Short Introduction to Rough Path theory (following Friz and
Hairer)
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1 Introduction

The aim of these lectures is to give a short presentation of Lyons’ theory of Rough Path. In
the first part of the lectures we present the "classical" theory following the beautiful book of P.
Friz and M. Hairer, "A Course on Rough Paths, with an introduction to regualrity structures".
I will refer to this book as (FH).

*Université Paris-Est, LAMA (UMR CNRS, UPEMLV, UPEC), MathRisk INRIA, F-77454 Marne-la-Vallée,
France. Email: bally@univ-mlv.fr



In the second part we present an alternative approach due to I. Bailleul which is based on
the point of view of stochastic flows.

All over the text I will assume that one works on the time interval (0,7"), and smetimes we
also assume that 7" < 1.

2 First presentation of the rough integral

2.1 Motivation

a Consider a one dimensional Brownian motion W and a bounded continuous function F' :
R — R. Then one defines the Itd stochastic integral as limit of Riemann sums:

t
Ws)dWs = 1 FWs,_ ) (W, — W,
A ( |P1|IEOZ i— 1 i i 1)

Here P={0=s0< ... < sn = t} is a partition of mesh |P| — 0 and, important, the limit is in
L*(Q, P). In partlcular fo s)dW5 is defined only P(dw) almost surely, and the exception
set depends on F. So, if one aims to define this integral for all possible F' in the same time,
with a unique exception set, this is not possible. However, if one replaces the Ito stochastic
integral by the Lyon’s "rough path integral" (that we present in the following) we are able to
give a definition which holds for any coeflicient F' with an exception set which does not depend
on F.

Moreover the definition of the rough integral is "pathwise": for each trajectory s — Ws(w)
one is able to define fot F(Ws(w))dW s(w) (I put dW s(w) instead of dWs(w) in order to emphasise
that I speak about the rough integral). Of course, this is not true for the Ité integral which is
defined just as a class of equivalence of L?.

b (flows) Consider the SDE

d

t t
Xy(z) =z + ) /0 oi(Xs(z)dWE + / b(Xs(x))ds.

i=1 0

It is well knowen that if the coefficients o; and b are of class C}° then one may find a set
Qo p C Q with P(Q4p) = 1 such that for each w € ), the application

(t,z) = Xi(z, W(w))

is continuous with respect to ¢t and of class C'*° with respect to x. This is a crucial point in
the the theory of stochastic flows developed by Kunita, Bismut, Ikeda Watanabe .... But the
set {15, depends on the coefficients o and b. If one replaces the It6 integral dW; by the rough
path integral dW¢(w) one is able to find a universal set Qo C Q with P(£) = 1, such that for
each w € Qp the application (t,z) — X;(z,w) is a smooth flow. So one may define a "universal
map" which solves the equation.

¢ (continuity) See (FH) Proposition 1.1 and Exercise 5.21

The law of the Brownian motion W is supported by the space of continuous functions
C(0,T) which is a Banach space with the uniform norm|| f|| ., = sup;<r | f¢| . Take now W, (s) =
W %, (s) where is a smooth approximation of the Dirac mass: -y, — dp in distribution sense.



Since s — Wy, (s) is a smooth function we may solve the ODS

d  pt . t
X (z)=z+ ;/0 i (X2 (x)dW, (s) —i—/o b(XZ(x))ds

where dW}(s) is now a Stieltjes integral. Then
W =Wyl =0 and [ X —X"| — 0.

To be precise, one has to take the Stratonovich integral instead of the It6 integral in the
equation of X;. But anyway since the coefficients are smooth, this is done by changing the drift
b by a drift ¥’ (I leave out this detail for the moment).

Now the question is

W =Wl =0 = [[X-X",—0

for every sequence of smooth functions W,,,n € N7 This is the continuity property with respect
to the uniform norm. But this is false: one may produce a sequence such that [|[WW — W,[|,, — 0
but lim, || X — X" # 0.

But we know that the law of the Brownian motion is concentrated on the space Cq(0,T)
of Holder continuous functions of order a < 3. And the Holder norm | f||, is stronger than
the supremum norm. So one may hope that [|[W —W,]|, — 0 = [[X — X"|, — 0. But this
is also false (one may produce a sequence which contradicts this). And finally one may prove
that if one considers any Banach space B C C'(0,T") on which the law of the Brownian motion
is supported then the assertion [|[W — W,||z — 0 = || X — X"||z3 — 0 is false. So there is no
hope to get the continuity W — W, — 0 = X — X™ — 0 does not matter which norm one
employs. It turns out that in order to obtain X,, — X we need W,, — W but we also need
some "more information" on the path W : this supplementary information is quantified in the

'rough path". (see Proposition 1.1 p 2 in (FH)).

2.2 The sewing lemma

This is the central instrument in our framework: it gives a way to prove that Euler scheme
converges to the solution of some equation. We consider an abstract application O : R%r — R.
If © is additive, that is Oy; = O, + O, for every s < u < t, then for every partition
P={s=s0<..<s,=t}, we have

n
P . _
Gs,t = E C—)Si—hsi - @S,t‘
=1

But of course this is false if the additivity property fails. This is why we introduce the following
"additivity error":
5s,u,t(®) = @s,t - ®s,u - ®u t-

)

Lemma 2.1 Suppose that, for some 8> 1 and Cgeyy > 1

105,0t(0)] < Ciew |t — 5]° . (2.1)



A Then the following limit exists

n

X,4(0) = lim O7F, = i Os. . s 2.2
(©) = Iim O Ay 2 O (22)
B Moreover
| X,,4(0) — OF,| <2°(t — 5)¢(8) [P)P! (2.3)
with ((B) = 52,178, And
|X5.4(8) — Os4] < CsenC(B)2°(t — 5)P. (2.4)

C X is additive, and it is the unique additive process which verifies (2.4).

Proof A Step 1. We fix a partiton P = {s = 59 < ... < s, = t}. Note first that one may

find 4 such that
2(t — s)

n
We denote by P; the partition P in which we have canceled ¢. Then

P Pi _ _
@s,t - Gs,t - 951‘71,81' + ®Si,3i+1 - @5i—175i+1 - 63i—175i75i+1 (@)

Sit1 — Si—1 <

and consequentely

_ B
or, el )

n

S Csew(5i+1 - Si—l)ﬁ S Csew <

We repeat this procedure in order to descend to partitions which are shorter and shorter, up
to the trvial partition {s,t}. So we obtain

n s
‘ef,t - @s,t| S Csew Z <2(t _ S)) S Csewg(ﬁ)2ﬁ(t - S)ﬁ' (25)
=1

1

Step 2 We prove the Cauchy property

!
lim ‘@7’ YA
|’P\V|P’|HO s,t s,t

We may suppose without loss of generality that P’ C P and we construct the partitions P,
in the following way: we consider the intervals (s}, s’ ;) of the partition P’ and we split the
intervals with j < [ according to P. But we leave the intervals with j > [ as they are in P’.
Then

n/

P P P P
Gs,t - G)s,t = Z(@s,é - GS,lt 1)
=1
so that

IN

P P
of-e

s,t

n’ n'

Pl 'Plfl _ P
Z ‘@s,t - @s,t - Z ‘@Sl,sul - @5l75l+1
=1 =1

< Csewg(ﬁ)Qﬁ Z(sl+1 - Sl)ﬂ
=1

IN

Caew((8)2° [P 71 (¢ — 5) — 0.
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So we may define Xft(@) = limp_ @f’t.
Step 3 B We pass to the limit with |P| — 0 and we get

XS,t(G)) - @:]:,; < CsewC(/B)Qﬁ }P,W—l (t - 8).
Moreover passing to the limit in (2.5) we get
|X8,t(@) - ®s,t| < Csew{(ﬁ)25(t — S)B.

C The fact that X,; = X, + Xy, is proved by passing to the limit and using that any
partition of (s,¢) may be split in a partition of (s,u) and of (u,t). O

2.2.1 Example: the Young integral.

Take f,g: R+ — R. If f has finite variation and ¢ is continuous one may define the "Stiltjers
integral" fot g(s)df (s) as the limit of the Riemann sums. Young generalized this to functions
which are just Holder continuous. We denote C* the space of functions f : R — R such that

[f(t) = £(s)]

sup o = Wl < oo

[t—s|>0 ’t -

Notice that

sup [f(t)| < [F(O)] + If]l, T
t<T

In the following we will use the notation f;; = f; — fs and then the above inequality concerns
fs : this reads |fs:| < ||f]l, (t —s)*. In a more general case, we will consider some functions
H:RiHRandwesaythatHGC“ if

H
sup [Hst =:||H||, < .

[t—s|>0 ‘t - S‘a a

Then we have the following

Lemma 2.2 Suppose that f € C* and g € C¥ with B = a+ «' > 1. For a partition P = {0 =
S0 < ... < 8y =t} we denote

SE =" glsic)(f(s1) = f(si-1)-
=1
Then the follwoing limit exists and is called the Young integral:

/0 g(s)df(s) = lim ST.

[P|—0

And we have the following convergence rate:

¢
/0 g(s)df(s) — SZ’ <Ot —s) |rp|a+a’71




Proof We denote
Ost = g(s)(f(t) — f(s))
and we notice that
Gs,ut(©) = (g(u) — g(5))(f(t) — f(u)).

Under our hypothesis |35,.¢(0)] < C(t — 5)®+ so that we may use the sewing lemma. Since
SP = @Z’D,t the proof is an immediate consequence of the sewing lemma. []

2.3 The rough integral.

We consider a d—dimensional Brownian motion W = (W1,...,W?) and we present the rough
integral with respect to a path of W. To begin we consider a particular case (which is the one
considered by Lyons in his first papers): we give a function F' € Cf(Rd, Rd) and we would like
to define

t d t .
/OF(WS)dWS:;/O FH (W) dW?. (2.6)

We may do it by using the It6 integral but, as we discussed in the first section, this is not
"pathwise": we would like to do it for a given fixed trajectory s — Ws(w). Clearly we are
not able to use the Yung integral because both g(s) = F(Ws) and f(s) = W¢ are Holder
continuous of index a < % so that o + a < 1. In fact it turns out that we are not able to do
it just by using the trajectory s — Ws(w), but we will need to add the information given by
the Lévy areas. This is called the "enhanced" Brownian motion. Let us be more precise. We
denote, for i,j € {1,...,d},

. . . . . t . . .
=W W and WY = / (Wi — Wiaw? (2.7)

Finally, the couple W = (W, W) is called the "enhanced" Brownian motion. For a > 0 we
denote (as in the previous section)

|Wst| ’Wst|
Wil = sup =10 and W], = sup —ie.
“ [t—s|>0 |t - S|a “ [t—s|>0 |t - S|a

As a consequence of Kolmogorov’s criterion (see (FH) Theorem 3.1) we have
Theorem 2.3 For every o € (%, %)
W, <oo and [[W],, < oo (2.8)

almost surely. This means that we may find a set Qg C Q such that the above assertion holds
for every w € Qo and P(Qy) = 1. In the following we will suppose without any supplementary
mention that we work with a trajectory corseponding to w € Qg and so the above property holds.

Remark 2.4 In (2.6) dW' may represent the "Ito integral” or the "Stratonovich integral”
odW'. In the second case we have to take Wi = fst(Wﬁ — W) odW{. In the following, in order
to fix ideas, we take the It6 integral, and, along the presentation, we will precise what changes
if we take the Stratonovich integral.



We define now

d
Ou0 =Y F(W)W, + Z & F (W)W (2.9)
=1

1,j=1

For a partititon P = {0 = sp < ... < s, = t} we denote

— 7 7 ’L:]
St—Z@SZ 1751_2 ZF Skl Sk 1Sk+zaF Sklwsk 1,5k
Z

1,7=1

Then we have

Theorem 2.5 Let us fix some o € (3,3) and we fiz some trajectory W(w) = (W (w), W(w))
with w € Qy . Then the following limit exists

t
/ F(W,)dW, := lim ©7, (2.10)
S

and it is called the "rough integral” of F(W,) with respect to the rough path W. Moreover
[ F(W,)dW, H < o00.

Proof We want to use the sewing lemma so we have to estimate d5,,+(©). In the following
we denote by O(h®) a quantity wich is upper bounded by Ch®. Let s < u < t. We have

F(W,) = F(Ws + Wsy) = F(Wy) + (VE(Wy), Ws) + O((u — 5)**)

and
VE(Wy) = VE(Ws) + O((u — s)%)

so that

d d
Out = ZFZ(WU)WZZLt + Z ajFi(Wu)WZ,jt

AJﬁl
= ZFl IWi, + Z O F (W) WL, Wi, + Z O;F (W)W, + O((t — )°)
7.7 1 ,] 1
This gives
es,u + ®u7t
d ‘ ) .
ST FW) (Wi, +Wi,) + Z O, F" (W) (Wi, + Wi, + Wi Wi )

i,j=1
+O((t — 5)3).

Notice that we have the following identities (known as Chen relations)

Ws,t = Ws,u + Wu ;t
W, = Wi+ W+ W W



Inserting in the previous equality

d
Ouu+Oup =Y F(W)WL, + Z O F (W)W + O((t — £)*)

i=1 i,j=1
= O.+O((t— 5)30‘)

which means that |§5,.+| < C(t —s)3*. Now we are able to use the sewing lemma and to obtain
(2.10). Finally, using (2.4) we get

/S “rwy)

Remark 2.6 (Link with the Ito integral) The rough integral |, L F(Wy(w))dW,(w) coincides

with the Ito inegral in the follwoing sense: the Ito integral f EF(W, )dW is defined as the limit
in L?(Q2) of the Riemann sums - so it is an element of LQ(Q) that s a class of equivalence of
elements which are almost surely equal each other. On the other hand fst F(Wp(w))dW,(w) is
defined for every w € Qg as a limit of Euler schemes based on ©,;. Let us note that @Z’D,t =
S + RPt with

Sft_ZZF s )WZ s, and th—ZZaF o 1W§Lp1,sz

=1 j=1 =1 j,p=1

| <1Ost| + Ot —5)3* <Ot — 5)™.

0

. 2
Notice that W, | .,i=1,...,n are independent and centred, and E ‘Wﬁ’ﬁhsi < C(si—si_1)*.

Then is easy to check that

< C|VF|IPI* = o0.

n. M 4 2
B|RE) < IVFl > > B|wir,

i=1 jp=1

So lim @f lim Sst = f F(W,(w))dW, in L3(Y). This means that the rough integral produces
a specific element in the class of equwalence of the Ito integral.

We discuss now the case of the Stratonovich integral. We recall that for two continuous
martingales M and N we have

t t
1
/ ModN:/ MdN—|—§<M,N>t.
0 0
Suppose now that we consider the Lévy area with respect to the Stratonowich integral:
— Lo o 1
Wi _ / Wi, odW! = / Wi AW+ 585t = ).
S S

We first notice that we still have, for « < 1 that |[W||, < oo and HWH2 < o00. If we define

now d d
O =Y FWIWi, + Y 0,F (W)W
i=1 2,7=1



then
_ 18 .
Ost = Ot + 5 ; O F'(Wy)(t — s).
This imediately implies that
Osu,t(©) = 054:(0) +O(t — 5)39,

So the sewing lemma allows to construct

t
/F(Wr)dWT = lim ©.,.
] Pl=o >

Our aim now is to show that the above "Stratonovich rough integral" coresponds to the prob-
abilistic Stratonovich integral. Notice that

d n
—p 1 i
O, =00 5D D OF (Wa )55 — sk-1)
=1 k=1

By passing to the limit we get
t o t 1< gt .
/ F(W,)dW, = | F(W,)dW, + 22/ O F'(W,.)dr.
s s =178

Having in mind the previous remark, this means that fst F(W,)dW, is a representer of

d t d t d t

. 1 . . .
> j/ FZ(WT)dW,?JriE / O F (W, )dr = / FYW,) o dW.
i=17° i=1"9% i=17°

So, if we start with a Stratonovich Lévy area, we finish with a Stratonovich integral.

2.3.1 First generalisation: controlled path

We wolud like to be able to use a more general class of integrands. In order to do this we
introduce the notion of "controlled path" which is due to Gublinelli. Y : Ry — R? which is «
Holder, is a "controlled path" if there exists Y’ : Ry — R%*? such that

Yo = (Y], War) + O((t = 5)*?)
or, in other words, R}, := Yy, — (Y], W) is 2o Holder. The obvious example is
Y, = F(Wy) = F(Wy) + (VF(W,), We) + ot — 5)**

So, in this case Y = VF(W;). Having this in mind one says that Y is the (Gubinelli) derivative
of Y.

Uniqueness However, for a "general rough path" (W, W) (see the following section) this
derivative is not unique, so the notation is abusive, and we have to keep in mind the choice
which has be done; so a "controlled paths" is the couple (Y,Y”) and the constructions that we



will do in the following depend on the choice of Y’ (which has to be precised each time). We
denote by Df}, the space of the o controlled (by W) path. So (Y,Y’) € Dy, if

RY, =Yy — (Y], Wyy) € C*. (2.11)
For (Y,Y’) € Df}, we denote (see (4.17) p56 in (FH))

1YY iy = Yl + 1B (212)

w26

Notice that we also have the estimate (see (4.18) p56 in (FH))

Yla < CA+IWIL)YE]+ [V ]|y 00 (2.13)
Wl < [Yol+[YIl,T" (2.14)

I recall that we work on the time interval (0, 7).

The lack of uniqueness does not stop the construction of rough integrals. However, it is
much more pleasant to have a unique derivative; and this is true for standard examples of
rough path, in particular for the one associated to the Brownian motion (and this is the case
in this section). More precisely, suppose that we are in the one dimensional case d = 1, and
forevery 0 < s <T

‘ st’
Tm ot = o, 2.1
WG —syza (2.15)

Then Y’ is uniquely determined. More precisely, it is given by the equality

Yo

Y{ =lim 2t T (2.16)
Indeed, by (2.15)
| s ‘ |t_5|2a
] < I N0 S = =0

so that, by using (2.11), the limit in (2.16) exists and is equal to Y.

Friz and Hairer say that a rough path which verifies (2.15) is a "really rough" path. In
fact, this condition is really necessary for getting uniqueness: suppose that the limit in (2.15)
is finite uniformly. Then W € C2* and consequently, for each real number 7, we have the
decomposion Yy = (Y] + )W, + (Rgt —nWsy) and RY, —nW,, is a "good remainder". This
means that Y, 4+ 1 may also be used as a derivative.

Let us check that the Brownian motion is "really rough". The iterated logarithm theorem
says that, if W is the Brownian motion

. |Ws s+h|
lim ———————— = /2 2.17
hl0 h1/2InIn(1/h) =2 (217)

almost surely. And one may construct an exeeption set which does not depend on s. So we
may choose the trajectory W; such that (2.17) holds for every s. Then

|Ws s+nl W stnl y hl/21n In(1/h)
= —
h2« hY/2Inln(1/h) h2e

for every i < a.

10



In the multi-dimensional case d > 2, one has the following definition of "truly (really) rough
path" (see (FH- p 85 Definition 6.3):

lim L Ws t>

=00 WweR%se(0,T).
tls [t — 5

And one proves that in this case the Gubinelli derivative Y’ is unique (for any controlled rough
path, of course). In this case we denote D7, Y = (Y])"/ so that

d
Yi=Y!+Y D YixW!, +R.,
j=1
We come back to our problem (construction of the rough integral). With the concept of
"Gubinelli derivative" at hand we obtain the following result. We define

Z Yl ! st + Z ’JWSJt

1,5=1

In the case Y; = F(W;) we have Y/ = VF(W,;) and so the above definition coincides with
(4.26).
For a partititon P = {s = so < ... < s, = t} we denote

STIEES YORNITED ol O TR oA
k=1 \ =1

4,j=1

and we have

Theorem 2.7 Let us fix some o € (3,
with w € Qo ( so that (2.8) holds) And
W). Then the following limit exists

3) and we fix some trajectory W (w) = (W (w), W(w))
let (Y,Y') € D§j, be a a— controlled path (controlled by

t
/ Y, dW, := | 71)1|m0 er,Y) (2.18)

and it is called the "rough integral” of Y, with respect to the rough path W. Moreover Hf YTdWrHa <

0o. And Zs; = f Y. dW, is the unique process such that

< 0. (2.19)

H/YrdwT —o(Y)
3«

More precisely

/de —YsWey = YIWy| < C(IW]o [|RY |lg, + Wl Y| )(E = )% (2.20)

Finally, Z is controlled by W and one has Z' =Y.

11



Proof The proof is quasi identical to the one concerning Y; = F(W;), so we just sketch it.
We want to use the sewing lemma so we have to estimate d5,,+(0). We first give an explicite
expression wich will be used further on:

d d
Out — O — Oup = 050t(0) = > RUIWE 4+ Y (V)2 W7, (2.21)
= i,j=1
We write
Y=Y+ (Y, Wsu)+ R,

so that, by direct obvious computations

@u,t _ Zyz Zt+ Z ,]W’J

5,5=1
_ ZYSZ zt+ Z :JWZ W]t—i- Z ’JW”J + 0s5,u,t(©)
i—1 ij=1 =1

with J5,+(©) given in the right hand side of (2.21). Then, using Chen’s relations

@s,u + @u,t
d ' ' d )
— Z }/Z(W;u + WZ Z Yl 7] WZJ + W%] + WZ qut) + 5s,u,t(®)

= Ost+05u,:(0).
So we have proved (2.21), and since
8520a(©)] < CULRY [y IW 0 + 1Y, IW )t — 5)°

so we are done. So we may use the sewing lemma in order to define the integral given by the
limit in (2.18) and this integral verifies (2.19).

Let us check that the Gubinelli derivative of Z is given by Y. We have ©,(Y) = (Y, W) +
O((t—5)?*) and Z; = ft Y, dW, = O44(Y)+O((t—5)3*). We conclude that Z; = (Y, W)+
O((t — 5)?*) and this means that Z'=Y.O

Linearity Let (Y,Y"),(Y,Y') € Dy, Then

Y+Y)=Y'+Y, and R'"Y =RY +RY

/YdW+/YdW:/(Y+Y)dW

and

12



2.3.2 Second generalisation

Given a € (3, 3) we define a a rough path to be a couple W = (W, W) with W : R, — R?
and W : R2 — R%4 such that

Wl = sup W <oo and |[W|y, = sup M<oo

[t—s|>0 |t - ’ [t—s|>0 |t - 5|

and for which "Chen relations" hold true:
Ws,t = Wsu + Wut
W;Jt = W?]u + W L+ VVZ WJ
We speak about a "geometric rough" path if
Wl + Wl = Wi, W,

For example, the "Stratonovich" rough path is a geometric rough path while the It6 rough path
is not. The geometrical rough paths are important for two reasons: first, a first order calculus
holds for them and second, rough intergals with respect to a geometrical rough path may be
approximated by usual regularizations of the trajectory (see (FH) Proposition 2.5 p19).

Remark 2.8 It is not possible to have the "second component” Wls”]t which is symmetric, i.e.
such that Wlsjt WP, Indeed, the symmetry combined with the second Chen relation give

WZ Wj WS,UW + Which is clearly false. In particular one may not take Ws’jt = WgtWSjt
However this is the quantity which multiplies 82’ F(Wy) in the Taylor expension at order two.

We denote by C® the space of a rough paths (some confusion with o Holder path appears)
and, for W = (W, W) we define (see (FH) p 15) the "homogenous rough path norm"

TWllo = IW1o, + 4/ [[Wll5 (2.22)

and the "inhomogenuous rough path distance"

pa(W,W) =

Wl + HW—W

(2.23)

2c

Remark 2.9 [[|[W]]|, is not a norm because it is null Jor non null costants, and similary for
Pqo- S0, if we want that p, (W, W) = 0 implies that W =W we have to ask the supplementary
condtion Wy = W()

The notion of "controlled path" is the same as before: Y : R, — R? which is o Holder, is
a "controlled path" if there exists Y’ : R, — R%9 such that

Yi = (Y, We) + O((t = 5)*).

The properties listed before (exception the notion of geometric rough path) are the ones which
have been used in order to construct the rough integral so that we obtain the same result in
this abstract framework: Given a o controlled path Y with Gubinelli derivative Y’ we define

ZYZWZt—i_ Z JW i,J

1,j=1

13



and for a partititon P = {s = sp < ... < s, = t} we denote

n n d d
T () => 0, ,.Y)=>_ YIWE 4+ Y (Y)W
=1 1

k=1 \ i= ij=1

and we have

Theorem 2.10 Let us fix some o € (%, %) and let W = (W, W) be a o rough path. And let
(Y,Y") be a a—controlled path. Then the following limit exists

t
Zoy = / Y,dW, = lim O7F,(Y)
s P|—0 ’

and it is called the "rough integral” of Y, with respect to the rough path W. Moreover Hf YTdWrHa <
oo and Z' =Y.

2.3.3 Stability for the rough integral
In this section we will use a specific distance that we define now. We consider two a rough

paths W and W and (Y,Y”) € D, (V.Y e ngg. Then we define the "distance"

d Y, Y, (Y,Y) = HY’ v

1 HRY—R17

Wi 2a(( . (2.24)

This is not really a distance because it is not null if Y-Y=c

Remark 2.11 If Y and Y are_controlled by the same rough path W = W, then Y' — Y/ =
(Y —Y) and RY — RY = RY~Y | s0

d

((Y7 Y/)’ (Yv Y,)) =

W,W 2a W,2a

defined in (2.12). But here' Y and Y are controlled by different rough paths and this is why we
need a special, different, definition.

Now we fix % < a < B. Such two indeces will appear in the fowlloning theorem and are
used in order to perform an usefull computational trik.
We recall that in (2.23) we have defined

pa(W.W) = |[W — W7

+ HW—W

2

Finally we define the ball

AM = AM(aaﬁ)
= {VY W) 2 W]+ [W]lgs + [V, + | BY ||, + [Yol + [¥5] < M}

We are now able to give our "local" stability result:

14



Theorem 2.12 Let % < a < B be given, and let T < 1. Suppose that (Y,Y') € DE2, (}7,}7’) €
D?m% and (V,Y' W) € Auy(a,B) and (Y,Y'\W) € Ay(a,B). Denote Zy; = fstYdW and
Zg,t = f; YdW and recall that Z' =Y and Z' =Y. Then there exists a constant C = Cla, 5, M)
such that the following holds:

Ay 2a(2,2),(2,2")) < C(T* + T77) (2.25)
X (dyy 70 (YY), (V7)) + (W, W)+ |17 = V)
and
HZ —Z| <O +T7 (2.26)
X (dyy 7 20 (V5 Y1), (Y, Y') + pB(W,W) + ‘YU’ ~ Y|+ ’Yo _ 170’)

Proof (2.26) follows (rather) easily from (2.25), so we concentrate on this one. We first

compute _ _
Z;t_Zé,t:Ys,t_Ys,t:a"‘b+c

with . o _
a=Y(Wsy —Wyy), b= (Y]-Y))Ws;, c=R),—RY,

Write Y] = Yj + (Y] — Yy). Then, for Y € Ap(a, ) one obtains |Y]| < M + MT < 2M so
that N —
la| < 2M HW - WHB (t—s)% <2M HW - WHﬁTB‘O‘(t —5)°

Moreover

14

IN

(|v5 - 73

+ Hyl o }N/I

(t — )2 HWHB (t — s)oT5—@

«

IN

YM(t — )78~

«

(|-

+ Hyl o ?I

Finally |¢| < HRY - R?H2 (t — s)*T“. We conclude that

< CM(T*+TP %) x

«

Hzl_Zl

(|vs - ¥

+ iy i 00 (V2 Y), (V. Y1) + p(W,W))

so it fits in our estimate.
We deal now with the remainder. We write

RI, = Zsy—ZWey=Zoy— YWey — YW,y + YW,
t
= / VAW — 0,4(Y) + YW,
S
with O 4(Y) = YsWs; + Y/W, ;. And in the same way
~ [ ~ o
RZ, = / YdW — 044(Y) + Y/W, ;.
S

15



We will use the sawing lemma for I's ; = O, ;(Y) — O, t( ). In order to do it we have to estimate
dsut(I). We look for Cye,(I') which verifies (see (2.1))

sup [0su,t(I)] < Coew(I) (t — 3)30‘.
s<u<t

Recall now that by (2.21)

d d
6sut(F) = ZRX’QZLW'ZJZ ZR}Q/ZW”ZLJ
=1 =1
d
+Z zJWJ_Z( Yol W
1,j=1 4,j=1

And standard computations (the same as above) give

0sut(D)] < CM(T*+ Tﬁ—a)

X(d[/V?WQa((Yv Y/)v (}77 }7/)) + pﬁ(W,W) + ‘YOI — }70/ )(t — 8)3a

which means that

)

Now we may use the sewing lemma. Notice that (with the notation in the first section)
X4(T) = [TYdW — [P YdW so that, by the sewing lemma (see (2.4)) we have

t [
/ YdW — / YdW — Ty,
< CM(T 4+ TP~%)

H/YdW—/T/dW—F
3«

X (dyy 7.0 (VY (V7)) + (W, W) + ¥ — ¥y

Coen(T) < CM(T® + T7)(dyy g7, (V. Y), (V, 7)) + ps (W, W) + v = 17

< 239 (30) Cyen (T) (£ — 5)3*

and this yields

),

W,W 2a

which is also choerent with our estimate.
We write now

st = YW, | < o Wl + Y| W — W

< oM(|Y; - (VY"), (V. Y") + pg(W. W) (t — )27

W,W,Qa
We have used here [|[W |y, < [[W([y5 (2 — 5)2072(8=2)  We have proved that

LS CM (T2~ 4 T%) x

((V,Y), (V7)) + ps (W W) + | g = 1

HRZ_RZ

x(d

).

W,W,Qa

This was the tricky step. [



2.4 It6’s formula
2.4.1 The case of one forms

Iin this section we will give the It6 formula. We discuss first the simple case of the integrand
t — F(Wy). This formula will include the rough integral of ¥; = VF(W;) and also the Young
integral of Y/ = V2F(W;) with respect to the "quadratic variation" process of W. But the
problem is that, for the moment, we have no such a quadratic process, so we have to understand
what it could be, and how it works. In order to do it we use second order Taylor expansion
and we obtain

F(Wy) = F(W,) =Y 0iF(Wo)Wi, + Z 0i0; F(W)Wi, Wi, +O(t — 5)* (2.27)
i—1 ij=1

Since a > % we may ignor the last term. We look now to the second term. We denote

ig L i i

857,Jz€ = §(Ws7,]t + W?,t)

the symmetric part of W and we define
<Wi’j>s t ;,thj,t - (W;Jt + Ws;) = Wsi,th,t - QS;]t (228)
Then
- Z 0:0; F(W)Wi, Wi, = Z 0:0;F (W)(S% + <Wi’j>s,t)
i,j=1 ,j=1
Coming back to (2.27) we get
d , 14 . .
FW) ~ FOW) = S 0F(WaWi,+ 5 S 0:0;F(W,) (W5 + W)
i—1 ij=1

+= ZaaF ) (W), +0(t - 5)*

zyl

Let us denote

Yi=,F(W,) and (Y,)" = 8;0;F(Wy).

Then
d ) 1 d o .
> OF(W)WE, + 5 > 0,0, F (W) (W + W) (2.29)
i—1 i,j=1
d
= (Yo, Wer)+ > (Vo) x Wyl = 0,4(Y)
4,j=1

reperesents the "one step Euler scheme" which allows to define the rough integral [ Y,dW,.

What about the third term? We know that s — 0;0;F (W) is a Holder. It is also clear
that s — <Wi’j>s is 2cc Holder. Then 0;0;F(Wj) <Wi’j>87t will give a Young integral. This
leads to the following

17



Theorem 2.13 Consider a o rough path W. Then for every F € C’g’(Rd, R) one has

T 1 & /T .
F(Wr) = F(Wo) + /O VEW,)dW, + 5 > /0 00 F(Wr)d (W™ ) (2.30)

,j=1

where fOT VF(W,)dW, is the rough integral with respect to W and fOT 818jF(WT)d<Wi’j>O
1s the Young integral with respect to <W”> .

T

Remark 2.14 The bracket <W”> is the term which is needed in order to pass from W'WJ
(which appears in the terms of second order in the Taylor formula (2.27)) to %(ngt + W)
which is the second order coefficient of 81-27jF = ale In the case of "geometric rough path"

(in particular for the Stratonovich integral) <W”> =0 so we find out the "standard” calculus
rule.

Remark 2.15 One may be tempted to take Wlft = W;tWit in order to make the rough integral
choerent whith the second order Taylor deelopment. But we have already noticed that this choice
18 not compatible with the second Chen relation.

Proof We consider a partititon P = {0 = sg < ... < s, = T'} and we write

F(Wr) = F(Wo) = > (F(Wy,) = F(W,_,))

=1
n d n
1 ..
= ) 04,5 (VE(W)) + 3 DD 00 FWiir) (W)
im1 ij=1i=1

And passing to the limit with n — co we obtain (2.30). O

2.4.2 The case of Itd processes

We consider now the more general case when Y;; € R? is (the analogous) of an It process.
We consider Y, Y’ Y" € C* such that (Y,Y') € Dfj, and (Y',Y") € Djj, are o controled
(by W) paths. In order to be more explicit we denote Y/ = DyY = (D},/Y, ...,D{‘fVY) and
Y" = (D%Y)i,jzl’m,d and this means that

d

Ysi = Z( %/VYS)Wgt + o(t — 5)*
=1

DYoo = Y (DPY)WE, +o(t — ).
=1

Now we suppose that Y is an It6 type trajectory, that is
t
Y:s,t = / }/SI’TdWr + Fs,t
S

with I' € C?®. Notice that the rough integral [Y'dW is based on the rough path W and on
the controled path (Y',Y") € Df,.

18



Theorem 2.16 Consider a o rough path W. Moreover let Y,Y',Y" such that (Y,Y') € Df},
and (Y',Y") € DS,. Then for every F € C3(R, R) one has

F(Y,) = +Z/8F )dly, +Z/ (8;F)(Y,) Dk, YidWE

k=1

+ Z Z/ 00:F (Y, (Dl Y{ = DY Y (Whe)

U
k,p=114,5=1

where fOT VF(W,)DwY,.dW,. is the rough integral with respect to W and fOT V2F(W,)DwY,®
DwY,d <Wi’j>0 . is the Young integral with respect to <Wi7j> .

Remark 2.17 In the case of "geometric rough path" <Wi’j> = 0 so the formula holds and
coincides with the standard computation rule. In the case of the Ito Lévy area (coreponding to
the Ité type integral) one has <Wi’j>t = d; ;1 and so one may use Ito’s formula, which coincides
with the classical one in stochastic calculus.

Proof. Step 1 We use the notation a ~g b in order to say that as; = bs¢ + O(t — 3)5.
First we notice that, by the very definition of the rough integral we have

sz,t = BOzY:g,Ws,t + Y:g”Ws,t + Fs,t

d d
= D DYWi+ 3 DyfYoW.y + T
k,p—1

Here DX, Y, = (Y/)¥ and D{}}p Y, = (Y/)*P. The above equality gives

Ki,%ﬂ = 3aZ(DI€VYsi XD%VYJ)WktWLft

k,p
= D (DhYI X DY YW+ W + (Whe) )
k,p %
Step 2 Using Taylor expansion
d
F(Y;) = F(Y;) ~30 28F<Y>Y;t+ Z 00 F (Yo Y., Y, = Zsst
i=1 i,j=1

with
S;,t = Z(‘?F st7

Sie = Z Z 9;0;F (Ys)(D}, Y x DY, YY) <Wk,p>

s,t
k,p 4,7=1 ’

19



and

d
k, k,
Sl = D_OF ZDWY’ ne Z Dy YiWy)
i=1 k,p—1
1 ; Ap— k
S;l,t = 3 2 ajGiF(YS)Z(D{},Y; X Dﬁ,Ysj)(st +W§,t)
1,j=1 k,p

Notice that, since 0;0;F (Ys) = 0;0;F (Ys) we ahave

d
St =" 0,0F(Y,) ) (DY Yi x DY, YI)WeP

i,j=1 k,p

And we have the convergence

zm,wz/w

r=1

Z Sr—1,80 Z Z/ 0;0;F (Y, DWleDp Yj)d<Wk’P>

k,p=11,j=1 v

both these integrals being Young integrals.
Step 3 Let ‘ .
G* = (0:F) (V) Dfy Yy

Then, a direct computation shows that

Db, GUk = (9,F)(Ys) Db, DWYH—Z 8;0;F)(Y;) Db, YI Df, Y7
7j=1

This formula may be obtained by "formal derivation", but this fits to the rigourous definition
of Gubinelli derivative. Then, by the very definition of the rough integal

Z 8F Y,) Dk ViAW
ki=1Y"%

12

30 Z (0:F)(Y2) Dy Yy x W,

k=1
+ Z Z Y,) Db, DE, Y +Z (9;0,F)(Y,) Db, YI Db, Y | Wh?
k,i=1p=1 Jj=1
= Sg,t + Sﬁ,t-

We conclude that

Z(Sgr 1,8r + S;L'r 1, 57‘ Z a F DWYZde
r=1 kyi=1"7%
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And we have proved the formula

F(Y,) = +Z/8F )dl, +Z/ (8;F)(Y,) DE, YidWE

k=1

+ Z Z a 8;F(Y,)(Dk,Yi x DP Y7)<W"”p>

kp=1i,j=1"° “

3 Rough differential equations

3.1 Norms on controlled path and smooth functions

All along this section we assume, without special mention, that 7' < 1. We recall that (Y,Y”)
is a controlled path if
You =Y, Wys+ Ry,

And one defines the norm

1YY" iy = IVl 1B - (3.1)

We will also use the notation
Qs = L+ [Wll5 + W]l (3.2)

It is easy to check that
Y|l < [¥o] + (v, Y

w20 T° (3:3)

and, for a < 3,

Y]]
g

IN

CHW s (Y] + V2" lyr0) 77" + VY
Yol + Y]l

HW,ro Ta’ (34)

A

Remark 3.1 In (3.4) T°~® appears. This term will be useful for small T in order to destroy
constants - for example when we will use a contraction argument for proving existence of
solutions of rough equations. So, the fact that we introduce 5 > « is a useful trick.

Lemma 3.2 If f € C? then (see Lemma 7.3 (FH))

(f(¥V)) =)y’ (3.6)

and
£ FOY [y 00 (3.7)
< C HfH2,oo Qi(l + ‘Yb’ HVV,2a)(‘YOI| + HY7 Y/HW,Qa (38)
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Proof One writes Y/W,; =Y, — Rz,/,t so that
Ry = = f(V) — f(Ys) — f/(Yo) YWy,
= f(Y) = f(Ys) = f'(Yo)Yeu + [ (Vo) Ry,

Then
IRllye < 201 fllg0e Y2 + | RY],,) < oo

This already shows that f/(Y;)Y/ = (f(Y))" and R’(Y) = R. It is also easy to see that

NGO, = £, < Cl o UYL (Y]] o0 + Y711
< Clfllgeo (Y o + 1Y l)Q + [Ya] + [IY7]],)-

Combining these two estimates with (3.4) (with 7" < 1 and o = 3) one obtains (3.7). O
We prove now that

1F)ly < ClIflly oo Qa(1 + Y5 ]+ ||V, Y TP~ 4+ T°). (3.9)

‘ } I/V,2a) (
Indeed

IF(Yy) = f(Ye) 1111 00 [V
1100 (Yl W lLg (= )7 + || RY |, (£ = $)°*)

Cllfloe L+ IWllg) (L4 Yo + (Y2 Y ||y 50) (= 8) x (T77% +T).

INIA TN

Finally we recall that, by the definition of the rough integral we have

t
/ndwr—nWs,t—n’ws,t S CUW g [[BY [l + Wl [[Y7[| ) (2 = 5)> (3.10)

And, if Z = [YdW, then Z is controlled by W and with Gubinelli derivative Z’ =Y.
We will still need the following:

Remark 3.3 Let G = (GY,...,G%) and H = (H',..., HY) with G', H' € D}. And let Z :=
(G H) =% G'H'. Then

Proof Note first that

z,7 G,G

< CQA(|Go| + |Gh] + |

|Ho| + |Hg| + ||H, H' (3.11)

w20 w20 lw,20)-

Zs,t = <Gs,t, Hs> + <Gt7HS,t>

and
Z = (Gl ) + (6o HY).

In particular
| Zea| S 1GL I o + 1 Haal |G| + [HE NG lloo + |Gl [[H']]
One also has (recall that 7" < 1 and use (3.3), (3.4) and (3.5))
1Hll o + [ H']| . < CQa(lHo| + |Hg| + | H, H'l|yy )
| Hsal + | Hay| < OQallHol + [Ho| + [|H, H'l]yy0) (8 = )
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and the same for G. We conclude that

12'[|,. < CQa(Gol + |Go| +[1G, G|y 50) (1 Hol + [ Ho| + || H H 'y 5,)-

Let us now deal with the remainder

RsZ,t = Zst— Z Wy
<G$,t7 Hs> + <Gt7 Hs,t> - (<G/37Hs> + <G57Hé>)Ws,t
<Gs,t - GlsWs,ty Hs> + <Hs,t - H;Ws,m Gs> + <Gs,t7 Hs,t>
= (RS, H,)+ (R, Gs) + (G, Hyy) .

It follows that

1B < B oo 1 Hlloo + R 5 1G oo + 1Glla 1 H

CQL(Go| + |Go| + ||G, &' (IHo| + |Hg| + ||H, H'

IN A

HW72OL) HI/V,2a)'

[
Given ¢ € R%, ¢ € R™4 and M > 1 we define the "ball"

Bu(§,¢) =B ={(Y,Y') € Dw;2(0,7), Yo = £, Yy =&, [V, Y’

lwoa < M} (3.12)

Lemma 3.4 (Locally Lipschitz) Let f € C}(R?Y). We consider (Y,Y'), (Y, ?l) € By(€,¢)
and we denote A =Y =Y and A(f) = f(Y) — f(Y). Then

1A, A Dllae < @2 1 e (17 e + 1 18 A e (313)

Proof In order to do it we write

AL(f) = < /O RO+ (1 A>Y8>dA,As> — (G A

with .
Gy = g(Vo, V), 9(y,7) = /O VIO + (1 Ag)dA.

Using (3.11) and Ag =Yy — Yo =0,A) =Y — ?6 =0 we get
1A A (D20 < CuQallA A0 x (1Gol + |Gol + |G G lya0)-

Now we use (3.7) with g instead of f, and we get

Hg(Yay)ag(Ya?)/HWQa S C ”gHQ,oo (HgHoo + 1) S C HfH?},oo (Hf/Hoo + 1)

so (3.13) is proved. O

In the previous Lipschitzianity result, the two processes Y and Y are controlled by the
same rough path. Now we discuss the case when each of them is controlled by a different rogh
path - such a result is needed when we discuss the continuity of Lyons’ map. So we come back

to the framework from the section concerning the stability for the rough integral. We consider
two o rough path W and W and (Y,Y’) € D%, (Y,Y') € D%/EV. Then we recall the "distance"

d

Wi 20 (Y, (V7)) = [y = 77

+ HRY—R?

.
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We also recall that in (2.23) we have defined

pa(W.W) = |[W = W

+ HW—W

2c '
Finally we will work on the ball

An(a, ) = {(V Y, W) < [W] o+ Wy + Y]], + [|RY (|, + Yol + [¥5] < M}

Lemma 3.5 (Locally Lipschitz Bis -Th 7.5 (FH)) Let (Y,Y') € D22, (Y,Y") € D%/Q‘. We
assume that (Y,Y',W) € Ay (a,) and the same with tilde. Let f € C3(RY). We denote
Z=f(Y),sothat Z' = f' (Y)Y and Z = f(Y), Z' = f(Y)Y'. Then

by 2a(Z 202, 2)) < Culpa(WW) + Yo - Tl +[Yg =% (3.14)
+dW7W72a((Y7 Yl)? (Y7 Yl)))
with Cpr a constant which depends on M, T, o and on | f||3 o, . Moreover
|2-2| < Culpa(W. W)+ Yo To| + [ - T4 (3.15)
(0%

+dW,W’2a((Ya YI)? (}77 }7/)))

Proof The second inequality follows from the first one as soon as one notices that ‘Z(') — Z'] <
C’M(’Yo - 170‘ + ‘YO' — Y{|). So we focus on the first one.
In this proof we will use the following shorten notation: p = pa(W,W), €9 = ‘Yo — Yo, £y =
¥g = V5| and e = dyy g, (V7). (F, 7).
Step 1. We check first that
HY—T/ < Culp+epte)=iey. (3.16)

We write _ o N
Yoy =YWy +RY,, Y. =YWy, + R,

and taking the difference we obtain

-7
(03

IN

C([[Y'|| o+ M |y =7

+ HRY—Ry

)

2a
T%) 4+ HRY _RY
(6%

A

)

2c

C((¥G] + M)p+ M(|¥g - 75

+ HY/ . }7/

< Culp+ey+e)=cey.

As an immediate consequence we also have HY — EN/H < C(eg+ey) and
[e.o]

) =)

< CM(80 +€y).

Indeed, one writes
1
FOR) = £V = [ FO¥t (1= N¥i)dx (4 - V)
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and the same with tilde. Then one takes differences and employs the estimates for [|Y — Y

«

and for ||[Y — V|| . We notice that the constant Cp; will depend on ||| . Finally we get

‘OO

-7

FY)Y — f’(f/)f/Ha < Carleo + ev).

.~

Step 2 We deal with RZ. We write
RZy = f(Ya) = f(Ys) = ['(Yo)YiWey = 71 + 73

with
Ti(s,t) = f(Ye) = F(Ya) = f/(Yo)Yar, Tals,t) = f/(Ya)RY,.

And we write the same decomposition for "tilda". We deal first with
1
Fi(sit) = [ F A A (Ve Ve
0

We recall that HY —?H + HY -y
o0

estimates leads to

< C(eo + ey) and ||Y|, < CM. Then elementary
(e

71(5,8) = 71(s,8)] < Cos || flls,00 (€0 + ) (E — 5)**.
And it is not hard to check that
Ta(s,t) = Ta(s,8)| < Car || fllg,00 (20 + ) (E — )77

O

3.2 Rough differential equations

The main theorem is the following:

Theorem 3.6 Consider a 5 rough path W, some % < a < f and a function f : R* — R4
in C3(R®). Then the equation

t
Vo6 /0 F(Y2)dW,

has a unique solution (Y,Y') € Da‘}. Here the integral with respect to dW is the rough integral
defined in the previous sections for the integrand (H, H') = (f(Y), (f(Y))) = (f(Y), f/(Y)Y") €
D,

Proof We fix T' € (0, 1) which will be chosen in the following - it will be sufficiently small
in order to be able to use a fixed point argument on the interval (0,7"). Afterwords we will

concatenate solution on these small intervals.
Given (Y,Y’) € D¥(0,T) We define the aplication

MY, Y') = (€ + /0 F(Y) AW, F(Y)) = (2, ') € D0, T).
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Notice that f(Y') is the Gubinelli derivative of the rough integral. And the rough integral is
constructed by using f(Y) = f/(Y)Y".

Step 1 We prove that (Y, Y”) € Bas (&, f(€)) (see (3.12)) implies that M(Y,Y”) € Bas(&, f(£))-
This will be true for sufficientelly small T, deppending on M and on || f|| 3,00 - Clearly the initial
condition is preserved. Let us check that M(Y,Y”’) € D&. By (3.7), if |V, Y|l woa < M then

1P FOY e < CQAN oo (L[] [¥2 [0 (3.17)
< OnQ% a0 (1F o+ M)? = Car()Q2. (3.18)

Here and in the following proof Cj/(f) stands for a constant which depends on M and on
[ fll3,00- And also, with Z = JfY)dW,,Z" = f(Y)

H/f(Y)dWr,f(Y)HW2 =12. 2| yy00 = 1F )l + | BZ |, -
One has
t
R = [ 00aw, - W
t
- / FY) AW, — f(Y)Way — /(Y)Y Wy + (o) YIW,,.

Since [|Y,Y'||yy00 < M

t
/ FY)AW, — F(Yo)War — (Yo YIW,,

< CUWI||RO + Wl 7)Y ) = 5%
< CJFO)FE 50 Qult — )™
< Oum(HQE(E—5)>* < Ou(F)QE(t — s)* T
One also has
[FDYIWe| < |7 Y] Wy (¢ — )22
< O f oo (LF @]+ M) [[W]|yg (¢ — )*°
= Cu(f)Qs(t — s)* T,
We conclude that
|RZ]],, < Cu(£)QY(T™ + T2E=), (3.19)
And by (3.9)
1F(Y)ll, < Crr(£)Qp x (T +T779).
So finally

H [ ryaw.. f(Y)H < O (HQYT* +T7*) < M
W,2a

the last inequality being true if we take sufficientely small 7', depending on Cj/(f) and on Q3.
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Step 2 Contraction
Using (3.4) with A(f) = f(Y) — f(Y) instead of Y first and (3.13) next we get (recall that

Ap(f) = 0)

1Al

IN

CQB(Ta + Tﬁia) HA(f)a Al(f)”wga (320)
Cu(HT* +T77)QG [|A, A

IN

HVV,?a

We write now
M) = MY = ([ A(DaW.. A1) = (2.2),

The same reasoning as in Step 1, see (3.19) (we also use Aj(f) = 0) gives (exercise)

1B,y < Car(DQEAU) A )|y g0 (T +T77)

< Cu(NQE A A|| i (T +T77)
so that, using (3.4)
, = =/

HM(Y,Y)—M(Y,Y) o

= [|AWNq + | B,

< Cu(NQHT +T7 ) [|A, Al 50
1

< 1Ay,

the last inequality being true if we take T" sufficientely small in order to obtain Cps(f )Q%(TO‘ +
TP~y < L.

Conclusion (Y,Y’) — M(Y,Y’) is a strict contraction on Bys(&, f(€)) so it has a unique
fixed point (one has to check that Ba/(¢, f(€)) is complete with respect to |Yo| + |Yg| +
Y, Y |li2s)- This is the solution of our equation. And in order to go in long time, we
concatenate.

Uniqueness: we leave the proof of uniqueness for later on because an a priory inequaltity is

needed: see the Theorem concernng the continuity of the Lyon’s map, in the following section.
O

3.3 Continuity with respect to the driving signal

In order to prove a continuity result we will use the stability property of the rough integral and
of the composition with regular functions. But these properties are "local" on By, (€, ¢'), and so
we need that ||Y,Y’||, < M. We do not want to ask such a restrictive condition on the solution
Y itself, but we only accept the restriciton |||[W/||, < M. So essentialy we need to prove that if
Y is the solution of a rough equation then one controls ||Y,Y"|| , by [|[|[W]|l,, = [[W],+ HV\\,’H;(/%2 :
This is the subject of the following "a priory" estimate (which represents the subtle point in

the proof).
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Theorem 3.7 Consider a a rough path W, for some 3 <« and afunctz'on fe C3(Rd RIxd),

And let (Y,Y') € D3¢ be a solution of the equation Yy = & + fo Ys)dWy. There ezists a
universal constant C such that

IVl + 1Yl + 1R [l < € 111l ITWIIG V2 (3.21)
In particular if |||[W]|, < M V1 then (Y,Y',W) € Ay (v, @) with M' = C|| f||3 M2

Proof Step 1 We stress that all along the proof we use that, because of the equation,
Y’ = f(Y). It follows that

‘th = ‘Yst_Y/Wst‘

Y)AW — f(Ye)Wer — f (Vo) f(Vs) W,y

IN

+ | (Vo) (Y)W

Notice that f'(Ys)f(Ys) = f'(Ys)Y, = (f(Ys)) so that || f(Y)']|, < Cr|Y]|, - Then the sawing

lemma gives

YV)AW — f(Yo)Wr — f'(Ye) (Vo) Wy s

< (Wl | RFO|, +Cr Wl 1Y (¢ = )%

and moreover
(Vo) f (Vo) W] S IFIT o0 IWlpq (8= 9)>
In the following we will use the notation ||[W|, , when we take differences only for ¢ — s < h.

With this notation convention we have proved that

1R N < CHUW i [RID| 4 I 1Y o) + W) (3:22)

We will now look to HRf H2 e We write
RIY) = f(V) — (Vo) = F(Y)YIWiy

I
g
&
|
=

Y,) = f(Yy)Ysy + f/(Y5)RY,

so that, using Taylor expansion

[R5 1 IV U2+ WA B
We insert this in (3.22) and we get
1B Ml < CrCW o Y gon + IR g ) + 1Wlzan 1Y o )5 + Wl )-
We take now h small such that

a 1/2 4 o
CrlIW laph® < 5, Cp W52, h* < 2. (3.23)

DN |
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With such an h the above inequality reads

1
1B s < SUYTan IR ll30,0) + 2 1W o 1Y o+ C Wl )
3 1
< SIYIaA+ 5 IR oap + (L4 CP) Wil

which finally gives
1B gy < BIY TG A+ 200+ Cp) [Wllyq (3.24)

Now, since Y ; = f(Ys)Wst+ Rg/?t, the above inequality also gives (we also use (3.24) and with
the restriction (3.23) )

A

Vllan < 1F oo W llap + [[BY [l , b

1F oo Wl s + BIYIZ 5+ 21+ Cp) [Wilgq 1) B
CHIIW g+ 1WII522) + 311V (12, 5.

= CHIWlllop+3IYI2, 00

IA

IN

Then we denote
An = 3CH |[Wllon o =3 ]|g b

and the above inequality reads
Uy < A+ 7. (3.25)

In the following step we will use the above inequality in order to find some hg such that
Vo < Chpyg-

And this gives for every h < hg
Y llan < Cr ITWHl, -

Using (3.24) we also get [|RY ||, < Cy W7 . Finally Y[l = IF(Y) o, < 1110 Y]
Cr Wil -

And we notice that for a > 1, we have [[Y][, , < a[[Y(|,/,- This allows to get [|Y|, <
C Y], and to elliminate h.

Step 2 We choose hg such that, for h < hg one has \p, < Ay, 1= % < %. Then the equation
¥ = A + 97 has two distinct solutions

a,h <

1 1

— — — >

L/J+ 2(1 1 4)\}1)_2
Yo = %(1*\/1*4>\h)§é-

Since we know that (3.25) holds true, it follows that for all h < hg one has ¢, > % or ¢y, < %.
We also know (by the very definition of 1) that ¢, | 0 as h | 0 so that for sufficiently small
h we have ¢, < %. We want to prove that this is the case for every h < hg. Notice first that

Y llan <31V lanys < 3lim 1Y [l
which gives ¢, < 3limgy, ¢¥,. And in a similar way ¢, > %limglh (U
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Take now h, = sup{h : ¢, < %} Since h — 1}, is an increasing function we havr ¢, < %

for h < hy and ¢, > % for h > h.. We also have v}, < 3limgy, 9, < 3 % % = %, so Py, < %.
Suppose now that h. < hg. Then, for every g € (hs,ho) we have ¥, > % (because we do not
have ¢, < %) and consequentely 1, > %limg Lhe Vg > % which is in contradiction with 1, < %.
We conclude that v, < & for every h < hg. Coming now back to (3.25) we get 1), < A + £y,
and then

6
Yy, < 5)\h.

O

We are now able to give the continuity result for Lyon’s map. We recall that the distance
dW,WQa is given in (2.24) and p,, is defined in (2.23). The important trick that will be used in
the proof of the theorem below is the following: if we work on (0,7") and we have o < (3 then

d Y, Y'Y, Y')<d Y,Y'Y,Y') x TP, (3.26)

I/V,W,2a( W,W,zﬁ(

The reason is that ||U||, < [|U]|4 T8,

Theorem 3.8 A Let [ € Cg) and let W and W be two B rought path. We denote by Y a
solution of the rough differential equation dY = f(Y)dW,Yy = & and Y a solution of dY =
F(Y)dW Yy = £. Suppose that

Wl + || W], < . (3.27)

Then, for every % < a < f3 there exists C depending on M, Hngoo ,a and B such that
7 20V F(Y). Y F(V)) < Clpa(W.W) €~ €] (3.28)

and N
HY—Y

< Clpa(WW) + ¢~ £)). (3.20)

B As a consequence, taking W =W and & :Z we obtain the uniqueness of the solution of the
rough differential equation.

Proof We will use the inequalities (3.14) and (2.25) which are verified if (Y,Y’, W) €
Apr(a, 8) and (Y,Y, W) € Ap(a, ). Using the a priory inequality from the previous theorem,
and the hypothesis (3.27) this is true (this is the reason of being of the a priory estimate (3.21)).

Step 1 Let Z = [ f(Y)dW and Z = [ f(Y)dW. We recall that Y’ = Z’ = f(Y) and
Y' =7 = f(f/), because of the integral and of the equation. One also has the equation
Y = ¢+ Z and similar with tilda.

Then the stablity property for the rough integral (2.25) gives, with C1(T') = Cy(T*+T°"%),

A2V FV) Y (V) = dyiian(Z2.2.2,2)) (3.30)
< )y 00 (f ) S V), FTY) 4+ pp(WW) + € = €])
< CoT) Ay 57 90 (V3 YV V) + (W, W) + \g ~&) (3.31)
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The last inequality is obtained by using the Lipschitz property of the composition with regular
functions (3.14). Taking 7" sufficiently small we have Co(T) < 3 and this yields

iy 20 Vo (V). Y, F(V)) < ps(W, W) + ‘5 — g‘

The above estimate holds for small T < T,. In order to extend it for a general T one con-
catanates T'/T, (so a constant will appear). [

4 Construction of abstract flows

We begin with some definitions and notation. We work on R? and we denote by C¥(R?) the
space of the k time differentiable functions ¢ : R* — R® which are bounded and have bounded
derivatives. For ¢ € CF(R?) we denote

k
6l =Y sup [0°¢(z)| and ¢, =8]y, + |6lls - (4.1)

i=1 ‘Oc|:i rER4

Here |0%¢(z)|* = Z?Zl ‘80‘¢i(w)‘2. Notice also that if £ = 0, this is just the uniform norm:
18lo = 19l -

We work with compositions of functions on R? and we use the (abusive) multiplicative
notation: for f: R* — R% and g : R* — R? we denote

fg=fog.

First we have to establish some formulas for the computation of the derivatives of composed
functions. Let f : RY — R% and g : RY — R be smooth functions. One may prove by recurence
that for a multi index « with |a| > 1

0*[fogl= D (0°F)9)Paply) (4.2)

1<18(< o
with

k
Pap(9) =Y cap((v1,30) (v ) [ [ 079" (4.3)

i=1
with the sum over k = 1, ..., |, j1, ..., Jk € {1,...,d} and ~; multi-indexes with 1 < |vy;| < |a].
And ¢ 5((71, 1) (Vg Jk)) are some universal coefficients (the precise expression is not of
interest in these notes). In particular we have, for some universal constant C(k)

f9ls < CR)If L9l - (4.4)

One also has |pf — @ f|, < |¢ — @]y and, for a multi-index o with || =k > 1,

0%(pf) — 0@ < Clo — Bl I £

So
lof —@flx < Cle -2, (1 + ‘fﬁk)
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Using Taylor expansion of order one

1
of <pf=/0 (VoM + (1= NF). f— F)d

which gives
— — k —
of = oFl, < Clel g A+ IF+ [Tl 1 = Tl

Combining these we get

_7 k =k _ -
lof =2fl, < COU+Ifl g+ [FIL) (e = Bl + @l gy | £ = F, ) (4.5)
and by iterating this inequality

[ofv —2fd|, < C'(k) x Cu(f, ¥, f,¥) (4.6)

(J¢ — ¢|k + ‘90’1,k+1 ‘f - ﬂk + |<P|1,k+1 |f|1,k+1 W’ - mk) (4.7
with C’(k) a universal constant depending on k and
- — -2k 2 —2k?
Cr( oo, 1, 0) = L+ [F1T5 + [Tl + 1010 + (8]0 (4.8)

We consider now a function X : [0, 7]? — CF(R?) and for o > 0 we define the Holder type
norms by

|Xs,t

X = sup
| |k,0< s<t |t — s

k. (4.9)

|O[
In the following we will also use the following localized variant: we fix ¢, € (0, co] and we define

|Xs,t|k

= sup o

s<t<ste. [t —S

(4.10)

‘X|5*,k,a

This means that we take into acount only ¢, s such that |t —s| < e,. For e, = oo we have
X = [Xlga-

Definition 4.1 We say that an application X : [0,T]*> — CF¥(R?) is a (k,a)— flow if 1 X o <
oo and, for every s < u < t, we have

Ex, k0

Xu,th,u = Xs,t' (411)

Here and in the sequel X, ;X ,, denotes the composition: Xy, ; X, = Xy 0 X, (we travel
from s to u and then from u to ¢). The basic example is given by the flow associated to a
rough differential equation (in short RDFE), or the stochastic flow associated to a stochastic
differential equation (in short SDE). But for the moment we keep in an abstract, deterministic
framwork.

Our aim is to approximate X ; by using an application © : [0, 7]> — CF(R?) which does not
verify the flow condition (4.11) but only an "approximative" flow condition. Let us introduce
some notation. We fix s < t and we consider a grid P = P(s,t) = {s =59 < ... < 8, = t}. We
may also think to P as being a partition of [s,t]. We denote |P| = max;—1,__m—1(Si+1 — si) the
mesh of P.

32



Moreover we construct the "Euler scheme" associated to P

J
X2,©) 1 =]]Osirs =Os; 1500044 and (4.12)
=1
XT©) = XI, () =]]Os 1 =Osp1 00O, (4.13)
=1

Let P = {0 =s9 < ... < sy, = T} be a partition of (0,7"). We consider 0 < s <t < T and we
suppose that s;, < s < sjo41 and s;, <t < sj,4+1. Then we denote by P(s,t) the trace of P on
(s,t) more precisely P(s,t) = {s < sijy+1 < ... < sj, < t}. So we take the points of P which are
in (s,t) and we add as initial point s and as final point ¢t. So s = s;, and ¢t = sj,41.

We denote np(s,t) = jo—ip, this is the number of the points of P which fall in the interval
(s,t). And we also define

Jo+1
th(@) = Xzs(]s(;?l (©) = H Osi_1,s = @sj-o RASRETPRS 6873i0+1‘ (4.14)
1=10+1
We also define
Ls,t(x) = ®s,t(m) -z (415)

and we use L in order to give an alternative expression of XZ?S], (©):

J
XTI, ©) (@) =a+ ) L 5(XD,, (0)(2)).

=1

We give now our assumptions on ©. First we assume that O ,(z) = = and for some a > 0,

‘stth k+1
|L]} pi1.0 = SUP =5~ < 00. (4.16)
’ ’ s<t |t - 5|
Moreover, for s < u < t, we denote
5®s,u,t = es,t - Gu,tgs,u (417)

which quantifies the "error" with respect to the flow property (4.11) for ©. And for 5 > 1, we
assume that

|6@sut|k
00 = sup ——+ < 4.18
1581 1= sup 0 (4.18)
If we take SUp <, We denote |60, ;. 5. Finally we define
1O1lk.0,8 = L1 gr1,0 T 10Ok 5 (4.19)

Definition 4.2 We denote by C,‘:’ﬁ([O,T]) the space of the applications © : [0,T]? — CF(RY),
with ©4(x) = x which verify (4.16) and (4.18) so that O], 5 < 0. And an element of
C?’B([O,T]) will be called a (k,a, B)— semi flow.
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Lemma 4.3 Let © € Cg"ﬁ([O,T]) for some k € N and let
Cu(k) = max{3°C(k), 2°71¢(B) 60y, 5, 105 TFC (k) |L]y 11 0} (4.20)
where C(k) (respectively C'(k)) is the universal constant in (4.4) (respectively in (4.6)). And
CB)=>7, i78. Take also some 1 < B' < 8 and take e, > 0 which satisfies
Cu(k) x 2NN (4.21)
We fir s <t <T witht— s < . Then, for every partition P of (s,t) we obtain
| XT1(8) — O, < Cr(®)(t - 5)” (4.22)
with
Cr(©) = 27H1¢(8) 1965 - (4.23)

Finally, for every s <t <T such that t — s < e, and every partition P we have
|X§t(®)\1’k < 3. (4.24)

Proof. To begin we notice that (4.24) is an immediate consequence of (4.22). Indeed, by
our choice of e, we have

1X7,(8) — 0.4, < Ch(O)(t—5)7 <1
and moreover since t — s < &,
Oy S L4 Loty g, ST+ I[Lfy gyg0(E—8)" < 2.

which gives (4.24) .

We prove (4.22) by recurence on r = np(s,t), the number of points of P which fall inside
the interval (s,¢). For 7 = 1 and P(s,t) = {s < s1 < t} we have X7, = O,,,0,, so that
Ot — Xft = 0O, — O, 10,5, and then

|05 — ngt\k < (100, 5 (t — s)P. (4.25)

Suppose now that (4.22) (and consequetely (4.24)) is true for partitions of length np(s,t) less
or equal to r — 1 and let us prove it for a partition of length np(s,t) = r.

Step 1. We fix P = {s = s9p < $1 < ... < s, = t} and we consider some other partition
P ={s=s0<5) <..<sl, =t} CP (the partition P’ is a sub partition of P and such sub
partitions appear when we use "the sewing argument" in the Step 2 of the proof). Then we
define Y; = ng;(@),i =1,...,7" (so, this is the Euler scheme associated to the partition P but

which is considered just in the points s} of the partition P’). Then we define

7
Y2 (@) =a+ Y Ly (V@) i=1,..r"
j=1

Notice that Yszl, # Xf;,(@) beacause Y;_1 # st,, (0). We fix now ig € {1,...,7'} and we
39 35, |
denote by P;  the partition P’ in which we have cancelled ig. Then

' P!
YZ;‘, —Y,,° =Ly sgo (Y;O—l) + Ly o

st fo—10 " Z.0+1(Y; ) - (Y;O_l) =A+B

/ /
Sig—15ig+1
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with

A = Ly o Yie—1)+ Ly o (O o Yi—1)) =Ly s (Y1),
B = Lsgo’sgo-‘rl (Y;O) - Lsgo’séoﬁ‘l (@sgo_l,sgo (Y;O—l))'

We estimate first A. We have

Yipor + Ly o (Yio—1) + Ly (O o (Yig-1))

= Oy 520 (Y;O*]-) + Ls,’io,sgoH(@s,’io,l,s;O (Yi()*l)) = Oy

s . O sh
ig—1’ ig’ ig+1 ig—1°%ig

(YViO*l)

and Yig—1 + Lsgo,l,sgoﬂ (}/;0*1) = es,’io,l,s,’ioJrl (YiO*l) so that
A= (GSQO,SQOJA 9520717520 - @52071,s£0+1)(n071)) = 5820*1’820’820+1 (6)(}/1'0*1))'

Notice that np(s,s; ;) < np(s,t)—1 < r—1, so we may use the reccurence hypothesis. Recall

that Y;,—1 = X 7)8, and notice that 320_1 — s <t—s < 4. Then by our reccurence hypothesis
ig—1

and (4.24) we get |Yj,—1]; , < 3. Using (4.4) with f =6y (©) and g =Y;,—1 (C(k) is

) 20

the constant in that inequality)

/! /
—1:%55g+1

[Ale < 116815 (siyr1 — ig—1) O k) [Yig-11 4

< 3FC(k) 10Oy, 5 (Sig+1 — So-1)"
< 3O(k)(si41 — sip—1)" 7 x 10O1l). 5 (g1 — Sio-1)”
< 11601l (1 = 57p-1)"

the last inequality being a consequence of (4.21) because 38C/(k)e? "< 1. Also

5y

ig—1’

4l < |

oty O] S 19015 (51 = sl 1)

so finally
Al <2 ”5@”k,ﬁ (5;‘0+1 - 3;0_1)5

We treat now B. Notice that

P(s 1,85 )
Yip =Xy 7y " (Yig-1)
ig—1'"ig

!/ !/

where 7/3(8,2-071,8;0) /is the/ trace Of/ the partition P on (Si()*l,’sio) that is: if 5;'071/ =5 and
sy = si,, then P(s] 1,5 ) = {sj,_1 = 85 < ... < s = s;,}. Notice that np(s] _;,s;,) <

np(s,t) — 1 <r —1 so we are able to use the recurence hypothesis.
Then we write

P(sh ,s%
B=1Ly o (X, "0y, ) - Ly

. .8 st
igig+1 Y S50 1,5, ig”ip+1

(@5;0_1,520 (Y%o—l))‘

P(si _1:85) —= b
We will use (4.6) with g =5 =Ly o f=X, 02" F_0,  andp=1p="Y, 1
i075ig+1 sio—l’sio ig—1""ig
This gives _ _ -
Bl = |efg —efgl, < Ckl(f, F,0) el pp |F = i
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with
_ _ ) )
Cﬂﬁf#OZC%XL+Uhk+Uh£+kaW+k§0%)xwk“
with C(k) the universal constant from (4.6). The last inequality is a consequence of the

reccurence hypothesis (4.24) (which we may use).
Morover, by our hypothesis (4.16)

< |L|1,k+1,a (5§0+1 - Sgo)a-

= L/ /
[l ‘ Sig¥ig+1 |1 gt 1

And, by the reccurence hypothesis, }f - ﬂk < Cr(O) (55,41 — 5 )5,. So finally we obtain

20

!

2
|Bil, < C'(k) x 108+ |L’1,k+1,a Cr(©) x (3£0+1 - Séo)a X (3;0+1 - 320)5
2 !
= CO'(k) x 108+ |L’1,k+1,a zﬂHC(/@)&?f X Hé@\lk,g (3§0+1 - 820)6
< 1168y, (i1 — 5%)°

We come back and we get

/

!

P’ Pig
}/8715 - )/s,t i0—1

<3001l 5 (sig+1 — 5 i (4.26)
k

Step 2 (the sewing argument). We come back to our partition P = {s = sg < ... <
s, =t} and we take ig such that

(t—s).

Sig+1 — Sig—1 < —
Such an ¢ always exists (if we have the converse inequality for every iy € {1,...,r — 1} then
2t—s) > Y1 (siv1—si_1) > 2(t—s)). We denote by P;, the partition where we have dropped
out s;, and we use (4.26) in order to get

g 2
i < 3160llx g (Sig+1 — 8ip—1)" < 17

/

P Pig
Ys,t - Ys,t

1681y, (t = 5)°

We repeat this argument for P’ = P;, (notice that we still have (4.26)) and so on (in order to
exhaust P) we obtain

VT = 044, < 2742(B) 10Ol 5 (2 — 5)*

with {(8) = >, %ﬁ‘ O
We need to generalize (4.24) to any 0 < s < t < T. We define

m03=1+TXKMMMhHMJWﬁWW'mM Cu(T) = (3C (k))F* . (4.27)

Corollary 4.4 We are under the assumptions of the previous Lemma. Then for every partition
P of [0,T] and every 0 < s <t <T

X2,(©)],, < Cu(D). (4.28)
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Proof Let e, = (Cy(k) \L|17k+17a)_m. Then (4.24) holds if t—s < e,.. So we split the
interval [0,7] in T'/e, intervals and use (4.24) on each of these sub intervals. Using recursively
(4.4) we get (4.24). O

We are now able to give our main result: this is the so called "sewing lemma" (introduced
simultaneously by Gubinelli and by De la Pradelle and Fayel) adapted to our framework.

Lemma 4.5 A (Existence and unicity) Let k € N and e, be given in (4.21). Let © €
C,?fl([O,T]) with 3 > 1. Then for every 1 < 8/ < j there exists a unique X : [0,T)? — CF(R?)
which has the flow propery (4.11), and such that for every 0 < s <t <T witht— s < &,

051 — Xstl, < Croa(T)C(O) |t — s (4.29)

with Ciy1(T) given in (4.27) Uniqueness holds in the following sense: if X and X are two
flows such that [© — X|__; & < oo and o — Y‘a*,k,ﬁ' < 00, then X = X. We denote by X;+(0O)
the unique flow which verifies (4.29).

B (approzimation) We have the following error estimate. For every 1 < 8’ < 3, every
partition with |P| < e, and every s < t, with s,t € P

|X7,(0) = X,1(0)], <2772 (T)C(B) 1Ol 0 P17 (= 5)- (4.30)

Remark 4.6 Notice that in order to obtain the estimate (4.29) in norm |o|, we need that
[Ol511.0.5 < 00, instead of the hypothesis O, , 5 < o0 in the previous lemma. This is because
we need to obtain

1X7(©)], 1 < Cran(T) (4.31)

in (4.24), and this is crucial in the proof of the lipschizianity of X¥(0©) (which represents a
magjor difficulty in the proof). This shows that the calculus which is behind, essentially involves
derivatives, and this is a strong reason of working with norms of type |o|,, which do control
derivatives.

Remark 4.7 The basic existence and uniqueness result coresponds to k = 0, so we need that

© € C([0,T)). And this implies that O, € C2(RY).

Remark 4.8 The estimate (4.30) is written for s,t € P, because, if they do not belong to P,
the Euler scheme XZ?t(G) is not defined. But we may define in a natural way an extension of
Xft(@) to every s < t. This is done as follows: we denote by P(sy) the partition P to which

we have added the times s and t. Then we defin )N(Z?t((%) = X:,Es’t)(@). With this definition
(4.30) holds for )?ft((a) In particular, since t — s < |P|, for every 1 < B’ < B one has
PPt —s) < [PI°7 (t — s)F so that (4.50) gives an estimate of the 8 Holder norm:

2(14-k+k? -8
g OIS AP PPt (4.32)

X7 (©) - X(0) by SClI86
Remark 4.9 In the following section we will consider RDE (rough differential equations). In
this framework we prove that Xs+(0) is a solution of a rough differential equation associated to
O iff (4.29) holds. Such a characterization coincides with Devie’s deffinition for the solution
of RDE's. So our approach appears as an abstract varient of Devie’s approach at the level of

flows.
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Proof. We want to define
X, = lim X7,(©).
Szt |P|—>0 Sﬂf( )
In the above limit P is a partition of (s,¢). In order to do it we have to check that the above
limit exists, so we prove that, for any two partitions P and P then

lim | XT,(0) - X2,(©)] =o.

"P‘\/‘f‘—»ﬂ ’ ‘k

We may assume (without loss of generality) that |P| < e,/2 and |P| < €,/2. We also assume
that P is a refinement of P so we write P = {s =59 < ... < s, =t} and P = U]_,;P"(si_1, S;)
for some sub-partitions P! = P(s;_1,8;) = {si-1 =) < ... < s;" = s;}. Moreover we denote

fl = U,lizlpi(Si_178i) U {Sl < .. < 8 = t}.

So P, is the partiton in which we refine the intervals (s;_1,s;),4 = 1,...,1 according to P but
we keep the intervals (s;_1,$;),i =1+ 1,...,r as they are in P. Finally we write

— r ﬁ T
xL(©) - xL(©)] <Y |xle) - xTie)| .
=0

We compute

P l
X, 71(0) = XTH©) = o XTI, (O — 00511

st S1,51+1

with ¢, = XZLM, Y, = XT,. We will use (4.6) so we will need

l
(il + Wl + [ X200 1 (0)] 418l < 4Gk (T)

1,k+1

whith Cj11(T") defined in (4.27) (Here comes on the fact that we need k+ 1 derivatives). Then
by (4.6) first and (4.22) next (notice that s;+1 — si—1 < 2|P| < &)

Pria 7 z
X7 ©) = xDHO)| < 4Ck(D)|XT,(0) = Ou |,
< 290G (T)C(B) 11Ol js1 0 (S141 — s1)”

We conclude that

295 Cr 1 (T)¢(B) 1Ollk+1.0,8 X Z |S141 — Sl|’8
1=0

25 Ch 1 (T)C(B) 1Ol psr.05 % P17 (E—5) — 0.

IN

xZ,0) - xT0)|,

IA

So limyp|_g X7;(0) =: X, exists in CF(R?) and X, € CF(R?) is well defined. And passing
to the limit in the above estimate (with |P| — 0) we obtain (4.30).

Step 3. The fact that X,; = X, ,X,; is true because the concatenation of a partition
of (s,u) with a partition of (u,t) gives a partition of (s,t). Finally, by passing to the limit in
(4.22) we obtain (4.29).

Uniquness is obvious. [
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5 Rough path

In this section we will deal with semi flows associated to a rough path. Before we come back
and give some definitions and notation. For F : [0,T] x R? — R which is k time differentiable
with respect to x we define the norm (the same as in (4.9))

[E'(t, ) = F(s,0)]
(£ —s)"
and, if we consider just s < ¢ < s+¢ then we denote |F|[_, ,. We also denote C&) the space of

the applications F : [0,T] x R? — R? such that |F|, , < cc.
In the case where F' does not depend on the spacé variable x, more precisely F': [0,7] — R,
we denote just C¢ and
[F'(t) = F(s)]

(t—s)*

|[Fly, 0 = sup
s<t

|Fl, = sup
s<t

the usual Holder norm.
We recall now the definition of a "rough path". Given a € (%, 3) we define a o rough
path to be a couple W = (W, W) with W : R, — R% and W : Ri — R4 such that

| st|

|Wit
Wi, = sup o s <o and  |[W|,, = sup
lt—s|>0 [t — 5[* lt—s|>0 |t — s[>

and for which "Chen relations" hold true:

Ws,t = Wsu+Wut
Wi = W+ Wi+ Wi W,

We will consider the "norm"
W, = W], + [[W]ly, .

We define now the "controlled path". This is analogous with the previous definition but
now we have function valued processes. We denote I' = {1,...,d}. We say that F : [0,T] —

CF(R?, R?) is controlled by W if there exist v; € C&),j €T and RF € C(Qlf‘) such that

F(tI Z’}/]Sl‘ st+R ()
jer

We denote D{;VF = 7, the "Gubinelli derivative". This is not unique, so the notation is abusive
- we will precise in each case which is our choice. Following [FH] we denote Dy yy the space
of the couples Y, Y” such that Y € C(k) is controlled by Y’ (so Y’ = DY). In the case of "real

rough path" we have uniquenees of Y/ =: Dy/Y. And the above relation reads

Y(tx) - =Y D} Y(s,a)W], + R}, ().
jel

Moreover, we will use the following computational rule. Consider F,G € Cf}, which are con-
trolled by W and suppose that one may find some version of Gubinelli derivative Dy F which
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is Lipschitz continuous with respect to € R™, uniformly in ¢ € [0,7]. Then F(t,G(t,x)) is
controlled by W and , for every version Dy G, one has

D{,F(t,G(t,x)) = (D}, F)(t,G(t,2)) + Y _(F)(t, G(t, x)) D} G*(¢t, ).
k=1

The proof is straightforward and we skip it.
We define now O (0, W)(z) = + Ly (o, W)(z) with

3.3
L (o, W)( g oj(s,x) st+ g (8, )Wy .
jer j,j'el

Here 0 € D(O‘k+3)7w and

d
5! Vi . Vi k
ojj = Dyoj+D)o; with D)oj= E 05100, 0;.
k=1

We recall that in the previous section we have defined 6(©) (see (4.17)), [|0(O)]|, 5 (see (4.18))
and |[©,., 5 (see (4.19)). Concerning these quantities we will need some bound and stability
estimates. In order to give these estimates we have to precise the following notation:

O'j(tyil?) ZDWJJ S, :L‘ — Ré’t(iﬁ)
j'er
0jg(t.2) —oj(s,2) = rif (o)

and rid’ € C

and we konw that R/ € C2* (kt1)°

(k+1) _
Now we are able to give our estimates:

Lemma 5.1 let W be « rough path. We consider some coefficients o which are controlled by
W and such that |o|, o < co. Then

1800, Wll.a,30 = L0 W1 k11 0 1 16O (0, W)l 50 < 00 (5.1)
Proof We denote 0;4(z) = 0;(s,z). We compute first

) J o . J_ . J
E:(UJ,sWs,t 0175Ws,u O-JMWu,t)

jer
g
— J
= — E Oju—0j.5)W, E DWUgsWsj,qu + 01(s,u,t)
jer 7,5'€er

with ‘
(s,u,t) ZR Moy =0(t - 5)3
jerl’

Moreover, let

02(s,u,t) = Z (0jjtu—Ojjls W{ft = Z rid W’]’J = O(t — 5)3*.
J,j'er J,j'er
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We have (Chen relations)

7,5 5,3
.. K _— .. 2
E : (ULJ’,sWs,t 03,4, SW 055" uWoy

47.74/6]-_‘

_ 3.3 3.3 _ g’

= o09(s,u,t)+ E 0ji.s( W — Wi, Wu,t)
J,J'er

= (s,u,t) g T, SW WJ
j,3'el

— W J o i

= (s,u,t) E DWUJS Wi+ g Dj o s Wi Wit
J.j'er J.j'er

We conclude that
Ls,t - Ls,u - Lu,t

. .
— W . 3,J
= E :0]75W8,t+ E , 0555 Wit

jer jj'er
JJ
E 0 Wi, + g 0ji s Wy,
jerl 3,3'er
) J . 353"
_(E UJ,uWu,t+ § : U]»J',Uwu,t)
jer j.j'el
= N R W+ N Wi+ N (DY o) WL W
it J s,u Y ut
jer j,3'el J,3'el
. o
— J 3a
= E Dl oj Wi Wi+ O(t—s)
J.j'er

Write now (VL ¢(x), Lsu(x)) in an explicite way. We emphsise the "main terms" and we
get
(VLus(w), Lou(@)) = as(s,u,t) + D (DFoy), Wi, Wi,
J.j'er
with
as(s,u,t) = Z Z Oju0pp.s( th’p/—FW] Wp’p)
jel pp’'el

+ Z Z 05,5 u9pyp', SWM Wut)

J,j'€l p,p’el’

+ Y (050 Thu = 04s) Wi W, = Ot = s)™
J.j'er

We conclude that
Ls,t - Ls,u - Lu,t = <vLu,t7 Ls,u> + O(t - 5)3a

This finally gives

(%) = (Lut(@ + Lsu(x)) — Ly(z))
= <VLu,t(33)a Ls,u(x» - (Lu,t(x + LS,U("E)) - LU,t(x)) +O(t - 5)3a'
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Then, using Taylor expansion we upper bound the above term by
IV Ltll oo 11V Lis |2, = O = 5)°.

O
The above estimates show that O(o, W) is a («, 8) semi-flow, with 5 = 3a. Then we may
use the sewing lemma 4.5 and obtain:

Lemma 5.2 (Existence and uniqueness) Suppose that o; € C&Jrg). For every 1 < 8/ <

B = 3a there exists a unique X : [0,T])? — C’{f(Rd) which has the flow propery and such that
forevery 0 < s <t <T witht — s < &,

15.4(0, W) = Xy 4], < Crora(T)Cr(O) [t — 5|” (5.2)

with Cyy1(T) a suitable constant. Uniqueness holds in the following sense: if X and X are
two flows which verifie (5.2) then X = X. We denote by X;+(0) the unique flow which verifies

(5.2).
Remark 5.3 Let X;(z) = Xo4(x). We have Di, X,(x) = oj(X4(x)).
Proof. Using(5.2)

Xi(z) = Xs(z) = Xsp(Xs(2)) — Xé(w) = 0,4(Xs(x)) — Xs(@) + ot — 5)”
= > o (Xo(2)WL, +o(t — 5)*.
jer

O

5.1 Rough integrals and rough differential equations

Our aim now is to define the rough integral with respect to W and then to construct solutions
of rough differential equations.

To begin we precise the definition of the rough integral. We consider Y; : [0,T] — R jel
(it plays the role of ¢ from the previous section, but it does not depend on x). We may consider
Y;(s) as a function on R? which is constant with respect to z € R? and to try to use the results
from the previous section. First we assume that Y is o Holder in the usual sense. This will
give that Y is also a Holder in |o|, for every k. We also suppose that Y is derivable in Gubinelli
sense, with derivative DY. We fix (Y}, DY;) € Dy, € I' and we define

Y j i’ g’ Y Y
Ls,t = Z ij,sWit + Z D{/K/ij'7swéi€ and ®s,t(x) =T+ Ls,t'
jer j,j'el’

Since Y does not depend on xz, we have DyY = 0 so we have D{,[,/Yj s = 0} j s from the previous
section. Consequentely ©Y is a (o, 3a) — semi — flow and we may use Lemma 5.2 from the
previous section in order to associate a flow X ,(0Y).

Definition 5.4 We define the rough integral

I, = /t (Y, dW,) := Xs4(0Y)(z) — =. (5.3)
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Remark 5.5 By the very construction of X, (0¥ )(x) we get

t -/ Y
/ (¥, dW,) = lim S O Wi, + > DI Y; Wi, (5.4)

(u,v)eP jer j,j'er

So we find out the definition of the rough integral in the usual rough calculus.
Remark 5.6 We stress that the above integral depends on the Goubinelli derivative DyY.

Remark 5.7 The flow property for Xs:(©Y) reads IZt = Igfu + I};t. So we come back to the
"classical” framework.

Remark 5.8 IY is characterized by

1Y, — Yy, Wayz) — (D Vs, W) (5.5)
= X(0V)(z) — O} (x) = oft — 5)*".

In particular this means that ‘
DY =Y;(t). (5.6)

We discuss now the rough differential equations. We give now some coefficients o : [0,T] —
C’g’(Rd), J € I such that o; € Dy, 5y, with a > % and we consider the rough differential
equation

dX = (o(X),dW) .

This equation may be undersood in two different senses. First we may consider the semi
flow O5; = O4+(0, W) and use the result from the previous section (Lemma 5.2) in order to
construct the flow X,; = X, (0(c, W)). This coincides with Devie’s definition of the solution
of the rough equation above. So we call it a D flow solution. Secondly we may consider the
"classical" rough equation based on the definition of the rough integral. We call the solution of
this equation a R flow solution. We will check that the two definitions coincide. More precisely

Definition 5.9 Let X : [0,T]?> x R? — RY belong to C*. We say that X is a R flow solution
of the rough differential equation dX = (0(X),dW) if Xy = X, 1 X, for every s <u <t (it
is a flow), X4 : R* — RY is a bijection and Xst(x) satisfis

Xoi(2) =3+ / (0(Xop(z)), dW,) (5.7)

with the rough integral associated, for each fixed s > 0 and x € R%, to

ij;*x =0j(Xsp(z)) and D{/[/Y;;fm = Dg’o’j(Xs,r(x»' (5.8)

Notice that if X solves tha above equation then D{/;,Xglt(w) = U;:, (Xst(x)). This is why we

get DIy Y;)" = DY oj(Xor(2)).
In order to construct a solution of the above equation we consider the semi — flow

Ou(w) = Oui(0, W)(2) =z + Y 0y (@)W, + > Djoj(a)Wii.
jer j.j'€r
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Theorem 5.10 Suppose that o; € C$,j € I' and that W = (W, W) is a rough path. Then
X;+(0(c, W)) (constructed in the previous section, Lemma 5.2) is the unique R flow solution
of the equation (5.7).

Proof. We briefy denote © = ©(0, W) and we consider the D flow solution X,(©)
produced by Lemma 5.2. We first prove that X;.(©) solves (5.7) We fix zp € R? and Y;(r) =

YjO’T’O (r) = 0(Xo0.,(©)(xg)) We have already checked that D{/;,Xit(@) = 0’;, (X5+(0)). Then

DIY,(r) = (D) (r, Xo,(0) a0)
so that

L}s/,t = ZYJ'(S)Wsj,t"‘ Z D‘I]/VY](S)W‘;%

jer jjer
= > 0i(Xos(©) (@)W, + > (DI 0,)(Xo,4(0)(w0)) W
jer jj'er

= 0,:(X0,5(0)(20)) — Xo0,5(0)(w0) = Ls+(X0,s(0)(0))
Recall first that I is charachterized by
| -1V —LY,| <C(t—s)* (5.9)
and X ;(0©) verifies
Sup [ X:4(0)(z) — 2 — Ls4(0)(z)| < C(t — 5)*
Notice that
Lyy = Ls2(0)(Xo,s(20))-

In particular, taking = X s(xo) (here comes on the fact that x — X s(xo) is a bijection)
the above inequaltity gives

| X5,t(0)(Xo,s(0)) — Xo,s(z0) — Lt (0)(Xo,s(20))]
= ‘XS,t(G)(XO s(z0)) — Xo,s(z0) — th’ <C(t— s)3a

)

and this guarantess that

I = 1Y = X,1(0)(Xo,s(z0)) — Xo,s(z0)

s

which, if s = 0 reads
I = X0,4(0)(x0) — mo

and this is equation (5.7).0
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