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1 The model

We consider a market model where trading is allowed over the time interval
[0, T ∗], where T ∗ > 0 is a fixed horizon date. In our market, we consider N
risky assets, whose prices are denoted by X1, . . . , XN , and one risk-free asset
(the money market) with price X0. We suppose that the risk is driven by a
d-dimensional standard Brownian motion B = (B1, . . . , Bd). Thus, we are
assuming a probability space (Ω, F ,P) where the d-dimensional standard
Brownian motion B is defined, and let us denote by (Ft)t the natural σ-
algebra generated by B and augmented by the P-null sets: Ft = σ(Bs ; s ≤
t)∨{A ∈ F : P(A) = 0}. We are then considering a continuous time trading
market and we suppose that the underlying (N +1)-dimensional asset price
process (X0, X), with X = (X1, . . . , XN ), follows the generalized Black and
Scholes model (also called the Dupuire model), that is,

dX0
t

X0
t

= rt dt,

dXi
t

Xi
t

= bi(t,Xt) dt +
d∑

k=1

σi
k(t,Xt) dBk(t), i = 1, . . . , N,

(1)

with the starting conditions X0
0 = 1 and Xi

0 = xi, as i = 1, . . . , N.
The N -vector field b stands for an appreciation rate and the (N × d)-matrix
field σ is called the volatility matrix.
Notice that X is the solution to the above stochastic differential equation
(s.d.e.) given in (1), i.e. X is supposed to be a diffusion process. In order
to get the solution to such a s.d.e., throughout these pages we will always
suppose that the coefficients b and σ and the process r fulfill the following

Assumption 1.1. (i) The vector field b(t, x) and the matrix field σ(t, x)
are 1) both globally bounded and 2) locally Lipschitz continuous in x,
uniformly in t, that is: 1) for some positive M ,

|b(t, x)|+ |σ(t, x)| ≤ M,

for any t and x, and 2) for any K > 0 there exists a positive constant
LK such that if |x|, |y| ≤ K then

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ LK |x− y|,

for any t.

(ii) The process rt is supposed to be non negative, bounded and progres-
sively measurable.
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Remark 1.2. • Notice that1 condition (i) ensures the strong existence and
uniqueness of the solution to (1) and, in particular, for any i = 1, . . . , N ,

∫ t

0
σi

k(s,Xs)Xi
s dBk(s)

is a (square integrable) martingale w.r.t. the filtration Ft.
• By applying the Ito formula, one immediately obtains that, as i = 1, . . . , N ,

Xi
t = xi exp

(∫ t

0

[
bi − 1

2

d∑

k=1

(σi
k)

2
]
(s,Xs)ds +

∫ t

0

d∑

k=1

σi
k(s,Xs)dBk

s

)
.

Then, since xi > 0 (being in fact the initial price of the ith asset) for any
i = 1, . . . , N , in particular one has that the diffusion X lives on RN

+ .
• The process rt denotes the short term interest rate and obviously, X0 can
be explicitly written:

X0
t = e

∫ t
0 rs ds.

The asset whose price is given by X0 plays the role of the benchmark asset:
it represents a primary security and we consider it as a numeraire, that is
all relative prices will be referred with respect to X0. We will also speak
about discounted prices when divided by the benchmark price X0.

A special case is given by assuming N = d and that the diffusion coefficients
and the short term interest rate are constant and deterministic, that is

dX0
t

X0
t

= r dt,

dXi
t

Xi
t

= bi dt +
d∑

k=1

σi
k dBk(t), i = 1, . . . , d.

(2)

The model given by (2) corresponds to the standard multidimensional Black
and Scholes model.

In the follows, we will always assume the standard hypothesis for our market
model, that is

Our market is frictionless, that is, there are no transaction costs
in buying or selling stocks, there are no taxes, as well as there are
no penalties to short-selling, i.e. investors who do not own a stock,
can buy shares of it and arrange with the buyer at some future date
to pay an amount equal to the price at that date. Moreover, it is
possible to borrow any fraction of the price of a security, to buy it
or to hold it, at the risk-free interest rate.

1This follows from the well-known existence theorem for the solutions to S.D.E. in the
localized form, see e.g. Theorem 8.10, p. 169, in Baldi [2].
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2 Trading European options

In a stock exchange, there are plenty of securities or derivative securities
which are quoted and traded. A derivative security or a contingent claim,
as opposed to a primary security, is a security whose value depends on the
prices of the assets of the market. As an example, consider a European
option and in particular, a call or put option: a call (put) option is the
right, and not the obligation, to buy (sell) shares of the underlying assets
in a contractual pre-specified future date, called maturity, at a contractual
pre-specified price, called exercise price. Just to simplify, consider that the
call or put option is written on a single asset whose price process is Xt.
Then, setting T as the maturity and K as the exercise price, then the value
Z of the call and put option at time T is given by

Z = gcall(XT ) = (XT −K)+ = max(0, XT −K) and
Z = gput(XT ) = (K −XT )+ = max(0,K −XT ),

respectively.
There are plenty of European options each of them characterized by its
maturity and its value at maturity, which is commonly called the payoff.
One can formalize this as follows

Definition 2.1. A European option Z with maturity T is characterized by
a pair (Z, T ), where T stands for the maturity date and Z for the payoff,
modelled as a non negative and FT -measurable random variable.

There are other kind of options, such as American options, which differ
from the European ones in the exercise date: they can be exercised in some
instant t ≤ T . In the following, we will assume European contingent claims:
the American options will be studied in a section constructed ad hoc.
With the options, the problem is to find the fair price (and to this purpose,
we will need some suitable integrability properties for the payoff). Indeed,
let us come back to the example of the call or put option: it is a right to buy
or sell something in a future date at a price fixed at the initial date. Thus,
the buyer has to pay this right to the seller, who in turn should use this
money in order to deliver the contract. This means that an option should
have an initial price and we will see that it can be fairly fixed as the initial
investment of a portfolio constructed on a fairly strategy.

2.1 Trading strategies and arbitrage

Definition 2.2. A trading strategy (or simply, a strategy) over the trading
interval [0, T ], with T ≤ T ∗, is an adapted (N + 1)-dimensional process
Ht = (H0

t ,H1
t , , . . . , HN

t ) whose general component H i
t stands for the number

of units of the ith security held by an investor at time t. The portfolio
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associated to the strategy H is the wealth process corresponding to the trading
strategy H:

Vt(H) = 〈Ht, Xt〉 =
N∑

i=0

H i
t Xi

t , t ∈ [0, T ]. (3)

The initial value of the portfolio V0(H) represents the initial investment of
the strategy H.
In the sequel, with the notation T we mean a date such that T ≤ T ∗ and
the interval [0, T ] will stand for the trading interval of interest.

Definition 2.3. Let a trading strategy Ht = (H0
t ,H1

t , . . . , HN
t ) be such that

∫ T

0
|H0

t | dt +
N∑

i=1

∫ T

0
|H i

t |2 dt < ∞, a.s.

H is said to be self-financing over [0, T ] if its associated portfolio Vt(H) is
an Ito process satisfying

dVt(H)= 〈Ht, dXt〉 =
N∑

i=0

H i
t dXi

t

= H0
t rt X0

t dt +
N∑

i=1

H i
t Xi

tb
i(t,Xt)dt +

N∑

i=1

H i
t Xi

t

d∑

k=1

σi
k(t,Xt) dBk

t .

Notice that the requirements H0 ∈ L1([0, T ]) a.s. and H i ∈ L2([0, T ]) a.s.
as i = 1, . . . , N , are technical and allow one to write the above integrals2

w.r.t. dt and dBk
t , the latter having the usual local martingale property3.

Intuitively, a strategy is self-financing if the variations of the associated
portfolio in a small time period, depend on the asset prices X0, . . . , XN and
are independent of the strategies (number of units) H0, . . . , HN . In other
words, changes in the portfolio are due to capital gains and are not due to
increase or decrease of funds.
Let us now introduce the discounted price processes and the discounted
portfolio: we set

X̃i
t = Xi

t/X0
t = e−

∫ t
0 rs dsXi

t , as i = 1, . . . , N,

and Ṽt(H) = Vt(H)/X0
t = e−

∫ t
0 rs dsVt(H).

Notice that Ṽt(H) = H0
t +

∑N
i=1 H i

t X̃i
t . In the sequel, we will refer to X̃t as

the N -dimensional discounted price process X̃t = (X̃1
t , . . . , X̃N

t ).
As a first result, one has

2In fact, since X is a continuous process and r, b and σ are all bounded, then H0
t rt X0

t ∈
L1([0, T ]) and Hi

t Xi
tb

i(t, Xt) ∈ L1([0, T ]) a.s. for any i, as well as Hi
t Xi

tσ
i
k(t, Xt) ∈

L2([0, T ]) a.s. for any i and k.
3This is an immediate consequence of the fact that Hi

tX
i
tσ

i
k(t, Xt) ∈ L2([0, T ]) a.s. for

any i and k.
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Proposition 2.4. Let the trading strategy Ht = (H0
t ,H1

t , . . . ,HN
t ) be such

that
∫ T
0 |H0

t | dt+
∑N

i=1

∫ T
0 |H i

t |2 dt < ∞, a.s. Then H is self financing if and
only if

Ṽt(H) = V0(H) +
∫ t

0

N∑

i=1

H i
t dX̃i

t , t ∈ [0, T ].

Proof. Suppose first that H is self financing. Then, by recalling (1), by
using Ito’s lemma one has

dṼt(H) = −rt Ṽt(H) dt + e−
∫ t
0 rs ds dVt(H)

= e−
∫ t
0 rs ds

(
− rt

N∑

i=0

H i
t Xi

t dt +
N∑

i=0

H i
t dXi

t

)

=
N∑

i=1

H i
t

(
− rt X̃i

t + e−
∫ t
0 rs ds dXi

t

)
=

N∑

i=1

H i
t dX̃i

t .

Conversely, if Ṽt(H) satisfies the Ito differential above, then by applying
again Ito’s lemma to Vt(H) = e

∫ t
0 rs dsṼt(H), one obtains

dVt(H) =
N∑

i=0

H i
t dX̃i

t ,

that is H is self financing.

2

As a consequence of Proposition 2.4, we will obtain that whenever H is self
financing then for any probability measure P∗ equivalent to P such that X̃t

is a P∗-martingale then Ṽt(H) is a P∗-local martingale. We will discuss this
point more deeply in next Section 2.2.
Let us introduce now the following sub-class of self-financing strategies.

Definition 2.5. A self financing strategy H is said to be admissible if
Vt(H) ≥ 0 for any t, a.s.

It then follows that the admissible strategies never give a loss in the wealth.
We are now ready to introduce the concept of arbitrage.

Definition 2.6. A self financing trading strategy H over [0, T ] is said to be
an arbitrage opportunity if the associated portfolio Vt(H) satisfies

V0(H) = 0,P(Vt(H) ≥ 0) = 1 for any t ≤ T and P(VT (H) > 0) > 0.

First, notice that an arbitrage opportunity is in fact an admissible strat-
egy. Moreover, an arbitrage strategy remains an arbitrage one under any
probability measure P∗ equivalent to the original one P. Roughly speaking,
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a strategy gives rise to an arbitrage if even though an investor starts with
a null initial investment, then not only he will never suffer a loss (that is,
Vt(H) ≥ 0) but also will have a final gain (that is, VT (H) > 0) with posi-
tive probability. Thus, arbitrage means that there are no limits in creating
wealth and then it should be forbidden in a well-functioning market. Ar-
bitrage opportunities might happen in practice (for example, by involving
transactions in two or more markets), but since they give risk-free profits,
they would create forces of demand and supply which would cause the nul-
lification of the arbitrage, so that the arbitrage would disappear quickly.
Therefore, we will always consider markets where arbitrage opportunities
are not allowed, and we will say that these markets are arbitrage-free. We
can mathematically describe this concept by the following

Definition 2.7. Our market model is said to be arbitrage-free if any admis-
sible strategy H on [0, T ] with V0(H) = 0 is such that P(VT (H) > 0) = 0.

As we will see, the arbitrage-free property is strictly connected to the so
called equivalent martingale measures, which we are now going to introduce.

2.2 Equivalent martingale measures

As we will see, in order to tackle the two main problems in finance, that is the
no arbitrage problem and the market completeness, it would be important
to have a measure P∗, equivalent to P, under which the discounted price
process is a martingale.
Let us first study which are the measures equivalent to P on (Ω, FT ∗) in our
model. To this purpose, let us define

ξγ
t := exp

(∫ t

0
γs dBs − 1

2

∫ t

0
|γs|2 ds

)
, (4)

where γ denotes an adapted process belonging to L2([0, T ∗]) a.s. Then it
is well known that ξγ

t follows in general a P-local martingale and since it is
bounded from below (ξγ

t ≥ 0) then it is also a P-supermartingale, so that
E(ξγ

T ∗) ≤ E(ξγ
0 ) = 1.

Processes like ξγ allow to identify the measures which are equivalent to P.
In fact, let us define P∗ as the measure on (Ω,FT ∗) whose Radon-Nicodym
derivative w.r.t. P is given by

dP∗

dP
= ξγ

T ∗ = exp
(∫ T ∗

0
γs dBs − 1

2

∫ T ∗

0
|γs|2 ds

)
. (5)

First, one has the following well known result:

Theorem 2.8. [Girsanov] Let ξγ, defined in (4), be such that E(ξγ
T ∗) = 1.

Then the measure P∗ defined by (5) is a probability measure and the process

B∗
t = Bt −

∫ t

0
γs ds

7



is a d-dimensional Brownian motion on (Ω, F , {Ft}t∈[0,T ∗],P∗).

For the proof, we refer e.g. to Theorem 5.1 in Karatzas and Shreve [7] or
also Teorema 7.22 in Baldi [2].

Remark 2.9. • First, notice that the hypotheses of the Girsanov’s Theorem
hold if and only if ξγ is a martingale over [0, T ∗] under P. In fact, if ξγ is
a martingale under P then obviously E(ξγ

T ∗) = E(ξγ
0 ) = 1. Conversely, it

is sufficient to recall that any submartingale (or also supermartingale) with
constant mean is in fact a martingale4.
• Let us recall that a sufficient condition in order that ξγ is a martingale
over [0, T ∗] is that ∫ T ∗

0
|γs|2ds ≤ K,

for some constant K > 0, which in turn guarantees that ξγ is a martingale
bounded in Lp(Ω, FT ∗ ,P), for any p (see Baldi, Proposizione 7.19, p. 145).
Another (classical) condition providing that ξγ is a P-martingale over [0, T ∗]
is the Novikov condition (see e.g. Proposition 5.12, p. 198, in Karatzas and
Shreve [7]), that is

E
(
e

1
2

∫ T∗
0 |γs|2ds

)
< ∞.

A very important fact is that the Girsanov’s Theorem 2.8 has also a counter-
part, allowing one to give a characterization of all the measures equivalent
to P on (Ω, FT ∗). In fact, one has

Proposition 2.10. If a probability measure P∗ on (Ω,FT ∗) is equivalent
to P then there exists an adapted d-dimensional process γ ∈ L2([0, T ∗]) a.s.
such that (5) holds. In particular, one has that ξγ

t is a martingale under P,
and then B∗

t = Bt −
∫ t
0 γs ds is an Ft-Brownian motion under P∗.

Proof. The proof uses the representation theorem for Brownian martingales5

(see e.g. Theorem 4.15 Karatzas and Shreve [7] or Teoremi 7.26 and 7.27 in
Baldi [2]).

4Or also, since ξγ is a P-supermartingale then for any 0 ≤ s ≤ t ≤ T ∗ one has
1 = E(ξγ

0 ) ≥ E(ξγ
s ) ≥ E(ξγ

t ) ≥ E(ξγ
T∗) and if E(ξγ

T∗) = 1 then E(ξγ
t ) − E(ξγ

s ) = 0. Now,
if ξγ were not a martingale, then for some s < t one would have that ξγ

s − E(ξγ
t |Fs) is

a non negative r.v. which assumes positive values with positive probability. Therefore,
0 = E(ξγ

s )− E(ξγ
t ) > 0, that is a contradiction.

5Representation theorem for Brownian martingales. Let Ft denote the natural
filtration of a Brownian motion B augmented with the P-null sets. Let (Yt)t≤T∗ be a
square integrable Ft-martingale [resp.: is an Ft-local martingale]. Then there exists a
unique constant c and a unique adapted process α in L2(Ω× [0, T ∗]) [resp.: in L2([0, T ∗])
a.s.] such that

Yt = c +

∫ t

0

αs dBs, t ∈ [0, T ∗].
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First, let us notice that, for any t ≤ T ∗, P∗ is equivalent to P also on Ft,
because Ft ⊂ FT ∗ . Let us denote by ξt the Radon-Nicodym derivative of
P∗ w.r.t. P on (Ω,Ft), that is

ξt =
dP∗

dP

∣∣∣
Ft

.

Then, (ξt)t≤T ∗ becomes an adapted process which is integrable under P for
any t ≤ T ∗ (in fact, ξt > 0 a.s. and E(ξt) = P∗(Ω) = 1). Moreover, it is a
martingale under P, because for any 0 < s < t < T ∗ and A ∈ Fs ⊂ Ft,

E(ξt1A) = P∗(A) = E(ξs1A).

Now, by using the Brownian martingale representation theorem, one has

ξt = 1 +
∫ t

0
αs dBs, t ∈ [0, T ∗].

for a (“unique”) adapted process α ∈ L2([0, T ∗]) a.s. By using the Ito’s
Lemma, one obtains as t ∈ [0, T ∗],

ξt = exp
(∫ t

0
γs dBs − 1

2

∫ t

0
|γs|2 ds

)
, with γs = αs ξ−1

s .

Since ξ is a.s. positive and continuous as a function of t, it immediately
follows that γ is adapted and belongs to L2([0, T ∗]) a.s., and the statement
follows.

2

Let us come back to our model in finance and propose the following defini-
tion:

Definition 2.11. A measure P∗ on (Ω, FT ∗) is called an equivalent mar-
tingale measure if P∗ is equivalent to P on FT ∗ and (X̃t)t≤T ∗ follows a
martingale under P∗.

By using Theorem 2.8 and 2.10, we obtain the following result.

Theorem 2.12. An equivalent martingale measure P∗ exists if and only if
there exists a d-dimensional adapted process γ∗ ∈ L2([0, T ∗]) a.s. solution
to

d∑

k=1

σi
k(t,Xt)γ∗kt = rt − bi(t,Xt), i = 1, . . . , N, (6)

for which E(ξγ∗
T ∗) = 1 (or equivalently, ξγ∗ is a martingale under P).

In such a case, under P∗ the discounted price process evolves following

dX̃i
t = X̃i

t

d∑

k=1

σi
k(t,Xt) dB∗k

t , X̃i
0 = xi, i = 1, . . . , N, (7)
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and the price process solves

dXi
t = Xi

t rt dt + Xi
t

d∑

k=1

σi
k(t,Xt) dB∗k

t , Xi
0 = xi, i = 1, . . . , N, (8)

where B∗
t = Bt −

∫ t
0 γ∗s ds is a Brownian motion.

The process γ∗ solution to (6) is called the market price of risk. If the
market price of risk exists, then an equivalent martingale measure P∗ exists
and under P∗, the price process evolve following (8), so that the appreciation
rate b plays no role and is replaced by the spot rate r. In other words, under
P∗, in mean the risky asset prices evolve as the riskless asset price. That is
why an equivalent martingale measure is often called a risk neutral measure.
Proof of Theorem 2.12. First, suppose there exists an equivalent martingale
measure P∗. Then, by Proposition 2.10, there exists an adapted process
γ ∈ [0, T ∗] ∈ L2([0, T ∗]) a.s. such that the associated process ξγ as in (4)
satisfies the hypotheses of the Girsanov’s Theorem, so that

B∗
t = Bt −

∫ t

0
γs ds, t ≤ T ∗

is a Brownian motion under P∗. Now, by replacing the Brownian motion B∗

in the s.d.e. driving X̃, one obtains, for i = 1, . . . , N ,

dX̃i
t = Xi

t

(
bi(t, Xt)− rt +

d∑

k=1

σi
k(t,Xt)γk

t

)
dt + Xi

t

d∑

k=1

σi
k(t,Xt)γk

t dB∗k
t .

In order to get the martingale property for X̃, it must be

bi(t,Xt)− rt +
d∑

k=1

σi
k(t,Xt)γk

t = 0, i = 1, . . . , N,

for any t ≤ T ∗, a.s. Therefore, the statement holds and in effect, under P∗
one obtains both (7) and (8).
Viceversa, if there exists an adapted process γ∗ satisfying (6) and fulfilling
the requirements of the Girsanov’s Theorem 2.8, then obviously (7) and (8)
hold. Now, by (7)

dX̃i
t = θi

t dB∗
t , X̃i

0 = xi

with θi
k(s) = σi

k(s,Xs), k = 1, . . . d. Since θi is bounded, θi ∈ L2([0, T ∗] ×
Ω, dt × dP∗, and standard arguments in the theory of Ito integral allow to
conclude that X̃i is P∗-martingale.

2
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Finally, the following result gives us a simple sufficient condition ensuring
the existence of an equivalent martingale measure.

Proposition 2.13. Suppose that d = N , σ is invertible and the matrix
field a = σσ∗ is uniformly elliptic (that is, there exists α > 0 such that
〈a(t, x)λ, λ〉 ≥ α |λ|2, for any λ ∈ Rd and t ∈ [0, T ∗]). Then, there exists a
unique equivalent martingale measure P∗, given by

dP∗

dP
= ξγ∗

T ∗ = exp
(∫ T ∗

0
γ∗s dBs − 1

2

∫ T ∗

0
|γ∗s |2 ds

)

with
γ∗t = σ−1(t, Xt)(rt 1− b(t,Xt)),

where 1 denotes the d-dimensional vector whose entries are all equal to 1.

Proof. By using Theorem 2.11, an equivalent martingale measure exists if
and only if equation (6) holds and the resulting process γ is adapted, belongs
to L2([0, T ∗]) a.s. and makes ξγ , defined in (4), a martingale under P. In
our context, (6) is satisfied if and only if

γt = γ∗t = σ−1(t, Xt)(rt1− b(t,Xt)),

which makes sense because of our hypothesis (and γ = γ∗ is the unique
solution to (6)). The above process is evidently adapted. Moreover, it is
bounded. In fact, since a is uniformly elliptic, that is |σλ|2 = 〈aλ, λ〉 ≥ α|λ|2
with α > 0, then ‖σ−1‖2 ≤ 1/α. By recalling that both r and b are supposed
to be bounded, it follows that γ∗ is bounded, and this ensures the martingale
property for ξγ∗ (see Remark 2.9).

2

2.3 Martingale properties for discounted portfolios

Let us now come back to self-financing strategies. The following proposition
states the previously remarked martingale property for portfolios associated
to self-financing strategies, that is

Proposition 2.14. If there exists an equivalent martingale measure P∗,
the discounted portfolio associated to any self-financing strategy is a local
martingale under P∗. Moreover, if H is an admissible strategy, then Ṽ (H)
is a supermartingale under P∗

Proof. Let H be a self financing strategy. Then by Proposition 2.4

dṼt(H) =
N∑

i=1

H i
t dX̃i

t ,

11



as t ≤ T ≤ T ∗. Now, if P∗ is an equivalent martingale measure then by
Theorem 2.12 (in particular, by (7)) one has

dṼt(H) =
N∑

i=1

H i
t X̃i

t

d∑

k=1

σi
k(t,Xt) dB∗k

t .

Since σi
k(t,Xt) is bounded, for any i and k, X̃t = e−

∫ t
0 rsdsXt is a continuous

process and H i ∈ L2([0, T ∗]) a.s. for any i (recall that this is inside the
definition of self-financing strategies), it follows that

∑N
i=1 H i

t X̃i
tσ

i
k(t, Xt) ∈

L2([0, T ∗]) a.s., and this proves that Ṽ (H) is a local martingale.
Suppose now that H is admissible, that is self-financing and such that
Vt(H) ≥ 0 a.s. under P. Since P∗ is equivalent to P, we obtain that the
discounted portfolio Ṽt(H) is a P∗-local martingale bounded from below
(Ṽt(H) ≥ 0 a.s. under P∗) so that (see e.g. Proposizione 6.24 in Baldi [2])
it is a supermartingale.

2

We can finally study the link between equivalent martingale measures and
the arbitrage-free property of the market model.

Proposition 2.15. If there exists an equivalent martingale measure P∗, the
market model is arbitrage-free.

Proof. We have to prove that if H denotes an admissible strategy over [0, T ]
such that V0(H) = 0 a.s. then VT (H) = 0 a.s. By Proposition 2.14, Ṽt(H)
is a non negative supermartingale under P∗, so that

0 ≤ E∗(ṼT (H)) ≤ E∗(Ṽ0(H)) = 0.

This proves that necessarily P∗(ṼT (H) > 0) = 0, an then P(VT (H) > 0) = 0.

2

Often we will need martingale properties for the discounted portfolio, and
not only local ones. Thus, we introduce the following definition, which
requires the existence of an equivalent martingale measure P∗.

Definition 2.16. Let P∗ be an equivalent martingale measure. The class
Ma(P∗) will denote the set of the admissible strategies H on [0, T ] such
that the associated discounted portfolio Ṽt(H) is a P∗-martingale. For some
equivalent martingale measure P∗, the pair (X, Ma(P∗)) will be our quoted
market model.

In view of Proposition 2.13, we can assert that, whenever an equivalent
martingale measure P∗ exists, the market model (X, Ma(P∗)) is arbitrage-
free.

12



2.4 Replicating strategies e market completeness

Let (Z, T ) denote a European option, that is T is the exercise date (maturity)
and Z denotes the payoff (see Definition 2.1).

Definition 2.17. An admissible trading strategy H is said to replicate a Eu-
ropean option (Z, T ) if VT (H) = Z P-a.s. If a claim Z admits an arbitrage-
free and replicating strategy H, Z is said to be attainable in the market and
the corresponding portfolio Vt(H) is called the replicating portfolio.

If an equivalent martingale measure P∗ exists, we know that the market
model (X, Ma(P∗)) is arbitrage-free, so that the attainability of an option
can be defined as follows.

Definition 2.18. If an equivalent martingale measure P∗ exists, an op-
tion (Z, T ) is said to be attainable in the market model (X, Ma(P∗)) if Z
is integrable under P∗ and there exists a strategy H ∈ Ma(P∗) such that
VT (H) = Z.

Recall that Ma(P∗) is the set of the P∗-admissible trading strategies such
that the corresponding discounted portfolio Ṽ (H) is a martingale (and not
only a local one or a supermartingale) under P∗.
Intuitively, it is important to work in an arbitrage-free framework (recall
that we need a “fair game” between buyer and seller!) and to have a unique
(up to indistinguishability) replicating portfolio. Indeed, this portfolio will
be the one allowing the seller to deliver the contract.
From now on, we will use the notation E∗ for the expectation under P∗.
We have the following first important result:

Proposition 2.19. If an equivalent martingale measure P∗ exists, any Eu-
ropean option (Z, T ) which is attainable in (X, Ma(P∗)) admits a unique
replicating portfolio under P∗, given by

Vt = E∗(e−
∫ T

t rs ds Z |Ft)

Proof. First, let us notice that e−
∫ T

t rs ds Z is indeed integrable under P∗,
because r is non negative and bounded a.s. and Z is integrable under P∗. Fix
a European option Z with maturity T which is attainable in (X, Ma(P∗)).
For any replicating strategy H, Ṽt(H) is a P∗-martingale: if Z is attainable
then

Vt(H) = e
∫ t
0 rs ds Ṽt(H) = e

∫ t
0 rs ds E∗(ṼT (H) |Ft)

= e
∫ t
0 rs ds E∗(e−

∫ T
0 rs dsVT (H) |Ft)

= e
∫ t
0 rs ds E∗(e−

∫ T
0 rs dsZ |Ft)

= E∗(e−
∫ T

t rs ds Z |Ft) =: Vt.

2
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For t < T , the value of Vt is called the no-arbitrage price of the European
option Z at time t. In fact, whenever an equivalent martingale measure
exists, one can take Vt as the price of the option dealt at time t, since an
admissible strategy covering the payoff at maturity exists. This is obviously
subject to the existence of a martingale measure P∗ for the discounted price
process. But, it could not be unique and it would be unpleasant if two
different martingale measures gave two different no-arbitrage prices. This is
not really a problem, as it follows from the next result.

Proposition 2.20. Suppose there exist two equivalent martingale measures
P∗1 and P∗2. Let Z be a European option with maturity T and attainable both
in (X, Ma(P∗1)) and (X, Ma(P∗2)). Then

Vt = E∗1(e−
∫ T

t rs ds Z |Ft) = E∗2(e−
∫ T

t rs ds Z |Ft),

in which E∗i denotes the expectation under P∗i , i = 1, 2. In particular, the
no-arbitrage prices under P∗1 and P∗2 agree.

Proof. Let H1 and H2 be replicating strategies for (Z, T ) in Ma(P∗1) and
Ma(P∗2) respectively. In particular, they are both admissible. Since P∗1 and
P∗2 are both martingale measures, by Proposition 2.13 one hat that Ṽt(H1) is
a P∗2-supermartingale, as well as Ṽt(H2) is a P∗1-supermartingale. Moreover,
Z is attainable by H1 and H2, so that VT (H1) = Z = VT (H2) and thus
ṼT (H1) = e−

∫ T
0 rs ds Z = ṼT (H2). Finally, since H1 ∈ Ma(P∗1) and H2 ∈

Ma(P∗2), by Proposition 2.19, one has that Ṽt(H1) = E∗1(e−
∫ T
0 rs ds Z |Ft)

and Ṽt(H2) = E∗2(e−
∫ T
0 rs ds Z |Ft). By using such properties, it follows that

Ṽt(H2) = E∗2(e−
∫ T
0 rs ds Z |Ft) = E∗2(ṼT (H1) |Ft)

≤ Ṽt(H1) = E∗1(e−
∫ T
0 rs ds Z |Ft).

By interchanging the role of P∗1 and P∗2, one obtains Ṽt(H2) ≥ Ṽt(H1) as
well, so that the two expectations agree.

2

By summarizing, the existence of an equivalent martingale measure P∗ (that
is, a measure equivalent to P under which the discounted price process is
a martingale) allows to state that the discounted portfolio is a P∗-local
martingale. Moreover, the market given by the P∗-admissible strategies
(that is, the ones for which the associated portfolio is a non negative P∗-
martingale) turns out to be arbitrage free and the notion of no-arbitrage
price for attainable options is well defined. Moreover, one might ask if a
double link between the existence of P∗ and no arbitrage strategies does
hold. The answer is positive: such a kind of result can be stated, and is
called fundamental theorem of asset pricing. In literature, there are several
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results in this direction, according to the model chosen for the market: the
interested reader can find good references quoted in Musiela and Rutkowski
[10].
By resuming, if an equivalent martingale measure exits, the no arbitrage-
price is well defined for any attainable option. Therefore, it would be nice
that any options (at least with good integrable properties) were attainable.
In financial terms, this means that the market is complete. Let us now
formalize the concept of market completeness.

Definition 2.21. Let P∗ be an equivalent martingale measure. The model
is said to be complete if any European option whose payoff Z belongs to
Lp(Ω,P∗) for some p > 2 is attainable in (X, Ma(P∗)). In the opposite case,
the market model is said to be incomplete.

We have the following fundamental result

Theorem 2.22. The following statements hold:

(i) If the model is complete then there exists a unique equivalent martin-
gale measure.

(ii) If N = d, σ is invertible and the matrix field a = σσ∗ is uniformly
elliptic [that is, there exists α > 0 such that 〈a(t, x)λ, λ〉 ≥ α |λ|2, for
any λ ∈ Rd and t ≤ T ∗], then the model is complete.

Proof. (i) Suppose there exist two martingale measures P∗1 and P∗2. Take

A ∈ FT ∗ and consider the option (Z, T ∗) with Z = e
∫ T∗
0 rs ds 1A. Notice that

Z is FT ∗-measurable and Z ∈ Lp(Ω,P∗i ) for any p and i = 1, 2. Since the
market is complete, Z is attainable both in (X,Ma(P∗1)) and (X, Ma(P∗2)).
Then, by Proposition 2.20,

E∗1(e−
∫ T∗
0 rs ds Z) = E∗2(e−

∫ T∗
0 rs ds Z)

which gives P∗1(A) = P∗2(A), and this holds for any A ∈ FT ∗ . Then, P∗1 ≡ P∗2
on FT ∗ , that is there exists only one equivalent martingale measure.
(ii) By Proposition 2.13, an equivalent martingale measure P∗ exists. In
view of Proposition 2.19, we have now to show that for any non negative,
belonging to Lp(Ω,P∗) for some p > 2 and FT -measurable random variable
Z, there exists a self financing strategy H such that

Vt(H) = E∗(e−
∫ T

t rsds Z |Ft),

or equivalently
Ṽt(H) = E∗(e−

∫ T
0 rsds Z |Ft).

Let us set
M̃t = E∗(e−

∫ T
0 rsds Z |Ft).
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By Proposition 2.4 and Theorem 2.12, we need to show that there exist d
adapted processes H1

t , . . . ,Hd
t , all belonging to L2([0, T ]) a.s., such that

dM̃t =
d∑

i=1

H i
tdX̃i

t =
d∑

i=1

H i
tX̃

i
t

d∑

k=1

σi
k(t,Xt) dB∗k

t (9)

where B∗
t = Bt −

∫ t
0 γ∗s ds and γ∗ is the (bounded) process given in Propo-

sition 2.13. In fact, if such H i
t ’s exists, then taking H0

t = M̃t −
∑d

i=1 H i
tX̃

i
t ,

one obtains immediately that H = (H0, . . . , Hd) is a self financing strategy
such that Ṽt(H) = M̃t. This in turn shows that H ∈ Ma(P∗), because M̃t

is a non negative martingale under P∗. Moreover, by construction, one has
VT (H) = Z, and the statement follows.
By resuming, we have only to prove that (9) holds, for some adapted pro-
cesses H1

t , . . . ,Hd
t ∈ L2([0, T ]) a.s. The proof is a consequence of the repre-

sentation theorem for Brownian martingales. In fact, since M̃t is a Brownian
and square integrable martingale, one has

M̃t = c +
∫ t

0
Ỹs dB∗

s , t ∈ [0, T ],

in which Ỹ is an adapted process in L2([0, T ]) a.s. Now, by choosing H as
a solution to

d∑

i=1

H i
tX̃

i
tσ

i
k(t,Xt) = Ỹ k

s , k = 1, . . . , n

(which exists because σ is invertible), then the statement follows. Notice
that

H i
t =

[(σ∗)−1(t,Xt)Ỹt]i

X̃i
t

i = 1, . . . , d,

in which σ∗ denotes the transpose of σ. Now, since (σ∗)−1 is bounded
(recall that a = σσ∗ is uniformly elliptic) and X̃t is a continuous process,
then H i

t ∈ L2([0, T ]) a.s for any i because Ỹ k
t ∈ L2([0, T ]) a.s for any k.

Unfortunately, the representation theorem for Brownian martingales cannot
be applied in this way: in the procedure developed above, we have done a
big mistake! Indeed, the technical point is that, since we are now working
under P∗ and then with the Brownian motion B∗, the filtration to be taken
into account in the representation theorem for Brownian martingales is not
Ft but F ∗

t , that is the sigma algebra generated by B∗ and completed by the
P∗-null sets (and in general, F ∗

t ⊂ Ft). In other words, the above reasoning
would be right if one had to work with E∗(e−

∫ T
t rs ds Z |F ∗

t ), and not with
E∗(e−

∫ T
t rs ds Z |Ft).

So, in order to overcome this complication, let us put

M̄t = E(e−
∫ T
0 rs ds Z ξγ∗

T |Ft)
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(let us stress the fact that the expectation is taken under the original measure
P). Notice that E(e−

∫ T
0 rs ds Z ξγ∗

T ) = E∗(e−
∫ T
0 rs ds Z), so that the random

variable e−
∫ T
0 rs ds Z ξγ∗

T is P-integrable. Therefore, M̄t is an Ft-martingale
under P and Ft gives the right filtration: we can assert that there exists an
adapted process Y such that

∫ T
0 |Ys|2 ds < ∞ a.s. and

dM̄t = M̄0 +
∫ t

0
Ys dBs.

Now, by the Bayes rule one has

M̃t = E∗(e−
∫ T
0 rs ds Z |Ft) =

E(e−
∫ T
0 rs ds Z ξγ∗

T |Ft)
E(ξγ∗

T |Ft)

=
E(e−

∫ T
0 rs ds Z ξγ∗

T |Ft)
ξγ∗
t

=
M̄t

ξγ∗
t

.

Since dM̄t = Yt dBt and dξγ∗
t = ξγ∗

t γ∗t dBt, then by Ito’s formula it follows
that

dM̃t = d[(ξγ∗
t )−1 M̄t] = (ξγ∗

t )−1 (Yt − M̄tγ
∗
t ) dB∗

t .

We have then found the right representation formula for M̃t, with Ỹt =
(ξγ∗

t )−1 ×(Yt − M̄tγ
∗
t ). The statement now follows if we show that Ỹt ∈

L2([0, T ]) a.s. This is a consequence of the fact that M̄ ∈ L2(Ω×[0, T ],P×dt)
(so that M̄ ∈ L2([0, T ]) a.s under P and then a.s. under P∗): by using first
the Jensen inequality (for conditional expectation) and secondly the Hölder
inequality, one has

E
∫ T

0
M̄2

t dt =
∫ T

0
E(|E(e−

∫ T
0 rs ds Z ξγ∗

T |Ft)|2) dt

≤
∫ T

0
E(e−2

∫ T
0 rs ds Z2 (ξγ∗

T )2) dt

≤ const · E(Z2p̄)1/p̄ E((ξγ∗
T )2q̄)1/q̄,

in which p̄, q̄ > 0 with 1/p̄ + 1/q̄ = 1. Now, taking p̄ = p/2 and recalling
that γ∗ is bounded, the last r.h.s. is finite, and the proof is now completed.

2

2.5 Pricing and hedging European options. Greeks

In a market completeness framework, the unique equivalent martingale mea-
sure P∗ is called the risk-neutral measure. We will put ourselves in such a
framework: we suppose the uniqueness of the equivalent martingale measure
P∗, that is of the market price of risk γ∗. Therefore, our market model is
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arbitrage free and the no-arbitrage price of any European option Z with
maturity T is well defined and given by

Vt = E∗(e−
∫ T

t rs ds Z |Ft). (10)

We refer to (10) as the price of the option with payoff Z and maturity T , as
seen at time t < T . Thus, if one sees Vt as t varies, it gives the value of the
replicating portfolio; for a fixed time t, Vt gives the price of the associated
option contract written at time t.
Now, this solves the problem on the hand of the buyer, who has to pay an
amount equal to Vt to the seller. But now we have to give an answer to
the problem as seen by the seller: which strategy should he/she take into
account in order to deliver the contract? In other words, we have now the
value of the replicating portfolio but the seller needs the strategy: we should
produce a replicating strategy, preferably represented in a way which can
be used in practice. This is called the hedging problem.
In the proof of Theorem 2.22 we have seen a replicating strategy but only
from a theoretical point of view, since it has been built by means of the
martingale representation theorem and this is not a constructive result. Let
us see another way to hedge options: the delta hedging way.
Let us consider a European option, with payoff Z and maturity T . Since Z
is FT -measurable, we can consider the case in which

Z = φT (X),

that is, Z is a functional of the price process (Xt)t∈[0,T ]. For example, the
payoff of a call option written on the ith asset is given by Zcall = gcall(Xi

T ) =
(Xi

T − K)+, that is φT (x) = gcall(xi
T ) (here, x denotes a path over [0, T ],

i.e. x : [0, T ] → Rd). In the put option case, Zput = φT (X) = gput(Xi
T ) =

(K −Xi
T )+.

Let us stress that this representation for the payoff is not really restrictive:
almost any option has a payoff depending on the prices process X over
[0, T ]. More precisely, whenever φ is not a function depending strictly on
XT (as it happens in the case of call or put options) but depends on the path
(Xt)t∈[0,T ], then the associated option is called path dependent (for example,
barrier options, Asian ones etc., we will see in the sequel some examples).
Whenever Z = φ(XT ), the replicating portfolio can be written as Vt =
E∗(e−

∫ T
t rs ds φ(XT ) |Ft). Now, let us assume from now on that the ran-

domness of the spot rate r is driven by the risky asset prices, that is

rt = r(t,Xt).

For the vector field r we require to be bounded, non negative and Lischiptz
continuous in the space variable on the compact sets of Rd

+, uniformly w.r.t.
the time variable.
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Under P∗, the pair (X0, X) is now a diffusion over RN+1
+ and then a Markov

process: the conditional expectation giving the option price is done on a
random variable depending on a Markov process, and therefore the result is
a function of (t,Xt). In other words, thanks to the Markov property we can
write

Vt = E∗(e−
∫ T

t r(s,Xs) ds φ(XT ) |Ft) = P (t, Xt),

where
P (t, x) = E∗(e−

∫ T
t r(s,Xt,x

s ) ds φ(Xt,x
T )),

in which (Xt,x
s )s≥t denotes the solution of the s.d.e. driving X, starting

from x at time t. By setting P̃ (t, x) = e−
∫ t
0 rs dsP (t, x e

∫ t
0 rs ds), then the

replicating discounted portfolio is given by

Ṽt = P̃ (t, X̃t).

Now, suppose that P is in the class C1,2 of the continuous function with first
derivative in the first variable and second derivative in the second variable.
By (8), one has

dX̃i
t

X̃i
t

=
d∑

k=1

σi
k(t,Xt) dB∗k(t), i = 1, . . . , N,

so that by applying Ito’s formula one gets:

dṼt = dP̃ (t, X̃t) =
(
∂tP̃ (t, X̃t) + 1

2

N∑

i,j=1

∂2
xixj

P̃ (t, X̃t) aij(t,Xt) X̃i
t X̃j

t

)
dt

+
N∑

i=1

∂xiP̃ (t, X̃t) dX̃i
t

where a = σ σ∗. Now, since Ṽ is a martingale, it then has to follow that

∂tP̃ (t, X̃t) +
1
2

N∑

i,j=1

∂2
xixj

P̃ (t, X̃t) aij(t,Xt) X̃i
t X̃j

t = 0, a.s. (11)

and, by Proposition 2.4, the strategy defined by

H i
t = ∂xiP̃ (t, X̃t), i = 1, . . . , N, and H0

t = Ṽt −
N∑

i=1

H i
t X̃i

t (12)

is the required replicating one. Such equalities can be written also in terms
of the function P giving the (non discounted) portfolio. In such a case,
straightforward computations allow to rewrite (11) as

∂tP (t, x) + L ∗
t P (t, x)− r(t, x) P (t, x) = 0, t ∈ (0, T ), x ∈ RN (13)
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where L ∗
t is the generator of X under the risk neutral measure (acting on

the space variable only, see (8)), that is

L ∗
t g(x) =

N∑

i

r(t, x) xi ∂xig(x) +
1
2

N∑

i,j=1

aij(t, x) xi xj ∂2
xixj

g(x).

Equation (13) is sometimes called the fundamental PDE following from the
no-arbitrage approach.
Concerning (12), it becomes

H i
t = ∂xiP (t, Xt), i = 1, . . . , N, and H0

t = Ṽt −
N∑

i=1

H i
t X̃i

t (14)

The above quantities H i
t , i = 1, . . . , N , are called the delta of the option and

are usually denoted with the notation ∆:

∆i(t,Xt) = ∂xiP (t,Xt), i = 1, . . . , N.

The delta gives then the replicating portfolio. A really interesting fact is
that the delta gives also the sensitivity of the price with respect to the initial
values of the underlying asset prices. This is a special case of Greek. The
Greeks are indeed quantities giving the sensitivity of the price with respect
to several parameters which have a financial meaning. They are taken into
special account by practitioners, also because they have themselves special
financial interests and meanings. The most used Greeks can be summarized
as follows:

• delta: sensitivity of the price w.r.t. the initial values: ∆i = ∂xiP ;

• gamma: sensitivity of the deltas w.r.t. the initial values: Γij = ∂2
xixj

P ;

• theta: sensitivity of the price w.r.t. the initial time: Θ = ∂tP ;

• rho: sensitivity of the price w.r.t. the spot rate: Rho = ∂rP ;

• vega: sensitivity of the price w.r.t. the volatility: Vega = ∂σP.

Obviously, in the rho and vega cases, the derivatives has to be understood
in a suitably functional way whenever r and σ are not modelled as constant.
These last Greeks gives the behavior of the price and then of the portfolio
with respect to purely financial quantities (i.e. the interest rate and the
volatility), while the other ones (delta, gamma and theta) give the rate of
change of the portfolio with respect to parameters connected to the assets
on which the European option is written (the starting instant and prices of
the assets). But these other Greeks have also other interesting meanings.
For example, Equation (13) can be rewritten in terms of the Greeks ∆, Γ
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and Θ, so that they are deeply connected. In the one dimensional case,
Equation (13) becomes

Θ +
1
2
σ2 x2Γ + r ∆ x = r P.

If we consider a delta-neutral portfolio, that is ∆ = 0, then the equation
above becomes Θ+ 1

2σ2 x2Γ = r P , which shows that Θ and Γ are negatively
correlated (if Θ becomes large and positive then Γ has to become large and
negative, and vice versa). The theta, gamma and delta Greeks are also
widely used to tackle credit risk problems, such as the VaR (Value at Risk)
one. The interested reader can find useful discussions (also from a practical
point of view), remarks and references on topics regarding Greeks in Hull
[6].

Example 2.23. (The Black and Scholes price and Greek formulas
for call and put options) Let us evaluate the price of a call and put
option in the standard one dimensional Black and Scholes model, as well as
the associated Greeks.
Under the risk-neutral measure P∗, the price of the risk asset evolve as

dXt

Xt
= r dt + σ dB∗(t) (15)

and the price of the call option with maturity T as seen at time t, is given
by

Pcall(t, Xt) = E∗(e−r(T−t) (XT −K)+ |Ft),

where K stands for the strike price. If we use the notation Xt,x to denote
the solution X of (15) starting at x at time t, by using Ito’s lemma it easily
follows that

Xt,x
s = x e(r− 1

2
σ2)(s−t)+σ(B∗s−B∗t ), s ≥ t,

and we can write

Pcall(t, x) = E∗(e−r(T−t) (Xt,x
T −K)+)

= e−r(T−t) E∗((x e(r− 1
2

σ2)(T−t)+σ(B∗T−B∗t ) −K)+).

The expectation above is easy to compute: straightforward computations
allow to write

Pcall(t, x) = xN (d1(T − t, x))−K e−r(T−t) N (d2(T − t, x)), (16)

where N denotes the standard Gaussian cumulative distribution function
and, for s, x > 0,

d1(s, x) =
ln(x/K) + (r + σ2/2)s

σ
√

s
and d2(s, x) = d1(s, x)− σ

√
s. (17)
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Concerning the delta, again by straightforward computations one obtains

∆call(t, x) = ∂xPcall(t, x) = N (d1(T − t, x)). (18)

As for the put option, one could use similar arguments or also the call-put
parity property (that is Pcall(t, x)−Pput(t, x) = e−r(T−t) E∗((Xt,x

T −K))), in
order to obtain the associated price and delta following the formulas

Pput(t, x) = K e−r(T−t) N (−d2(T − t, x))− xN (−d1(T − t, x)),
∆put(t, x) = ∂xPput(t, x) = N (d1(T − t, x))− 1.

(19)

Also the other Greeks can be explicitly written6. They can be summarized
as follows:

Γcall(t, x) =
N ′(d1(T − t, x))

xσ
√

T − t
= Γput(t, x)

Θcall(t, x) = −xN ′(d1(T − t, x))σ

2
√

T − t
− r x e−r(T−t) N (d2(T − t, x))

Θput(t, x) = −xN ′(d1(T − t, x))σ

2
√

T − t
+ r x e−r(T−t) N (−d2(T − t, x))

Rhocall(t, x) = x (T − t) e−r(T−t) N (d2(T − t, x))

Rhoput(t, x) = −x (T − t) e−r(T−t) N (−d2(T − t, x))

Vegacall(t, x) = x
√

T − tN ′(d1(T − t, x)) = Vegaput(t, x)
(20)

(obviously, the function N ′ is the standard Gaussian probability density
function).

3 Pricing American options

As already mentioned, an American option differs from a European one in
the fact that it can be exercised in any instant t ≤ T , being T the associated
maturity. More precisely, an American contingent claim can be formalized as
a pair Za = (T, g), consisting of a maturity date T and a cash flows function
g : [0, T ] × RN

+ → R+ such that the associated payoff at the exercise date
τ ∈ [0, T ] is given by g(τ, Xτ ). Now, since exercising the option does depend
on the market developments, it is quite natural to require that τ can be
random and more precisely a stopping time w.r.t. the filtration {Ft}0≤t≤T

giving the market information at any instant up to the maturity date T .
Thus, we require that τ ∈ T[0,T ], being T[0,T ] the set of all stopping times
over [0, T ], that is the stopping times w.r.t. {Ft}0≤t≤T taking values on
[0, T ] a.s.

6Since this model assumes constant spot rate r and volatility σ, the rho and vega
Greeks - sensitivities w.r.t. spot rate and volatility - do not need any special definition.
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Typical examples are American call and put options, in which

gcall(t, x) = (x−K)+ and gput(t, x) = (K − x)+.

Here, the difference from the European case is in the fact that the option
can be exercised at any time before T . We are in fact treating here standard
American options. Sometimes, the set of the exercise dates is taken as a
subset T ′ of T[0,T ]. For example, one could take T ′ = {t1, t2, . . . , tn} with
t1, t2, . . . , tn fixed and deterministic times in [0, T ]. In such a case, one
is speaking about Bermudan options. And obviously, the Bermudan case
becomes the European one whenever T ′ = {T}.
Our aim here is to find fairly the price and the exercise date for an American
security by means of no arbitrage arguments. For the sake of clearness of
notations, we will do this by assuming 0 as the initial referring date.
The definitions above are sufficient to deduce that such a problem is much
more sophisticated to handle than the European one. Therefore, since the
underlying mathematical theory becomes more and more advanced as diffi-
culties increase, to avoid a too technical machinery let us assume here that

• the spot rate process rt is deterministic;

• the market is complete; in particular, the assumptions in (ii) of Theo-
rem 2.22 are fulfilled, that is N = d, σ is invertible and the matrix field
a = σσ∗ is uniformly elliptic. Recall that in this case the market price
of risk γ∗ uniquely exists (being also bounded) and the risk neutral
measure P∗ given by (5) is well defined.

3.1 Price by perfect-hedging arguments

To our purpose, it is useful to consider more general trading strategies. In
fact, differently from the strategy previously used, we consider here also the
possibility that some wealth is not reinvested and Ct gives the cumulative
money which is put aside at time t.

Definition 3.1. A trading and consumption strategy (H, C) is a pair given
by a classical trading strategy H and a consumption process C, which is
defined as a non-decreasing and adapted process such that C0 = 0. (H, C)
is said to be self-financing if H0 ∈ L1([0, T ]) a.s., H i ∈ L2([0, T ]) a.s. for
any i = 1, . . . , N and the associated portfolio, given by

Vt(H, C) =
N∑

i=0

H i
t Xi

t , t ∈ [0, T ],

satisfies

Vt(H, C) = V0(H, C) +
∫ t

0

N∑

i=0

H i
t dXi

t − Ct, t ∈ [0, T ].
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Similarly to what previously proved, one has:

Proposition 3.2. (H, C) is a self-financing trading and consumption strat-
egy if and only if

dṼt(H,C) =
N∑

i=1

H i
t dX̃i

t − e−
∫ t
0 rs dsdCt, t < T.

If moreover Vt(H, C) ≥ 0 a.s. for any t then the discounted portfolio
Ṽt(H,C) is a supermartingale under P∗.

Proof. For the first part, it is sufficient to apply Ito’s lemma (as in Propo-
sition 2.4). As for the second part, recall that

Mt =
∫ t

0

N∑

i=1

H i
s dX̃i

s

is a continuous local martingale which is also bounded from below, because

M̃t = Ṽt(H,C)− V0 +
∫ t

0
e−

∫ u
0 rs dsdCu ≥ −V0

(recall that C is non-decreasing). Therefore, M̃t is a supermartingale. Now,
as t > s,

E∗(Ṽt(H, C) |Fs) ≤ V0 + M̃s − E∗(
∫ t

0
e−

∫ u
0 rv dvdCu |Fs)

= Ṽs(H, C)− E∗(
∫ t

s
e−

∫ u
0 rv dvdCu |Fs) ≤ Ṽs(H, C)

and the statement follows.

2

Definition 3.3. A self-financing trading and consumption strategy (H, C)
is said to hedge the American option Za = (T, g) if

for any t ∈ [0, T ], Vt(H, C) ≡
N∑

i=0

H i
tX

i
t ≥ g(t, Xt) a.s.

The set H (Za) will denote all the self-financing trading and consumption
strategies hedging the American option Za.

Now, if the writer of the option follows a strategy (H, C) ∈ H (Za) then at
any instant t ≤ T he will have a wealth at least equal to g(t,Xt), an amount
which is exactly the payoff of the option if it is exercised at time t. In order
to study the minimal value of a hedging scheme for an American option, let
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us introduce the concept of “essential supremum”: for a given family H of
G -measurable r.v.’s, define

Z = ess supY ∈H Y

as the r.v. Z given by 0 if H = ∅, otherwise it is such that

• Z is G -measurable;

• for any Y ∈ H , Z ≥ Y a.s.;

• if Z ′ is a G -measurable r.v. such that Z ′ ≥ Y a.s. for all Y ∈ H , then
Z ′ ≥ Z.

Let us stress that the essential supremum always a.s. uniquely exists (see
e.g. Theorem 2.3.1 of Wong [5]).
For t ≤ T , let us define T[t,T ] as the set of the Ft-stopping times taking
values on [t, T ]. Then, one has the following important property.

Proposition 3.4. Let (Yt)t≤T be a stochastic process which is Ft-adapted,
Yt ≥ 0 a.s. for all t and E∗(supt≤T Yt) < ∞. For t ≤ T , set

ΓT
t (A) = sup

τ∈T[t,T ]

E∗(Yτ 1A), A ∈ Ft.

Then, ΓT
t is a (positive) measure on (Ω, Ft) which is absolutely continuous

w.r.t. P∗ on Ft and

dΓT
t

dP∗
= ess supτ∈T[t,T ]

E∗(Yτ |Ft).

Proof. ΓT
t is a positive set function defined on Ft. One has first to prove the

σ-additivity property. Take {An}n ⊂ Ft such that An ∩ Am = ∅ as n 6= m.
One immediately has that ΓT

t (∪nAn) ≤ ∑
n ΓT

t (An), so that
∑

n

ΓT
t (An) = ΓT

t (∪nAn) + ε

with ε ≥ 0. We have to show that ε = 0. Then, suppose ε > 0. By the
definition of sup, for any n there exists τ∗n ∈ F[t,T ] such that

ΓT
t (An) ≤ E∗(Yτ∗n 1An) + ε/2n+1.

Take now τ∗ =
∑

n τ∗n1An + τ̄1Ac , in which A = ∪nAn and τ̄ ∈ T[t,T ]. Then
τ∗ ∈ F[t,T ] and ∑

n

ΓT
t (An) ≤ E∗(Yτ∗ 1A) + ε/2.

Therefore, ∑
n

ΓT
t (An) ≤ ΓT

t (∪nAn) + ε/2,
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which gives a contradiction. Then, ε = 0 and ΓT
t is in effect a measure on

(Ω, Ft). It is trivially absolutely continuous w.r.t. P∗, so that the Radon-
Nicodym derivative actually exists and is, by definition, Ft-measurable.
Now, for any A ∈ Ft,

E∗
(dΓT

t

dP∗
1A

)
= ΓT

t (A) ≥ E∗(Yτ 1A) = E∗
(
E∗(Yτ |Ft) 1A

)
.

Therefore, dΓT
t

dP∗ ≥ E∗(Yτ |Ft) a.s. for any τ ∈ F[t,T ], so that dΓT
t

dP∗ ≥
ess supτF[t,T ]

E∗(Yτ |Ft) a.s. In order to prove the equality, take a r.v. Z ′

which is Ft-measurable and Z ′ ≥ E∗(Yτ |Ft) a.s. for any τ ∈ F[t,T ]. Then,
for all A ∈ Ft one has E∗(Z ′ IA) ≥ E∗(E∗(Yτ |Ft)1A) = E∗(Yτ 1A) for all
τ ∈ T[t,T ], that is

E∗(Z ′ IA) ≥ sup
τ∈T[t,T ]

E∗(Yτ 1A) = ΓT
t (A) = E∗

(dΓT
t

dP∗
1A

)
.

Therefore, Z ′ ≥ dΓT
t

dP∗ a.s. and the statement follows.

2

Theorem 3.5. Let Za = (T, g) be an American option such that the process
(g(t,Xt))0≤t≤T is càdlàg and g(τ,Xτ ) ∈ Lp(Ω,P∗) for some p > 2, for any
τ ∈ T[0,T ]. Set

Vt = ess supτ∈T[t,T ]
E∗(e−

∫ τ
t rs dsg(τ, Xτ ) |Ft), t ∈ [0, T ], (21)

where T[t,T ] stands for the set of the stopping times over [t, T ]. Then there
exists a self financing trading and consumption strategy (H, C) ∈ H (Za)
such that Vt(H, C) = Vt. Moreover, for any (H̄, C̄) ∈ H (Za) one has
Vt(H̄, C̄) ≥ Vt.

Before to continue with the proof, let us observe that Theorem 3.5 allows
one to naturally define Vt as the fair price of the American option Za as
seen at time t ∈ [0, T ]. In fact, we are going to prove that Vt is the minimal
value of the portfolios associated to a strategy hedging the option. In other
words, there exists a self-financing trading and consumption strategy giving
a perfect hedging against the American option.
Moreover, let us notice that, since τ ≡ T ∈ T[t,T ] for any t ≤ T , one has

ess supτ∈T[t,T ]
E∗(e−

∫ τ
t rs dsg(τ, Xτ ) |Ft) ≥ E∗(e−

∫ T
t rs dsg(T, XT ) |Ft)

which tells us that the price of an American option is always more than the
price of the associated European option (that is, the European option with
maturity T and payoff g(T, XT )).
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Proof of Theorem 3.5. We only give a sketch of the proof, since it involves
a very technical machinery.
Let g̃(t,Xt) = e−

∫ t
0 rs dsg(t,Xt) denote the discounted cash flows process and

let Jt denote the Snell envelope of g̃(t, Xt), that is the smallest supermartin-
gale over [0, T ] greater or equal to g̃(t,Xt). Let us first show that

Jt = ess supτ∈T[t,T ]
E∗(g̃(τ, Xτ ) |Ft)

= ess supτ∈T[t,T ]
E∗(e−

∫ τ
0 rs dsg(τ,Xτ ) |Ft),

t ∈ [0, T ], and notice that Vt = e
∫ t
0 rsdsJt.

Take s ≤ t and A ∈ Fs. Since T[t,T ] ⊂ T[s,T ], one has

sup
τ∈F[t,T ]

E∗(g̃(τ,Xτ ) 1A) ≤ sup
τ∈F[s,T ]

E∗(g̃(τ,Xτ ) 1A)

If ΓT
t and ΓT

s denote the measures defined as in Proposition 3.4 with Yt =
g̃(t,Xt), we can say that

ΓT
t (A) ≤ ΓT

s (A)

for all A ∈ Fs ⊂ Ft. Therefore,

E∗
(dΓT

t

dP∗
1A

)
≤ E∗

(dΓT
s

dP∗
1A

)

for al A ∈ Fs. By Proposition 3.4, dΓT
t

dP∗ = Jt and dΓT
s

dP∗ = Js, so that
E∗(Jt1A) ≤ E∗(Js1A), and then (Jt)t≤T is actually a supermartingale.
Obviously, Jt ≥ g̃(t,Xt) because t ∈ T[t,T ]. Now, let Ut be a supermartingale
such that Ut ≥ g̃(t,Xt) a.s. for any t ≤ T . Then, by using the Optional
Sampling Theorem, for any τ ∈ T[t,T ] one has

Ut ≥ E∗(Uτ |Ft) ≥ E∗(g̃(τ, Xτ ) |Ft)

so that
Ut ≥ ess supτ∈T[t,T ]

Ẽ∗(g(τ,Xτ ) |Ft) = Jt.

Therefore, Jt is the Snell envelope of g̃(t,Xt).
Let us now prove that there exists (H,C) ∈ H (Za) such that Vt(H,C) = Vt.
It can be shown that Jt is a càdlàg and regular7 process. Then, since all the
technical assumptions are verified, one can use the Doob-Meyer decompo-
sition Theorem (see Karatzas and Shreve [7], Theorem 4.10 and Theorem
4.14): Jt = Mt −At, where M is a (square integrable under P∗) martingale
and A is a continuous non-decreasing process with A0 = 0. Moreover, by us-
ing (in the right way) the representation theorem for Brownian martingales

7Yt is called a regular process if for any α > 0, E(Yτn) → E(Yτ ) as n → ∞ for any
{τn} ∈ T[0,α] such that τn ↑ τ ∈ T[0,α].
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(see the discussion in the proof of Theorem 2.22), one has dMt = Yt dB∗
t ,

for some adapted process Y such that E∗(
∫ T
0 |Yt|2 dt) < ∞. Then,

d(e−
∫ t
0 rs dsVt) = dJt = Yt dB∗

t − dAt.

Take now H such that
∑N

i=1 H i
sX

i
s σi

k(s,Xs) = Y k
s and C such that C0 = 0

and dCt = e
∫ t
0 rs dsdAt (and notice that C is non decreasing). Then one has

d(e−
∫ t
0 rs dsVt) =

N∑

i=1

H i
t dX̃i

t − e−
∫ t
0 rs ds dCt,

so that Vt = Vt(H, C) and also the self financing property of (H, C) holds
by Proposition 3.2. Since we have already seen that Vt ≥ g(t, Xt), we have
shown the existence of (H,C) ∈ H (Za) such that Vt = Vt(H,C).
Finally, take (H̄, C̄) ∈ H (Za). Since Vt(H̄, C̄) ≥ g(t,Xt) ≥ 0, by Proposi-
tion 3.2 one has that Ṽt(H̄, C̄) is a supermartingale such that Ṽt(H̄, C̄) ≥
g̃(t,Xt). Then, Ṽt(H̄, C̄) ≥ Jt, so that Vt(H̄, C̄) ≥ e

∫ t
0 rs dsJt = Vt.

2

Let us add some remarks to the proof of Theorem 3.5, involving the Optimal
Stopping Theory, so that we give no proofs and refer to Wong [5] or also
Karatzas and Shreve [8].
First, one has that Jt ≥ e−

∫ t
0 rs dsg(t,Xt), for any t (in fact, τ = t ∈ T[t,T ]).

Then, the Optimal Stopping Theory allows to find the stopping time τ0

giving J0: setting

τ0 = inf{t ∈ [0, T ] : Jt = e−
∫ t
0 rs dsg(t,Xt)},

where τ0 = T if Jt > e−
∫ t
0 rs dsg(t,Xt) for any t ∈ [0, T ], then

J0 = E∗(e−
∫ τ0
0 rs dsg(τ0, Xτ0)). (22)

Since Vt = e−
∫ t
0 rs dsJt, everything can be rewritten in terms of the portfolio

Vt defined in (21). One has Vt ≥ g(t,Xt) for any t ∈ [0, T ] and

τ0 = inf{t ∈ [0, T ] : Vt = g(t,Xt)}, (23)

and therefore
Vτ0 = g(τ0, Xτ0). (24)

Furthermore, it follows that Ct∧τ0 = 0, that is, there is no consumption up to
the exercise date τ0. In fact, Jt∧τ0 can be shown to be a martingale, so that
the process A given by the Boob-Meyer decomposition satisfies At∧τ0 = 0.
Since Ct =

∫ t
0 e

∫ s
0 rududAs, one immediately obtains that

Ct∧τ0 = 0.
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Roughly speaking, the self-financing trading and consumption strategy giv-
ing the perfect hedging behaves as a standard self-financing strategy up to
the exercise date.
Obviously, everything can be translated to the time interval [t, T ]: the stop-
ping time

τt = inf{s ∈ [t, T ] : Vs = g(s, Xs)},
can be shown to be optimal, that is

Vt = E∗(e−
∫ T

t rsdsg(τt, Xτt) |Ft),

and he consumption process is null in between t and τt.

Example 3.6. (Price of an American call option) Suppose that d = 1
and consider an American call option, whose price as seen at time 0 is then
given by

P am
0 = ess supτ∈T[0,T ]

E∗(e−
∫ τ
0 rsds(Xτ −K)+)

Setting P eu
0 as the price of the European call option, one obviously has

P am
0 ≥ P eu

0 , but in this special case the converse inequality holds as well8,
so that for a call option the American and European prices agree:

P am
0 = P eu

0 .

In other words, in the American call option case the “best” exercise date is
just the maturity.
Let us prove that P am

0 ≤ P eu
0 . Since e−

∫ T
0 rsds(XT −K)+ ≥ e−

∫ T
0 rsds(XT −

K), for any τ ∈ T[0,T ] one has

E∗(e−
∫ T
0 rsds(XT −K)+ |Fτ ) ≥ E∗(e−

∫ T
0 rsds(XT −K) |Fτ )

= E∗(e−
∫ T
0 rsdsXT |Fτ )− e−

∫ T
0 rsdsK

= e−
∫ τ
0 rsdsXτ − e−

∫ T
0 rsdsK ≥ e−

∫ τ
0 rsdsXτ − e−

∫ τ
0 rsdsK

in which we have used the Optional Stopping Theorem to the (P∗,Ft)-
martingale e−

∫ t
0 rsdsXt (recall that τ is a bounded stopping time w.r.t.

Ft) and the fact that τ ≤ T . Since one obviously has E∗(e−
∫ T
0 rsds(XT −

K)+ |Fτ ) ≥ 0, one can write

E∗(e−
∫ T
0 rsds(XT −K)+ |Fτ ) ≥ max

(
0, e−

∫ τ
0 rsds(Xτ −K)

)

= e−
∫ τ
0 rsds(Xτ −K)+

and by passing to the expectation, for any τ ∈ T[0,T ] one obtains

E∗(e−
∫ T
0 rsds(XT −K)+) ≥ E∗(e−

∫ τ
0 rsds(Xτ −K)+).

By passing to the sup as τ ∈ T[0,T ] in the above r.h.s., one immediately
obtains P eu

0 ≥ P am
0 .

8This fact holds whenever no dividends are payed (as considered in the present notes)
and the instantaneous interest rate r is deterministic.
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3.2 The behavior of the American put in the Black and Sc-
holes model

Differently from the call option case, the price of an American put option
differs from the price of the associated European one, and no closed form
formulas are available even in the Black and Scholes framework. Let us put
in this context and study the behavior of the American put. Suppose d = 1
and the risky underlying asset price X follows the Black and Scholes model.
Under the risk neutral measure, one has

dXt = rXtdt + σXtdB∗
t , X0 = x

in which, as usual, r denotes the spot rate, σ stands for the volatility and B∗

is the P∗-Brownian motion. The price of the American put with maturity
T and strike price equal to K, as seen at time t ∈ [0, T ], is then given by

Vt = ess supτ∈T[t,T ]
E∗

(
e−r(τ−t) (K −Xτ )+ |Ft

)
.

Now, by using the Markov property, one immediately obtains Vt = u(t, Xt),
where

u(t, x) = ess supτ∈T[t,T ]
E∗

((
Ke−r(τ−t) − xe−σ2(τ−t)/2+σ(B∗τ−B∗t )

)
+

)
. (25)

For the sake of clearness, let us suppose that t = 0:

u(0, x) = ess supτ∈T[0,T ]
E∗

((
Ke−rτ − xe−σ2τ/2+σB∗τ

)
+

)
. (26)

If (Wt)t≥0 denotes a standard Brownian motion defined on some probability
space (Ω,F ,P), we can write

u(0, x) = ess supτ∈T[0,T ]
E

((
Ke−rτ − xe−σ2τ/2+σWτ

)
+

)

≤ ess supτ∈T[0,+∞]
E

((
Ke−rτ − xe−σ2τ/2+σWτ

)
+
1{τ<+∞}

)
.

(27)
in which T[0,+∞] denotes all the stopping times. The r.h.s of above Equation
(27) can be interpreted as the value of the “perpetual” put, since in some
sense it can be exercised at any time. Then, there exists a closed form
formula for such a function:

Proposition 3.7. The function

u∞(x) = ess supτ∈T[0,+∞]
E

((
Ke−rτ − xe−σ2τ/2+σWτ

)
+
1{τ<+∞}

)
(28)

is given by:

u∞(x) =





K − x if x ≤ x∗

(K − x∗)
( x∗

x

)γ
if x > x∗

in which x∗ = Kγ/(1 + γ) and γ = 2r/σ2.
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Before to continue with the proof, let us give some remarks. Let us come
back to the American put, with finite maturity T . By developing similar
arguments to the ones will be used for proving Proposition 3.7, one can see
that for any t ≤ T there exists x∗(t) such that

for any x ≤ x∗(t) then u(t, x) = K − x

for any x > x∗(t) then u(t, x) > (K − x)+
(29)

Moreover, by (27), we easily obtain that x∗(t) ≥ x∗ for any t ≤ T . Notice
that if the underlying asset price is seen less than x∗(t) at time t then the
value of the perfect-hedging portfolio equals the payoff function, and the
buyer of the option should exercise it immediately. In the opposite case, he
should keep it and to wait for. Such a property justifies why the value x∗(t)
is usually called the “critical price” at time t.
Proof of Proposition 3.7. Formula (28) tells us the u∞ satisfies the following
properties:

- u∞ is convex and decreasing;

- u∞(x) ≥ (K − x)+ and moreover, for any T > 0,

u∞(x) ≥ E
((

Ke−rT − xe−σ2τ/2+σWT

)
+

)
,

which in turn implies u∞(x) > 0 for any x.

If we define
x∗ = inf{x > 0 : u∞(x) = (K − x)+},

from the above properties it follows that x∗ < K and

for any x ≤ x∗, u∞(x) = K − x

for any x > x∗, u∞(x) > (K − x)+
(30)

We have now to show that x∗ is actually given by the formula x∗ = Kγ/(1+
γ) with γ = 2r/σ2, and moreover the exact expression for u∞ holds whenever
x > x∗.
By the Optimal Stopping Theory and the Snell envelopes behavior, one can
prove that there exists a stopping time giving the ess sup, that is for any x
there exists τx such that

u∞(x) = E
((

Ke−rτx − xe−σ2τ/2+σWτx

)
+
1{τx<∞}

)
.

Moreover, setting Xx
t = x exp((r − σ2/2)t + σWt), τx is given by

τx = inf{t ≥ 0 : u∞(Xx
t ) = (K −Xx

t )+},
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(recall the discussion at page 28). Now, from (30), it immediately follows
that

τx = inf{t ≥ 0 : Xx
t ≤ x∗} = inf{t ≥ 0 : (r − σ2/2)t + σWt ≤ log(x∗/x)}.

For z > 0, let us introduce the following stopping time τ z
x and function φ(z):

τ z
x = inf{t ≥ 0 : (r − σ2/2)t + σWt ≤ log(z/x)}

φ(z) = E
(
e−rτz

x (K −Xx
τz
x
)+1{τz

x<∞}
)
.

With these new notations, we have

τx = τx∗
x and u∞(x) = φ(x∗).

Moreover, since τx∗
x is optimal, we know that the function φ attains its

maximum at z = x∗. We are now going to compute φ explicitly, then we
will maximize it to determine x∗ and φ(x∗) = u∞(x).
If z > x, then τ z

x = 0, so that φ(z) = (K − x)+. If z ≤ x, then by using the
continuity of the paths of W we have

τ z
x = inf{t ≥ 0 : (r − σ2/2)t + σWt = log(z/x)} = inf{t ≥ 0 : Xx

t = z}
and Xx

τz
x

= z. Therefore,

φ(z) = (K − z)+E(e−rτz
x 1{τz

x<∞}).

It then follows that we need to study the Laplace transform of τ z
x . The

following Lemma 3.8 states that, for α > 0,

E(e−αT µ
b 1{T µ

b <∞}) = exp(µb− |b|
√

µ2 + 2α)

in which
Tµ

b = inf{t ≥ 0 : µt + Wt = b}.
By substituting α = r, µ = (r−σ2/2)/σ and b = log(z/x)/σ, straightforward
computations give

φ(z) = (K − z)+
( z

x

)γ
,

with γ = 2r/σ2. Notice that, since

φ′(z) =
zγ−1

xγ
(Kγ − (γ + 1)z)

one has that the maximum is achieved for z = Kγ/(γ + 1).
By resuming, we have obtained

φ(z) =





(K − x)+ if z > x

(K − z)
( z

x

)γ
if z ≤ x and z ≤ K

0 if z ≤ x and z ≥ K
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It then follows that if x ≤ Kγ/(γ + 1) then maxz φ(z) = φ(x) = K − x. If
instead x > Kγ/(γ + 1) then maxz φ(z) = φ(Kγ/(γ + 1)). This gives the
required formula, and the statement holds.

2

It remains to prove the following formula for the Laplace transform of the
hitting time:

Lemma 3.8. Let W denote a one-dimensional Brownian motion. For any
µ, b ∈ R, set

Tµ
b = inf{t ≥ 0 : µt + Wt = b},

with the usual convention inf ∅ = +∞. Then, for any α > 0,

E(e−αT µ
b 1{T µ

b <∞}) = exp(µb− |b|
√

2α + µ2 ).

Moreover, Tµ
b < ∞ a.s. if and only if µ · b ≥ 0. If µ · b < 0, then one has

P(Tµ
b < ∞) = exp(2µb).

Proof. Without loss of generality, we can assume that b ≥ 0 (otherwise,
replace the Brownian motion W with the Brownian motion −W and replace
the drift µ with the drift −µ).
Let us first show the above equality when µ = 0. More precisely, we first
show that T 0

b = inf{t ≥ 0 : Wt = b} is an a.s. finite stopping time and

E(e−αT 0
b ) = exp(−|b|

√
2α ).

We can write

{T 0
b ≤ t} = ∩ε∈Q+{sup

s≤t
Ws ≥ b− ε} = ∩ε∈Q+ ∪s∈Q+,s≤t {Ws ≥ b− ε} ∈ Ft,

(here, Q+ denotes the non negative rational numbers) so that T 0
b is actually

a stopping time. Set now Mt = exp(aWt − a2

2 t), where a denotes a real
number, and recall that Mt is a martingale. Now, we want to apply the
Optional Sampling Theorem to T 0

b , but we do not know if it is bounded
(actually, at the moment we do not know even if it is finite), so we consider
the stopping time T 0

b ∧t, where t is a positive number. T 0
b ∧t is now bounded,

so that we can write
E(MT 0

b ∧t) = 1.

Now, MT 0
b ∧t = exp(aWT 0

b ∧t − a2

2 T 0
b ∧ t) ≤ exp(ab). Moreover,

lim
t→∞MT 0

b ∧t = MT 0
b
1{T 0

b <∞} = exp(ab− a2

2
T 0

b )1{T 0
b <∞}

(notice that the r.h.s. would be equal to exp(−ab − a2

2 T 0
b )1{T 0

b <∞} if one
had assumed b < 0).
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By using the Lebesgue Dominated Convergence Theorem, we can state that

1 = lim
t→∞E(MT 0

b ∧t) = E(exp(ab− a2

2
T 0

b )1{T 0
b <∞}),

i.e.

E(exp(−a2

2
T 0

b )1{T 0
b <∞}) = exp(−ab).

If we take a2/2 = α, we obtain

E(exp(−αT 0
b )1{T 0

b <∞}) = exp(−b
√

2α ).

Now, if α ↓ 0, we obtain
P(T 0

b < ∞) = 1,

so that T 0
b is a.s. finite and then, for any positive α,

E(exp(−αT 0
b )) = exp(−b

√
2α ).

Suppose now µ 6= 0. By using arguments similar to the ones developed
above, one easily obtains that Tµ

b is a stopping time w.r.t. Ft. Now, let
us write Tµ

b = Tµ
b (W ) to stress the dependence from W and let us write

Bt = Wt + µt. By the Girsanov’s Theorem, B is a Brownian motion under
Q, where Q is defined on (Ω, Ft) as

dQ
dP

∣∣∣
Ft

= e−µWt−µ2

2
t.

Since Tµ
b (W ) ∧ t is Ft-measurable, we can write

E(e−αT µ
b (W )∧t) = EQ

(
e−αT µ

b (W )∧t dQ
dP

∣∣∣
Ft

)
=

= EQ
(
e−αT µ

b (W )∧teµWt+
µ2

2
t
)

= EQ
(
e−αT 0

b (B)∧teµBt−µ2

2
t
)

in which we have substituted Wt = Bt−µt. Therefore, we can simply write

E(e−αT µ
b (W )∧t) = E

(
e−αT 0

b ∧teµWt−µ2

2
t
)
.

Now, by using the martingale property for eµWt−µ2

2
t and the Optional Sam-

pling Theorem (recall that T 0
b ∧ t is a bounded stopping time), we obtain

E
(
e−αT 0

b ∧teµWt−µ2

2
t
)

= E
(
E

(
e−αT 0

b ∧teµWt−µ2

2
t
∣∣∣FT 0

b ∧t

))

= E
(
e−αT 0

b ∧te
µW

T0
b
∧t
−µ2

2
T 0

b ∧t
)
.
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Therefore, the following equality holds:

E(e−αT µ
b (W )∧t) = E

(
e−αT 0

b ∧te
µW

T0
b
∧t
−µ2

2
T 0

b ∧t
)

Consider now the r.v. involved in the expectation in the r.h.s. above, that

is βt = e
−αT 0

b ∧t+µW
T0

b
∧t
−µ2

2
T 0

b ∧t
. One has 0 ≤ βt ≤ eµb and

lim
t→∞βt = e−αT 0

b +µb−µ2

2
T 0

b a.s.

because we know T 0
b < ∞ a.s. Therefore, we obtain

lim
t→∞E

(
e−αT 0

b ∧te
µW

T0
b
∧t
−µ2

2
T 0

b ∧t
)

= eµbE(e−(α+µ2/2)T b
0 ) = eµb−b

√
2α+µ2

.

On the other hand, we have e−αT µ
b ∧t ↓ e−αT µ

b 1{T µ
b <∞} a.s. as t → ∞, so

that
E(e−αT µ

b 1{T µ
b <∞}) = lim

t→∞E(e−αT µ
b ∧t) = eµb−b

√
2α+µ2

,

for any α > 0, and the formula for the Laplace transform actually holds9.
Now, if α → 0, then it follows that

P(Tµ
b < ∞) = eµb−|bµ|.

Then, in general, it is not true that Tµ
b < ∞ a.s. In fact, we obtain

P(Tµ
b < ∞) =

{
1 if µ · b ≥ 0

e2µb if µ · b < 0

The proof is now completed.

2

3.3 Price by no-arbitrage arguments

The aim of this section is to show that the price Vt given by Theorem
3.5 can be seen also as the price turning out by a “fair” game between
seller and buyer similar to the one previously studied, that is, no arbitrage.
Obviously, this will be a consequence of a suitable definition of an “arbitrage
opportunity” in this new contest of American options.
Let us start with the following kind of strategies.

9Notice that, since α > 0, one has e−αT
µ
b 1{T

µ
b

<∞} = e−αT
µ
b , so as a point of fact we

have shown that E(e−αT
µ
b ) = eµb−b

√
2α+µ2

.
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Definition 3.9. A buy-and-hold strategy associated to an American option
Za = (T, g) is a pair (c, τ), with τ ∈ T[0,T ] standing for the exercise date and
c > 0 (long position) or c < 0 (short position) standing for the number of
units of the American security held at time 0 and then held in the portfolio
up to the exercise date τ .

Notice that in a buy-and-hold strategy, the American security is not traded
after the initial date. Moreover, such a definition implicitly assumes the
existence of an initial price P0 for the American contingent claim, which of
course represents what we aim to find and show to be equal to the quantity
V0 given in (21).
In order to proceed with our problem, we need to introduce more general
self financing strategies, which take into account both trading-consumption
and buy-and-hold strategies:

Definition 3.10. A self financing strategy for the American contingent
claim Za = (T, g) is a collection ψ = (H, C, c, τ) such that:

(i) (H, C) is a self financing trading and consumption strategy;

(ii) (c, τ) is a buy-and-hold strategy;

(iii) (H, C) and (c, τ) are such that over (τ, T ] one has

H i
t = 0, i = 1, . . . , N, and H0

t =
N∑

i=1

H i
τ X̃i

τ + H0
τ + c g̃(τ, Xτ ),

being g̃(t, x) = e−
∫ t
0 rs dsg(t, x) the associated discounted cash flows

function.

Notice that the portfolio on a self financing strategy ψ = (H, C, c, τ) depends
also on the buy-and-hold strategy, so we will write Vt(ψ). Moreover, it fulfills
the following initial and final conditions:

V0(ψ) =
∑N

i=1 H i
0 Xi

0 + H0
0 + c P0 and

VT (ψ) = e
∫ T

τ rs ds
(∑N

i=1 H i
τ Xi

τ + c g(τ,Xτ )
)

+ e
∫ T
0 rs dsH0

τ

(31)

Such kind of “American” strategies will be used in the notion of arbitrage
in the American context (see below), where only the cases c = +1 (selling
the option) and c = −1 (buying the option) are considered.
A closer look to the definition above shows after the exercise date τ , the
portfolio holder closes the existing positions in the stocks and invests only
in the benchmark asset (bond), in a quantity depending both on the value
of the portfolio and the payoff of the American security at time τ . In some
sense, trading following an American strategy means to add in the market
the American contingent claim itself.
Let us introduce arbitrage strategies in this context:
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Definition 3.11. We say that there is an arbitrage in the market model for
the American contingent claim Za = (T, g) with initial price U0 if one of
the following conditions is fulfilled:

(a) (long arbitrage) there exists τ ∈ T[0,T ] and a trading-consumption
strategy (H, C) such that the American strategy ψ+ = (H, C, +1, τ)
satisfies:

V0(ψ+) < 0 and VT (ψ+) ≥ 0;

(b) (short arbitrage) there exists a trading-consumption strategy (H, C)
such that for any τ ∈ T[0,T ] the American strategy ψ− = (H, C,−1, τ)
satisfies:

V0(ψ−) < 0 and VT (ψ−) ≥ 0.

Let us spend some words on conditions (a) and (b) above. A long arbitrage
means that selling the American contingent claim (c = +1) implies the ex-
istence of a strategy and an exercise date giving a gain; in a short arbitrage,
the gain is guaranteed when the American derivatives is bought (c = −1):
in such a case, there exists a strategy in order to have a gain for any exercise
date.
The no-arbitrage price of the American security is then defined as the value
of P0 which gives no arbitrage. This is well said: we are going to see that
such a value does exist and is unique under P∗ if the meaning of “an arbitrage
opportunity” follows Definition 3.11.

Theorem 3.12. There is no arbitrage (following Definition 3.11) if and
only if the initial price P0 of the American contingent claim Za = (T, g) at
time 0 is given by

P0 = ess supτ∈T[0,T ]
E∗(e−

∫ τ
0 rs dsg(τ, Xτ )) = E∗(e−

∫ τ0
0 rs dsg(τ0, Xτ0)),

where τ0 = inf{t ∈ [0, T ] : Vt = g(t,Xt)} is the exercise date.
More generally, the no-arbitrage price Pt of the American contingent claim
Za = (T, g) as seen at time t ∈ [0, T ] is given by

Pt = ess supτ∈T[t,T ]
E∗(e−

∫ τ
t rs dsg(τ, Xτ ) |Ft)

= E∗(e−
∫ τt

t rs dsg(τt, Xτt) |Ft),

where τt = inf{s ∈ [t, T ] : Vs = g(s,Xs)} is the exercise date.

Proof. Let Vt as in (21) and let (H, C) denote the trading-consumption
strategy given by Theorem 3.5, which is such that Vt = Vt(H, C). We prove
that the price of the American contingent claim has to be P0 = V0, otherwise
there are arbitrage opportunities.
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First, let us suppose P0 > V0: we will exhibit a short arbitrage. Indeed,
take τ ∈ T[0,T ] and (H̄, C̄) as follows: C̄t = Ct∧τ and

H̄ i
t = H i

t 1[0,τ ](t), i = 1, . . . , N, and

H̄0
t =H0

t 1[0,τ ](t) + Ĥ0
τ 1(τ,T ](t)

with Ĥ0
τ = H0

τ +
N∑

i=1

e−
∫ τ
0 rs dsH i

τX
i
τ − e−

∫ τ
0 rs dsg(τ, Xτ ).

Let us give an idea on why the pair (H̄, C̄) is a self-financing trading and
consumption strategy. On the event {t ≤ τ} one has (H̄, C̄) = (H, C),
so that dVt(H̄, C̄) =

∑N
i=0 H̄ i

t dXi
t − dC̄t. On the event {t > τ} one has

Vt(H̄, C̄) = Ĥ0
τ X0

t , and then

dVt(H̄, C̄) = H0
τ dX0

t =
N∑

i=0

H̄ i
t dXi

t − dC̄t

because dC̄t = 0 if t > τ (recall that C̄t ≡ Cτ for any t > τ).
Consider now the American strategy ψ̄− = (H̄, C̄,−1, τ) and let Vt(ψ−)
denote the associated portfolio. Notice that, since we have seen that Vt ≥
g(t,Xt) for any t, then Vτ ≥ g(τ, Xτ ). But since VT (ψ̄−) = Vτ−g(τ, Xτ ), one
has VT (ψ̄−) ≥ 0. Moreover, by (31) it follows that V0(ψ̄−) = V0(H, C)−P0 =
V0 − P0 < 0, that is ψ̄− gives a short arbitrage.
Let us now suppose that P0 < V0: such a condition gives a long arbitrage.
Let τ0 be defined as in (23). Set C̄t = Ct∧τ0 ≡ 0 and H̄ defined as above
but with τ replaced by τ0. By developing arguments similar to the one
previously used, one has that (H̄, C̄) is self-financing. Now, take ψ̄+ =
(−H̄,−C̄, +1, τ0) ≡ (−H̄, 0, +1, τ0). Then V0(ψ̄+) = −V0(H, C) + P0 < 0
and VT (ψ̄+) = −Vτ0 + g(τ0, Xτ0) = 0 because of (23) and (24). Thus, ψ̄+

gives a long arbitrage.

2

So, by summarizing, in the American case one needs to introduce more
general kind of strategies (we had to introduce consumption processes and
buy-and-hold strategies). But notice that this is just in order to achieve the
price and the hedging portfolio: in some sense, this is more mathematics
than practice. Indeed, as we have seen, the American contingent claim
is well hedged and then priced by a trading-consumption strategy (buy-
and-hold strategies are somehow technical things, although they have an
interesting financial meaning, in order to precise the meaning of arbitrage
in this new context). Now, since the consumption process nullifies up to
the exercise date, it turns out that the trading-hedging strategy reduces to
a standard one: once the exercise date is reached, the game between buyer
and seller ends!

38



References

[1] L. Bachelier: Theory of Speculation. English transaltion published in
Cootner [4], 1900.

[2] P. Baldi: Equazioni differenziali stocastiche e applicazioni. Seconda
edizione. Pitagora Editrice, Bologna, 2000.

[3] F. Black and M. Scholes: The Pricing of Options and Corporate Lia-
bilities. Journal of Political Economy, 81, 635-645, 1973.

[4] P.H. Cootner (ed): The Random Character of Stock Market Prices.
MIT Press, Cambridge, 1964.

[5] D. Wong: Generalised optimal stoping problems and financial markets.
Pitman Research Notes in Mathematical Series, Longman, 1996.

[6] J.C. Hull: Options, Futures and Other Derivatives. Fourth Edition.
Prentice-Hall International, Inc., 2000.

[7] I. Karatzas and S.E. Shreve: Brownian Motion and Stochastic Calcu-
lus. Second Edition. Springer, Berlin-Heidelberg-New York, 1991.

[8] I. Karatzas and S.E. Shreve: Methods of Mathematical Finance.
Springer-Verlag, 1998.

[9] D. Lamberton and B. Lapeyre: Introduction to Stochastc Calculus Ap-
plied to Finance. Chapman-Hall, London, 1996.

[10] M. Musiela and M. Rutkowski: Martingale methods in Financial Mod-
elling. In Applications of Mathematics, Springer-Verlag, 1997.

[11] B. Øksendal: An Introduction to Malliavin Calculus with Applications
to Economics. Dept. of Mathematics, University of Oslo, 1997.

[12] Ph. Protter: Stochastic Integration and Differential Equations. A New
Approach. Springer-Verlag, Berlin, 1990.

[13] D. Williams: To begin at the beginning. In Stochastic Integrals, Lecture
Notes in Mathematics 851, 1-55, 1981.

39


