strongly converges to ug, i.e. |jvn — ugl| — 0 as n — oo.
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Proof. (i) For F € Doms(D) and U € Domy(9), take {F,},, C S and {Up},, C
P such that, as n — oo,

F, = F,6(U,) — 6(U) in L*(Q) and DF, — DF,U, — U in L*(H,).
By applying the duality relationship between S and P (Proposition 2.1.8),
E((DF,U)) = lim E((DF,,U,)) = lim E(F,0(U,)) =E(F4(U)).
n—oQ n—oo

(i4) Let us first prove that if F* € S for any k = 1,...,m and ® € C}(R™) then
®(F) € D"? and the chain rule holds. In fact, let {®,}, C C;°(R™) C C°(R™)
denote a sequence such that ||, — ®||cc — 0 and ||V®, — VP| — 0 as
n — oo. Since ¥, (F) € S, the chain rule holds by Proposition 2.1.8. Now,
|, (F) — ®(F)|l2 < || Py — P||oc — 0 and for each k one has

|0y @ (F) DF* — 0,0 ®(F) DFy, ) S IV = Ve[ [DFll 2,y — 0

2,

and this gives the statement.

Suppose now that F* € D2 for any k = 1,...,m and ® € C}(R™). We then
take {F¥},, € S such that ||[F* — F*| ;2 — 0. Since ® has bounded derivatives
we immediately obtain || ®(F,) — ®(F)|]2 — 0. Moreover, from the first part
of the proof we know that D®(F,) = Y" | 0,»®(F,)DEF. Then, we have to
prove that for each k,

|00k ®(F)DE) — 8,0 ®(F)DF" || 1211,y — O.
We can write
10, ®(Fy) DE — 0, ®(F) DF*|| 2(s1,) < @ + by
where
0 = (0w BN D~ DFY) |
by = |(9®(F,) — 8wk,<1>(F))DFk||L2(H1)
Concerning a,,, since d,=® is bounded, one has

an < const|DEY — DF¥|| 2.5,y — 0.

As for b, first notice that
1
b2 = E(\@xk@(Fn) - az@(F)P/ |DtF’“|2dt>
0

Now, if we pass to any subsequence s.t. F,, — F a.s. and use Lebesgue’s
theorem, we immediately obtain b2 = E(|0,x®(F,,) — 0,+®(F)|? fol |DF*|2) —
0.

(#it) Let G € S. Using the duality formula we can write

E[GS(FU)] = E[f, DG x F x Uyds]
= E[f, (Ds(FG) — GD,F) x U,ds]
E[GF§(U)] — E[G [, DyF x Uyds].

This relation is true for all G € S, so we have the thesis. O
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Remark 2.2.7. Notice that if F* € DY°, i = 1,...,m, then we can use
Holder’s inequality (in particular, to show that b, — 0 as n — oo in the above

proof of (ii) in Proposition 2.2.6) and then we get that the chain rule holds also
for ® € CA(R™).

Actually, the chain rule holds also in other situation, for example under the re-
quirement that ® is only Lipschitz continuous (see e.g. Nualart [18], Proposition
1.2.3, p. 30).

Example 2.2.8. Let F' € D> be such that e/’ € L? for any p. Then e’ € D2
and
Def' = "' DF.

In fact, let {¢n}n>1 C C(R) be a sequence such that ¢, (z) = 1 if |z| < n,
Yn(x) =01if |z] >n+1, 0 <, <1 for any = and sup,, sup,, |[¢}, (z)| < co. Set
now G,, = ¥, (F)e!". Notice that G,, = ¥,,(F) with ¥,,(z) = 9, (2)e® € C>(R),
so that G,, € D%2 and the chain rule holds:

DG, = V,,(F)DF = e DF (4, (F) + ¢ (F)).

Then, it is sufficient to prove that G,, — ef" in L?(Q) and DG,, — e’ DF in
L?(Hy). In fact, we have

1Gn = €713 = E(e* [pu(F) - 1).
But, €24, (F) — 1|2 = 0 a.s. and €24, (F) — 1|2 < 2¢2F € L] so that by

Lebesgue’s dominated convergence theorem one has ||G,, — ef'||2 — 0. As for
the second statement, by Holder’s inequality we have

1
G = e Dy = E( [ DL 04,(F) + () 1 )

IN

1
E(&F [6,(F) + u(F) — 17 ds) " | DF s i,

where p,q > 0, % + % = 1. By using arguments similar to the ones developed
above, one has E (e?PF" [¢],(F) +v,(F) — 1*? ds) — 0, and the statement holds.

2.2.4 Examples
We give here some leading examples.

Example 2.2.9. [Brownian motion] Take F' = Wy, as t € [0,1]. Then
F € Domgy(D) and
DWW, = 1s<.

In fact, we can write (|-] denoting the integer part)

[27¢]
W, = Z (Wt’ffl — Wtﬁ;) + Wi — WLQ;;tJ .
k=0
Now, since

iF,:= ,EZXJ(thH — Wi ) = Wy in L*(Q) as n — oo,
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ii F, e D2 and D,F,, = 15< ne) — ooy = U in L?(H;) as n — oo,
<SS =
it immediately follows that D,W; exists and is equal to 1,<;.

Example 2.2.10. [Ito integral of square integrable functions] Let ¢ €
L?([0,1]) and set W(¢) := fol ¢rdW,. Then, W(¢) € D2 and

The proof is a consequence of the following steps.

step 1 Let ¢ be a step function on the dyadic intervals, i.e.
2" 1
o(s) = D drlpy ) (s).
k=0

Then W(¢) = ilgl #1AF is a simple functional and we compute directly
the derivative: D,W(¢) = ¢p(s) = ¢(5).

step 2 Let ¢ € L?(0, 1) be a continuous function. Then, there exists a sequence
{¢n}n of step functions such that ¢, — ¢ in L?(0,1) as n — oco. Now,
step 1 ensures us that

Since ¢,, — ¢ in L?(0, 1), the statement immediately follows.

step 3 The generalization to general functions ¢ belonging to L?(0, 1) follows
from the fact that the set of the continuous functions on (0,1) is a dense
subset of L%(0,1).

Example 2.2.11. For ¢, € L*(0,1), £ =1,...,m, and for ® € C;(Rm), set
1 1
F:<I>(/ ¢>1(s)dWS,...,/ d)m(s)dWs).
0 0

Then F € D2 and
m 1 1
F =0, i | (AW, .
D= 32000 ( [ or e, [ () ot

The proof is an immediate consequence of Example 2.2.10 and the chain rule.

Remark 2.2.12. Example 2.2.11 is particularly important if one is interested
in studying the link with the definition of Malliavin derivatives as done in many
texts, as for example the widely well-known one by Nualart [18]. There, the set
of simple processes . is given by the random variables F' of the form

F=f(/01 ¢1<s)dws,...,/ol Du(s)dI7,)

where n € N, f € C°(R") and ¢; € Hy = L*([0,1]%([0,1]),dt) Then, for F as
above, the Malliavin derivative is defined as

DtF:kX_:lﬁwkf</0 ¢1(s)dws,...,/0 ¢"(s)dWs)¢k(t). (2.2)
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Furthermore, on . one sets

||F||%2 = HFH%Z(Q) + ||DFH%2(Q><[O,1])

and defines DY? = ?”‘”1’2. Now, FExercise 2.5.7 allows one to prove that this
definition of Malliavin derivative agrees with the one already presented in these
notes.

Remark 2.2.13. Consider a smooth functional of the form
F=fWy,....,W,)
with f € C5° and 0 <1y <--- <t, <1, so that
DtF = Z 8_Lz f(th7 ceey th)]-tgti
i=1

Then, for h € Hy = L*([0,1], #([0,1]),dt) one has

1 n
(DF,h) = /Zawif(th,...7th)1t§tihtdt
0 =1

n ts
> 0 f(Why, .. W) / hedt
i=1 0

- FWo, +e [ hudt, ... Wy, + e [ hydt) — fF(Wy,..., Wy,)

e—0 3

Therefore, for any h € Hy one gets

(DF, h) = d%F(w te /0 | h(t)dt) .

that is, for such F’s the Malliavin derivative DF' 1is linked to the directional
deriwative of F in the directions of the Cameron Martin space 74 = {p €

C([0,1],R) : @, = [ hyds, for h e L*([0,1])}.

Example 2.2.14. [Lebesgue and Ito integrals] Let U denote an adapted
process such that E(fol |U,|?dr) < oo. Set

1 1
Io(U) = / Usdr and I, (U) = / U, dw,.
0 0

We assume that for each fixed r € [0,1], U, € D*? and

isup, <1 [|Url[1,2 < o0;
ii setting 7,,(r) = [r2"|/2" and U]’ = U, (), then

1 1 1
/ ||U,«—Uﬁ|ﬁ,2dr:/ E<|UT—UTH(,,)|2+/ |DSUT—DSUTH(T)\2ds)dr—>O
0 0 0

as n — oQ.
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Then, I;(U) € D2 for i = 0,1 and one has:

1 1
D,Io(U) = D, / U,dr = / DU, dr (2.3)
0 s
and ) )
DI, (U) = D, / U, dW, = U, + / DU, dW, (2.4)
0 s

In fact, suppose first ¢ = 1. Then,

2" —1

L(U") =Y Ugjpe Al
k=0

Therefore,
2m -1 2m -1
Dsfl(Un) = Z Dy (Uk/2“A§) = UL2nSJ/2n + Z DSUk/QnA,]:;
k=0 k=|2"s]

and notice that
1
D, (U") = U, +/ D,U.dW, in L*(Q) as n — oo

because of i. Now, by ii, we have I;(U") — I;(U) in L?(f2). Using i, we obtain
sup,, [[{1(U™)|l1,2 < oo. Then we can use the criterion in Proposition 2.2.5 in
order to get I;(U) € D2 Now, since we know that I(U) € D2, we have
DI (U) = lim, o DI;(U") in L?(Q), and (2.4) is proved. Concerning (2.3),
one can proceed in a similar way.

Example 2.2.15. We show here the Malliavin differentiability of the maximum
of a Brownian motion. Let us put M = sup,; W, (we test the time interval
[0, 1] but nothing changes for more general intervals) and we show that D;M =
I10,71(t), where T is the a.s. unique point at which W attains its maximum.
For any n € N, we put M, = maxy—,.. 20 Wy/on. Notice that M,, — M
a.s. and? |M, — M|?> < 4M? € L'(Q), so that by the Lebesgue dominated
convergence theorem one has M,, — M in L?(§)). Thus, it remains to show that
M, € D*? and D;M,, — 1 -)(t) in L?([0,1] x Q).

By setting ¢, : R*"t! 5 R, ¢, () = max(z?,...,22"), then obviously M, =
&n(Wo, Wijon, ..., Wi). The function ¢, is not a C; function, so the chain
rule in Proposition 2.2.6 cannot be immediately applied. However, ¢, is a
Lipschitz continuous function and its partial derivatives exist a.e., so smoothing
arguments allow to state the validity of the chain rule (see e.g. Nualart [18],
Proposition 1.2.3, p. 30): M,, = ¢, (Wo, W /an,...,W;) € D12 and

on

Odn
DM, = %(WOaWI/Q"a-~~7W1)Dth/2"
k=0 7*
2 96
= 835: (Wo, Wiyan, ..., W1) Licpyon.
k=0

2Recall the reflecting principle for a Brownian motion: for any z > 0, one has
P(sup,<p W¢ > x) = 2P(Wr > z). For T = 1 one gets P(M > z) = 2P(W1 > z) and
then M has a probability density function given by fus(z) = 1/2/7 exp(—x2/2) 1z>0, which
tells us that M € LP for any p.
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We set Ag = {¢n(z) = 2°} and, as k = 1,...,2", Ay = {¢n(x) # 2°,...,
bn(z) # 271 ¢, (x) = 2¥}. Then, Ondn(x) = 14, () a.e., so that we can

write
2’7’L

DM, = Z L wo.wy jon ... wiyeay, Licksan = Lo7,1(t)
k=0

where 7,, denotes the a.s. unique point among the k/2™’s such that M,, = W_. .
Straightforward computations allow to see that

1
B( [ 1M, ~ Lo (0 dt) = B(lra — 7).
0

Now, 7, — 7 a.s. because W has continuous paths - notice that this proves the
a.s. uniqueness of 7 - and |1, — 7| < 2, so E(|7, —7|) — 0, which in turn implies
that Dy M,, — 1j () in L?([0,1] x Q). Then,

DM = 1[0,7’] (t)

Example 2.2.16. We compute here the Skorohod integral of the Brownian
bridge process on [0, 1], which corresponds in some sense to a Brownian motion
forced to be in two fixed points = and y at time 0 and 1 respectively. There are
several ways to introduce such a process; for example, the Brownian bridge can
be seen as

ut) =z +t(y —z) + W, — tWh,

where B is a one dimensional Brownian motion. Then, by recalling that Skoro-
hod and Ito integrals coincide on adapted processes, one has

1 1
5(u)=xW1+(y—:c)/ tth+/ Wy dWy — 6(v W),
0 0

where v(t) = t. By using (iii) of Proposition 2.2.6, 6(v W) = Wi [\t dW; —
fol D,Wytdt =W, fol tdW; — 3. Moreover, by Ito’s formula applied to f(W;) =
W2 and1 to g(t, W) = tW, one gets fol W, dW, = £(W2 — 1) and foltth =
Wi — [, Wy dt respectively. Then

1
1
S(u) = yWy + (W, Jracfy)/ W, dt — §W12-
0

2.2.5 The Clark-Ocone formula

We recall the martingale representation formula: if F' € L?(Q, %1, P) then there
exists a real valued and .%;-adapted process ¢ € L*(Q x [0,1], Z1 x 8([0,1]), P x
dt) such that F = E(F) + fol ¢sdW,. When the random variable F is Malliavin
derivable, one can write down explicitly the process ¢. In fact, one has

Proposition 2.2.17. [Clark-Ocone formula] If F € D'? then

1
F =E(F) +/ E(D,F | Z,)dW,.
0
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Proof. Without loss of generality we can assume that E(F) = 0 (otherwise,
we work with F' — E(F)), so that by the Brownian martingale representation

theorem one has F' = fol ¢sdWy for some .Z;-adapted process in L2(Q x [0,1]).
Let us set Paq the subset of the simple processes P which are .%;-adapted. For
U € P,q one has §(U) = fol U,dWy,, so that

E(Fo /(bde/ UdW /¢5Uds

On the other hand, by the duality one has

E(FS(U)) = E((DF,U)) E / DFUds)

- IE:(/1 ]E(DSF|54‘S)USds>.
0

It then follows that

(U.¢ —E(D.F|.Z)) 12 0xp01)) = E(/01U5<¢5—E(DSF|9}))ds)=0

for any U € P,q. The statement now follows by noticing that the closure of
Paq w.r.t. the norm in L?(Q x [0,1]) is given by all the .#;-adapted processes
belonging to L?(Q x [0,1]). O

Corollary 2.2.18. 1. IfF € D'2 then F is a.s. constant if and only if DF = 0.
2. If A€ F, then 14 € DY2 if and only if either P(A) =1 or P(A) = 0. As a
consequence, DV2 is strictly included in L*(, %1, P).

Proof. The proof of 1. is immediate from the Clark-Ocone formula. As for
2., if 14 € D2 then by the chain rule we get D14 = D(li) =214D1,4.
Now, if D14 # 0 then 1 = 214 which is impossibile. Then, D14 = 0, that
is 14 = const which is true if either P(A) = 1 or P(A) = 0. The converse is
immediate. [

As an example, tale A = {W; > 0} and F = 14. Then F € L*(Q,.%,P),
because E(F?) = P(W; > 0) = 1/2 while 14 ¢ D2, so that D2 is actually
strictly included in L?(9,.%#;,P).

2.2.6 The set Dom,(L)

We introduce here the Ornstein-Uhlembeck operator L. On the class of simple
functionals S one has

L:S—S8 LF=-§DF).
The following duality relationship holds:

E(FLG) = ~E((DF, DG)) = E(LFG).

Similar arguments give that L is closable, so that one can give the following

22



Definition 2.2.19. F' € Dom(L) = Doma(L) if there exists a sequence of sim-
ple functionals {F,}, such that F,, — F in L*(Q) and LF, — G in L*(),
for some G € L?(Q). We then we define LF = G = lim, LF,. If the
above convergence holds in LP(R), p > 2 we say that F € Domy,(L). We
put Domeo (L) = Np>2Dom,, (L)

Obviously, for F € Dom(L) one again has LF = —§(DF'). Moreover, on S we
may define the norm
IF L = I1Fllp + ILF]p

so that Dom,, (L) = Sller The following chain rule holds:

Proposition 2.2.20. Let F = (F!,... F™) where F* € Domu(L),i =1,...m
and ® € C°(R™). Then ®(F) € Doms L and

F)=> 0u®(F)LF' + > 0,:0,®(F)(DF', DF’).

ij=1
The proof is left as an exercise.

Remark 2.2.21. Consider m > 1 paths ¢*,...,¢™ in Hy and set F* = W (¢?)

= fol ¢LdWs. Such r.v.’s play a crucial role in Malliavin calculus (see also next
Appendix 2.6) and in this special context, they allow to give a rough interpreta-
tion of the denomination “Ornstein-Uhlembeck operator” given to L = —46(D).
But for a deeper motivation, we refer to the interesting initial part of the book
of Sanz-Solé [19].

Set a' = (¢*, ¢7) = fol Pt pl ds and notice that this is a symmetric, non negative
definite m X m matriz, so that it has a square root o (that is, o is a m X m
matriz such that co* = a). Now, for F' = W (¢') one has DF' = ¢. Therefore,
LF = —§(¢') = —W(¢') = —F* and (DF, DF7) = (¢*,¢7) = a¥. Then for
any f € C;°(R™), Proposition 2.2.20 gives

ZFZ@ SV 3 a0 S
4,j=1
Now, the analogous operator on R™, that is
Zfa S+ D a0, 1)
3,j=1
1s the infinitesimal generator of the diffusion process X on R™ evolving as

dX; = — X,dt + V2o dW,

which is an Ornstein- Uhlembeck process.

2.2.7 The integration by parts formula

An important consequence of the duality formula is the integration by parts
formula.
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Definition 2.2.22. Let F = (F! ... F™) with F* € D“2. The Malliavin
covariance matrix of F is defined as the symmetric positive definite matrix
given by

1
o =(DF',DF’) = / D,F' D,Fids.
0
We introduce the non-degeneracy assumption:
(N-D) E((detor)™P) < oo,¥p € N. (2.5)

If (N-D) is holds then o is almost surely invertible and we denote vp = 0;1.
The integration by parts formula reads as follows:

Theorem 2.2.23. [MIbP formula] Let F = (F',...,F™) with F* € D">
and G € DY*°. Suppose also that o/ € DV>°, (N-D) holds for F and that

DF; € ﬂpeN Domy(8), i =1,...m. Then for every ¢ € C;(Rm) we have
E(0;0(F)G) = E(¢(F)H;(F,G)), i=1,....m (2.6)
where
Hi(F.G) = > 8(GyiDFY) = =3 (G} LF + (D(GA}), DFY)). (2.7)
j=1 j=1

Proof. First, let us notice that the second equality in (2.7) follows from the
Skorohod integral of a special product property (see (iii) of Proposition 2.2.6).
Using the chain rule we can write that

D.9(F) = Vo(F)D,F.
Then, _
(DO(F), DF'), = (0£Vo(F)) .

which yields _
0i¢(F) = (DJ(F), (v DF)").

By using the duality formula, one gets
E(9;¢(F)G) = E((D(F), G(vr DF)")) = E(¢(F)8(G(yr DF)")

and the statement holds. O

2.3 Multidimensional Brownian motion

In this section we deal with a d-dimensional Brownian motion W = (W!,... W)
defined on a complete probability space (2, F, P), where F = {F;}4cjo,1] is the
one generated by W and augmented by the P-null sets.

The definitions of Malliavin derivative and Skorohod integral, as well as the
resulting properties, can be extended as in the standard calculus. It is easy to
describe what are the main ideas. For example, we have seen that the Malliavin
derivative is given by




where the above derivative has to be intended “in some sense”. Now, since we
have now a d-dimensional Brownian motion, and then d independent Brownian
motions, such derivative becomes now “a gradient” since in principle it can be
done w.r.t. all the d directions:

oF

D.F = (D}F,...,D¢F), DIF = AT
t

i=1,....d

Now, concerning the Skorohod integral, it will be again the adjoint opera-
tor. Since the principal tool is the duality relationship, that is E((DF,U)) =
E(Fé(U)), it is clear that the domain of the operator ¢ is necessarily based on
processes taking values on R?. And moreover, for adapted processes the Skoro-
hod and the Ito integral will agree: for an adapted process U; = (U}, ..., U?)
with the usual properties giving the Ito integrability,

1 d
5(U):/ > Uidwy.
0 =1

But let us start by introducing the notations.
For n, k € N, we denote t*¥ = k27" and

AR = Wikt —wik), k=0,...,2" —landi=1,...d.

We set now

AF = (AR AR =0, 2" — 1.
(the symbol * denoting the transpose). Let us recall that, as i, k vary, the r.v.’s
Afl’l are i.i.d. and Afbvl ~ ./\/'(()7 2%) Therefore, A,, = (A%, L ,A%n—l) c Rdx2"
is a d x 2™ matrix.

Now, a simple functional of order n is a random variable of the form F =
f(Ay,) where f € C}‘,’O(Rd“n). The space of the simple functionals of order n is

Sn - {F = f(An) : f € Cgo(RdXQ")}'

We set S =, S, as the set of all the simple functionals.

A process U : [0,1] x Q@ — R? is called a simple process of order n if
U, = (U},...,U%) with

2" —1
Ui(w) = > Uil ey (1), Uk €S k=0,...,2" = Li=1,....d
k=0

It is worth to notice that U is a r.v. taking values on R?. Recall that the
requirement U € S,, allows to write the ith component U* of a simple process
of order n as

2m—1
Ui (w) = > up(An) L ooy (1), uj € CRRP) E=0,...,2" — 1.
=0 n
asi=1,...,d. Again, a simple process of order n is adapted if and only if

uh (Ay) = ub (A%, A2 ) = i (A AR

n
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for any k and 3.

We set PZ as the set of the simple processes of order n and P? = |, P4 as the
set of all the simple processes.

For each fixed w € Q, t — U, is an element of L2([0,1],B[0,1],dt,R%) = {p :
[0,1] — R? : ¢ is Borel measurable and fol lo(s)|?ds < oo} := Hy. Then, on
P? we can define the scalar product by using the usual one on L?: for U,V € P¢,

1 d
<U,v>:/ > UL x Vids.
0 =1

Notice the resulting value is a r.v.
Now, let us denote

P
2

) <och

LqH@::{U:Q-+Hg:EmUm%}:E(QAI§S|U;ng
=1

Then, P? C LP(Hy) for all p € N.

Definition 2.3.1. The Malliavin derivative of a variable F = f(A,) € S,
is the simple process {DiF'}ycjo,1) € P2 given by

D,F = (D}F,...DIF),

where

'(An)l[t§7tﬁ+l)(t)7 1=1,...,d.

Notice that D} is the Malliavin derivative described in the previous section if
one considers the Brownian motion W*. In some sense, in order to define D
one has to freeze all the random sources expect for the ith one. That is why D:
is often called as the Malliavin derivative in the ith direction of the Brownian
motion.

Definition 2.3.2. The Skorohod integral is defined as the operator

d
§: Pt S, s(U) =5 U
=1

where, asi=1,...,d, for U} = Z;El U (An) 1 ey (8),

20 oul 1
BTy i ki _ YU —
)= 3 (uh(AnAl = k(A0 52 ).

Again, §*(U*) agrees with the one-dimensional definition of the Skorohod inte-
gral: simply, work on the ith Brownian motion W*, or equivalently, on the ith
direction of the Brownian motion W.

Notice also that whenever U is adapted, 88;2’?7., =0, for any 4, so that
2m—1 _ 1d
S0) =30 3 w(aak = [ S viaws,
i=1 k=0 0 =1

26



that is the Skorohod integral coincides with the Ito one.

Similarly to what developed in Section 2.1.2, one has the same result as in
Proposition 2.1.8, i.e.

Proposition 2.3.3. (i) [Duality] For any F € S and U € P,

E((DF,U)) = E(F5(U))

(ii) [Chain rule] Let F = (F',...F™) where F' € S;i =1,...m and ® €
CHR™). Then ®(F) € S and

D'®(F) =Y 0,2(F)D'F', i=1,....d.
(=1

(iii) [Skorohod integral of a special product] For U € P and F € S,
0(FU) = Fo(U) — (DF,U).

The proofs are identical to the ones of Proposition 2.1.8. In particular, the
duality relationship allow to extend the operators in the infinite dimensional
case. In fact, by developing the same arguments as in Section 2.2, one can
immediately prove that the operators D and ¢ are closable. Then,

D:DY c L*(Q) — L*(Hy) and §: Domy(8) C L*(Hg) — L*(Q).
All properties in Proposition 2.3.3 can be extended and read as follows.
Proposition 2.3.4. (i) [Duality] For any F € DY? and U € Doma(9),

E(DF,U)) = E(Fo(U))

(ii) [Chain rule] Let F = (F',...F™) where F' € DY2 i = 1,...m and
® € C}(R™). Then ®(F) € S and

D'®(F) =Y 02(F)D'F', i=1,...,d.
(=1

(73i) [Skorohod integral of a special product] For U € Domz(d) and F €
D2 such that FU € Doms(d),

§(FU) = F§(U) — (DF,U).

Again, the proof follows by density arguments similar to the ones developed in
Proposition 2.2.6.

Concerning the examples discussed in Section 2.2.4, let us see what happens in
the multidimensional case (the proofs are similar, so we omit them).

Example 2.3.5. [Brownian motion - see Example 2.2.9] Take F = W/, as
t € [0,1]. Then F € Doms(D) and

DIW} =1,—;1,<.
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Example 2.3.6. [Ito integral of square integrable functions - see Example
2.2.10] Let ¢ € L?([0,1]) and set W (¢) = fol ¢rdWJ. Then, Wi(¢) € D2

and ()
. b(s) ifi=j
F(4) —
DW?(¢) = { 0  otherwise

Example 2.3.7. [See Example 2.2.11] For gbg € L*0,1), £ = 1,...,m and
j=1,...,d, and for ® € C}(R™), set

< j ~t j
F:@(;/O ¢{(s)dW§,...7;/0 ¢m(s)dWS).

Then F € DY2 and

m d

Dir =Y oua( Y [ lawi. Y [ o) dilo)
k=1 j=1"70 j=170

Example 2.3.8. [Ito integrals - see Example 2.2.14] Let U denote an adapted
process such that E(fol |U,|?dr) < oo. Set

1 1
IO(U):/ U,dr and for i = 1,...,d, IZ-(U):/ U,.dW}.
0 0

We assume that for each fixed r € [0,1], U, € D*? and

isup, <1 [[Urfl12 < o003
ii setting 7,,(r) = [r2"|/2" and U]’ = U, (), then

1 1 1
/ U, — U212 pdr :/ 21U — U, +/ (DU, — DUy, ) Pds)dr = 0
0 0 0
as n — 0.
Then, I;(U) € D2 for any i = 0,1, ...,d and one has:
. . 1 1 .
DILy(U) = D;/ U,dr = / DIU,dr (2.8)
0 s
and ast=1,...,d,
1 . .
U, +/ DiUAW? ifi—j
1

/ DIU,.dW} if i # j

S

1
Dﬁ[i(U):Dg/ U,.dW} = (2.9)
0

As for the Ornstein-Uhlembeck operator L, on the class of simple functionals S

one has
d

L:S—S, LF=-§DF)=->Y &(D'F),
=1
so that
E(FLG) = —E((DF, DG)) = E(LFQ).
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Then, one proves that L is closable, so that Dom,L = ?HAHL"“, where for F' € S,
1Flzp = 1Fllp + ILFp.
Again, Dom, L = N,>2Dom,L and the chain rule holds for L, that is

Proposition 2.3.9. Let F = (F',...F™) where F* € DomuoL,i = 1,...m
and ® € C*(R™). Then ®(F) € Domu L and

F)=> 0u®(F)LF' + > 0,10, ®(F)(DF',DF’).
' i,j=1
As for the Clark-Ocone formula, one gets the same results, that is

Proposition 2.3.10. 1. [Clark-Ocone formula] If F € D2 then

d 1
F)—i—Z/ E(DFF |.7,)dWE.
k=170

2. If F € DY? then F is a.s. constant if and only if DF = 0.
3. If A€ F, then 14 € D2 if and only if either P(A) =1 or P(A) = 0.

Let us now discuss the MIbP formula. Let us start by introducing the Malliavin
covariance matrix and the non-degeneracy assumption (N-D) in the multidi-
mensional case.

Definition 2.3.11. Let F = (F!,...,F™) with F* € D2, The Malliavin
covariance matriz is the symmetric positive definite matriz defined by’
1 d
o = (DF', DFY) / > DiFx DiF/ds.
0

=1

We say that o fulfils the non degeneracy assumption if
E((detop)™P) < 00, ¥p € N. (2.10)
If (2.10) is true then op is almost surely invertible. We denote v = o*. Then,

Theorem 2.3.12. [MIbP formula] Let F = (F',..., F™) with F* € DL
and G € DV, Suppose also that opi; € DL, DIF* mpEN Domy(0),5=1,...d
and the non degeneracy condition (2.5) holds for F. Then for every ¢ € C}(R™)
we have

E(9;6(F)G) = E(¢(F)Hy(F,G)), i=1,...,m (2.11)
where
Hy(F,G) = Em:(S(G'y”DF] f: (GyiijLFj +(D(GHE), DFj>). (2.12)
j=1 j=1

3For any £ € R™ one has

m

(or€€) = > ode'e = / ZZDZFZEZDtF%Jdt Z/ ‘ZDZFQE) dt >0

Zgl l,j=11i=

so that o is actually a non negative definite matrix.
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We also have the following easy generalization. Consider &' = (&il,... &™)
with & € Domy(0) for any i = 1,...,m. For F = (F',..., F™), and set

.. . . d 1 . .
re=(DF.¢) = Y [ PP (s)as
k=1

Then, one can easily adapt the proof of the Malliavin integration by parts
formula in order to get the following

Proposition 2.3.13. [Generalized MIbP formula] Let F = (F*,... F™)
with F' € DY and let 51 = (€L, &™) with & € Domus(8) for any i =
1,...,m. Suppose that O'Ff € DY for any i, j=1,...,m and E(|det op¢|7P)
< 0 for any p. Then for every G € D> and ¢ € C}(R™) we have

E(0i¢(F)G) = E($(F)H; (F,G)), £=1,...,m (2.13)
where
HE(F.G) =Y 6(Gyd,DFI) = =3 (Gvg’fgLFj + (D(Gﬂ%),DFQ) (2.14)
j=1 j=1

being Yre = 0;715.

2.4 Higher order derivatives and integration by
parts formulas

The higher order derivatives are defined in the same way as the first order
derivatives: to begin one defines them on the simple functionals and then pass
to the limit in order to obtain an extension. For F' € S,, we define

2
i p_pipipe_ 9
DtltéF—DtngzF_WF

where ALY = AR for any t € [tF k1), Tt is easy to see that the definition
does not depend on n. It is clear that now

DI 5 — 12([0,1]2, 2([0,1]?), Lebs)

where Leb,, denotes the Lebesgue measure on R™. Moreover we have the fol-
lowing duality relation: for Uy, Us € P we have

1

// D) FUL (1) Us(tz)dtdtz ) = (F/O(/O1 U (1) Us (t2)dVV, ) W3, )

where in the above formula dW, denotes the Skorohod integral. We do not give
a more explicit expression of the above double integral. But recall that U; and
U, are simple processes, then it is clear that the above random variable is in
any LP. Using the above formula one can check that D(7) is closable. Then
one defines the domain of the second order derivative and the extension of this
operator as usual. The notation is rather heavy so we prefer to give directly the
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space of second order differentiable functionals by using the Sobolev norms. We
define on S the norm

1 d , p/2
1712, = 1Fg+E(( [ S ipirea)) +
i=1
([ 3 berrana)”)

i,j=1
and we put
2, <lli-llz, 2,00 _ 2,
D =S§"""" and D> =n,D*?.
In order to define higher order derivatives we proceed similarly. We consider a
multi-index o = (a1, ...,ax) € {1,...,d}* and we denote |a| = k . Then, for
F € S we define
ak

D;‘i,...,th = Dta11 ngF = aAth(Jél ._.6Atk70¢kF

and one has
D* : S — LP([0,1]%, 2([0,1]%), Leby,).

We use a duality argument in order to check that D is closable and we define
the extension of the operator. Finally we define on S the norm

k
p/2
1P = 1P+ S E((f 5 ih pdn ) ),
r=1 1T

la|=r
and we set
Dk7p _ g“”kp’ Dk:,oo _ mpDk,p and D> = mkapo.

The space D> is the “good” space where to work because one is able to iterate
the integration by parts formulas. It represents the analogues of C'*° in the
standard analysis. Moreover, D> is an algebra.

Example 2.4.1. [Refined Clark-Ocone formula] If F € D*? then one has
1 1 s
FzIE(F)—i—/ ]E(DSF)dWS+/ (/ ]E(D,,DSF|54})alWT)alWS
0 0 0

——
I

11 117

which tells us that any F € D*2 can be split as the sum of three terms: a
constant (term I), a Gaussian random variable (term II - notice that E(DgF)
is a deterministic square integrable function) and an iterated Ito integral (term
III). Let us prove the above formula. By the Clark-Ocone formula one has

1
F = E(F)+ / E(D,F| Z.,)dW,
0

E(F) +/01E(DSF)dWS +/01 (E(D5F|9‘S) —]E(DSF)>dWS
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Now, for each s, D,F € DY2, so that the Clark-Ocone formula gives
1
DSF - ]E(DSF) +/ E(DT‘DsF | :gfr’)dwr.
0

Therefore,

E(DGF | y@) - E(DSF)

E( /0 B(D,D.F | 7)dW, 7.)

/ E(D,D,F | Z,)dW,.
0

By inserting above, the statement holds. If F € D*°, in principle such a proce-
dure might be iterated infinitely many times and therefore F' could be represented
as the infinite sum of iterated Ito integrals (of any order) of deterministic func-
tions. This actually holds for any F € L*(Q,.#1,P) and is strictly connected
to the Wiener chaos expansion (for details, see e.g. Nualart [18] or Sanz-Solé

[19)).

A recurrence procedure based on the previous integration by parts formulas gives
(recall that op denotes the Malliavin covariance matrix and «yg its inverse):

Theorem 2.4.2. Suppose that Fl,...,F1c D™ and G € D>®. Suppose also
that o3 € D> and the non degeneracy condition (2.5) holds for F. Then for
every multi-index o one has

E(0af(F)G) = E(f(F)Ha(F, G)) (2.15)
where for |a| =1, i.e. a ={i} asi=1,...,d, Hy(F,G) = H;(F,G) is given by
Hi(F.G) = Y 8(GyiDFY) = =3 (G} LF + (D(GA}), DFY)).

j=1 j=1

and for || =k > 1
Ha(Fv G) = Hak (Fv H(Oélyn-»otk—l)(F’ G))

Moreover, Ho(F;G) € NpenLP. In particular, for any k and p, there exist q
and a constant C depending on k,p and d such that

_ag\ 1
|Ha(F,G)lp < CallGllia(1+ [1Fl,0) (1 -+ B(| detop| 1))

where « is such that |a] = k.

The proof is omitted. In particular, the last inequality comes form Holder’s
inequality and Meyer’s inequality (for details, see e.g. Nualart [18] or Sanz-Solé

[19]).

2.5 Diffusion processes

Let X denote the diffusion process solution to

t d t
X;':xwr/ bi(XS)ds+Z/ oi(Xs)dW/, i=1,...,m. (2.16)
0 =170
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Assumption 2.5.1. Suppose that fori=1,... mandj=1,...,d, J}bi have
sub-linear growth, belong to C*(R™) and the first and second derivatives are
bounded.

Notice that under Assumption 2.5.1 one has:

e =+ b(z) and x — o(z) have sub-linear growth and are Lipschitz contin-
uous on the compact sets;

e setting, for (z,2) e R™ xR™, i=1,...,mand j=1,...,d,

m

b'(x,2) = Z@wkbi(z‘)zk and 6§(x, z) = Z@wkaj- (z)2",
k=1 k=1

also (x,z) ~ b(z,2) and (z,2) — &(z, 2) have sub-linear growth and are
Lipschitz continuous on the compact sets.

We have then the following result.

Theorem 2.5.2. Let Assumption 2.5.1 hold. Then, fori=1,...,m, X; € D"
for any p. Moreover, for a fited ¢ =1,...,d and s > 0, the Malliavin derivative
process DﬁXti, is equal to zero if t < s and if t > s, it is the solution to

t

DIXj= oj(X)+ [ D 0. (X,)DiXFdr
‘ (2.17)

Proof. We sketch the main steps of the proof, which is a natural development
of the one seen in Example 2.3.8 (and in fact, in some sense it is given by formula
(2.9)). Let n € N and X™ = X be the Euler scheme of step 27", defined by

Xt = X (ty) + bi(X(tﬁ))zin +oy(X () Ay (2.18)

and X(0) = 2. We also interpolate on [t 1) by keeping the coefficients
oi(X(tF)) and b*(X (t};)) to be constant but we allow the Brownian motion and

the time to move. This means that X (t) solves the SDE

t d t
X(t) = x+/0 b(X’(TS))derZ/O o (X (15))dW?

where 7, = tF for s € [tE tF+1). Notice that X(t) € D%2. In fact, for t €
[tk tE+1) one has

n»’n

Xit) = '+ bi(X(tZ))%+bi(X(th))(t_t?’fb)
- ) o
+Y DT ENART + Y o (X(th) (W = W)
h=0 j=1 =
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So, X; is a quite smooth functional of the increments of the Brownian motion
on the dyadic intervals and increments of the type W} — t’” for t € [tk th+1).

n’'n

By the chain rule, one has

DIXit) = a +ZD%Z +bel(X(tj§))(t7tﬁ)
k—1 d . ‘
+ Y Do (X )AL ) + Df( (X)) (W7 = w,))
h=0 j—1 J=1 "
It immediately follows that D! X%(t) = 0 if s > t. If instead s < ¢, one has
DY (X (th)) = Zaﬂbl "MYDEX ()
D (a;l()‘((tg))AgJ) - Zaﬂa X (1) DEX () ALT 4 ot (X () DEAR

and similarly for the term in which the increment W; — Wi appears. Since
D!X4(th) = 0 for any h such that t? < s and DAl = lse[th, tﬁﬂ)lg:j, we
can resume by writing /

DEXi(t) = oi(X(r)+ / Zaqu (7)) DLX (7, )dr

d
+Z/ Z@Iqa (7,)) DL X (7, )dW,
j=17°%

So, in order to prove that X; € D™P, we have to prove that X () converges
in LP(Q) to X(¢) - and this is a standard result concerning the Euler scheme
approximation (see e.g. Kloeden and Platen [10]) - and that DX (¢) converges
in LP(Hy) to some limit, and this will be DX;.

Assume now that s is fixed and let Q4(t),t > s be the solution of the d x m-
dimensional SDE

QUi = / Zaquf QY (r)dr
+Z/ Zaﬂa QL (r)dW,

Notice that the solution Q%%(¢) exists: in fact, the [very] multi-dimensional pro-
cess (X(t),Qs(t)) as t > s is a diffusion process solving a SDE whose drift and
diffusion coefficients satisfy the usual properties allowing to get existence and
uniqueness of the solution (in fact, by Assumption 2.5.1 we get the Lipschitz
continuity on compact sets and the sublinear growth for the [very] multidimen-
sional drift and diffusion coefficient associated to the pair (X (t), @s(t))). Then
D!X(t),t > s is the Euler scheme for Q%(t),t > s and so standard arguments
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give HDSX(t) — Qs(t)Hp < Cp2*”/2,Vp > 1. A quick inspection of the argu-
ments leading to this inequality shows that €, does not depend on s. Define
now Qs(t) = Ds X (t) = 0 for t < s. Then, we obtain

]E(‘/O1 |Qs(t) —Ds)_((t)|2ds‘p/2) / Q4 (1) SX(deS‘p/z)

— 0 asn — oo.

<
— 2n/2

Therefore, X; € D''? and D, X (t) = Q,(t). Recall that for a fixed ¢, the path
s+ DyX(t) is an element of L?([0,1]) and so is determined ds-a.e. But we have
here a precise version @Q;(t) such that ¢ — Q(t), for ¢t > s, is continuous and
solves a SDE. So, from now on we will refer to the Malliavin derivative of X ()
as to the solution of (2.17) as s <t and D, X(t) =0for s >¢t. O

We can represent the Malliavin derivative also in another way. Let us first recall
the following important result.

Theorem 2.5.3. Let Assumption 2.5.1 holds. Then the dependence of the
diffusion X on the initial datum x is C* and setting Y; = 0, X;, that is

0X}
Dwd
then Y is the solution to the following SDE

thIJr/ab YderZ/aaj )Y dW3,

where 0b and Jo; denote the m x m matriz fields defined as

(0b)* = 0kb"  and (00;)* = Ool, i k=1,...m,j=1....d

}/tij alaj_l m,

respectively. Moreover, the inverse matriz valued process Z; = Yfl exists and
satisfies

d
Zt:I—/tZ( Z@a ds—Z/Z@a] $)dWY,
0

Jj=1

The proof is omitted. But, let us remark that it follows a technique similar to
the one used in Theorem 2.5.2: take the Euler scheme for X, prove that it is
C' in the initial datum, find the SDE associated to Y = 0X and then pass to
the limit.

We can now state the following result:

Proposition 2.5.4. Let Assumption 2.5.1 hold and let Y; = 0X;. Then, one
has
DXy = }/th:lU(Xs) ]-t>s~

Proof. For t > s set Q; = Y Z,0(X,). By Ito’s formula,

/ab Q,dr+Z/ do;(X 7,

which is, from (2.17), the same equation satisfied by D¢ X;. O
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Example 2.5.5. [Geometric Brownian motion-Black&Scholes model]
Let X solve the SDE

d
dX} = ' Xjdt + Y ol X{dW], Xg=a', i=1,...,m. (2.19)
j=1
Let us stress that p and o are supposed to be constant. A suitable use of the
Ito’s formula give the exact solution:

d

d
o 1 , o
szxlexp{(u’—§ g (0;)2)t+ E U;Wt]}, i=1,...,m. (2.20)
1 j=1

j=
Then, following Example 2.2.8, one can apply the chain rule, so that
DIX} =05 X] 1 g (2.21)

But we can arrive to the same result by using Proposition 2.5.4: Assumption
2.5.1 is trivially fulfilled and (2.20) gives

Xl Xm 1 m
0X0 =Yy = ding| T, | and then Y7t = ding | £ S
then, as t > s,
J X S -1 Xi o i yvi i yi
DIX] = (Y a(o(X))ks = 5 57 05 Xi = 0 X
k=1 s

2.6 Appendix. Wiener chaos decomposition

For the sake of simplicity of notations, we assume here that W is a one-
dimensional Brownian motion. For the general case, see e.g. Nualart [18] or
Sanz-Solé [19]. Recall that %, is the o-algebra generated by the Brownian
motion up to time ¢t and completed with the P-null sets.

For n € N, let H,, denote the nth Hermite polynomial, that is
(=)™ =2 d™ [ a2\ .
Hyo(z) =1, Hp(x)= e 2 dx—n(e 2 ) if n > 1. (2.22)
Such polynomials give the power series expansion in ¢ of the function F(x,t) =
exp(tx — %)

oo
2 22 (z—1)2 22 th d” (@02
F(xvt):em 7 —e'2 2 —e2 E 77<6 p) )
n! dt™

n=0

= Hy(x)t".
t=0
n=0

As an immediate consequence, for n > 1 one has:

H/(z) = H,_1(x) (2.23)
(n+1)Hpp1(x) = xHp(z) — Hy1(x) (2.24)
H,(—z) = (-1)"H,(z) (2.25)

Indeed, (2.23) and (2.24) follow from 0, F = tF and O,F = (x — t)F, while
(2.25) follow from F(—=z,t) = F(z, —t).

The link between Hermite polynomials and Gaussian random variables is given
by the following
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Lemma 2.6.1. Let (X,Y) denote a Gaussian r.v. on R?, withE(X) =E(Y) =
0 and Var(X) = Var(Y) = 1. Then

0 ifn#m
n!

As a consequence, {Hy}, defines a sequence of orthogonal polynomials in L*(R,
B(R), u1), where py denotes the standard Gaussian measure on R.

Proof. Notice first that the covariance matrix I' of the r.v. (X,Y) is given by
'y =T =1and I'is =Ty = E(XY). Now, for any s,t € R, one has
52 2
E(F(X,s)F(Y,t)) = ]E(exp (sX _ 5) exp (tY _ 5)) — oSLE(XY)

Taking the (n 4+ m)th derivative 070} for s =t = 0, on the Lh.s. we get

LOE(F(X, 5)F(Y,1))

E(@;‘F(X,s)’szoa,TF(Y,t)’ )

s=t=0 t=0

= nm!E(H,(X)H,(Y))

On the r.h.s. we easily have 970%es'ECXY)| o = 0 if n # m, otherwise
ororestEXY)| o = n!ePXY) and the statement follows. Finally, if X =Y,
one gets

/R Ho (@) i (2)pi () = - Lo

where 1 denotes the standard Gaussian measure on R, so that {H,}, defines
a sequence of orthogonal polynomials in L?(R, Z(R), u1). O

For ¢ € Hy we set W(¢) = fol $:dW; and we define span{eV(?); ¢ € H;} the
subspace of L2(Q,.%;,P) given by the r.v.’s which are linear combinations of
r.v.’s of the form eV (®). Then,

Lemma 2.6.2. span{e"(®): ¢ € H,} is a dense subspace of L*(Q, %1, P).

Proof. Tt is sufficient to prove that if X € L?(£,.%;,P) is such that E(X eV (#)
=0 for any ¢ € Hy then X = 0 a.s. In fact, since ¢ — W(¢) is linear, one has
also

E(Xezz';l /\iW(¢i)) =0

for any m > 1, A\y,..., A\, € R and ¢1,...¢,, € Hy. Therefore, the Laplace
transform of the random vector (W(¢1),...,W(¢y)) done w.r.t. the signed
measure Px(A) = E(X14), A € %, is null. Then, (W(é1),..., W(¢)) has a
null law under Px, that is

E(X1w(p),...w(¢m)en) =0 for any B € R™.

Consequently (recall that (Wy,,..., Wy, ) = (W(¢1),..., W (o)) when ¢;(t) =
1,<;,), E(X1,4) =0 for any A € %, that is X =0 a.s. O

We set now

=R, I, =span{H,(W(d)); ¢ € Hi} ifn > 1. (2.26)
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The set S, is called the nth Wiener chaos. By Lemma 2.6.1
E(Hn(W(0))Hmn(W(4))) =0 if n#m

for any ¢, € Hj, so that /%, and .57, are orthogonal subspaces of L?(2, .71, P)
if n #£ m. Moreover, the following important result holds

Theorem 2.6.3. [Wiener chaos decomposition] The space L?(2, %1, P)
can be decomposed into the infinite orthogonal sum of the subspaces ¢, :

L*(Q, 71,P) = P .
n=0

For F € L*(Q, .%1,P), the representation F =Y 7 | F,, with F,, € 7, is called
the Wiener chaos decomposition of F.

Proof. It is sufficient to prove that if X is orthogonal to each %, then X =0
a.s. In particular, one has that E(XH, (W (¢))) = 0 for any n and ¢ € H;.
Without loss of generality, we may assume that ||¢||z, = 1. Now, 2™ can be seen
as a linear combination of Hy(x) for ¥ < n and then we have E(X (W (¢))") =0
for each n, so that

E(Xe" (@) =0

for any ¢ € H;. By Lemma 2.6.2, we immediately obtain that X is orthogonal
to L*(Q, #1,P), and then X =0 a.s.

As a consequence, we obtain

Proposition 2.6.4. The set S of the simple functional is a dense subset in
L?(Q, 71,P).

Proof. In view of the Wiener chaos decomposition, it is sufficient to prove that
any r.v. in %, can be approximated in L?({,.%#1,P) by a sequence of r.v.’s in S,
for any n. This in turn follows by proving that any r.v.’s of the type H, (W (¢))
is the L?(Q,.#1,P)-limit of r.v.’s in S. As a consequence, it is sufficient to
prove that all the r.v.’s of the form (W (¢))", with n > 1 and ¢ € Hy, can be
approximated in L?(Q),.%1,P) by a sequence in S. Now, let us prove this last
assertion.

Since ¢ € H;, there exists a sequence piecewise constant functions {¢n}n of

N
the type ¢y (t) = Zi:al Ck‘vN]'te[fk i1y such that ¢y — ¢ in H;. One has
NN
2N 1

W(on) = Z cr, N AN
k=0

so that (W(¢n))™ € S for any N. We show now that (W (¢n))" — (W(¢))" in
L2(Q, #1,P) as N — oo. For this, we use the estimate®

" — 2™ < nly —z|(|z] + |y))" "

4For any differentiable function f one has f(y) — f(z) = (y — x) fol fl(x+ tly — x))dt.
Taking f(§) = &™, one gets |y — z"| < |y — z| foln\x +t(y — x)|*~1dt. By recalling that
|z +t(y — z)| < |z| + |y| for ¢ € [0, 1], one obtains the desired inequality.
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So, we obtain

E(((W(@)" = W(ex)")’)

IN

n?E(|W(9) - W(ow)? %
X(W(@)] + W (o)) *"Y)
n? JE(W (6 — on)l) x
< \E((W(8)] + W (6x)])4-D)
Cor[E(W (6 — o)1) x
<\ JE(W(@)[40=0) +E(|W (¢x)[£n-D)

IN

IN

where C), denotes a suitable positive constant. Now, for @ € H; one has
E(|W ()[¥) = di||t||5;, where dj, denotes the moment of order k of a standard
Gaussian r.v. Therefore, by setting again C}, as a suitable positive constant, we
get

B(((W(0)" ~ W(6x))")?) < Cullo — onli, » (10142 + loxl) "

which converges to 0 as N — oo, and the statement holds. O
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Chapter 3

Applications to Finance

We describe here only some cases of use of Malliavin calculus techniques in
Finance, giving representation formulas for the replicating portfolio, for the
sensitivities and the conditional expectation. The last two ones are used in
practice to set up Monte Carlo methods: for the computation of the Greeks and
to build up Monte Carlo algorithms for the pricing of American style options.
Let us stress that we reduce here our discussion to the Gaussian Malliavin
calculus. In fact, we do not consider other sources for the noise. Nevertheless,
it is worth to say that many recent research papers in Finance allow the presence
of jumps in the model for the underlying asset prices and, in particular, jump-
diffusions are taken into account. In such a case, one could develop also a
Malliavin calculus in the direction of the jump times and/or the jump amplitudes
of the compounded Poisson process modelling the noise coming from the jumps.
For details, we refer to the papers [2] and [4] by Bally, Bavouzet-Morel and
Messaoud.

3.1 The Clark-Ocone formula and the replicat-
ing portfolio

Let {S;}; denote the underlying asset price process, evolving following

d
S} = p'(S)Stdt + Y oi(S)SidWi, i=1,....d (3.1)

Jj=1

with Sy = z. If the drift term p and the volatility matrix field o are assumed to
be bounded and Lipschitz continuous, the sde (3.1) admits a unique solution.

From a financial point of view, we assume that the short interest rate process
is constant, that is 14 = r > 0, o is invertible and furthermore, the matrix
a(x) = oo*(x) is uniformly elliptic. Under these assumptions, there exists a
unique equivalent martingale measure P*, under which the discounted asset
price process is a martingale. Therefore, we can assume to work directly under
P*, so that the underlying asset price process S; and the associated discounted
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one S; = e~ "tS, evolve as

d
ds; = rSidt+Y oi(S)S;dWi, i=1,....d (3.2)
j=1
~ . d . ~ . -
as; = Y oi(S)Sidw}, i=1,....d (3.3)
j=1
respectively. By Ito’s formula, as ¢ = 1,...,d one has

4 , t 1<
Sy = x%xp(/ (r—§Za;-(S du+/ dWJ>
0 =
zt exp / ZO’ du—l—/ dW]>

Such formulas show that if x € ]Rff_ then S; and S't take values in Ri.

Let (H,T) denote a European option, that is: 7' is the maturity time and H is
a non negative .#p-measurable random variable representing the payoff of the
contingent claim. A replicating portfolio for such an option is given by a process

O rt+z¢tsl

St

such that:

- [technical assumptions] ¢°, ¢*, . .., ¢¢ are adapted processes such that ¢° €
L3([0,T)]) a.s. and ¢* € L*([0,1] x Q) for any i = 1,...d;

- [self-financing] dV; = r¢%emtdt + 0| ¢idSi, t < T
- [admissibility] V; > 0 a.s. for a.e. ¢t <T;
- [replicating] Vi = H a.s.

Now, if H is square integrable! a replicating portfolio for (H,T) exists and is
given by
Vi=E(e " TYH|.%).

The value V; is also the (non arbitrage) price of the option (H,T') as seen at time
t. This closes the problem of the price, but what about the hedging problem?
That is, how to find the shares ¢°, ¢!, ..., ¢% to invest in order to replicate the
option? The answer is the following.

First, the discounted portfolio V, = e~ "V, satisfies the sde

d
AV = ¢1dS; = Z Z $i0’ (S1) StdW . (3.4)
i=1

Jj=11i=1

IWe stress that we are working under the risk neutral measure, so the square integrability
and the further expectation giving the price have to be intended under such a measure.
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Moreover, in the developments giving the non arbitrage price of the option, one
has that ~
Vi =E(e""TH|.%)

is a square integrable Brownian martingale, so that it can be represented as

V0+/ Zcbﬂ PALE] (3.5)

where ®° is an adapted process such that ®¢ € L2([0,1] x Q), i =1,...,d.
Therefore, (3.4) and (3.5) give

d
ol =) ¢oi(S)S j=1,....d
=1

so that
Zcpg o5 (S) i=1,....d (3.6)
t j=1
Notice that once ¢',...,¢? and V are known then also ¢ is known:

d
¢ =Vi— Y 4iSi.
=1

So, the only unpleasant point is that (3.6) gives the replicating strategy ¢!, ...,
¢? in terms of the processes ®!,..., ®? which in turn are given by the repre-
sentation theorem for Brownian martingales only in an abstract form. But, if
the payoff satisfies some regularity properties in Malliavin sense then the Clark
Ocone formula allows to conclude. In fact,

Proposition 3.1.1. If H € D"? then

e—r(T—t)

d
QS;:TZ (DH|gt) 71(5}5) 1=1,...,d
t j=1

Proof. By the Clark-Ocone formula one has

e"TH =E(e""H) + —’“T/ ZE DIH | F)dW!

t d
V,=E(e""H|#) =E(e""H) + e_’"T/ > E(DJH|.Z,)dW].
0 =1
Then, in (3.5) one has
o] =" "E(DIH|F), j=1,...,d, t€]0,T]

and (3.6) gives the result. O
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As an example, suppose that H = ¥(Sr). This is a case in which the option
price can be written in terms of a price-function. In fact, by using the Markov
property, one has

Vi= P(tvst) where P(t, f) = e_T(T_t)E(\I/(S;’g)),

Now, if one requires that o € Cf then S € D"* and if moreover ¥ € C}(R%)
then H = ¥(S7) € D12, So, in this case one has

d
DI{H = 0,%(Sr)D]S}.
k=1

Now, from Proposition 2.5.4 one has D;Sr = YrZ;6(S;), in which Y = 95
denotes the first variation process of S, Z = Y ! and & denote the diffu-
sion coefficient associated to S, that is 6%(x) = o}(x)z’. Now, setting A(z) =
diag[z?, ..., 2% one has 6(x) = A(z)o(z), so that

DtST — YTZtA(St)O'(St), t S T

and then

d . .
DIH =" 8,0(S7) (Yr ZeM(St)o(50)) "™ = (VU(Sr)YrZeA(S)a(Sh).
k=1

By Proposition 3.1.1, as ¢ = 1,...,d the replicating strategy is then given by

) e—r(T—t) d .
=g ZE((V\II(ST)YTZtA(St)a(St))] | yt)a;il(st)

j=1

Now, we have

' e—T(T—t) 1 i
o = TIE((V\I’(ST)YTZtA(St)U(St)U_ (St)) |yf)
t
efr(Tft) i
= TE((V‘II(ST)YTZtA(St)) \ﬁt)
—r(T—t) 4 ;o
= S B((Ve(snve) | 7 2]
t q=1
and finally )
(bi _ e—r(T—t)E<(V\IJ(ST)YTZt)Z |yt) (37)

But we can go further in the interpretation of the strategy. In fact, notice that
_ — 5 0T _ g otSIT _ o gt 0,2 _ 5 ohé
Yr =0Sr = 0,577 = 0,877 = 0:S7 |§:Sg,z 0,8, = 0eSy |§:SS,I Y,

so that
YrZy = 0¢S7*|e_goe-
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Therefore, by using the Markov property in (3.7), we get
o = e"“(T_t)IE((V@(S%g)ags%g)i|5:sf*” ‘yt)
= T IE((VU(SE)ST) ) |-
= 6_7'(T_t)5giE(‘I’(S;£))|g:s§“'

that is 4 , 4
¢; = A'(t,S;) where A'(t,&) = 0¢i P(t,§)

P(t,&) being the price-function associated to the option H = ¥ (St).

By resuming, the Clark Ocone formula gives the replicating strategy in terms
of Malliavin derivatives. If the payoff function ¥ is smooth enough then the
replicating strategy is given by the Delta function, a fact which is known also
for payoff functions which are not smooth (e.g. for digital type options).

3.2 Sensitivity computation

Let us first give a brief informal introduction to the concept of financial Greek.
Suppose to have a financial asset S; and that its dynamic under the risk neutral
measure follows

dS; = rdt + (Sy)SedWy, Sp =z, (3.8)

where W is an one dimensional Brownian Motion and for simplicity we assume
that the spot rate r is constant.

Consider a European option whose payoff depends only on the final value of the
underling asset price, that is it is a function of S7. The price of such an option
of maturity 7" and payoff function ¢ is given by

IT = E(e "T¢(S7)). (3.9)

A Greek is the derivative of the option price with respect to a prescribed pa-
rameter, i.e. it is a measure of the sensibility of the option price with respect
to such a parameter.

Greeks are very important in Mathematical Finance because they could be
used to measure the stability of the option (see e.g. the Vega Greek, that is the
derivative of the option price with respect to the volatility ) or to describe the
replicating portfolio (see e.g. the A, i.e. the derivative of the option price with
respect to x, that is the initial value of \5).

In general, if we denote with « the parameter we are interested in, one aims to
compute

DIl(e™ T (ST)). (3.10)

If we can use the rule of interchange between expectation and differentiation,
we would have

DIl = 0,E(e™ " p(S7)) = E(e " T ¢/ (S7)0aST). (3.11)

(in which we have supposed « # r, otherwise also the derivative of e="7 has
to be taken into account). When this expression does not have a closed form
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formula, but ¢ is differentiable, Monte Carlo simulations or finite difference
methods can be used in order to approximate the Greek directly using (3.11).
Unfortunately in various cases the payoff function is singular and in this case
the finite difference method do not work very well. Then one can resort to the
use of the “Malliavin integration by parts formula”. In this case we obtain

0Tl =E(e "¢ (S7)0aS7) = E(e " ¢(Sr)H (ST, 0.57)), (3.12)

Moreover, if the MIbP formula holds then the equality holds for any smooth
function so that if the function ¢ is not differentiable but can be suitably ap-
proximated by differentiable functions, then the equality between the left and
the right hand side in (3.12) continues to hold, so that one has

DIl = E(e " T ¢(S7)0,), (3.13)

with O, = H(St,0,57). Now, if the weight O, can be written or at least ap-
proximated in a good way and in particular, can be simulated, one can perform
a Monte Carlo method, giving

_ Q
erT

all = =3 g(58)01),
Q =

where {S%.}, and {©%}, denote independent replications of St and ©,, respec-
tively and @ has to be chosen sufficiently large.

3.2.1 The delta

Let X here denote a diffusion process, solving to
X/ =2 +/ b (X,)ds + Z/ oH(X,)dWi, i=1,....d. (3.14)
0 0
Jj=1

Notice that we are supposing d = m, i.e. X and W take value both on R?.
What we are going to state can be generalized also if such a condition does not
hold. But, for the sake of simplification, we avoid such a complication.

Proposition 3.2.1. Let Assumption 2.5.1 hold and, in addition, suppose that
the diffusion coefficient o is invertible and that E(fOT lo~H(Xs)Ys[?H0ds) < oo
for some & > 0, in which Y denotes, as usual, the first variation process (Y;* =
Ok X}). Let G € DV be a r.v. which does not depend on x. Then for any
measurable function ¢ with polynomial growth one has

0, E(op(X7)G) = E(p(X7)0F), i=1,...,d,
d T T
a_ 1 oL i ‘- el ZFAY .
of = 53 (¢ [ xovytawl - [ plGle (xgvas). (315)

T
{=1

Proof. Suppose first that ¢ € C}, the general case to be deserved later. Then,
we can pass the derivative inside the expectation, so that

0, E(o(Xr)G) = B( i O d(X7) 0 XIG) = B( i O 8(X7) YI'G)
k=1 k=1

45



By using Proposition 2.5.4, Y7 = Dy X700~ 1(X,)Y for any s < T, and then

d d
D 0w d(Xr)YE = 0 d(Xr) (DeXro ™ (X)Yo)H

k=1 k=1

d d
= Z 0px (X) Z DﬁX%(J_l(XS)YS)Zi
k=1 =1

d d
= 332X DL X (o (X))

{=1 k=1

d
=) Dip(Xr)(o ™ (X,)Y)"
{=1

in which we have used the chain rule. Therefore,

d T d
) 1 )
D 0ud(Xp) Vit = [ D 0mé(Xr) Vi ds
k=1 0 k=1
1

T d
= > Dig(Xr) (o7 (X,)Ys) " ds.
0 ¢=1

Now, by applying the duality we get

d
E( )" 0,00(X1) YHG) = E(6(X7)6F)

k=1
where

of = Zdjéf(}wl(x.)ma)
(=1

Finally, 0 ~1(X,)Y; is adapted, so that

d

1 T . T ,

of =13 (¢ / (0~ (X,)Y,)idW! — / D!G(o~ (X,)Y.) " ds).
=1 0 0

If ¢ is not in the class C,}, the statement follows by using standard density ar-

guments: one can regularize ¢ with some suitable mollifier and by using density

arguments, the statement follows. O

As a consequence, in the Black and Scholes model we obtain

Corollary 3.2.2. Suppose b'(z) = p'z® and O’g(l‘) =02, 4,5 =1,...,d, with
o invertible. Then the weights ©;’s in Theorem 3.2.1 are given by

c_ 1 —1y ¢ T .
07 = Z(O’ )ei (GWT DsGds), i=1,...d.
0

d
Tt
=1
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Proof. Setting I'(z) = diag[xl,...,de one has o(z) = I'(z) o, where o is
the volatility matrix, so that o~ (X ) = o' 1(X,). Moreover, since Y/ =
0,3 X!, we can write shortly Y, (Xs) T ~Y(z). Therefore

U*I(Xs)Ys—Ufll“ HX)T(X) (@) = 07T (a),

so that

and the statement holds. O

As a consequence, one has

Proposition 3.2.3. Suppose bi(z) = piz® and a{(x) = oz, 0,5 =1,...,d,
with o invertible. Then for any ¢ with polynomial growth, fori,j =1,...,d one
has

0, E(¢(X1)) = E(@(X7)AT) 02, E(d(X7)) = E(¢(X1)AT;)

where
T
A = s Y (0 Wy (3.16)
(=1
d
R VO S S o O [ TV LR CRT)
i T Toigi £i £j lzjxi i .

Proof. The proof of (3.16) is immediate from Corollary 3.2.2 applied to G = 1.
As for the gamma, notice that

02, E(6(X1)) = 02 E(3(X0)AR) = 0 B(6(X1) - 4'A2)

Now, G; = xiAiA is independent of x, so that

02 i E(6(X7)) = %aij((b(XT) Gi) — 1i:j%E(¢(XT) G)

and in particular,
1
Gy A
By applying again Corollary 3.2.2, one immediately obtains (3.17). O

Let us write explicitly the weights allowing to represent the delta and gamma
Greeks in dimension d = 1, 2 for the Black and Scholes model.

- Dimension d = 1. Here, one immediately obtains

AR =

WT T A 1 AA
xTo and A" = (A%)" Tz202
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- Dimension d = 2. In dimension 2, the volatility matrix is usually written as
a sub-diagonal one:

(2 i)

o2p  02y/1—p?
where o; stands for the volatility of the ith asset, i = 1,2, and p € (—1,1) gives
the correlation between the Gaussian noises. Then,

—1 1 g2 1—p2 0
ol —
01024/1 — p? —02p o1

so that
AA_W%‘/l_ 2—W%p and  AS — W%
1 — 1 2 .
z'Toy 22To9/1 — p?

As for the gamma weight, one has

1 1 1
AL = —(AR)? - — —A®, =12
T( ) T(x")202y/1—p*
1 p
AL, =AL = —ASAD +
12 21 T A2 T2 220,09r/1 = 2
For example, for a digital change option, we have
price = e‘”IE*(lS%F>S%)
and the delta and gamma Greeks are given by
Ai = 6$L <€_rtE*(]_S’;>S%)) = e_rtE*(]_S’;>S%A1A) 1= 1, 2
Lij = 9%, (e_TtE*(ls;>s?F)) = e "B (Lo o2 i) 0,5 =1,2

where E* denotes the expectation under the risk neutral measure (i.e., the one
under which (S, 52) evolves following the Black and Scholes model with u' =

pr=r).

3.2.2 Some other examples

We discuss here some examples giving sensitivities for the price of suitable Eu-
ropean options.

Delta for Asian options in the Black&Scholes model (d = 1)
Assume that S follows the Black Scholes dynamics:
dSt == ’I"Stdt + O'Stth, So = X.

Here, we compute the delta weight for Asian type options, that is options whose
payoff is a function ¢ of the time mean over [0, T: % foT Sudu. For simplicity,
set F = £ fOT Sudu. One has

0:E(¢(F)) = E(¢(F)0.F) (3.18)
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where

1 [T 1 (Ts,
F=_ .S, du = — [ =% du.
T/o 0,8, du T/o . n
1 T 1 [T o (T
F=_-D, dt = — | D,S;dt = — dt
= /Ost T/u S, T/u S,

Now, one has

and
T 2 T d 2 T t
(/O Sudu> - /0 dt((/ S du) )dt / (/O S du)Stdt
/ / Sidtdu = —/ SuDFdu.
Therefore
1 [T 2 T
O F = — Sudu = ———— S.D,Fdu
Tz ox [ Sudu
and
¢/ / D Fdu = 7/ u (F)du

By inserting in (3.18) and by applying the duality one gets

B (P F) =B( [ 2P DoFan) = E(6(A%)

ox fo Sydt
where 9
A =5 ().
ox [ Sydt
By using the property for product, we get
21 1 r r 1
L / Stth—/ D (g — ) dt]
ox _IO Stdt 0 0 0 Stdt
21 1 T T Dy [l S.d
= == / Stth+/ Stwdt}
ox 'f Stdt 0 0 fO Stdt 2
27 Sud
_ 2 / S,dW; + / Staft — dt]
oxl [T S,dt (Jof Sydt)?

Consider the last addendum. One has:

T T T T
S.d 2
/ Sta‘lj;w Cdt = — / —li((/ Sudu) )dt:g.
o (Jy Sedt)? (Jy Seat)2Jo  2dt\\J, 2

Therefore

T
AAzi[ _ / SiaW, + 7|
ox fO Stdt 0 2
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Moreover, from dS; = rSidt + 0.S;dW; we get

T 1 T
/ Sy dW; = — [ST —x— r/ Sudu]
0 a 0

so that

O'IOT Stdt 2

oTF 0+ 2

AL _ 2 [ST—x—rfOTSudu+a}: 2 [ST—JJ r a}

ax ax

Sensitivity w.r.t. the correlation in a stochastic volatility model

Assume that S evolves as the following stochastic volatility version of the Black
Scholes dynamics:

dSt = ’I"Stdt + ’I’]tStth17 S() =T
dny = k(0 — ny)dt + BAWE,

where W' and W2 are two correlated Brownian motions with
d<W17W2>t =pdt, pé€ [717 ”

We consider a digital option that has payoff 1[ K,00)(ST) and we want to compute
the sensitivity of the option price w.r.t. p.

In this case is not possible to use Proposition 3.2.1 directly. So, one can proceed
as follows.

First, one sets

Wi =T BBl WE= B
where B! and B? are two independent Brownian Motions (in fact, if B =
(B, B?) is given by the inverse transformation, it is straightforward to show

that it is a 2-dimensional Brownian motion). Therefore, the SDE for S and n
becomes

dS; = rSydt +1:S;(\/1 — p2dB} + pdB?), Sy ==z
dny = k(0 — n,)dt + BdB?.

Notice that St can be written as (apply Ito’s formula)

t 1 T T
ST = xexp {/ (r— Eni)ds + 41— ,02/ nidB} + p/ ntdBtZ}. (3.19)
0 0 0
Now, for any smooth function ¢, one has
9,E(¢(ST)) = E(¢'(S7)0,ST). (3.20)

By (3.19) one gets easily

T T
_ 2 P 1\ _
9,87 = St ( /0 1B = /0 ntdBt) SrG, (3.21)
with

T T
14 1
G:/ dB2—7/ dB}. 3.22
o Neaby T2 p2 o naby ( )
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We use the chain rule -D exp(F) = exp(F)DF}- the relation D (fOT GrdW}) =
@(s) and the relation (3.21) in order to obtain

T T
DiST = STD; (\/ 1-— p2/ ntdBtl + p/ ntdBtQ)
0 0

1— 2
= Sr(V/1=p2 x 1) = 8,57 % (3.23)
nsy/'1— p?
so that
1 / 1 / Ns\/1 — p2
D;¢(St) = ¢'(S7) Dy ST = ¢'(S1)9,5T —
Therefore
& (Sr)0,87 = — 2 Dlg(Sy) = / Dl(Sr) d
2 Y -t T\/l—i

We use now the duality formula with respect to B' and we obtain
B(¢(51)9,5r) = —=—E( | " Dio(sn) %i5) = B(o(51)0,)
P T/1 = p2 0 s s P

where

1 G
o=t (9
PoryT=p2 \7n
Now, by using the properties of the Skorohod integral of a special product and
for adapted processes, one has

51(%) = G51<%) - OT D;Gids = /OT nrldB! — OT D;Gids.

Moreover, it easy to see that

so that, in conclusion, we can say that

9pE(¢(S7)) = E(¢(51)0),)

with ’
T
@p:G/ n7tdBt + —L
0

V1—p2
Sensitivity w.r.t. the volatility for change options

Let S' and S? be two financial assets following

dS} = rStdt + o1 StdW}E, S} = 2t
d4S? = rS2dt + 05 S2AW?, SZ = 2
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where W1 and W? are two correlated Brownian Motions with d(W?!, W?), =
pdt, p € (—1,1).

Consider an option which pays one dollar if SL > SZ, i.e. the payoff is ¢ =
1, si>s2). We want here to compute the sensitivity w.r.t. the volatility, for
example J,111.

First we write

Wi = /1 —p2B} + pB}, Wi =B}

where B! and B? are two independent Brownian Motions. Then W' and W?
are Brownian Motions with correlation p and the SDE associated to (S!, S?)
becomes

dS}! = rStdt + o1 S} (~/1 ~2dB} + def), St =g
dS} = rSidt + 09S?dB?, S? = 2?

At time T one has
St =alexpq(r— 307 )T+ 01\/1—p?B} + alpB%}
53 =a%expq (r— 303 )T + O'QB%)}

We now put

St 2t 1
St = ng = ﬁexp{i(af — 0T +01y/1 — p?Br 4 (01p — O'Q)B%}7 (3.24)
T

so we want compute

aolE(]-[l,oo)(ST))'
Setting IT = E(¢(S7)), we have

0y, 11 = E[¢(ST)00, ST]. (3.25)
Notice that
Doy ST = S7(\/1 — p2Br + pB7) (3.26)
then
Oy ST
St = L . 3.27)
' (V1 "B} +pB3) (
Now,
D!Sy = SrDY(o1\/1— p?Bi + (o1p — 02) BZ)
(011 —p?)
= St (011 = p?) =05, 5 )
T (01 p?) T( ,71—p2371«+p3%)
so that

01\/1 7[)2
V1 —pQle«—FpB%.

D(¢(Sr)) = ¢/(S7) Dy St = ¢/(S1)052 St
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Therefore

: _ V1—p*By + pBj
¢ (ST)aKHST - Ds (¢(ST)) Ulﬂ . (328)

By using the duality formula with respect to B!, we have

T M1 — 9onl 2
E(¢'(S7)0s, ST) :E<%/O D‘g(d)(ST)); L _ppZBT+pBT)ds)

1V1
1

= ——F——RE(¢(57):1(G))

Toi1y/1— p?
G =+/1—-p?BL + pB2.
Now, 61(G) = Go1(1) — fOT D!Gds and since D!G = /1 — p21,.1 we obtain
01(G) = (V1= p*Bp + pB7)Bp — T\/1 - p2.
In conclusion, 9,,II = E(¢(S7)0,) with

o - W1=p*Br+pBt)Br —TV/1-p?

7 Toi1/1— p?

3.3 Conditional expectation

where

To avoid a too technical machinery, we consider here only the case of the Black
and Scholes model. The general case can be considered as well, see e.g. the
paper by Bouchard, Ekeland and Touzi [6].

Consider the risk neutral world, so that X is driven by

d
dXi = (r—n")Xjdt+> oy X{dW}, with Xj=a', i=1,....d
j=1
where: z = (21,...,2%) € ]Ri denotes the vector of the initial asset values;

7 is the (constant) spot rate and 7 € R? being the vector of the dividends
of the option; o denotes the d x d volatility matrix which we suppose to be
non-degenerate; W is a d-dimensional correlated Brownian motion.

Without loss of generality, one can suppose that ¢ is a sub-triangular matrix,
that is 0;; = 0 whenever ¢ < j, and that W is a standard d-dimensional Brow-
nian motion. Thus, any component of X; can be written as

Xi = ziexp (hit—i—Zaiij), i=1,....d (3.29)
j=1
where from now on we set h* = r —n’ — %Z;’:l afj, i=1,...,d. The aim is to

study the conditional expectation, that is

E(®(X:) [ Xs = a),
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where 0 < s < ¢, a € R‘i and &,(RY) denotes the class of the measurable
functions with polynomial growth, that is |®(y)] < C(1 + |y|™) for some m.

In few words, to this goal it suffices to consider an auxiliary process X with
independent components for which a formula for the conditional expectation
immediately follows as a product. In a second step, such a formula can be
adapted to the original process X by means of an (invertible) function giving
X from the auxiliary process X.

3.3.1 Diagonalization procedure and first formulas

To our purposes, let us set
Xi = ziexp (hi t aithi), i=1,....,d (3.30)

As a first result, we study a transformation allowing to handle the new process
X in place of the original process X:

Lemma 3.3.1. For any t > 0 there exists an invertible function Fy(-) : Ri —

R% such that X; = Fy(X;) and X; = G(X;), where (set ][] def 1)

j=1 =

i—1

i—1 : - . —~
i i Y pig\%i : i Y ANCEY
Fi(y)=y H(E(z h”) and Gi(z) = 2 (Ee ht) (3.31)
j=1

j=1

asizl,...,dandy,zERi,where
~ 05 . . ~ o~
oij=—,4j=1....d, and o=0 (3.32)
Ojj

The proof is straightforward and we omit it. Let us add a further result.

Lemma 3.3.2. Suppose d = 1: X; = xe*'TWe being p € R, z,0 € Ry and
W a one dimensional Brownian motion. Suppose f,g : R — R, where f has a
polynomial growth and g has a continuous derivative. Then for any 0 < s < t
one has:

B (X0 9/(X.)) = E(F(Xa(X) 2

where AW,y = (t — 8)(Ws+0s) —s(Wy —Ws). As a consequence, for any fized
a € R, the following formulas hold:

9(Xs — o)

E(f(X:)g'(Xs — ) = E(f(Xt) os(t — 8)X,

AWS,t).

Proof. The proof consists in applying twice the MIbP formula, first on the
time interval [0, s] and secondly over [s, t].

1) MIbP formula over [0, s].
One has D, g(X;) = ¢'(Xs)o X, for any r < s. Therefore,

* D,g(Xs)
(X)) = | 2 g
g'(Xs) /O osx.
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and by duality,

E(f(X0)g'( / D,g(x

Y o

in which we have used the fact that §(F) = F&(1) — [ D,Fdr = FW, —
Jy DiF dr applied to F = f(X;)/(0sX,). Now, recalhng that D, X, = 0X, for
r < u, one obtains

Then
B(/(X1)g'(X.)) = E(F(Xg(X) "2 7)< B(F(Xg(X) L)

We have now to handle the term (*), which is “bad” because of the presence of
the derivative of f: we are now going to drop it.

2) MIbP formula over |[s,t].

By using arguments similar to the ones developed above but over [s,t], we can

write
B(r (e yt) = ([ (Q(X)D £ dr)

X t—s)X
(Xs)
= E(rx ( S>XS))
- {0250 i)
in which we have used the fact that D,.(g(X )/( ( $)Xs)) = 0forany r € (s,t).

By inserting this term in place of the term (*), in conclusion we obtain

=y al)

(' (X.) £(X0) = E(F(X0a(X) [ 5=

Let us observe that to achieve this representation one has implicitly assumed
that f is regular (C!), which is not true in general. But this is not really a
problem: one can regularize f with some suitable mollifier and by using density
arguments, the statement follows. m|

We are now ready to state the main result of this section

Theorem 3.3.3. [Representation formulas I: without localization] Let
0<s<t, ®€&RY) and o € RY be fiwed. Set: Xy = G(Xs) and a5 = Gs(a),
G, being defined in (3.31), H(§) = 1eso, £ €R, T as in (3.32) and

AW, = (t—s)(Wi+ous) —s(W) —W0),  i=1,....d (3.33)
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Then, the following representation formula for the conditional expectation holds:

B(B(X)| X, = a) = = 1)
where
T, [f]() (deaf:ﬁgme (334

i=1
Proof. Let us set ®;(y) = ®(y) = PoFy(y), y € RY, being F; defined in (3.31).
Since X; = Ft(f(t) for any t, one obviously has
E(Q(X¢) | Xs = a) = E(®(Xy) | X, = Gs(a)),
(recall that G5 = F; ). Thus, setting &s = G4(a), it is sufficient to prove that

(3.35)

where

Let us firstly suppose that <i>(y) = él(yl) e &)d(yd)7 that is ® can be separated
in the product of d functions each one depending only on a single variable and
belonging to &,(R). In such a case, one obviously has

Xi=al).

Now, let us consider E(®;(X?)| X! = &), for any fixed i = 1,...,d. Let {hy}n
be a sequence of C'* probability density functions on R weakly converging to
the Dirac mass in 0 as n — oo. Then one can write
- e . E(i)l)z'z hnX'i_w‘
E(®,(X]) | X} = }) = tim X (X = 0)
wse T B(ha(X] - 1))

Setting H,, the probability distribution function associated with h,,, we have to
handle something like E(f(X?) H/ (X! — a)). Since the process X is of the
same type studied in Lemma 3.3.2, we can apply it:

o8t — s)f(; Sty
where AW!, = (t — s)(W{ + 0i;s) — (t — s)(W} — W!). By using the Lebesgue
dominated convergence theorem, one has

d
E(®(X,)| X, = &) = _HJE(@(XZ)

E(f (X)) H, (XS - 62) = E(£(XD)

Ho(Xi—al) )
Toslt— g\ Xi st
E(®(X})|Xi=a)= lim — ;yé(t —5)Xi
n— 00 i i .
0iis(t — 8) X

E(®:(X0)

M@d@iﬁ*ﬁ%Aga
HXi—al) .
E(a” (t—s)Xi AW, t>
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where H(§) = lims_,o Hs(§) = 1¢>o. Therefore,

d T ~
0 =TI X = at) = 220D

i=1

o)}

so that (3.35) holds when ®(y) = ®1(y1)- - Py(yq). In the general case, the
statement holds by using density arguments: for any ® € &(RY) there exists
a sequence of functions {®"}, C &(R?) such that ®*(X,) — ®(X,) in L?
and such that each ®" is a linear combination of functions which separate the
variables as above. Since representation (3.35) holds for any ®", it finally holds
for ® as well, as it immediately follows by passing to the limit. o

3.3.2 Localized formulas

Let us now discuss formulas involving localization functions. If we restrict our
attention to product-type localizing function, then we can first state a localized
formula for the operators T, ([ f](c).

Set £ = {¢ : R — [0,400); ¢ € C*(R), 9(+00) = 0and [ o(t)dt = 1},
and %y = {1 : R = [0,+00); ¥(z) = Hle i (2Y), ¥; € A, for any i}.

One has

Theorem 3.3.4. [Representation formulas II: with localization] For any
0<s<t, ®€é&, acR: and for any ¢ € %, one has

E(@(Xt) ‘XS _ a) -

where

(H-W)(Xi-a
oiis(t — s)Xi

T, (f1(0) = B(£O) T] [9s(X. - ) + Jaws]) (330)

i=1

where U; denotes the probability distribution function associated with 1;: ¥;(y)
= [Y _wi(§)deE.

Proof. The proof follows from the elementary fact: in dimension d = 1, Lemma
3.3.2 gives

E(f(Xe)g'(Xs —a)) = E(f(Xe) (9 — 9)'(Xs — ) + E(f(Xe) Y (Xs — @)

= E(f(X)(g- )X, - @%)
+E(f (X¢) ¥(Xs — @)
so that
B 9/(X, — ) = (X0 [5(X, — 0 + (g = 0)(¥, — o) et ])

Now, by using this equality, the proof of Theorem 3.3.3 can be repeated and
the statement holds. a
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Remark 3.3.5. Notice that, in principle, one could take different localizing
functions for each operator, that is:

TV} [@](a)

EQDX;‘XS:a):
s TE3 (1))
Let us add some more details about the localizing function.

First, one has to consider it because in practice (for example to price American
contingent claims) the non localized formula does not work (in fact, the pricing
algorithm blows up).

Then, the question is: how to choose it? Let us give a discussion about this.
The proofs of the following statements are omitted and can be found in Bally,
Caramellino and Zanette [3].

Let us start from the result in Theorem 3.3.4: to compute E(®(X;) | X5 = «)
one has to evaluate

T2, 100 = B (7000 [ [ie -y + L= T 08) g 7)

ey oiis(t — 8) X} '

with f = ® and f = 1. Such an expectation is evaluated in practice through the
empirical mean from many replications. The aim is now to choose the localizing
function v allowing to reduce the variance. To this purpose, one can follow
the optimization criterium introduced in the one-dimensional case by Kohatsu-
Higa and Petterson [11]. It deals in looking for the localizing function ¢ which
minimizes the integrated variance, given by

() :/ (fz (X)) f[l { )+ (Haiiii)iii)z;i) AWsi,tr) da,

(3.37)
up to the constant (with respect to the localizing function 1) term coming out
from Tﬁt[f](a) = T, +[f](a). Then the following result holds:

Proposition 3.3.6. Set /4 = {¢ : R = [0,+00); % € CYR), ¥(+00) =
0 and [y9(t)dt = 1}, and Ly = {¢ : R — [0,+00); ¢(z) = [[, vi(z?),
v € 24, for’ any i}. Then
f I (%

Jnf 1) = Hw)
where Y*(x) = H?Zl Vi (a?), with P35 (€) = A; e Y 181/2 is a Laplace probability
density function on R and Xj = A} [f] enjoys the following system of nonlinear
equations:

o BP0 0L T [N+ 01])

J E(fQ(Xt) [T 2 +e2.])

iiFEg

. j=1,....d, (3.38)

where O ;i = AW, /(0is(t t—s)XD),i=1,...,d.

In the case f = 1, the optimal values can be explicitly written:
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Corollary 3.3.7. One has

—hWstolis [t 4 o2 s(t — s)
wrq7 _ € 7 Jj s
A1) = . , j=1,...,d.

xd O'?J»S(t —5)

For practical purposes, numerical evidence shows that the choice \* = 1/y/t — s
works good enough, thus avoiding to weight the algorithm with the computa-
tion of further expectations. When f = 1, this kind of behavior is clear from
Corollary 3.3.7. In the general case, the theoretical justification is given by the
following

Proposition 3.3.8. For any j = 1,...,d, one has X;[f] = O(1/vt —s) as
t — s. Moreover, if f is continuous, then

A\
lim lim -2 /]

oc—0t—s )\;k []_]

=1
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