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1 Introduction

The aim of these lectures is to give a short presentation of Lyons�theory of Rough Path. In
the �rst part of the lectures we present the "classical" theory following the beautiful book of P.
Friz and M. Hairer, "A Course on Rough Paths, with an introduction to regualrity structures".
I will refer to this book as (FH).

�Université Paris-Est, LAMA (UMR CNRS, UPEMLV, UPEC), MathRisk INRIA, F-77454 Marne-la-Vallée,
France. Email: bally@univ-mlv.fr
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In the second part we present an alternative approach due to I. Bailleul which is based on
the point of view of stochastic �ows.

All over the text I will assume that one works on the time interval (0; T ); and smetimes we
also assume that T � 1:

2 First presentation of the rough integral

2.1 Motivation

a Consider a one dimensional Brownian motion W and a bounded continuous function F :
R! R: Then one de�nes the Itô stochastic integral as limit of Riemann sums:Z t

0
F (Ws)dWs = lim

jPj!0

nX
i�1

F (Wsi�1)(Wsi �Wsi�1)

Here P = f0 = s0 < ::: < sn = tg is a partition of mesh jPj ! 0 and, important, the limit is in
L2(
; P ): In particular

R t
0 F (Ws)dWs is de�ned only P (d!) almost surely, and the exception

set depends on F: So, if one aims to de�ne this integral for all possible F in the same time,
with a unique exception set, this is not possible. However, if one replaces the Ito stochastic
integral by the Lyon�s "rough path integral" (that we present in the following) we are able to
give a de�nition which holds for any coe¢ cient F with an exception set which does not depend
on F:

Moreover the de�nition of the rough integral is "pathwise": for each trajectory s!Ws(!)
one is able to de�ne

R t
0 F (Ws(!))dW s(!) (I put dW s(!) instead of dWs(!) in order to emphasise

that I speak about the rough integral): Of course, this is not true for the Itô integral which is
de�ned just as a class of equivalence of L2:

b (�ows) Consider the SDE

Xt(x) = x+
dX
i=1

Z t

0
�i(Xs(x)dW

i
s +

Z t

0
b(Xs(x))ds:

It is well knowen that if the coe¢ cients �i and b are of class C1b then one may �nd a set

�;b � 
 with P (
�;b) = 1 such that for each ! 2 
�;b the application

(t; x)! Xt(x;W (!))

is continuous with respect to t and of class C1 with respect to x: This is a crucial point in
the the theory of stochastic �ows developed by Kunita, Bismut, Ikeda Watanabe .... But the
set 
�;b depends on the coe¢ cients � and b: If one replaces the Itô integral dWs by the rough
path integral dW s(!) one is able to �nd a universal set 
0 � 
 with P (
0) = 1; such that for
each ! 2 
0 the application (t; x)! Xt(x; !) is a smooth �ow. So one may de�ne a "universal
map" which solves the equation.

c (continuity) See (FH) Proposition 1.1 and Exercise 5.21
The law of the Brownian motion W is supported by the space of continuous functions

C(0; T ) which is a Banach space with the uniform normkfk1 = supt�T jftj : Take nowWn(s) =
W � 
n(s) where is a smooth approximation of the Dirac mass: 
n ! �0 in distribution sense.
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Since s!Wn(s) is a smooth function we may solve the ODS

Xn
t (x) = x+

dX
i=1

Z t

0
�i(X

n
s (x)dW

i
n(s) +

Z t

0
b(Xn

s (x))ds

where dW i
n(s) is now a Stieltjes integral. Then

kW �Wnk1 ! 0 and kX �Xnk1 ! 0:

To be precise, one has to take the Stratonovich integral instead of the Itô integral in the
equation of Xt: But anyway since the coe¢ cients are smooth, this is done by changing the drift
b by a drift b0 (I leave out this detail for the moment):

Now the question is

kW �Wnk1 ! 0 ) kX �Xnk1 ! 0

for every sequence of smooth functionsWn; n 2 N? This is the continuity property with respect
to the uniform norm. But this is false: one may produce a sequence such that kW �Wnk1 ! 0
but limn kX �Xnk1 6= 0:

But we know that the law of the Brownian motion is concentrated on the space C�(0; T )
of Hölder continuous functions of order � < 1

2 : And the Hölder norm kfk� is stronger than
the supremum norm. So one may hope that kW �Wnk� ! 0 ) kX �Xnk� ! 0: But this
is also false (one may produce a sequence which contradicts this). And �nally one may prove
that if one considers any Banach space B � C(0; T ) on which the law of the Brownian motion
is supported then the assertion kW �WnkB ! 0 ) kX �XnkB ! 0 is false. So there is no
hope to get the continuity W �Wn ! 0 ) X � Xn ! 0 does not matter which norm one
employs. It turns out that in order to obtain Xn ! X we need Wn ! W but we also need
some "more information" on the path W : this supplementary information is quanti�ed in the
�rough path". (see Proposition 1.1 p 2 in (FH)).

2.2 The sewing lemma

This is the central instrument in our framework: it gives a way to prove that Euler scheme
converges to the solution of some equation. We consider an abstract application � : R2+ ! R:
If � is additive, that is �s;t = �s;u + �u;t for every s < u < t, then for every partition
P = fs = s0 < ::: < sn = tg; we have

�Ps;t :=
nX
i=1

�si�1;si = �s;t:

But of course this is false if the additivity property fails. This is why we introduce the following
"additivity error":

�s;u;t(�) = �s;t ��s;u ��u;t:

Lemma 2.1 Suppose that, for some � > 1 and Csew � 1

j�s;u;t(�)j � Csew jt� sj� : (2.1)
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A Then the following limit exists

Xs;t(�) = lim
jPj!0

�Ps;t = lim
jPj!0

nX
i=1

�si�1;si : (2.2)

B Moreover ��Xs;t(�)��Ps;t�� � 2�(t� s)�(�) jPj��1 (2.3)

with �(�) =
P1
i=1 i

��: And

jXs;t(�)��s;tj � Csew�(�)2
�(t� s)�: (2.4)

C X is additive, and it is the unique additive process which veri�es (2.4).

Proof A Step 1. We �x a partiton P = fs = s0 < ::: < sn = tg: Note �rst that one may
�nd i such that

si+1 � si�1 �
2(t� s)

n
:

We denote by Pi the partition P in which we have canceled i: Then

�Ps;t ��Pis;t = �si�1;si +�si;si+1 ��si�1;si+1 = �si�1;si;si+1(�)

and consequentely ����Ps;t ��Pis;t��� � Csew(si+1 � si�1)� � Csew

�
2(t� s)

n

��
:

We repeat this procedure in order to descend to partitions which are shorter and shorter, up
to the trvial partition fs; tg: So we obtain

���Ps;t ��s;t�� � Csew

nX
i=1

�
2(t� s)

i

��
� Csew�(�)2

�(t� s)�: (2.5)

Step 2 We prove the Cauchy property

lim
jPj_jP 0j!0

����Ps;t ��P 0s;t��� = 0:
We may suppose without loss of generality that P 0 � P and we construct the partitions Pl
in the following way: we consider the intervals (s0j ; s

0
j+1) of the partition P 0 and we split the

intervals with j � l according to P. But we leave the intervals with j > l as they are in P 0.
Then

�Ps;t ��P
0

s;t =

n0X
l=1

(�Pls;t ��
Pl�1
s;t )

so that ����Ps;t ��P 0s;t��� �
n0X
l=1

����Pls;t ��Pl�1s;t

��� = n0X
l=1

����Psl;sl+1 ��sl;sl+1���
� Csew�(�)2

�
n0X
l=1

(sl+1 � sl)�

� Csew�(�)2
�
��P 0����1 (t� s)! 0:
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So we may de�ne XP
s;t(�) = limjPj!0�

P
s;t:

Step 3 B We pass to the limit with jPj ! 0 and we get���Xs;t(�)��P 0s;t��� � Csew�(�)2
�
��P 0����1 (t� s):

Moreover passing to the limit in (2.5) we get

jXs;t(�)��s;tj � Csew�(�)2
�(t� s)�:

C The fact that Xs;t = Xs;u + Xu;t is proved by passing to the limit and using that any
partition of (s; t) may be split in a partition of (s; u) and of (u; t): �

2.2.1 Example: the Young integral.

Take f; g : R+ ! R: If f has �nite variation and g is continuous one may de�ne the "Stiltjers
integral"

R t
0 g(s)df(s) as the limit of the Riemann sums. Young generalized this to functions

which are just Hölder continuous. We denote C� the space of functions f : R+ ! R such that

sup
jt�sj>0

jf(t)� f(s)j
jt� sj� =: kfk� <1:

Notice that
sup
t�T

jf(t)j � jf(0)j+ kfk� T
�

In the following we will use the notation fs;t = ft � fs and then the above inequality concerns
fs;t : this reads jfs;tj � kfk� (t � s)�: In a more general case, we will consider some functions
H : R2+ ! R and we say that H 2 C� if

sup
jt�sj>0

jHs;tj
jt� sj� =: kHk� <1:

Then we have the following

Lemma 2.2 Suppose that f 2 C� and g 2 C�0with � = � + �0 > 1: For a partition P = f0 =
s0 < ::: < sn = tg we denote

SPt =
nX
i=1

g(si�1)(f(si)� f(si�1)):

Then the follwoing limit exists and is called the Young integral:Z t

0
g(s)df(s) = lim

jPj!0
SPt :

And we have the following convergence rate:����Z t

0
g(s)df(s)� SPt

���� � C(t� s) jPj�+�
0�1
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Proof We denote
�s;t = g(s)(f(t)� f(s))

and we notice that
�s;u;t(�) = (g(u)� g(s))(f(t)� f(u)):

Under our hypothesis j�s;u;t(�)j � C(t � s)�+�
0
so that we may use the sewing lemma. Since

SPt = �
P
s;t the proof is an immediate consequence of the sewing lemma. �

2.3 The rough integral.

We consider a d�dimensional Brownian motion W = (W 1; :::;W d) and we present the rough
integral with respect to a path of W: To begin we consider a particular case (which is the one
considered by Lyons in his �rst papers): we give a function F 2 C2b (Rd; Rd) and we would like
to de�ne Z t

0
F (Ws)dWs =

dX
i=1

Z t

0
F i(Ws)dW

i
s : (2.6)

We may do it by using the Itô integral but, as we discussed in the �rst section, this is not
"pathwise": we would like to do it for a given �xed trajectory s ! Ws(!): Clearly we are
not able to use the Yung integral because both g(s) = F i(Ws) and f(s) = W i

s are Hölder
continuous of index � < 1

2 so that � + � < 1: In fact it turns out that we are not able to do
it just by using the trajectory s ! Ws(!); but we will need to add the information given by
the Lévy areas. This is called the "enhanced" Brownian motion. Let us be more precise. We
denote, for i; j 2 f1; :::; dg;

W i
s;t =W i

t �W i
s and Wi;j

s;t =

Z t

s
(W i

r �W i
s)dW

j
s (2.7)

Finally, the couple W = (W;W) is called the "enhanced" Brownian motion. For � > 0 we
denote (as in the previous section)

kWk� = sup
jt�sj>0

jWs;tj
jt� sj� and kWk� = sup

jt�sj>0

jWs;tj
jt� sj� :

As a consequence of Kolmogorov�s criterion (see (FH) Theorem 3.1) we have

Theorem 2.3 For every � 2 (13 ;
1
2)

kWk� <1 and kWk2� <1 (2.8)

almost surely. This means that we may �nd a set 
0 � 
 such that the above assertion holds
for every ! 2 
0 and P (
0) = 1: In the following we will suppose without any supplementary
mention that we work with a trajectory corseponding to ! 2 
0 and so the above property holds.

Remark 2.4 In (2.6) dW i may represent the "Itô integral" or the "Stratonovich integral"
�dW i: In the second case we have to take Wi;j

s;t =
R t
s (W

i
r�W i

s)�dW
j
s : In the following, in order

to �x ideas, we take the Itô integral, and, along the presentation, we will precise what changes
if we take the Stratonovich integral.
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We de�ne now

�s;t =

dX
i=1

F i(Ws)W
i
s;t +

dX
i;j=1

@jF
i(Ws)Wi;j

s;t (2.9)

For a partititon P = f0 = s0 < ::: < sn = tg we denote

�Ps;t =
nX
i=1

�si�1;si =
nX
k=1

0@ dX
i=1

F i(Wsk�1)W
i
sk�1;sk +

dX
i;j=1

@jF
i(Wsk�1)W

i;j
sk�1;sk

1A
Then we have

Theorem 2.5 Let us �x some � 2 (13 ;
1
2) and we �x some trajectory W(!) = (W (!);W(!))

with ! 2 
0 : Then the following limit existsZ t

s
F (Wr)dWr := lim

jPj!0
�Ps;t (2.10)

and it is called the "rough integral" of F (Wr) with respect to the rough path W: Moreover

R F (Wr)dWr




�
<1:

Proof We want to use the sewing lemma so we have to estimate �s;u;t(�): In the following
we denote by O(h�) a quantity wich is upper bounded by Ch�: Let s < u < t. We have

F (Wu) = F (Ws +Ws;u) = F (Ws) + hrF (Ws);Ws;ui+O((u� s)2�)

and
rF (Wu) = rF (Ws) +O((u� s)�)

so that

�u;t =

dX
i=1

F i(Wu)W
i
u;t +

dX
i;j=1

@jF
i(Wu)Wi;j

u;t

=

dX
i=1

F i(Ws)W
i
u;t +

dX
i;j=1

@jF
i(Ws)W

i
s;uW

j
u;t +

dX
i;j=1

@jF
i(Ws)Wi;j

u;t +O((t� s)3�)

This gives

�s;u +�u;t

=

dX
i=1

F i(Ws)(W
i
s;u +W

i
u;t) +

dX
i;j=1

@jF
i(Ws)(Wi;j

s;u +W
i;j
u;t +W

i
s;uW

j
u;t)

+O((t� s)3�):

Notice that we have the following identities (known as Chen relations)

Ws;t = Ws;u +Wu;t

Wi;j
s;t = Wi;j

s;u +W
i;j
u;t +W

i
s;uW

j
u;t
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Inserting in the previous equality

�s;u +�u;t =
dX
i=1

F i(Ws)W
i
s;t +

dX
i;j=1

@jF
i(Ws)Wi;j

s;t +O((t� s)3�)

= �s;t +O((t� s)3�)

which means that j�s;u;tj � C(t� s)3�: Now we are able to use the sewing lemma and to obtain
(2.10). Finally, using (2.4) we get����Z t

s
F (Wr)dWr

���� � j�s;tj+ C(t� s)3� � C(t� s)�:

�

Remark 2.6 (Link with the Itô integral) The rough integral
R t
s F (Wr(!))dWr(!) coincides

with the Itô inegral in the follwoing sense: the Itô integral
R t
s F (Wr)dWr is de�ned as the limit

in L2(
) of the Riemann sums - so it is an element of L2(
); that is a class of equivalence of
elements which are almost surely equal each other. On the other hand

R t
s F (Wr(!))dWr(!) is

de�ned for every ! 2 
0 as a limit of Euler schemes based on �s;t: Let us note that �Ps;t =
SPs;t +R

P
s;t with

SPs;t =
nX
i=1

dX
j=1

F j(Wsi�1)W
j
si�1;si and RPs;t =

nX
i=1

dX
j;p=1

@jF
p(Wsi�1)W

j;p
si�1;si

Notice thatWsi�1;si ; i = 1; :::; n are independent and centred, and E
���Wj;p

si�1;si

���2 � C(si�si�1)4�.
Then is easy to check that

E
��RPs;t��2 � krFk1 nX

i=1

dX
j;p=1

E
���Wj;p

si�1;si

���2 � C krFk1 jPj
4��1 ! 0:

So lim�Ps;t = limS
P
s;t =

R t
s F (Wr(!))dWr in L2(
): This means that the rough integral produces

a speci�c element in the class of equivalence of the Itô integral.

We discuss now the case of the Stratonovich integral. We recall that for two continuous
martingales M and N we haveZ t

0
M � dN =

Z t

0
MdN +

1

2
hM;Nit :

Suppose now that we consider the Lévy area with respect to the Stratonowich integral:

Wi;j
s;t =

Z t

s
W i
s;r � dW t

r =

Z t

s
W i
s;rdW

t
r +

1

2
�i;j(t� s):

We �rst notice that we still have, for � < 1
2 that kWk� < 1 and



W


2�
< 1: If we de�ne

now

�s;t =
dX
i=1

F i(Ws)W
i
s;t +

dX
i;j=1

@jF
i(Ws)W

i;j
s;t
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then

�s;t = �s;t +
1

2

dX
i=1

@iF
i(Ws)(t� s):

This imediately implies that

�s;u;t(�) = �s;u;t(�) +O(t� s)3�:

So the sewing lemma allows to constructZ t

s
F (Wr)dWr := lim

jPj!0
�
P
s;t:

Our aim now is to show that the above "Stratonovich rough integral" coresponds to the prob-
abilistic Stratonovich integral. Notice that

�
P
s;t = �

P
s;t +

1

2

dX
i=1

nX
k=1

@iF
i(Wsk�1)(sk � sk�1)

By passing to the limit we getZ t

s
F (Wr)dWr =

Z t

s
F (Wr)dWr +

1

2

dX
i=1

Z t

s
@iF

i(Wr)dr:

Having in mind the previous remark, this means that
R t
s F (Wr)dWr is a representer of

dX
i=1

Z t

s
F i(Wr)dW

i
r +

1

2

dX
i=1

Z t

s
@iF

i(Wr)dr =

dX
i=1

Z t

s
F i(Wr) � dW i

r :

So, if we start with a Stratonovich Lévy area, we �nish with a Stratonovich integral.

2.3.1 First generalisation: controlled path

We wolud like to be able to use a more general class of integrands. In order to do this we
introduce the notion of "controlled path" which is due to Gublinelli. Y : R+ ! Rd which is �
Hölder, is a "controlled path" if there exists Y 0 : R+ ! Rd�d such that

Ys;t =


Y 0s ;Ws;t

�
+O((t� s)2�)

or, in other words, RYs;t := Ys;t � hY 0s ;Ws;ti is 2� Hölder. The obvious example is

Yt = F (Wt) = F (Ws) + hrF (Ws);Ws;ti+ o(t� s)2�

So, in this case Y 0t = rF (Wt): Having this in mind one says that Y 0 is the (Gubinelli) derivative
of Y:

Uniqueness However, for a "general rough path" (W;W) (see the following section) this
derivative is not unique, so the notation is abusive, and we have to keep in mind the choice
which has be done; so a "controlled paths" is the couple (Y; Y 0) and the constructions that we
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will do in the following depend on the choice of Y 0 (which has to be precised each time). We
denote by D�W the space of the � controlled (by W ) path. So (Y; Y 0) 2 D�W if

RYs;t := Ys;t �


Y 0s ;Ws;t

�
2 C2�: (2.11)

For (Y; Y 0) 2 D�W we denote (see (4.17) p56 in (FH))

Y; Y 0


W;2�

=


Y 0



�
+


RY 



2�
(2.12)

Notice that we also have the estimate (see (4.18) p56 in (FH))

kY k� � C(1 + kWk�)(
��Y 00��+ 

Y; Y 0

W;2�) (2.13)

kY k1 � jY0j+ kY k� T
� (2.14)

I recall that we work on the time interval (0; T ):
The lack of uniqueness does not stop the construction of rough integrals. However, it is

much more pleasant to have a unique derivative; and this is true for standard examples of
rough path, in particular for the one associated to the Brownian motion (and this is the case
in this section). More precisely, suppose that we are in the one dimensional case d = 1, and
for every 0 � s � T

lim
t#s

jWs;tj
(t� s)2� =1: (2.15)

Then Y 0 is uniquely determined. More precisely, it is given by the equality

Y 0s = lim
t#s

Ys;t
Ws;t

: (2.16)

Indeed, by (2.15) ��RYs;t��
jWs;tj

�


RY 



2�
� jt� sj

2�

jWs;tj
! 0

so that, by using (2.11), the limit in (2.16) exists and is equal to Y 0s :
Friz and Hairer say that a rough path which veri�es (2.15) is a "really rough" path. In

fact, this condition is really necessary for getting uniqueness: suppose that the limit in (2.15)
is �nite uniformly. Then W 2 C2� and consequently, for each real number �, we have the
decomposion Ys;t = (Y 0s + �)Ws;t+ (R

Y
s;t� �Ws;t) and RYs;t� �Ws;t is a "good remainder": This

means that Y 0s + � may also be used as a derivative.
Let us check that the Brownian motion is "really rough". The iterated logarithm theorem

says that, if W is the Brownian motion

lim
h#0

jWs;s+hj
h1=2 ln ln(1=h)

=
p
2 (2.17)

almost surely. And one may construct an exeeption set which does not depend on s: So we
may choose the trajectory Wt such that (2.17) holds for every s: Then

jWs;s+hj
h2�

=
jWs;s+hj

h1=2 ln ln(1=h)
� h1=2 ln ln(1=h)

h2�
!1

for every 1
4 < �:
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In the multi-dimensional case d > 2; one has the following de�nition of "truly (really) rough
path" (see (FH- p 85 De�nition 6.3):

lim
t#s

hv;Ws;ti
jt� sj2�

=1 8v 2 Rd; s 2 (0; T ):

And one proves that in this case the Gubinelli derivative Y 0 is unique (for any controlled rough
path, of course). In this case we denote Dj

WY
i
s = (Y

0
s )
i;j so that

Y it = Y is +
dX
j=1

Dj
WY

i
s �W

j
s;t +R

i
s;t

We come back to our problem (construction of the rough integral). With the concept of
"Gubinelli derivative" at hand we obtain the following result. We de�ne

�s;t(Y ) =
dX
i=1

Y isW
i
s;t +

dX
i;j=1

(Y 0s )
i;jWi;j

s;t

In the case Yt = F (Wt) we have Y 0t = rF (Wt) and so the above de�nition coincides with
(4.26).

For a partititon P = fs = s0 < ::: < sn = tg we denote

�Ps;t(Y ) =
nX
i=1

�si�1;si(Y ) =

nX
k=1

0@ dX
i=1

Y isW
i
s;t +

dX
i;j=1

(Y 0s )
i;jWi;j

s;t

1A
and we have

Theorem 2.7 Let us �x some � 2 (13 ;
1
2) and we �x some trajectory W(!) = (W (!);W(!))

with ! 2 
0 ( so that (2.8) holds) And let (Y; Y 0) 2 D�W be a �� controlled path (controlled by
W ). Then the following limit existsZ t

s
YrdWr := lim

jPj!0
�Ps;t(Y ) (2.18)

and it is called the "rough integral" of Yr with respect to the rough pathW:Moreover


R YrdWr




�
<

1: And Zs;t =
R t
s YrdWr is the unique process such that



Z YrdWr ��(Y )






3�

<1: (2.19)

More precisely����Z t

s
YrdWr � YsWs;t � Y 0sWs;t

���� � C(kWk�


RY 



2�
+ kWk2�



Y 0


�
)(t� s)3� (2.20)

Finally, Z is controlled by W and one has Z 0 = Y:

11



Proof The proof is quasi identical to the one concerning Yt = F (Wt); so we just sketch it.
We want to use the sewing lemma so we have to estimate �s;u;t(�): We �rst give an explicite
expression wich will be used further on:

�s;t ��s;u ��u;t = �s;u;t(�) =

dX
i=1

RY;is;uW
i
u;t +

dX
i;j=1

(Y 0)i;js;uW
i;j
u;t: (2.21)

We write

Yu = Ys +


Y 0s ;Ws;u

�
+RYs;t

so that, by direct obvious computations

�u;t =
dX
i=1

Y iuW
i
u;t +

dX
i;j=1

(Y 0)i;ju W
i;j
u;t

=
dX
i=1

Y isW
i
u;t +

dX
i;j=1

(Y 0)i;js W
i
s;uW

j
u;t +

dX
i;j=1

(Y 0)i;js W
i;j
u;t + �s;u;t(�)

with �s;u;t(�) given in the right hand side of (2.21). Then, using Chen�s relations

�s;u +�u;t

=
dX
i=1

Y is (W
i
s;u +W

i
u;t) +

dX
i;j=1

(Y 0)i;js (Wi;j
s;u +W

i;j
u;t +W

i
s;uW

j
u;t) + �s;u;t(�)

= �s;t + �s;u;t(�):

So we have proved (2.21), and since

j�s;u;t(�)j � C(


RY 



2�
kWk� +



Y 0


�
kWk2�)(t� s)

3�

so we are done. So we may use the sewing lemma in order to de�ne the integral given by the
limit in (2.18) and this integral veri�es (2.19).

Let us check that the Gubinelli derivative of Z is given by Y:We have �s;t(Y ) = hYs;Wsi+
O((t�s)2�) and Zs;t :=

R t
s YrdWr = �s;t(Y )+O((t�s)3�):We conclude that Zs;t = hYs;Wsi+

O((t� s)2�) and this means that Z 0 = Y: �
Linearity Let (Y; Y 0); (Y ; Y 0) 2 D�W : Then

(Y + Y )0 = Y 0 + Y
0
; and RY+Y = RY +RY

and Z
Y dW +

Z
Y dW =

Z
(Y + Y )dW:

12



2.3.2 Second generalisation

Given � 2 (13 ;
1
2) we de�ne a � rough path to be a coupleW = (W;W) with W : R+ ! Rd

and W : R2+ ! Rd�d such that

kWk� = sup
jt�sj>0

jWs;tj
jt� sj� <1 and kWk2� = sup

jt�sj>0

jWs;tj
jt� sj2�

<1

and for which "Chen relations" hold true:

Ws;t = Ws;u +Wu;t

Wi;j
s;t = Wi;j

s;u +W
i;j
u;t +W

i
s;uW

j
u;t

We speak about a "geometric rough" path if

Wi;j
s;t +W

j;i
s;t =W i

s;tW
j
s;t:

For example, the "Stratonovich" rough path is a geometric rough path while the Itô rough path
is not. The geometrical rough paths are important for two reasons: �rst, a �rst order calculus
holds for them and second, rough intergals with respect to a geometrical rough path may be
approximated by usual regularizations of the trajectory (see (FH) Proposition 2.5 p19).

Remark 2.8 It is not possible to have the "second component" Wi;j
s;t which is symmetric, i:e:

such that Wi;j
s;t = Wj;i

s;t: Indeed, the symmetry combined with the second Chen relation give

W i
s;uW

j
u;t = W j

s;uW i
u;t which is clearly false. In particular one may not take W

i;j
s;t = W i

s;tW
j
s;t:

However this is the quantity which multiplies @2i;jF (Wt) in the Taylor expension at order two.

We denote by C� the space of � rough paths (some confusion with � Hölder path appears)
and, forW = (W;W) we de�ne (see (FH) p 15) the "homogenous rough path norm"

kjWjk� = kWk� +
q
kWk2� (2.22)

and the "inhomogenuous rough path distance"

��(W;fW) =



W �fW




�
+



W�fW




2�
(2.23)

Remark 2.9 kjWjk� is not a norm because it is null for non null costants, and similary for
��: So, if we want that ��(W;fW) = 0 implies that W =fW we have to ask the supplementary
condtion W0 = fW0:

The notion of "controlled path" is the same as before: Y : R+ ! Rd which is � Hölder, is
a "controlled path" if there exists Y 0 : R+ ! Rd�d such that

Yt =


Y 0s ;Ws;t

�
+O((t� s)2�):

The properties listed before (exception the notion of geometric rough path) are the ones which
have been used in order to construct the rough integral so that we obtain the same result in
this abstract framework: Given a � controlled path Y with Gubinelli derivative Y 0 we de�ne

�s;t(Y ) =
dX
i=1

Y isW
i
s;t +

dX
i;j=1

(Y 0s )
i;jWi;j

s;t

13



and for a partititon P = fs = s0 < ::: < sn = tg we denote

�Ps;t(Y ) =
nX
i=1

�si�1;si(Y ) =

nX
k=1

0@ dX
i=1

Y isW
i
s;t +

dX
i;j=1

(Y 0s )
i;jWi;j

s;t

1A
and we have

Theorem 2.10 Let us �x some � 2 (13 ;
1
2) and let W = (W;W) be a � rough path. And let

(Y; Y 0) be a ��controlled path. Then the following limit exists

Zs;t :=

Z t

s
YrdWr = lim

jPj!0
�Ps;t(Y )

and it is called the "rough integral" of Yr with respect to the rough pathW:Moreover


R YrdWr




�
<

1 and Z 0 = Y:

2.3.3 Stability for the rough integral

In this section we will use a speci�c distance that we de�ne now. We consider two � rough
pathsW and fW and (Y; Y 0) 2 D2�W ; (eY ; eY 0) 2 D2�fW : Then we de�ne the "distance"

d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) = 


Y 0 � eY 0



�
+



RY �ReY 




2�
(2.24)

This is not really a distance because it is not null if eY � Y = c:

Remark 2.11 If Y and eY are controlled by the same rough path W = fW; then Y 0 � eY 0 =
(Y � eY )0 and RY �ReY = RY�

eY ; so
d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) = 


Y � eY ; (Y � eY )0



W;2�

de�ned in (2.12). But here Y and eY are controlled by di¤erent rough paths and this is why we
need a special, di¤erent, de�nition.

Now we �x 1
3 < � < �: Such two indeces will appear in the fowlloning theorem and are

used in order to perform an usefull computational trik.
We recall that in (2.23) we have de�ned

��(W;fW) =



W �fW




�
+



W�fW




2�

Finally we de�ne the ball

AM = AM (�; �)
= f(Y; Y 0;W) : kWk� + kWk2� +



Y 0


�
+


RY 



2�
+ jY0j+

��Y 00�� �Mg:

We are now able to give our "local" stability result:
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Theorem 2.12 Let 13 < � � � be given, and let T � 1: Suppose that (Y; Y 0) 2 D2�W ; (eY ; eY 0) 2
D2�fW and (Y; Y 0;W ) 2 AM (�; �) and (eY ; eY 0;fW) 2 AM (�; �): Denote Zs;t =

R t
s Y dW andeZs;t = R ts eY dfW and recall that Z 0 = Y and eZ 0 = eY : Then there exists a constant C = C(�; �;M)

such that the following holds:

d
W;fW;2�

((Z;Z 0); ( eZ; eZ 0)) � C(T� + T ���) (2.25)

�(d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) + ��(W;fW) +
���Y 00 � eY 00���)

and 


Z � eZ



�
� C(T� + T ���) (2.26)

�(d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) + ��(W;fW) +
���Y 00 � eY 00���+ ���Y0 � eY0���)

Proof (2.26) follows (rather) easily from (2.25), so we concentrate on this one. We �rst
compute

Z 0s;t � eZ 0s;t = Ys;t � eYs;t = a+ b+ c

with
a = Y 0s (Ws;t �fWs;t); b = (Y 0s � eY 0s )fWs;t; c = RYs;t �R

eY
s;t:

Write Y 0s = Y 00 + (Y
0
s � Y 00): Then, for Y 2 AM (�; �) one obtains jY 0s j � M +MT� � 2M so

that
jaj � 2M




W �fW



�
(t� s)� � 2M




W �fW



�
T ���(t� s)�

Moreover

jbj � (
���Y 00 � eY 00���+ 


Y 0 � eY 0




�
(t� s)�)




fW



�
(t� s)�T ���

� (
���Y 00 � eY 00���+ 


Y 0 � eY 0




�
)M(t� s)�T ���

Finally jcj �



RY �ReY 




2�
(t� s)�T�: We conclude that


Z 0 � eZ 0




�
� CM(T� + T ���)�

(
���Y 00 � eY 00���+ dW;fW;2�

((Y; Y 0); (eY ; eY 0)) + ��(W;fW))

so it �ts in our estimate.
We deal now with the remainder. We write

RZs;t = Zs;t � Z 0sWs;t = Zs;t � YsWs;t � Y 0sWs;t + Y
0
sWs;t

=

Z t

s
Y dW ��s;t(Y ) + Y 0sWs;t

with �s;t(Y ) = YsWs;t + Y
0
sWs;t: And in the same way

R
eZ
s;t =

Z t

s

eY dfW ��s;t(eY ) + eY 0sfWs;t:

15



We will use the sawing lemma for �s;t = �s;t(Y )��s;t(eY ): In order to do it we have to estimate
�s;u;t(�): We look for Csew(�) which veri�es (see (2.1))

sup
s<u<t

j�s;u;t(�)j � Csew(�)(t� s)3�:

Recall now that by (2.21)

�s;u;t(�) =
dX
i=1

RY;is;uW
i
u;t �

dX
i=1

eRY;is;ufW i
u;t

+

dX
i;j=1

(Y 0)i;js;uW
i;j
u;t �

dX
i;j=1

(eY 0)i;js;ufWi;j
u;t:

And standard computations (the same as above) give

j�s;u;t(�)j � CM(T� + T ���)

�(d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) + ��(W;fW) +
���Y 00 � eY 00���)(t� s)3�

which means that

Csew(�) � CM(T� + T ���)(d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) + ��(W;fW) +
���Y 00 � eY 00���)

Now we may use the sewing lemma. Notice that (with the notation in the �rst section)
Xs;t(�) =

R t
s Y dW �

R t
s
eY dfW so that, by the sewing lemma (see (2.4)) we have����Z t

s
Y dW �

Z t

s

eY dfW � �s;t
���� � 23��(3�)Csew(�)(t� s)3�:

and this yields 



Z Y dW �
Z eY dfW � �






3�

� CM(T� + T ���)

�(d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) + ��(W;fW) +
���Y 00 � eY 00���);

which is also choerent with our estimate.
We write now���Y 0sWs;t � eY 0sfWs;t

��� � ���Y 0s � eY 0s ��� kWs;tk+
��Y 0s �� ���Ws;t �fWs;t

���
� CM(

���Y 00 � eY 00���+ dW;fW;2�
((Y; Y 0); (eY ; eY 0)) + ��(W;fW))(t� s)2�T 2(���)

We have used here kWs;tk2� � kWk2� (t� s)2�T 2(���): We have proved that




RZ �R eZ



2�
� CM(T 2(���) + T�)�

�(d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) + ��(W;fW) +
���Y 00 � eY 00���):

This was the tricky step. �
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2.4 Itô�s formula

2.4.1 The case of one forms

Iin this section we will give the Itô formula. We discuss �rst the simple case of the integrand
t ! F (Wt): This formula will include the rough integral of Yt = rF (Wt) and also the Young
integral of Y 0t = r2F (Wt) with respect to the "quadratic variation" process of W: But the
problem is that, for the moment, we have no such a quadratic process, so we have to understand
what it could be, and how it works. In order to do it we use second order Taylor expansion
and we obtain

F (Wt)� F (Ws) =

dX
i�1

@iF (Ws)W
i
s;t +

1

2

dX
i;j=1

@i@jF (Ws)W
i
s;tW

j
s;t +O(t� s)3�: (2.27)

Since � > 1
3 we may ignor the last term. We look now to the second term. We denote

Si;js;t =
1

2
(Wi;j

s;t +W
j;i
s;t)

the symmetric part of W and we de�ne

Wi;j

�
s;t
=W i

s;tW
j
s;t � (W

i;j
s;t +W

j;i
s;t) =W i

s;tW
j
s;t � 2S

i;j
s;t: (2.28)

Then
1

2

dX
i;j=1

@i@jF (Ws)W
i
s;tW

j
s;t =

dX
i;j=1

@i@jF (Ws)(Si;js;t +
1

2



Wi;j

�
s;t
):

Coming back to (2.27) we get

F (Wt)� F (Ws) =

dX
i�1

@iF (Ws)W
i
s;t +

1

2

dX
i;j=1

@i@jF (Ws)(Wi;j
s;t +W

j;i
s;t)

+
1

2

dX
i;j=1

@i@jF (Ws)


Wi;j

�
s;t
+O(t� s)3�:

Let us denote
Y is = @iF (Ws) and (Y

0
s )
i;j = @i@jF (Ws):

Then

dX
i�1

@iF (Ws)W
i
s;t +

1

2

dX
i;j=1

@i@jF (Ws)(Wi;j
s;t +W

j;i
s;t) (2.29)

= hYs;Ws;ti+
dX

i;j=1

(Y
0
s )
i;j �Wi;j

s;t = �s;t(Y )

reperesents the "one step Euler scheme" which allows to de�ne the rough integral
R
YrdWr:

What about the third term? We know that s ! @i@jF (Ws) is � Hölder. It is also clear
that s !



Wi;j

�
s
is 2� Hölder. Then @i@jF (Ws)



Wi;j

�
s;t
will give a Young integral. This

leads to the following
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Theorem 2.13 Consider a � rough path W: Then for every F 2 C3b (Rd; R) one has

F (WT ) = F (W0) +

Z T

0
rF (Wr)dWr +

1

2

dX
i;j=1

Z T

0
@i@jF (Wr)d



Wi;j

�
0;r

(2.30)

where
R T
0 rF (Wr)dWr is the rough integral with respect to W and

R T
0 @i@jF (Wr)d



Wi;j

�
0;r

is the Young integral with respect to


Wi;j

�
:

Remark 2.14 The bracket


Wi;j

�
is the term which is needed in order to pass from W iW j

(which appears in the terms of second order in the Taylor formula (2.27)) to 1
2(W

i;j
s;t +W

j;i
s;t)

which is the second order coe¢ cient of @2i;jF = @2j;iF: In the case of "geometric rough path"
(in particular for the Stratonovich integral)



Wi;j

�
= 0 so we �nd out the "standard" calculus

rule.

Remark 2.15 One may be tempted to takeWi;j
s;t =W i

s;tW
j
s;t in order to make the rough integral

choerent whith the second order Taylor deelopment. But we have already noticed that this choice
is not compatible with the second Chen relation.

Proof We consider a partititon P = f0 = s0 < ::: < sn = Tg and we write

F (WT )� F (W0) =
nX
i=1

(F (Wsi)� F (Wsi�1))

=

nX
i=1

�si�1;si(rF (W )) +
1

2

dX
i;j=1

nX
i=1

@i@jF (Wi�1)


Wi;j

�
si�1;si:

And passing to the limit with n!1 we obtain (2.30). �

2.4.2 The case of Itô processes

We consider now the more general case when Ys;t 2 Rd is (the analogous) of an Itô process.
We consider Y; Y 0; Y 00 2 C� such that (Y; Y 0) 2 D�W and (Y 0; Y 00) 2 D�W are � controled
(by W ) paths. In order to be more explicit we denote Y 0 = DWY = (D1

WY; :::;D
d
WY ) and

Y 00 = (Di;j
W Y )i;j=1;:::;d and this means that

Ys;t =

dX
i=1

(Di
WYs)W

i
s;t + o(t� s)2�

Dj
WYs;t =

dX
i=1

(Di;j
W Ys)W

i
s;t + o(t� s)2�:

Now we suppose that Y is an Itô type trajectory, that is

Ys;t =

Z t

s
Y 0s;rdWr + �s;t

with � 2 C2�: Notice that the rough integral
R
Y 0dW is based on the rough path W and on

the controled path (Y 0; Y 00) 2 D�W :
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Theorem 2.16 Consider a � rough path W: Moreover let Y; Y 0; Y 00 such that (Y; Y 0) 2 D�W
and (Y 0; Y 00) 2 D�W : Then for every F 2 C3b (Rd; R) one has

F (Yt) = F (Ys) +
dX
i=1

Z t

s
@iF (Yu)d�u +

dX
k;i=1

Z t

s
(@iF )(Yu)D

k
WY

i
udW

k
u

+
1

2

dX
k;p=1

dX
i;j=1

Z t

s
@j@iF (Yu)(D

k
WY

i
u �D

p
WY

j
u )d

D
W k;p

E
u

where
R T
0 rF (Wr)DWYrdWr is the rough integral with respect toW and

R T
0 r

2F (Wr)DWYr

DWYrd



Wi;j

�
0;r
is the Young integral with respect to



Wi;j

�
:

Remark 2.17 In the case of "geometric rough path"


Wi;j

�
= 0 so the formula holds and

coincides with the standard computation rule. In the case of the Itô Lévy area (coreponding to
the Itô type integral) one has



Wi;j

�
t
= �i;jt and so one may use Itô�s formula, which coincides

with the classical one in stochastic calculus.

Proof. Step 1 We use the notation a '� b in order to say that as;t = bs;t +O(t� s)�:
First we notice that, by the very de�nition of the rough integral we have

Ys;t ' 3�Y
0
sWs;t + Y

00
s Ws;t + �s;t

=
dX
k�1

Dk
WYsW

k
s;t +

dX
k;p�1

Dk;p
W YsWk;p

s;t + �s;t

Here Dk
WYs = (Y

0
s )
k and Dk;p

W Ys = (Y
00
s )
k;p: The above equality gives

Y is;tY
j
s;t ' 3�

X
k;p

(Dk
WY

i
s �D

p
WY

j
s )W

k
s;tW

p
s;t

=
X
k;p

(Dk
WY

i
s �D

p
WY

j
s )(W

k;p
s;t +W

p;k
s;t +

D
W k;p

E
s;t
)

Step 2 Using Taylor expansion

F (Yt)� F (Ys) '3�
dX
i=1

@iF (Ys)Y
i
s;t +

1

2

dX
i;j=1

@j@iF (Ys)Y
i
s;tY

j
s;t =

4X
r=1

Srs;t

with

S1s;t =

dX
i=1

@iF (Ys)�
i
s;t;

S2s;t =
X
k;p

dX
i;j=1

@j@iF (Ys)(D
k
WY

i
s �D

p
WY

j
s )
D
W k;p

E
s;t
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and

S3s;t =
dX
i=1

@iF (Ys)(
dX
k�1

Dk
WY

i
sW

k
s;t +

dX
k;p�1

Dk;p
W Y isW

k;p
s;t )

S4s;t =
1

2

dX
i;j=1

@j@iF (Ys)
X
k;p

(Dk
WY

i
s �D

p
WY

j
s )(W

k;p
s;t +W

p;k
s;t )

Notice that, since @j@iF (Ys) = @i@jF (Ys) we ahave

S4s;t =
dX

i;j=1

@j@iF (Ys)
X
k;p

(Dk
WY

i
s �D

p
WY

j
s )W

k;p
s;t :

And we have the convergence

nX
r=1

S1sr�1;sr !
dX
i=1

Z t

s
@iF (Yu)d�u

nX
r=1

S2sr�1;sr !
dX

k;p=1

dX
i;j=1

Z t

s
@j@iF (Yu)(D

k
WY

i
u �D

p
WY

j
u )d

D
W k;p

E
u

both these integrals being Young integrals.
Step 3 Let

Gi;kt = (@iF )(Yt)D
k
WY

i
t :

Then, a direct computation shows that

Dp
WG

i;k
s = (@iF )(Ys)D

p
WD

k
WY

i
s +

dX
j=1

(@j@iF )(Ys)D
p
WY

j
s D

k
WY

i
s

This formula may be obtained by "formal derivation", but this �ts to the rigourous de�nition
of Gubinelli derivative. Then, by the very de�nition of the rough integal

dX
k;i=1

Z t

s
(@iF )(Yr)D

k
WY

i
r dW

k
r

' 3�

dX
k;i=1

(@iF )(Yt)D
k
WY

i
t �W k

s;t

+

dX
k;i=1

dX
p=1

0@(@iF )(Ys)Dp
WD

k
WY

i
s +

dX
j=1

(@j@iF )(Ys)D
p
WY

j
s D

k
WY

i
s

1AWk;p
s;t

= S3s;t + S
4
s;t:

We conclude that

nX
r=1

(S3sr�1;sr + S
4
sr�1;sr)!

dX
k;i=1

Z t

s
(@iF )(Yu)D

k
WY

i
udW

k
u
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And we have proved the formula

F (Yt) = F (Ys) +
dX
i=1

Z t

s
@iF (Yu)d�u +

dX
k;i=1

Z t

s
(@iF )(Yu)D

k
WY

i
udW

k
u

+
dX

k;p=1

dX
i;j=1

Z t

s
@j@iF (Yu)(D

k
WY

i
u �D

p
WY

j
u )
D
W k;p

E
u

�

3 Rough di¤erential equations

3.1 Norms on controlled path and smooth functions

All along this section we assume, without special mention, that T � 1: We recall that (Y; Y 0)
is a controlled path if

Ys;t = Y 0sWs;t +R
Y
s;t:

And one de�nes the norm 

Y; Y 0


W;2�

=


Y 0



�
+


RY 



2�
: (3.1)

We will also use the notation
Q� = 1 + kWk� + kWk2� : (3.2)

It is easy to check that 

Y 0

1 �
��Y 00��+ 

Y; Y 0

W;2� T� (3.3)

and, for � < �;

kY k� � C kWk� (
��Y 00��+ 

Y; Y 0

W;2�)T ��� + 

Y; Y 0

W;2� T�; (3.4)

kY k1 � jY0j+ kY k� (3.5)

Remark 3.1 In (3.4) T ��� appears. This term will be useful for small T in order to destroy
constants - for example when we will use a contraction argument for proving existence of
solutions of rough equations. So, the fact that we introduce � > � is a useful trick.

Lemma 3.2 If f 2 C2b then (see Lemma 7.3 (FH))

(f(Y ))0 = f 0(Y )Y 0 (3.6)

and 

f(Y ); f(Y )0


W;2�

(3.7)

� C kfk2;1Q2�(1 +
��Y 00��+ 

Y; Y 0

W;2�)(��Y 00��+ 

Y; Y 0

W;2�) (3.8)
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Proof One writes Y 0sWs;t = Ys;t �RYs;t so that

Rs;t : = f(Yt)� f(Ys)� f 0(Ys)Y 0sWs;t

= f(Yt)� f(Ys)� f 0(Ys)Ys;t + f 0(Ys)RYs;t:

Then
kRk2� � 2 kfk2;1 (kY k

2
� +



RY 


2�
) <1:

This already shows that f 0(Ys)Y 0s = (f(Y ))
0 and Rf(Y ) = R: It is also easy to see that

(f(Y ))0



�
=



f 0(Y )Y 0


�
� C kfk2;1 (kY k�



Y 0

1 + 

Y 0

�)
� C kfk2;1 (kY k� +



Y 0


�
)(1 +

��Y 00��+ 

Y 0

�):
Combining these two estimates with (3.4) (with T � 1 and � = �) one obtains (3.7). �

We prove now that

kf(Y )k� � C kfk1;1Q�(1 +
��Y 00��+ 

Y; Y 0

W;2�)(T ��� + T�): (3.9)

Indeed

jf(Yt)� f(Ys)j � kfk1;1 jYs;tj
� kfk1;1 (



Y 0

1 kWk� (t� s)� + 

RY 

2� (t� s)2�)
� C kfk1;1 (1 + kWk�)(1 +

��Y 00��+ 

Y; Y 0

W;2�)(t� s)� � (T ��� + T�):
Finally we recall that, by the de�nition of the rough integral we have����Z t

s
YrdWr � YsWs;t � Y 0sWs;t

���� � C(kWk�


RY 



2�
+ kWk2�



Y 0


�
)(t� s)3� (3.10)

And, if Z =
R
Y dW; then Z is controlled by W and with Gubinelli derivative Z 0 = Y:

We will still need the following:

Remark 3.3 Let G = (G1; :::; Gd) and H = (H1; :::;Hd) with Gi;H i 2 D2�W : And let Z :=

hG;Hi =
Pd
i=1G

iH i: Then

Z;Z 0


W;2�

� CQ2�(jG0j+
��G00��+ 

G;G0

W;2�)(jH0j+ ��H 0

0

��+ 

H;H 0


W;2�

): (3.11)

Proof Note �rst that
Zs;t = hGs;t;Hsi+ hGt;Hs;ti

and
Z 0t =



G0t;Ht

�
+


Gt;H

0
t

�
:

In particular ��Z 0s;t�� � ��G0s;t�� kHk1 + jHs;tj

G0

1 + ��H 0
s;t

�� kGk1 + jGs;tj

H 0


1

One also has (recall that T � 1 and use (3.3), (3.4) and (3.5))

kHk1 +


H 0



1 � CQ�(jH0j+
��H 0

0

��+ 

H;H 0


W;2�

)

jHs;tj+
��H 0

s;t

�� � CQ�(jH0j+
��H 0

0

��+ 

H;H 0


W;2�

)(t� s)�
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and the same for G: We conclude that

Z 0


�
� CQ2�(jG0j+

��G00��+ 

G;G0

W;2�)(jH0j+ ��H 0
0

��+ 

H;H 0


W;2�

):

Let us now deal with the remainder

RZs;t = Zs;t � Z 0sWs;t

= hGs;t;Hsi+ hGt;Hs;ti � (


G0s;Hs

�
+


Gs;H

0
s

�
)Ws;t

=


Gs;t �G0sWs;t;Hs

�
+


Hs;t �H 0

sWs;t; Gs
�
+ hGs;t;Hs;ti

=


RGs;t;Hs

�
+


RHs;t; Gs

�
+ hGs;t;Hs;ti :

It follows that

RZ


2�

�


RG



2�
kHk1 +



RH


2�
kGk1 + kGk� kHk�

� CQ2�(jG0j+
��G00��+ 

G;G0

W;2�)(jH0j+ ��H 0

0

��+ 

H;H 0


W;2�

):

�
Given � 2 Rd; �0 2 Rd�d and M � 1 we de�ne the "ball"

BM (�; �0) = B = f(Y; Y 0) 2 DW;2�(0; T ); Y0 = �; Y 00 = �0;


Y; Y 0



W;2�
�Mg: (3.12)

Lemma 3.4 (Locally Lipschitz) Let f 2 C3b (R
d): We consider (Y; Y 0); (Y ; Y

0
) 2 BM (�; �0)

and we denote � = Y � Y and �(f) = f(Y )� f(Y ): Then

�(f);�0(f)


W;2�

� CMQ
2
� kfk3;1 (



f 0

1 + 1)

�;�0

W;2� (3.13)

Proof In order to do it we write

�s(f) =

�Z 1

0
rf(�Ys + (1� �)Y s)d�;�s

�
= hGs;�si

with

Gs = g(Ys; Y s); g(y; y) :=

Z 1

0
rf(�y + (1� �)y)d�:

Using (3.11) and �0 = Y0 � Y 0 = 0;�00 = Y 00 � Y
0
0 = 0 we get

�(f);�0(f)



W;2�
� CMQ

2
�



�;�0)


W;2�

� (jG0j+
��G00��+ 

G;G0

W;2�):

Now we use (3.7) with g instead of f; and we get

g(Y; Y ); g(Y; Y )0


W;2�

� C kgk2;1 (kgk1 + 1) � C kfk3;1 (


f 0

1 + 1)

so (3.13) is proved. �
In the previous Lipschitzianity result, the two processes Y and Y are controlled by the

same rough path. Now we discuss the case when each of them is controlled by a di¤erent rogh
path - such a result is needed when we discuss the continuity of Lyons�map. So we come back
to the framework from the section concerning the stability for the rough integral. We consider
two � rough pathW and fW and (Y; Y 0) 2 D2�W ; (eY ; eY 0) 2 D2�fW : Then we recall the "distance"

d
W;fW;2�

((Y; Y 0); (eY ; eY 0)) = 


Y 0 � eY 0



�
+



RY �ReY 




2�
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We also recall that in (2.23) we have de�ned

��(W;fW) =



W �fW




�
+



W�fW




2�
:

Finally we will work on the ball

AM (�; �) = f(Y; Y 0;W) : kWk� + kWk2� +


Y 0



�
+


RY 



2�
+ jY0j+

��Y 00�� �Mg:

Lemma 3.5 (Locally Lipschitz Bis -Th 7.5 (FH)) Let (Y; Y 0) 2 D2�W ; (eY ; eY 0) 2 D2�fW . We
assume that (Y; Y 0;W) 2 AM (�; �) and the same with tilde. Let f 2 C3b (R

d): We denote
Z = f(Y ); so that Z 0 = f 0(Y )Y 0 and eZ = f(eY ); eZ 0 = f 0(eY )eY 0: Then

d
W;fW;2�

((Z;Z 0); ( eZ; eZ 0)) � CM (��(W;fW) +
���Y0 � eY0���+ ���Y 00 � eY 00��� (3.14)

+d
W;fW;2�

((Y; Y 0); (eY ; eY 0)))
with CM a constant which depends on M;T; � and on kfk3;1 : Moreover


Z � eZ




�
� CM (��(W;fW) +

���Y0 � eY0���+ ���Y 00 � eY 00��� (3.15)

+d
W;fW;2�

((Y; Y 0); (eY ; eY 0)))
Proof The second inequality follows from the �rst one as soon as one notices that

���Z 00 � eZ 00��� �
CM (

���Y0 � eY0���+ ���Y 00 � eY 00���): So we focus on the �rst one.
In this proof we will use the following shorten notation: � = ��(W;fW); "0 =

���Y0 � eY0��� ; "00 =���Y 00 � eY 00��� and " = d
W;fW;2�

((Y; Y 0); (eY ; eY 0)):
Step 1. We check �rst that


Y � eY 




�
� CM (�+ "

0
0 + ") =: "Y : (3.16)

We write
Ys;t = Y 0sWs;t +R

Y
s;t; eYs;t = eY 0sfWs;t +R

eY
s;t

and taking the di¤erence we obtain


Y � eY 



�
� C(



Y 0

1 �+M



Y 0 � eY 0




1
+



RY �ReY 




2�
)

� C((
��Y 00��+M)�+M(���Y 00 � eY 00���+ 


Y 0 � eY 0




�
T�) +




RY �ReY 



2�
)

� CM (�+ "
0
0 + ") = "Y :

As an immediate consequence we also have



Y � eY 




1
� C("0 + "Y ) and


f 0(Y )� f 0(eY )




�
� CM ("0 + "Y ):

Indeed, one writes

f 0(Yt)� f 0(Ys) =
Z 1

0
f 00(�Ys + (1� �)Yt)d�� (Yt � Ys)
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and the same with tilde. Then one takes di¤erences and employs the estimates for



Y � eY 




�

and for



Y � eY 




1
: We notice that the constant CM will depend on kf 000k1 : Finally we get


Z 0 � eZ 0




�
=



f 0(Y )Y � f 0(eY )eY 




�
� CM ("0 + "Y ):

Step 2 We deal with RZ : We write

RZs;t = f(Yt)� f(Ys)� f 0(Ys)Y 0sWs;t = �1 + �2

with
�1(s; t) = f(Yt)� f(Ys)� f 0(Ys)Ys;t; �2(s; t) = f 0(Ys)R

Y
s;t:

And we write the same decomposition for "tilda". We deal �rst with

�1(s; t) =

Z 1

0
f 00(Ys + �Ys;t)(Ys;t; Ys;t)d�:

We recall that



Y � eY 




1
+



Y � eY 




�
� C("0 + "Y ) and kY k1 � CM: Then elementary

estimates leads to

j�1(s; t)� e�1(s; t)j � CM kfk3;1 ("0 + ")(t� s)
2�:

And it is not hard to check that

j�2(s; t)� e�2(s; t)j � CM kfk2;1 ("0 + ")(t� s)
2�:

�

3.2 Rough di¤erential equations

The main theorem is the following:

Theorem 3.6 Consider a � rough path W; some 1
3 < � < � and a function f : Rd ! Rd�d

in C3b (R
d): Then the equation

Yt = � +

Z t

0
f(Ys)dWs

has a unique solution (Y; Y 0) 2 D2�W : Here the integral with respect to dW is the rough integral
de�ned in the previous sections for the integrand (H;H 0) = (f(Y ); (f(Y ))0) = (f(Y ); f 0(Y )Y 0) 2
D2�W .

Proof We �x T 2 (0; 1) which will be chosen in the following - it will be su¢ ciently small
in order to be able to use a �xed point argument on the interval (0; T ): Afterwords we will
concatenate solution on these small intervals.

Given (Y; Y 0) 2 D2�W (0; T ) We de�ne the aplication

M(Y; Y 0) = (� +

Z t

0
f(Ys)dWs; f(Y )) =: (Z;Z

0) 2 D2�W (0; T ):
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Notice that f(Y ) is the Gubinelli derivative of the rough integral. And the rough integral is
constructed by using f(Y )0 = f 0(Y )Y 0:

Step 1We prove that (Y; Y 0) 2 BM (�; f(�)) (see (3.12)) implies thatM(Y; Y 0) 2 BM (�; f(�)):
This will be true for su¢ cientelly small T; deppending onM and on kfk3;1 : Clearly the initial
condition is preserved. Let us check thatM(Y; Y 0) 2 D2�W : By (3.7), if kY; Y 0kW;2� �M then

f(Y ); f(Y )0



W;2�
� CQ2� kfk2;1 (1 +

��Y 00��+ 

Y; Y 0

W;2�)2 (3.17)

� CMQ
2
� kfk2;1 (kfk1 +M)

2 = CM (f)Q
2
�: (3.18)

Here and in the following proof CM (f) stands for a constant which depends on M and on
kfk3;1. And also, with Z =

R
f(Y )dWr; Z

0 = f(Y )



Z f(Y )dWr; f(Y )






W;2�

=


Z;Z 0



W;2�
= kf(Y )k� +



RZ


2�
:

One has

RZs;t =

Z t

s
f(Yr)dWr � f(Ys)Ws;t

=

Z t

s
f(Yr)dWr � f(Ys)Ws;t � f 0(Ys)Y 0sWs;t + f

0(Ys)Y
0
sWs;t:

Since kY; Y 0kW;2� �M ����Z t

s
f(Yr)dWr � f(Ys)Ws;t � f 0(Ys)Y 0sWs;t

����
� C(kWk�




Rf(Y )



2�
+ kWk2�



f 0(Y )Y 0


�
)(t� s)3�

� C


f(Y ); (f(Y ))0



W;2�
Q�(t� s)3�

� CM (f)Q
3
�(t� s)3� � CM (f)Q

3
�(t� s)2�T�

One also has ��f 0(Ys)Y 0sWs;t

�� �
��f 0(Ys)Y 0s �� kWk2� (t� s)2�

� C


f 0

1 (��f 0(�)��+M) kWk2� (t� s)2�

= CM (f)Q�(t� s)2�T 2(���):

We conclude that 

RZ


2�
� CM (f)Q

3
�(T

� + T 2(���)): (3.19)

And by (3.9)

kf(Y )k� � CM (f)Q� � (T� + T ���):

So �nally 



Z f(Y )dWr; f(Y )






W;2�

� CM (f)Q
3
�(T

� + T ���) �M

the last inequality being true if we take su¢ cientely small T; depending on CM (f) and on Q�:
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Step 2 Contraction
Using (3.4) with �(f) = f(Y )� f(Y ) instead of Y �rst and (3.13) next we get (recall that

�00(f) = 0)

k�(f)k� � CQ�(T
� + T ���)



�(f);�0(f)


W;2�

(3.20)

� CM (f)(T
� + T ���)Q3�



�;�0


W;2�

We write now

M(Y; Y 0)�M(Y ; Y
0
) = (

Z t

0
�s(f)dWs;�s(f)) =: (Z;Z

0):

The same reasoning as in Step 1, see (3.19) (we also use �00(f) = 0) gives (exercise)

RZ


2�

� CM (f)Q
3
�



�(f);�0(f)


W;2�

(T� + T ���)

� C 0M (f)Q
3
�



�;�0


W;2�

(T� + T ���)

so that, using (3.4) 


M(Y; Y 0)�M(Y ; Y
0
)




W;2�

= k�(f)k� +


RZ



2�

� CM (f)Q
3
�(T

� + T ���)


�;�0



W;2�

� 1

2



�;�0


W;2�

the last inequality being true if we take T su¢ cientely small in order to obtain CM (f)Q3�(T
�+

T ���) � 1
2 :

Conclusion (Y; Y 0) !M(Y; Y 0) is a strict contraction on BM (�; f(�)) so it has a unique
�xed point (one has to check that BM (�; f(�)) is complete with respect to jY0j + jY 00 j +
kY; Y 0kW;2�). This is the solution of our equation. And in order to go in long time, we
concatenate.

Uniqueness: we leave the proof of uniqueness for later on because an a priory inequaltity is
needed: see the Theorem concernng the continuity of the Lyon�s map, in the following section.
�

3.3 Continuity with respect to the driving signal

In order to prove a continuity result we will use the stability property of the rough integral and
of the composition with regular functions. But these properties are "local" on BM (�; �0); and so
we need that kY; Y 0k� �M:We do not want to ask such a restrictive condition on the solution
Y itself, but we only accept the restriciton kjWjk� �M: So essentialy we need to prove that if

Y is the solution of a rough equation then one controls kY; Y 0k� by kjWjk� := kWk�+kWk
1=2
2� :

This is the subject of the following "a priory" estimate (which represents the subtle point in
the proof).
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Theorem 3.7 Consider a � rough pathW; for some 1
3 < � and a function f 2 C3b (Rd; Rd�d):

And let (Y; Y 0) 2 D2�W be a solution of the equation Yt = � +
R t
0 f(Ys)dWs: There exists a

universal constant C such that

kY k� +


Y 0



�
+


RY 



2�
� C kfk3;1 kjWjk2� _ 1 (3.21)

In particular if kjWjk� �M _ 1 then (Y; Y 0;W ) 2 AM 0(�; �) with M 0 = C kfk3M2:

Proof Step 1 We stress that all along the proof we use that, because of the equation,
Y 0 = f(Y ): It follows that��RYs;t�� =

��Ys;t � Y 0sWs;t

��
�

����Z t

s
f(Y )dW � f(Ys)Ws;t � f 0(Ys)f(Ys)Ws;t

����+ ��f 0(Ys)f(Ys)Ws;t

��
Notice that f 0(Ys)f(Ys) = f 0(Ys)Y 0s = (f(Ys))

0 so that kf(Y )0k� � Cf kY k� : Then the sawing
lemma gives ����Z t

s
f(Y )dW � f(Ys)Ws;t � f 0(Ys)f(Ys)Ws;t

����
� (kWk�




Rf(Y )



2�
+ Cf kWk2� kY k�)(t� s)

3�

and moreover ��f 0(Ys)f(Ys)Ws;t

�� � kfk21;1 kWk2� (t� s)2�:
In the following we will use the notation kWk�;h when we take di¤erences only for t � s � h:
With this notation convention we have proved that

RY 



2�;h
� Cf ((kWk�;h




Rf(Y )



2�;h

+ kWk2�;h kY k�;h)h
� + kWk2�;h) (3.22)

We will now look to


Rf(Y )



2�;h
: We write

R
f(Y )
s;t = f(Yt)� f(Ys)� f 0(Ys)Y 0sWs;t

= f(Yt)� f(Ys)� f 0(Ys)Ys;t + f 0(Ys)RYs;t

so that, using Taylor expansion


Rf(Y )



2�;h

� 1

2
kfk2;1 kY k

2
�;h + kfk1;1



RY 


2�;h

:

We insert this in (3.22) and we get

RY 


2�;h

� Cf ((kWk�;h (kY k
2
�;h +



RY 


2�;h

) + kWk2�;h kY k�;h)h
� + kWk2�;h):

We take now h small such that

Cf kWk�;h h
� � 1

2
; Cf kWk1=22�;h h

� � 2: (3.23)
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With such an h the above inequality reads

RY 


2�;h

� 1

2
(kY k2�;h +



RY 


2�;h

) + 2 kWk1=22�;h kY k�;h + Cf kWk2�;h)

� 3

2
kY k2�;h +

1

2



RY 


2�;h

+ (1 + Cf ) kWk2�;h

which �nally gives 

RY 


2�;h

� 3 kY k2�;h + 2(1 + Cf ) kWk2�;h (3.24)

Now, since Ys;t = f(Ys)Ws;t+R
Y
s;t; the above inequality also gives (we also use (3.24) and with

the restriction (3.23) )

kY k�;h � kfk1 kWk�;h +


RY 



2�;h
h�

� kfk1 kWk�;h + (3 kY k
2
�;h + 2(1 + Cf ) kWk2�;h)h

�

� C 0f (kWk�;h + kWk
1=2
2�;h) + 3 kY k

2
�;h h

�:

= C 0f kjWjk�;h + 3 kY k
2
�;h h

�

Then we denote
�h = 3C

0
f kjWjk�;h h

�;  h = 3 kY k�;h h
�

and the above inequality reads
 h � �h +  

2
h: (3.25)

In the following step we will use the above inequality in order to �nd some h0 such that

 h0 � C�h0 :

And this gives for every h � h0
kY k�;h � Cf kjWjk� :

Using (3.24) we also get


RY 



�;h
� Cf kjWjk2� : Finally kY 0k�;h = kf(Y )k�;h � kfk1;1 kY k�;h �

Cf kjWjk� :
And we notice that for a � 1; we have kY k�;h � a kY k�;h=a : This allows to get kY k� �

C kY k�;h and to elliminate h:
Step 2We choose h0 such that, for h � h0 one has �h � �h0 :=

5
36 <

1
4 : Then the equation

 h = �h +  
2
h has two distinct solutions

 + =
1

2
(1 +

p
1� 4�h) �

1

2

 � =
1

2
(1�

p
1� 4�h) �

1

6
:

Since we know that (3.25) holds true, it follows that for all h � h0 one has  h � 1
2 or  h �

1
6 :

We also know (by the very de�nition of  h) that  h # 0 as h # 0 so that for su¢ ciently small
h we have  h � 1

6 : We want to prove that this is the case for every h � h0: Notice �rst that

kY k�;h � 3 kY k�;h=3 � 3 lim
g"h
kY k�;g

which gives  h � 3 limg"h  g: And in a similar way  h � 1
3 limg#h  g:
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Take now h� = supfh :  h � 1
6g: Since h !  h is an increasing function we havr  h � 1

6
for h < h� and  h � 1

2 for h > h�: We also have  h� � 3 limg"h  g � 3 �
1
6 =

1
2 ; so  h� �

1
6 :

Suppose now that h� < h0: Then, for every g 2 (h�; h0) we have  g � 1
2 (because we do not

have  g � 1
6) and consequentely  h� �

1
3 limg#h�  g >

1
6 which is in contradiction with  h� �

1
6 :

We conclude that  h � 1
6 for every h � h0: Coming now back to (3.25) we get  h � �h +

1
6 h

and then
 h �

6

5
�h:

�
We are now able to give the continuity result for Lyon�s map. We recall that the distance

d
W;fW;2�

is given in (2.24) and �� is de�ned in (2.23). The important trick that will be used in
the proof of the theorem below is the following: if we work on (0; T ) and we have � < � then

d
W;fW;2�

(Y; Y 0; eY ; eY 0) � d
W;fW;2�

(Y; Y 0; eY ; eY 0)� T ���: (3.26)

The reason is that kUk� � kUk� T ���:

Theorem 3.8 A Let f 2 C3b and let W and fW be two � rought path. We denote by Y a
solution of the rough di¤erential equation dY = f(Y )dW;Y0 = � and eY a solution of deY =

f(eY )dfW;eY0 = e�: Suppose that
kjWjk� +




���fW���



�
�M: (3.27)

Then, for every 1
3 < � < � there exists C depending on M; kfk3;1 ; � and � such that

d
W;fW;2�

(Y; f(Y ); eY ; f(eY )) � C(��(W;fW) +
���� � e����) (3.28)

and 


Y � eY 



�
� C(��(W;fW) +

���� � e����): (3.29)

B As a consequence, takingW =fW and � = e� we obtain the uniqueness of the solution of the
rough di¤erential equation.

Proof We will use the inequalities (3.14) and (2.25) which are veri�ed if (Y; Y 0;W) 2
AM (�; �) and (eY ; eY 0;fW) 2 AM (�; �): Using the a priory inequality from the previous theorem,
and the hypothesis (3.27) this is true (this is the reason of being of the a priory estimate (3.21)).

Step 1 Let Z =
R
f(Y )dW and eZ =

R
f(eY )dfW: We recall that Y 0 = Z 0 = f(Y ) andeY 0 = eZ 0 = f(eY ); because of the integral and of the equation. One also has the equation

Y = � + Z and similar with tilda.
Then the stablity property for the rough integral (2.25) gives, with C1(T ) = C1(T

�+T b��);

d
W;fW;2�

(Y; f(Y ); eY ; f(eY )) = d
W;fW;2�

(Z;Z 0; eZ; eZ 0) (3.30)

� C1(T )(dW;fW;2�
(f(Y ); f(Y )0; f(eY ); f(eY )0) + ��(W;fW) +

���� � e����)
� C2(T )(dW;fW;2�

(Y; Y 0; eY ; eY 0) + ��(W;fW) +
���� � e����) (3.31)
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The last inequality is obtained by using the Lipschitz property of the composition with regular
functions (3.14). Taking T su¢ ciently small we have C2(T ) � 1

2 and this yields

d
W;fW;2�

(Y; f(Y ); eY ; f(eY )) � ��(W;fW) +
���� � e����

The above estimate holds for small T � T�: In order to extend it for a general T one con-
catanates T=T� (so a constant will appear). �

4 Construction of abstract �ows

We begin with some de�nitions and notation. We work on Rd and we denote by Ckb (R
d) the

space of the k time di¤erentiable functions � : Rd ! Rd which are bounded and have bounded
derivatives. For � 2 Ckb (Rd) we denote

j�j1;k =
kX
i=1

X
j�j=i

sup
x2Rd

j@��(x)j and j�jk = j�j1;k + k�k1 : (4.1)

Here j@��(x)j2 =
Pd
i=1

��@��i(x)��2 : Notice also that if k = 0; this is just the uniform norm:
j�j0 = k�k1 :

We work with compositions of functions on Rd and we use the (abusive) multiplicative
notation: for f : Rd ! Rd and g : Rd ! Rd we denote

fg = f � g:

First we have to establish some formulas for the computation of the derivatives of composed
functions. Let f : Rd ! Rd and g : Rd ! Rd be smooth functions. One may prove by recurence
that for a multi index � with j�j � 1

@�[f � g] =
X

1�j�j�j�j
(@�f)(g)P�;�(g) (4.2)

with

P�;�(g) =
X

c�;�((
1; j1):::(
k; jk))

kY
i=1

@
igji (4.3)

with the sum over k = 1; :::; j�j ; j1; :::; jk 2 f1; :::; dg and 
i multi-indexes with 1 � j
ij � j�j :
And c�;�((
1; j1):::(
k; jk)) are some universal coe¢ cients (the precise expression is not of
interest in these notes). In particular we have, for some universal constant C(k)

jfgj1;k � C(k) jf j1;k jgj
k
1;k : (4.4)

One also has j'f � 'f j0 � j'� 'j0 and, for a multi-index � with j�j = k � 1;

j@�('f)� @�('f)j � C j'� 'j1;k jf j
k
1;k :

So
j'f � 'f jk � C j'� 'jk (1 + jf j

k
1;k):
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Using Taylor expansion of order one

'f � 'f =
Z 1

0



r'(�f + (1� �)f); f � f

�
d�

which gives ��'f � 'f ��
k
� C j'j1;k+1 (1 + jf j

k
1;k +

��f ��k
1;k
)
��f � f ��

k
:

Combining these we get��'f � 'f ��
k
� C(1 + jf jk1;k +

��f ��k
1;k
)(j'� 'jk + j'j1;k+1

��f � f ��
k
:) (4.5)

and by iterating this inequality��'f � 'f ��
k
� C 0(k)� Ck(f;  ; f;  ) (4.6)

(j'� 'jk + j'j1;k+1
��f � f ��

k
+ j'j1;k+1 jf j1;k+1

�� �  ��
k
) (4.7)

with C 0(k) a universal constant depending on k and

Ck(f;  ; f;  ) = (1 + jf j2k1;k +
��f ��2k

1;k
+ j j2k

2

1;k +
�� ��2k2

1;k
)2: (4.8)

We consider now a function X : [0; T ]2 ! Ckb (R
d) and for � > 0 we de�ne the Hölder type

norms by

jXjk;� = sup
s<t

jXs;tjk
jt� sj� : (4.9)

In the following we will also use the following localized variant: we �x "� 2 (0;1] and we de�ne

jXj"�;k;� = sup
s<t<s+"�

jXs;tjk
jt� sj� : (4.10)

This means that we take into acount only t; s such that jt� sj � "�: For "� = 1 we have
jXj"�;k;� = jXjk;� :

De�nition 4.1 We say that an application X : [0; T ]2 ! Ckb (R
d) is a (k; �)� �ow if jXj1;k;� <

1 and, for every s < u < t; we have

Xu;tXs;u = Xs;t: (4.11)

Here and in the sequel Xu;tXs;u denotes the composition: Xu;tXs;u = Xu;t �Xs;u (we travel
from s to u and then from u to t): The basic example is given by the �ow associated to a
rough di¤erential equation (in short RDE); or the stochastic �ow associated to a stochastic
di¤erential equation (in short SDE). But for the moment we keep in an abstract, deterministic
framwork.

Our aim is to approximate Xs;t by using an application � : [0; T ]2 ! Ckb (R
d) which does not

verify the �ow condition (4.11) but only an "approximative" �ow condition. Let us introduce
some notation. We �x s < t and we consider a grid P = P(s; t) = fs = s0 < ::: < sm = tg: We
may also think to P as being a partition of [s; t]: We denote jPj = maxi=1;:::;m�1(si+1� si) the
mesh of P:
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Moreover we construct the "Euler scheme" associated to P

XP
s;sj (�) : =

jY
i=1

�si�1;si = �sj�1;sj � :::: ��s;s1 and (4.12)

XP
s;t(�) = XP

s;sm(�) =

mY
i=1

�si�1;si = �sm�1;t � :::: ��s;s1 : (4.13)

Let P = f0 = s0 < ::: < sm = Tg be a partition of (0; T ): We consider 0 � s < t � T and we
suppose that si0 � s < si0+1 and sj0 � t < sj0+1: Then we denote by P(s; t) the trace of P on
(s; t) more precisely P(s; t) = fs < si0+1 < ::: < sj0 < tg: So we take the points of P which are
in (s; t) and we add as initial point s and as �nal point t: So s = si0 and t = sj0+1:

We denote nP(s; t) = j0� i0; this is the number of the points of P which fall in the interval
(s; t): And we also de�ne

XP
s;t(�) = XP(s;t)

s;sj0+1
(�) =

j0+1Y
i=i0+1

�si�1;si = �sj0 ;t � :::: ��s;si0+1 : (4.14)

We also de�ne
Ls;t(x) = �s;t(x)� x (4.15)

and we use L in order to give an alternative expression of XP
s;sj (�) :

XP
s;sj (�)(x) = x+

jX
i=1

Lsi�1;si(X
P
s;si�1(�)(x)):

We give now our assumptions on �: First we assume that �t;t(x) = x and for some � > 0,

jLj1;k+1;� = sup
s<t

jLs;tj1;k+1
jt� sj� <1: (4.16)

Moreover, for s < u < t; we denote

��s;u;t = �s;t ��u;t�s;u (4.17)

which quanti�es the "error" with respect to the �ow property (4.11) for �: And for � > 1, we
assume that

k��kk;� := sup
s<u<t

j��s;u;tjk
jt� sj�

<1: (4.18)

If we take sups<u<t<s+"� we denote k��k"�;k;� : Finally we de�ne

k�kk;�;� = jLj1;k+1;� + k��kk;� (4.19)

De�nition 4.2 We denote by C�;�k ([0; T ]) the space of the applications � : [0; T ]2 ! Ckb (R
d);

with �t;t(x) = x which verify (4.16) and (4.18) so that k�kk;�;� < 1. And an element of
C�;�k ([0; T ]) will be called a (k; �; �)� semi �ow.
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Lemma 4.3 Let � 2 C�;�k ([0; T ]) for some k 2 N and let

C�(k) := maxf3kC(k); 2�+1�(�) k��kk;� ; 10
k2+kC 0(k) jLj1;k+1;�g (4.20)

where C(k) (respectively C 0(k)) is the universal constant in (4.4) (respectively in (4.6)). And
�(�) =

P1
i=1 i

�� : Take also some 1 < �0 < � and take "� > 0 which satis�es

C�(k)� "�^(���
0)^�0

� � 1: (4.21)

We �x s < t � T with t� s < "�: Then, for every partition P of (s; t) we obtain��XP
s;t(�)��s;t

��
k
� C�k(�)(t� s)�

0
(4.22)

with
C�k(�) = 2

�0+1�(�) k��kk;� : (4.23)

Finally, for every s < t � T such that t� s � "� and every partition P we have��XP
s;t(�)

��
1;k
� 3: (4.24)

Proof. To begin we notice that (4.24) is an immediate consequence of (4.22). Indeed, by
our choice of "�we have ��XP

s;t(�)��s;t
��
k
� C�k(�)(t� s)�

0 � 1

and moreover since t� s � "�

j�s;tj1;k � 1 + jLs;tj1;k � 1 + jLj1;k+1;� (t� s)
� � 2:

which gives (4.24) .
We prove (4.22) by recurence on r = nP(s; t); the number of points of P which fall inside

the interval (s; t): For r = 1 and P(s; t) = fs < s1 < tg we have XP
s;t = �s1;t�s;s1 so that

�s;t �XP
s;t = �s;t ��s1;t�s;s1 and then���s;t �XP

s;t

��
k
� k��kk;� (t� s)

�: (4.25)

Suppose now that (4.22) (and consequetely (4.24)) is true for partitions of length nP(s; t) less
or equal to r � 1 and let us prove it for a partition of length nP(s; t) = r:

Step 1. We �x P = fs = s0 < s1 < ::: < sr = tg and we consider some other partition
P 0 = fs = s0 < s01 < ::: < s0r0 = tg � P (the partition P 0 is a sub partition of P and such sub
partitions appear when we use "the sewing argument" in the Step 2 of the proof). Then we
de�ne Yi = XP

s;s0i
(�); i = 1; :::; r0 (so, this is the Euler scheme associated to the partition P but

which is considered just in the points s0i of the partition P 0): Then we de�ne

Y P
0

s;s0i
(x) = x+

iX
j=1

Ls0j�1;s0j (Yj�1(x)); i = 1; :::; r0:

Notice that Y P
0

s;s0i
6= XP 0

s;s0i
(�) beacause Yj�1 6= XP 0

s;s0j�1
(�): We �x now i0 2 f1; :::; r0g and we

denote by P 0i0 the partition P
0 in which we have cancelled i0: Then

Y P
0

s;t � Y
P 0i0
s;t = Ls0i0�1;s

0
i0
(Yi0�1) + Ls0i0 ;s

0
i0+1

(Yi0)� Ls0i0�1;s0i0+1(Yi0�1) = A+B
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with

A = Ls0i0�1;s
0
i0
(Yi0�1) + Ls0i0 ;s

0
i0+1

(�s0i0�1;s
0
i0
(Yi0�1))� Ls0i0�1;s0i0+1(Yi0�1);

B = Ls0i0 ;s
0
i0+1

(Yi0)� Ls0i0 ;s0i0+1(�s0i0�1;s0i0 (Yi0�1)):

We estimate �rst A: We have

Yi0�1 + Ls0i0�1;s
0
i0
(Yi0�1) + Ls0i0 ;s

0
i0+1

(�s0i0�1;s
0
i0
(Yi0�1))

= �s0i0�1;s
0
i0
(Yi0�1) + Ls0i0 ;s

0
i0+1

(�s0i0�1;s
0
i0
(Yi0�1)) = �s0i0 ;s

0
i0+1

�s0i0�1;s
0
i0
(Yi0�1)

and Yi0�1 + Ls0i0�1;s
0
i0+1

(Yi0�1) = �s0i0�1;s
0
i0+1

(Yi0�1) so that

A = (�s0i0 ;s
0
i0+1

�s0i0�1;s
0
i0
��s0i0�1;s0i0+1)(Yi0�1)) = �s0i0�1;s

0
i0
;s0i0+1

(�)(Yi0�1)):

Notice that nP(s; s0i0�1) � nP(s; t)�1 � r�1; so we may use the reccurence hypothesis: Recall
that Yi0�1 = XP

s;s0i0�1
and notice that s0i0�1�s � t�s � "�: Then by our reccurence hypothesis

and (4.24) we get jYi0�1j1;k � 3: Using (4.4) with f = �s0i0�1;s
0
i0
;s0i0+1

(�) and g = Yi0�1 (C(k) is

the constant in that inequality)

jAj1;k � k��kk;� (s
0
i0+1 � s

0
i0�1)

�C(k) jYi0�1j
k
1;k

� 3kC(k) k��kk;� (s
0
i0+1 � s

0
i0�1)

�

� 3kC(k)(s0i0+1 � s
0
i0�1)

���0 � k��kk;� (s
0
i0+1 � s

0
i0�1)

�0

� k��kk;� (s
0
i0+1 � s

0
i0�1)

�0

the last inequality being a consequence of (4.21) because 3kC(k)"���
0

� � 1: Also

jAj0 �



�s0i0�1;s0i0 ;s0i0+1(�)


1 � k��kk;� (s

0
i0+1 � s

0
i0�1)

�

so �nally
jAjk � 2 k��kk;� (s

0
i0+1 � s

0
i0�1)

�0

We treat now B: Notice that

Yi0 = X
P(s0i0�1;s

0
i0
)

s0i0�1
;s0i0

(Yi0�1)

where P(s0i0�1; s
0
i0
) is the trace of the partition P on (s0i0�1; s

0
i0
) that is: if s0i0�1 = sj and

sj0 = s0i0 ; then P(s
0
i0�1; s

0
i0
) = fs0i0�1 = sj < ::: < sj0 = s0i0g: Notice that nP(s

0
i0�1; s

0
i0
) �

nP(s; t)� 1 � r � 1 so we are able to use the recurence hypothesis.
Then we write

B = Ls0i0 ;s
0
i0+1

(X
P(s0i0�1;s

0
i0
)

s0i0�1
;s0i0

(Yi0�1))� Ls0i0 ;s0i0+1(�s0i0�1;s0i0 (Yi0�1)):

We will use (4.6) with ' = ' = Ls0i0 ;s
0
i0+1

; f = X
P(s0i0�1;s

0
i0
)

s0i0�1
;s0i0

; f = �s0i0�1;s
0
i0
and  =  = Yi0�1:

This gives
jBjk =

��'fg � 'fg��
k
� Ck(f; f;  ) j'j1;k+1

��f � f ��
k
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with
Ck(f; f;  ) = C(k)(1 + jf j1;k +

��f ��
1;k
+ j j1;k)

k2+k � C(k)� 10k2+k

with C(k) the universal constant from (4.6). The last inequality is a consequence of the
reccurence hypothesis (4.24) (which we may use).

Morover, by our hypothesis (4.16)

j'j1;k+1 =
���Ls0i0 ;s0i0+1���1;k+1 � jLj1;k+1;� (s0i0+1 � s0i0)�:

And, by the reccurence hypothesis,
��f � f ��

k
� C�k(�)(s

0
i0+1

� s0i0)
�0 : So �nally we obtain

jBkjk � C 0(k)� 10k2+k jLj1;k+1;�C
�
k(�)� (s0i0+1 � s

0
i0)
� � (s0i0+1 � s

0
i0)
�0

= C 0(k)� 10k2+k jLj1;k+1;� 2
�+1�(�)"�� � k��kk;� (s

0
i0+1 � s

0
i0)
�0

� k��kk;� (s
0
i0+1 � s

0
i0)
�0 :

We come back and we get����Y P 0s;t � Y
P 0i0
s;t

����
k

� 3 k��kk;� (s
0
i0+1 � s

0
i0�1)

�0 : (4.26)

Step 2 (the sewing argument). We come back to our partition P = fs = s0 < ::: <
sr = tg and we take i0 such that

si0+1 � si0�1 �
2

r � 1(t� s):

Such an i always exists (if we have the converse inequality for every i0 2 f1; :::; r � 1g then
2(t�s) �

Pr�1
i=1 (si+1�si�1) > 2(t�s)):We denote by Pi0 the partition where we have dropped

out si0 and we use (4.26) in order to get���Y Ps;t � Y Pi0s;t

���
k
� 3 k��kk;� (si0+1 � si0�1)

�0 � 22+�
0

(r � 1)�0
k��kk;� (t� s)

�0 :

We repeat this argument for P 0 = Pi0 (notice that we still have (4.26)) and so on (in order to
exhaust P) we obtain ��Y Ps;t ��s;t��k � 2�0+2�(�) k��kk;� (t� s)�0
with �(�) =

P1
i=0

1
r�
: �

We need to generalize (4.24) to any 0 � s < t � T: We de�ne

pk(T ) = 1 + T � (C�(k) jLj1;k+1;�)
1

�^(���0)^�0 and Ck(T ) = (3C(k))
kpk(T ) : (4.27)

Corollary 4.4 We are under the assumptions of the previous Lemma. Then for every partition
P of [0; T ] and every 0 � s < t � T ��XP

s;t(�)
��
1;k
� Ck(T ): (4.28)
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Proof Let "� = (C�(k) jLj1;k+1;�)
� 1
�^(���0)^�0 : Then (4.24) holds if t�s � "�:: So we split the

interval [0; T ] in T="� intervals and use (4.24) on each of these sub intervals. Using recursively
(4.4) we get (4.24). �

We are now able to give our main result: this is the so called "sewing lemma" (introduced
simultaneously by Gubinelli and by De la Pradelle and Fayel) adapted to our framework.

Lemma 4.5 A (Existence and unicity) Let k 2 N and "� be given in (4.21). Let � 2
C�;�k+1([0; T ]) with � > 1: Then for every 1 < �0 < � there exists a unique X : [0; T ]2 ! Ckb (R

d)
which has the �ow propery (4.11), and such that for every 0 � s < t � T with t� s � "�

j�s;t �Xs;tjk � Ck+1(T )Ck(�) jt� sj�
0

(4.29)

with Ck+1(T ) given in (4.27) Uniqueness holds in the following sense: if X and X are two
�ows such that j��Xj"�;k;�0 <1 and

����X��
"�;k;�0

<1; then X = X:We denote by Xs;t(�)
the unique �ow which veri�es (4.29).

B (approximation) We have the following error estimate. For every 1 < �0 < �; every
partition with jPj � "� and every s < t; with s; t 2 P��XP

s;t(�)�Xs;t(�)
��
k
� 2�+5Ck+1(T )�(�) k�kk;�;� jPj

�0�1 (t� s): (4.30)

Remark 4.6 Notice that in order to obtain the estimate (4.29) in norm j�jk we need that
k�kk+1;�;� <1; instead of the hypothesis k�kk;�;� <1 in the previous lemma: This is because
we need to obtain ��XP(�)

��
1;k+1

� Ck+1(T ) (4.31)

in (4.24), and this is crucial in the proof of the lipschizianity of XP(�) (which represents a
major di¢ culty in the proof). This shows that the calculus which is behind, essentially involves
derivatives, and this is a strong reason of working with norms of type j�jk which do control
derivatives.

Remark 4.7 The basic existence and uniqueness result coresponds to k = 0; so we need that
� 2 C�;�1 ([0; T ]): And this implies that �s;t 2 C2b (Rd):

Remark 4.8 The estimate (4.30) is written for s; t 2 P, because, if they do not belong to P,
the Euler scheme XP

s;t(�) is not de�ned. But we may de�ne in a natural way an extension of
XP
s;t(�) to every s < t: This is done as follows: we denote by P(s;t) the partition P to which

we have added the times s and t: Then we de�n eXP
s;t(�) := X

P(s;t)
s;t (�): With this de�nition

(4.30) holds for eXP
s;t(�): In particular, since t � s � jPj ; for every 1 < �0 < � one has

jPj��1 (t� s) � jPj���
0
(t� s)�0 so that (4.30) gives an estimate of the �0 Hölder norm:��� eXP(�)�X(�)

���
k;�0

� C k��k"�;k;� k�k
2(1+k+k2)=�
k+1;�;� jPj���

0
: (4.32)

Remark 4.9 In the following section we will consider RDE (rough di¤erential equations). In
this framework we prove that Xs;t(�) is a solution of a rough di¤erential equation associated to
� i¤ (4.29) holds. Such a characterization coincides with Devie�s de¢ nition for the solution
of RDE0s: So our approach appears as an abstract varient of Devie�s approach at the level of
�ows.
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Proof. We want to de�ne
Xs;t = lim

jPj!0
XP
s;t(�):

In the above limit P is a partition of (s; t): In order to do it we have to check that the above
limit exists, so we prove that, for any two partitions P and P then

lim
jPj_jPj!0

���XP
s;t(�)�XP

s;t(�)
���
k
= 0:

We may assume (without loss of generality) that jPj � "�=2 and
��P�� � "�=2: We also assume

that P is a re�nement of P so we write P = fs = s0 < ::: < sr = tg and P = [ri=1P i(si�1; si)
for some sub-partitions P i = P i(si�1; si) = fsi�1 = s0i < ::: < srii = sig: Moreover we denote

P l = [li=1P i(si�1; si) [ fsl < ::: < sr = tg:

So P l is the partiton in which we re�ne the intervals (si�1; si); i = 1; :::; l according to P but
we keep the intervals (si�1; si); i = l + 1; :::; r as they are in P. Finally we write���XP

s;t(�)�XP
s;t(�)

���
k
�

rX
l=0

���XPl+1
s;t (�)�XPl

s;t (�)
���
k
:

We compute

X
Pl+1
s;t (�)�XPl

s;t (�) = 'lX
Pl
sl;sl+1

(�) l � 'l�sl;sl+1 l

with 'l = XP
sl+1;t

;  l = XP
s;sl
: We will use (4.6) so we will need

j'lj1;k+1 + j lj1;k +
���XPl

sl;sl+1
(�)

���
1;k+1

+ j�j1;k � 4Ck+1(T )

whith Ck+1(T ) de�ned in (4.27) (Here comes on the fact that we need k+1 derivatives). Then
by (4.6) �rst and (4.22) next (notice that si+1 � si�1 � 2 jPj � "�)���XPl+1

s;t (�)�XPl
s;t (�)

���
k
� 4Ck+1(T )

���XPl
sl;sl+1

(�)��sl;sl+1
���
k

� 2�+5Ck+1(T )�(�) k�kk+1;�;� (sl+1 � sl)
�0

We conclude that���XP
s;t(�)�XP

s;t(�)
���
k
� 2�+5Ck+1(T )�(�) k�kk+1;�;� �

rX
l=0

jsl+1 � slj�
0

� 2�+5Ck+1(T )�(�) k�kk+1;�;� � jPj
�0�1 (t� s)! 0:

So limjPj!0XP
s;t(�) =: Xs;t exists in C

k
b (R

d) and Xs;t 2 Ckb (R
d) is well de�ned. And passing

to the limit in the above estimate (with
��P��! 0) we obtain (4.30).

Step 3. The fact that Xs;t = Xs;uXu;t is true because the concatenation of a partition
of (s; u) with a partition of (u; t) gives a partition of (s; t): Finally, by passing to the limit in
(4.22) we obtain (4.29).

Uniquness is obvious. �
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5 Rough path

In this section we will deal with semi �ows associated to a rough path. Before we come back
and give some de�nitions and notation. For F : [0; T ]�Rd ! Rd which is k time di¤erentiable
with respect to x we de�ne the norm (the same as in (4.9))

jF jk;� = sup
s<t

jF (t; �)� F (s; �)jk
(t� s)�

and, if we consider just s < t < s+ " then we denote jF j";k;� : We also denote C�(k) the space of
the applications F : [0; T ]�Rd ! Rd such that jF jk;� <1:

In the case where F does not depend on the space variable x; more precisely F : [0; T ]! R;
we denote just C� and

kFk� = sup
s<t

jF (t)� F (s)j
(t� s)�

the usual Hölder norm.
We recall now the de�nition of a "rough path". Given � 2 (13 ;

1
2) we de�ne a � rough

path to be a coupleW = (W;W) with W : R+ ! Rd and W : R2+ ! Rd�d such that

kWk� = sup
jt�sj>0

jWs;tj
jt� sj� <1 and kWk2� = sup

jt�sj>0

jWs;tj
jt� sj2�

<1

and for which "Chen relations" hold true:

Ws;t = Ws;u +Wu;t

Wi;j
s;t = Wi;j

s;u +W
i;j
u;t +W

i
s;uW

j
u;t

We will consider the "norm"
kWk� = kWk� + kWk2� :

We de�ne now the "controlled path". This is analogous with the previous de�nition but
now we have function valued processes. We denote � = f1; :::; dg: We say that F : [0; T ] !
Ckb (R

d; Rd) is controlled by W if there exist 
j 2 C�(k); j 2 � and R
F 2 C2�(k) such that

F (t; x)� F (s; x) =
X
j2�


j(s; x)W
j
s;t +R

F
s;t(x):

We denote Dj
WF = 
j the "Gubinelli derivative". This is not unique, so the notation is abusive

- we will precise in each case which is our choice. Following [FH] we denote D�k;W the space
of the couples Y; Y 0 such that Y 2 C�(k) is controlled by Y

0 (so Y 0 = DY ): In the case of "real
rough path" we have uniquenees of Y 0 =: DWY: And the above relation reads

Y (t; x)� Y (s; x) =
X
j2�

Dj
WY (s; x)W

j
s;t +R

Y
s;t(x):

Moreover, we will use the following computational rule. Consider F;G 2 C�(k) which are con-
trolled by W and suppose that one may �nd some version of Gubinelli derivative DWF which
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is Lipschitz continuous with respect to x 2 Rn; uniformly in t 2 [0; T ]: Then F (t; G(t; x)) is
controlled by W and , for every version DWG; one has

Dj
WF (t; G(t; x)) = (D

j
WF )(t; G(t; x)) +

nX
k=1

(@kF )(t; G(t; x))D
j
WG

k(t; x):

The proof is straightforward and we skip it.
We de�ne now �s;t(�;W )(x) = x+ Ls;t(�;W )(x) with

Ls;t(�;W )(x) =
X
j2�

�j(s; x)W
j
s;t +

X
j;j02�

�j;j0(s; x)Wj;j0

s;t :

Here �j 2 D�(k+3);W and

�j;j0 = Dj0

W�j +D
j0
� �j with Dj0

� �j =
dX
k=1

�kj0@xk�j :

We recall that in the previous section we have de�ned �(�) (see (4.17)), k�(�)kk;� (see (4.18))
and k�kk;�;� (see (4.19)). Concerning these quantities we will need some bound and stability
estimates. In order to give these estimates we have to precise the following notation:

�j(t; x)� �j(s; x)�
X
j02�

Dj0

W�j(s; x)W
j0

s;t = Rjs;t(x)

�j;j0(t; x)� �j;j0(s; x) = rj;j
0

s;t (x)

and we konw that Rj 2 C2�(k+1) and r
j;j0 2 C�(k+1):

Now we are able to give our estimates:

Lemma 5.1 let W be � rough path. We consider some coe¢ cients � which are controlled by
W and such that j�jk+2 <1: Then

k�(�;W)kk;�;3� = jL(�;W)j1;k+1;� + k�(�(�;W))kk;3� <1: (5.1)

Proof We denote �j;s(x) = �j(s; x): We compute �rstX
j2�
(�j;sW

j
s;t � �j;sW j

s;u � �j;uW
j
u;t)

= �
X
j2�
(�j;u � �j;s)W j

u;t = �
X
j;j02�

Dj0

W�j;sW
j0
s;uW

j
u;t + o1(s; u; t)

with
o1(s; u; t) =

X
j2�

Rjs;uW
j
u;t = O(t� s)3�:

Moreover, let

o2(s; u; t) =
X
j;j02�

(�j;j0;u � �j;j0;s)Wj;j0

u;t =
X
j;j02�

rj;j
0

s;uW
j;j0

u;t = O(t� s)3�:
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We have (Chen relations)X
j;j02�

(�j;j0;sWj;j0

s;t � �j;j0;sWj;j0
s;u � �j;j0;uW

j;j0

u;t

= o2(s; u; t) +
X
j;j02�

�j;j0;s(Wj;j0

s;t �Wj;j0
s;u �W

j;j0

u;t )

= o2(s; u; t) +
X
j;j02�

�j;j0;sW
j0
s;uW

j
u;t

= o2(s; u; t) +
X
j;j02�

Dj0

W�j;sW
j0
s;uW

j
u;t +

X
j;j02�

Dj0
� �j;sW

j0
s;uW

j
u;t:

We conclude that

Ls;t � Ls;u � Lu;t
=

X
j2�

�j;sW
j
s;t +

X
j;j02�

�j;j0;sWj;j0

s;t

�(
X
j2�

�j;sW
j
s;u +

X
j;j02�

�j;j0;sWj;j0
s;u )

�(
X
j2�

�j;uW
j
u;t +

X
j;j02�

�j;j0;uWj;j0

u;t )

=
X
j2�

Rjs;uW
j
u;t +

X
j;j02�

rj;j
0

s;uW
j;j0

u;t +
X
j;j02�

(Dj0
� �j)sW

j0
s;uW

j
u;t

=
X
j;j02�

Dj0
� �j;sW

j0
s;uW

j
u;t +O(t� s)3�

Write now hrLu;t(x); Ls;u(x)i in an explicite way. We emphsise the "main terms" and we
get

hrLu;t(x); Ls;u(x)i = �3(s; u; t) +
X
j;j02�

(Dj0
� �j)sW

j0
s;uW

j
u;t

with

�3(s; u; t) =
X
j2�

X
p;p02�

�j;u�p;p0;s(W
j
u;tW

p;p0
s;u +W

j
s;uW

p;p0

u;t )

+
X
j;j02�

X
p;p02�

�j;j0;u�p;p0;sWj;j0
s;uW

p;p0

u;t )

+
X
j;j02�



�j0;s; �j;u � �j;s

�
W j
u;tW

j0
s;u = O(t� s)3�

We conclude that
Ls;t � Ls;u � Lu;t = hrLu;t; Ls;ui+O(t� s)3�:

This �nally gives

�s;t(x)��u;t�s;u(x)
= Ls;t(x)� Ls;u(x)� Lu;t(x+ Ls;u(x))
= Ls;t(x)� Ls;u(x)� Lu;t(x)� (Lu;t(x+ Ls;u(x))� Lu;t(x))
= hrLu;t(x); Ls;u(x)i � (Lu;t(x+ Ls;u(x))� Lu;t(x)) +O(t� s)3�:
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Then, using Taylor expansion we upper bound the above term by

krLu;tk1 krLs;uk
2
1 = O(t� s)3�:

�
The above estimates show that �(�;W) is a (�; �) semi-�ow, with � = 3�: Then we may

use the sewing lemma 4.5 and obtain:

Lemma 5.2 (Existence and uniqueness) Suppose that �j 2 C�(k+3): For every 1 < �0 <

� = 3� there exists a unique X : [0; T ]2 ! Ckb (R
d) which has the �ow propery and such that

for every 0 � s < t � T with t� s � "�

j�s;t(�;W)�Xs;tjk � Ck+1(T )Ck(�) jt� sj�
0

(5.2)

with Ck+1(T ) a suitable constant. Uniqueness holds in the following sense: if X and X are
two �ows which veri�e (5.2) then X = X: We denote by Xs;t(�) the unique �ow which veri�es
(5.2).

Remark 5.3 Let Xt(x) = X0;t(x): We have D
j
WXt(x) = �j(Xt(x)):

Proof. Using(5.2)

Xt(x)�Xs(x) = Xs;t(Xs(x))�Xs(x) = �s;t(Xs(x))�Xs(x) + o(t� s)�
0

=
X
j2�

�j(Xs(x))W
j
s;t + o(t� s)2�:

�

5.1 Rough integrals and rough di¤erential equations

Our aim now is to de�ne the rough integral with respect toW and then to construct solutions
of rough di¤erential equations.

To begin we precise the de�nition of the rough integral. We consider Yj : [0; T ]! Rd; j 2 �
(it plays the role of �j from the previous section, but it does not depend on x):We may consider
Yj(s) as a function on Rd which is constant with respect to x 2 Rd and to try to use the results
from the previous section. First we assume that Y is � Hölder in the usual sense. This will
give that Y is also � Hölder in j�jk for every k:We also suppose that Y is derivable in Gubinelli
sense, with derivative DY: We �x (Yj ; DYj) 2 D�W; j 2 � and we de�ne

LYs;t =
X
j2�

Yj;sW
j
s;t +

X
j;j02�

Dj0

WYj;sW
j;j0

s;t and �Ys;t(x) = x+ LYs;t:

Since Y does not depend on x; we have DY Y = 0 so we have D
j0

WYj;s = �j;j0;s from the previous
section. Consequentely �Y is a (�; 3�) � semi � flow and we may use Lemma 5.2 from the
previous section in order to associate a �ow Xs;t(�

Y ):

De�nition 5.4 We de�ne the rough integral

IYs;t :=

Z t

s
hYr; dWri := Xs;t(�

Y )(x)� x: (5.3)
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Remark 5.5 By the very construction of Xs;t(�Y )(x) we getZ t

s
hYr; dWri = lim

jPj!0

X
(u;v)2P

(
X
j2�

Yj;uW
j
u;v +

X
j;j02�

Dj0

WYj;uW
j;j0
u;v ): (5.4)

So we �nd out the de�nition of the rough integral in the usual rough calculus.

Remark 5.6 We stress that the above integral depends on the Goubinelli derivative DWY:

Remark 5.7 The �ow property for Xs;t(�Y ) reads IYs;t = IYs;u + IYu;t: So we come back to the
"classical" framework.

Remark 5.8 IY is characterized by

IYs;t � hYs;Ws;ti � hDWYs;Ws;ti (5.5)

= Xs;t(�
Y )(x)��Ys;t(x) = o(t� s)3�:

In particular this means that
DjIYt = Yj(t): (5.6)

We discuss now the rough di¤erential equations. We give now some coe¢ cients �j : [0; T ]!
C3b (R

d); j 2 � such that �j 2 D�k+3;W ; with � > 1
3 and we consider the rough di¤erential

equation
dX = h�(X); dWi :

This equation may be undersood in two di¤erent senses. First we may consider the semi
�ow �s;t = �s;t(�;W) and use the result from the previous section (Lemma 5.2) in order to
construct the �ow Xs;t = Xs;t(�(�;W)): This coincides with Devie�s de�nition of the solution
of the rough equation above. So we call it a D �ow solution. Secondly we may consider the
"classical" rough equation based on the de�nition of the rough integral. We call the solution of
this equation a R �ow solution. We will check that the two de�nitions coincide. More precisely

De�nition 5.9 Let X : [0; T ]2 � Rd ! Rd belong to C�: We say that X is a R �ow solution
of the rough di¤erential equation dX = h�(X); dWi if Xs;t = Xu;tXs;u for every s < u < t (it
is a �ow), Xs;t : Rd ! Rd is a bijection and Xs;t(x) satis�s

Xs;t(x) = x+

Z t

s
h�(Xs;r(x)); dWri : (5.7)

with the rough integral associated, for each �xed s � 0 and x 2 Rd; to

Y s;xj;r = �j(Xs;r(x)) and Dj0

WY
s;x
j;r = Dj0

� �j(Xs;r(x)): (5.8)

Notice that if X solves tha above equation then Dj0

WX
j0

s;t(x) = �j
0

j (Xs;t(x)): This is why we

get Dj0

WY
s;x
j;r = Dj0

� �j(Xs;r(x)):
In order to construct a solution of the above equation we consider the semi� flow

�s;t(x) = �s;t(�;W)(x) = x+
X
j2�

�j(x)W
j
s;t +

X
j;j02�

Dj0
� �j(x)W

j;j0

s;t :
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Theorem 5.10 Suppose that �j 2 C�2 ; j 2 � and that W = (W;W) is a rough path. Then
Xs;t(�(�;W)) (constructed in the previous section, Lemma 5.2) is the unique R �ow solution
of the equation (5.7).

Proof. We briefy denote � = �(�;W) and we consider the D �ow solution Xs;t(�)
produced by Lemma 5.2: We �rst prove that Xs;t(�) solves (5.7) We �x x0 2 Rd and Yj(r) =
Y 0;x0j (r) = �j(X0;r(�)(x0)) We have already checked that D

j0

WX
j
s;t(�) = �jj0(Xs;t(�)): Then

Dj0

WYj(r) = (D
j0
� �j)(r;X0;r(�)(x0)

so that

LYs;t =
X
j2�

Yj(s)W
j
s;t +

X
j;j02�

Dj0

WYj(s)W
j;j0

s;t

=
X
j2�

�j(X0;s(�)(x0))W
j
s;t +

X
j;j02�

(Dj0
� �j)(X0;s(�)(x0))W

j;j0

s;t

= �s;t(X0;s(�)(x0))�X0;s(�)(x0) = Ls;t(X0;s(�)(x0))

Recall �rst that IY is charachterized by��IYt � IYs � LYs;t�� � C(t� s)3� (5.9)

and Xs;t(�) veri�es

sup
x
jXs;t(�)(x)� x� Ls;t(�)(x)j � C(t� s)3�

Notice that
LYs;t = Ls;t(�)(X0;s(x0)):

In particular, taking x = X0;s(x0) (here comes on the fact that x ! X0;s(x0) is a bijection)
the above inequaltity gives

jXs;t(�)(X0;s(x0))�X0;s(x0)� Ls;t(�)(X0;s(x0))j
=

��Xs;t(�)(X0;s(x0))�X0;s(x0)� LYs;t�� � C(t� s)3�

and this guarantess that

IYt � IYs = Xs;t(�)(X0;s(x0))�X0;s(x0)

which, if s = 0 reads
IYt = X0;t(�)(x0)� x0

and this is equation (5.7).�
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