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Glossary15

R denotes the real line, Rn the n-dimensional Euclidean16

space, x � y stands for the Euclidean scalar product of17

x; y 2 Rn , and jxj for the norm of x.18

State variables quantities describing the state of a system;19

in this note they will be denoted by u; in the present20

setting, u will be either a function defined on a subset21

of R � Rn , or a function of time taking its values in an22

Hilbert space H.23

Space domain the subset of Rn on which state variables24

are defined.25

Partial differential equation a differential equation con-26

taining the unknown function as well as its partial27

derivatives.28

State equation a differential equation describing the evo-29

lution of the system of interest.30

Control function an external action on the state equa-31

tion aimed at achieving a specific purpose; in this note,32

control functions they will be denoted by f ; f will be33

used to denote either a function defined on a subset of34

R � Rn , or a function of time taking its values in an35

Hilbert space F. If the state equation is a partial dif-36

ferential equation of evolution, then a control function37

can be:38

1. distributed if it acts on the whole space domain;39

2. locally distributed if it acts on a subset of the space40

domain;41

3. boundary if it acts on the boundary of the space do-42

main;43

4. optimal if it minimizes (together with the corre- 44

sponding trajectory) a given cost; 45

5. feedback if it depends, in turn, on the state of the 46

system. 47

Trajectory the solution of the state equation uf that cor- 48

responds to a given control function f . 49

Distributed parameter system a system modeled by an 50

evolution equation on an infinite dimensional space, 51

such as a partial differential equation or a partial in- 52

tegro-differential equation, or a delay equation; un- 53

like systems described by finitely many state vari- 54

ables, such as the onesmodeled by ordinary differential 55

equations, the information concerning these systems is 56

“distributed” among infinitely many parameters. 57

1A denotes the characteristic function of a set A � Rn , 58

that is, 59

1A(x) D
(
1 x 2 A
0 x 2 Rn n A

60

@t ; @xi denote partial derivatives with respect to t and xi, 61

respectively. 62

L2(˝) denotes the Lebesgue space of all real-valued square 63

integrable functions, where functions that differ on 64

sets of zero Lebesgue measure are identified. 65

H1
0(˝) denotes the Sobolev space of all real-valued func- 66

tions which are square integrable together with their 67

first order partial derivatives in the sense of distribu- 68

tions in ˝ , and vanish on the boundary of ˝ ; simi- 69

larly H2(˝) denotes the space of all functions which 70

are square integrable together with their second order 71

partial derivatives. 72

H�1(˝) denotes the dual of H1
0(˝). 73

H n�1 denotes the (n � 1)-dimensional Hausdorff mea- 74

sure. 75

H denotes a normed spaces over R with norm k � k, as 76

well as an Hilbert space with the scalar product h�; �i 77

and norm k � k. 78

L2(0; T ;H) is the space of all square integrable func- 79

tions f : [0; T] ! H; C([0; T];H) (continuous func- 80

tions) and H1(0; T ;H) (Sobolev functions) are simi- 81

larly defined . 82

Given Hilbert spaces F and H, L(F;H) denotes the (Ba- 83

nach) space of all bounded linear operators� : F ! H 84

with norm k�k D supkxkD1 k�xk (when F D H, we 85

use the abbreviated notation L(H)); �� : H ! F de- 86

notes the adjoint of � given by h��u; �i D hu; ��i 87

for all u 2 H, � 2 F. 88
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2 Control of Partial Differential Equations

Definition of the Subject89

Control theory (abbreviated, CT) is concerned with sev-90

eral ways of influencing the evolution of a given system by91

an external action. As such, it originated in the nineteenth92

century, when people started to use mathematics to ana-93

lyze the perfomance of mechanical systems, even though94

its roots can be traced back to the calculus of variation,95

a discipline that is certainly much older. Since the second96

half of the twentieth century its study was pursued inten-97

sively to address problems in aerospace engineering, and98

then economics and life sciences. At the beginning, CTwas99

applied to systems modeled by ordinary differential equa-100

tions (abbreviated, ODE). It was a couple of decades after101

the birth of CT—in the late sixties, early seventies—that102

the first attempts to control models described by a partial103

differential equation (abbreviated, PDE) were made. The104

need for such a passage was unquestionable: too many in-105

teresting applications, from diffusion phenomena to elas-106

ticity models, from fluid dynamics to traffic flows on net-107

works and systems biology, can be modeled by a PDE.108

Because of its peculiar nature, control of PDE’s is109

a rather deep and technical subject: it requires a good110

knowledge of PDE theory, a field of enormous interest in111

its own right, as well as familiarity with the basic aspects of112

CT for ODE’s. On the other hand, the effort put into this113

research direction has been really intensive. Mathemati-114

cians and engineers have worked together in the construc-115

tion of this theory: the results—from the stabilization of116

flexible structures to the control of turbulent flows—have117

been absolutely spectacular.118

Among those who developed this subject are A. V. Bal-119

akrishnan, H. Fattorini, J. L. Lions, and D. L. Russell, but120

many more have given fundamental contributions.121

Introduction122

The basic examples of controlled partial differential equa-123

tions are essentially two: the heat equation and the and the124

wave equation. In a bounded open domain ˝ � Rn with125

sufficiently smooth boundary � the heat equation126

@tu D �u C f in QT
:D (0; T) �˝ (1)127

describes the evolution in time of the temperature u(t; x)128

at any point x of the body˝ . The term�u D @2x1uC� � �C129

@2xn u, called the Laplacian of u, accounts for heat diffusion130

in˝ , whereas the additive term f represents a heat source.131

In order to solve the above equation uniquely one needs to132

add further data, such as the initial distribution u0 and the133

temperature of the boundary surface � of˝ . The fact that,134

for any given data u0 2 L2(˝) and f 2 L2(QT ) Eq. (1) ad-135

mits a unique weak solution uf satisfying the boundary136

condition 137

u D 0 on ˙T
:D (0; T) � � (2) 138

and the initial condition 139

u(0; x) D u0(x) 8x D (x1; : : : ; xn) 2 ˝ (3) 140

is well-known. So is the maximal regularity result ensuring 141

that 142

143

u f 2 H1 �0; T ; L2(˝)
� \ C

�
[0; T];H1

0(˝)
�

144

\ L2
�
0; T ;H2(˝)

�
(4) 145

146

whenever u0 2 H1
0(˝). If problem (1)–(3) possesses 147

a unique solution which depends continuously on data, 148

then we say that the problem is well-posed. 149

Similarly, the wave equation 150

@2t u D �u C f in QT (5) 151

describes the vibration of an elastic membrane (when 152

n D 2) subject to a force f . Here, u(t; x) denotes the dis- 153

placement of the membrane at time t in x. The initial con- 154

dition now concerns both initial displacement and veloc- 155

ity: 156

8x 2 ˝
(
u(0; x) D u0(x)
@tu(0; x) D u1(x) :

(6) 157

It is useful to treat the above problems as a first order evo- 158

lution equation in a Hilbert space H 159

u0(t) D Au(t) C B f (t) t 2 (0; T) ; (7) 160

where f (t) takes its valued in another Hilbert space F, and 161

B 2 L(F;H). In this abstract set-up, the fact that (7) is re- 162

lated to a PDE translates into that the closed linear op- 163

erator A is not defined on the whole space but only on 164

a (dense) subspace D(A) � H, called the domain of A; 165

such a property is often referred to as the unboundedness 166

of A. 167

For instance, in the case of the heat equation (1), 168

H D L2(˝) D F , and A is defined as 169(
D(A) D H2(˝) \ H1

0(˝)
Au D �u ; 8u 2 D(A) ;

(8) 170

whereas B D I. 171

As for the wave equation, since it is a second order dif- 172

ferential equation with respect to t, the Hilbert space H 173

should be given by the product H1
0(˝) � L2(˝). Then, 174

problem (5) is turned into the first order equation 175

U 0(t) D AU(t) C B f (t) t 2 (0; T) ; 176
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Control of Partial Differential Equations 3

where177

U D
�

u
v

�
; B D

�
0
I

�
; F D L2(˝) :178

Accordingly,A : D(A) � H ! H is given by179 8̂̂
<
ˆ̂:
D(A) D �

H2(˝) \ H1
0(˝)

� � H1
0(˝)

AU D
 

0 I
A 0

!
U D

 
v
Au

!
8U 2 D(A) ;

180

where A is taken as in (8).181

Another advantage of the abstract formulation (7) is182

the possibility of considering locally distributed or bound-183

ary source terms. For instance, one can reduce to the same184

set-up the equation185

@tu D �u C 1! f in QT ; (9)186

where 1! denotes the characteristic function of an open187

set ! � ˝ , or the nonhomogeneus boundary condition of188

Dirichlet type189

u D f on ˙T ; (10)190

or Neumann type191

@u
@�

D f on ˙T ; (11)192

where � is the outward unit normal to � . For Eq. (9), B193

reduces to multiplication by 1!—a bounded operator on194

L2(˝); conditions (10) and (11) can also be associated to195

suitable linear operators B—which, in this case, turn out196

to be unbounded. Similar considerations can be adapted197

to the wave equations (5) and to more general problems.198

Having an efficient way to represent a source term is199

essential in control theory, where such a term is regarded200

as an external action, the control function, exercised on the201

state variable u for a purpose, of which there are two main202

kinds:203

� positional: u(t) is to approach a given target in X, or204

attain it exactly at a given time t > 0;205

� optimal: the pair (u; f ) is to minimize a given func-206

tional.207

The first criterion leads to approximate or exact controlla-208

bility problems in time t, as well as to stabilization prob-209

lems as t ! 1. Here, the main tools will be provided by210

certain estimates for partial differential operators that al-211

low to study the states that can be attained by the solution212

of a given controlled equation. These issues will be ad-213

dressed in Sects. “Controllability” and “Stabilization” for214

linear evolution equations. Applications to the heat and 215

wave equations will be discussed in the same sections. 216

On the other hand, optimal control problems require 217

analyzing the typical issues of optimizations: existence re- 218

sults, necessary conditions for optimality, sufficient condi- 219

tions, robustness. Here, the typical problem that has been 220

successfully studied is the Linear Quadratic Regulator that 221

will be discussed in Sect. “Linear Quadratic Optimal Con- 222

trol”. 223

Control problems for nonlinear partial differential 224

equations are extremely interesting but harder to deal 225

with, so the literature is less rich in results and techniques. 226

Nevertheless, among the problems that received great at- 227

tention are those of fluid dynamics, specifically the Euler 228

equations 229

@tu C (u � r)u C rp D 0 230

and the Navier–Stokes equations 231

@tu � ��u C (u � r)u C rp D 0 232

subject to a boundary control and to the incompressibility 233

condition div u D 0. 234

Controllability 235

We now proceed to introduce the main notions of con- 236

trollability for the evolution equation (7). Later on in this 237

section we will give interpretations for the heat and wave 238

equations. 239

In a given Hilbert space H, with scalar product h�; �i 240

and norm k � k, let 241

A : D(A) � H ! H 242

be the infinitesimal generator of a strongly continuous semi- 243

group etA, t � 0, of bounded linear operators on X. In- 244

tuitively, this amounts to saying that u(t) :D etAu0 is the 245

unique solution of the Cauchy problem 246

(
u0(t) D Au(t) t � 0
u(0) D u0 ;

247

in the classical sense for u0 2 D(A), and in a suitable gen- 248

eralized sense for all u0 2 H. Necessary and sufficient con- 249

ditions in order for an unbounded operator A to be the in- 250

finitesimal generator of a strongly continuous semigroup 251

are given by the celebrated Hille–Yosida Theorem, see, 252

e. g. [99] and [55]. 253
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4 Control of Partial Differential Equations

Abstract Evolution Equations254

Let F be another Hilbert space (with scalar product and255

norm denoted by the same symbols as for H), the so-256

called control space, and let B : F ! H be a linear opera-257

tor, that we will assume to be bounded for the time being.258

Then, given T > 0 and u0 2 H, for all f 2 L2(0; T ; F) the259

Cauchy problem260

(
u0(t) D Au(t) C B f (t) t � 0
u(0) D u0

(12)261

has a uniquemild solution u f 2 C([0; T];H) given by262

u f (t) D etAu0 C
Z t

0
e(t�s)AB f (s) 8t � 0 (13)263

Note 1 Boundary control problems can be reduced to the264

same abstract form as above. In this case, however, B in265

(12) turns out to be an unbounded operator related to suit-266

able fractional powers of �A, see, e. g., [22].267

For any t � 0 let us denote by �t : L2(0; t; F) ! H the268

bounded linear operator269

�t f D
Z t

0
e(t�s)AB f (s) ds 8 f 2 L2(0; t; F) : (14)270

The attainable (or reachable) set from u0 at time t,271

A(u0; t) is the set of all points in H of the form u f (t) for272

some control function f , that is273

A(u0; t)
:D etAu0 C�tL2(0; t; F) :274

We introduce below themain notions of controllability for275

(7). Let T > 0.276

Definition 1 System (7) is said to be:277

� exactly controllable in time T ifA(u0; T) D H for all278

u0 2 H, that is, if for all u0; u1 2 H there is a control279

function f 2 L2(0; T ; F) such that u f (T) D u1;280

� null controllable in time T if 0 2 A(u0; T) for all281

u0 2 H, that is, if for all u0 2 H there is a control func-282

tion f 2 L2(0; T ; F) such that u f (T) D 0;283

� approximately controllable in time T if A(u0; T)284

is dense in H for all u0 2 H, that is, if for all285

u0; u1 2 H and for any " > 0 there is a control func-286

tion f 2 L2(0; T ; F) such that ku f (T) � u1k < ".287

Clearly, if a system is exactly controllable in time T,288

then it is also null and approximately controllable in289

time T. Although these last two notions of controllability290

are strictly weaker than strong controllability, for specific291

problems—like when A generates a strongly continuous 292

group—some of them may coincide. 293

Since controllability properties concern, ultimately, 294

the range of the linear operator �T defined in (14), it is 295

not surprising that they can be characterized in terms of 296

the adjoint operator ��
T : H ! L2(0; T ; F), which is de- 297

fined by 298

299Z T

0

˝
��

Tu(s); f (s)ids D hu0; �T f i 300

8u 2 H ; 8 f 2 L2(0; T ; F) : 301
302

Such a characterization is the object of the following theo- 303

rem. Notice that the above identity and (14) yield 304

��
Tu(s) D B� e(T�s)A�

u 8s 2 [0; T] : 305

Theorem 1 System (7) is: 306

� exactly controllable in time T if and only if there is 307

a constant C > 0 such that 308Z T

0

��B� etA�

u
��2 dt � Ckuk2 8u 2 H ; (15) 309

� null controllable in time T if and only if there is a con- 310

stant C > 0 such that 311Z T

0

��B� etA�

u
��2 dt � C

��eTA�

u
��2 8u 2 H ; (16) 312

� approximately controllable in time T if and only if, for 313

every u 2 H, 314

B� etA�

u D 0 t 2 [0; T] a.e. H) u D 0 : (17) 315

To benefit the reader who is more familiar with optimiza- 316

tion theory than abstract functional analysis, let us explain, 317

by a variational argument, why estimate (16) implies null 318

controllability. Consider, for every " > 0, the penalized 319

problem 320

min
˚
J"( f ) : f 2 L2(0; T ;H)

�
; 321

where 322
323

J"( f ) D 1
2

Z T

0
k f (t)k2 dt C 1

2"
ku f (T)k2 324

8 f 2 L2(0; T ;H) : 325
326

Since J" is strictly convex, it admits a unique minimum 327

point f". Set u" D u f" . Recalling (13) we have, By Fermat’s 328

rule, 329
330

0 D J0"( f")g D
Z T

0
h f"(t); g(t)i dt 331

C 1
"

hu"(T); �T gi 8g 2 L2(0; T ;H) : (18) 332
333
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Control of Partial Differential Equations 5

Therefore, passing to the adjoint of�T ,334

335 Z T

0

D
f"(t) C 1

"

�
��

Tu"(T)
�
(t); g(t)

E
dt D 0336

8g 2 L2(0; T ;H) ;337
338

whence, owing to (14),339

340

f"(t) D �1
"

�
��

Tu"(T)
�
(t) D �B�v"(t)341

8t 2 [0; T] ; (19)342
343

where v"(t)
:D 1
"
e(T�t)A�u"(T) is the solution of the dual344

problem345 (
v0 C A�v D 0 t 2 [0; T]
v(T) D 1

"
u"(T) :

346

It turns out that347

348

1
2

Z T

0
k f"(t)k2 dt C 1

"
ku"(T)k2 � Cku0k2349

8" > 0 (20)350
351

for some positive constant C. Indeed, observe that, in view352

of (19),353 ( ˝
u0
" � Au" C BB�v" ; v"

˛ D 0 ; u"(0) D u0˝
v0
" C A�v" ; u"

˛ D 0 ; v"(T) D 1
"
u"(T) :

354

So,355

Z T

0

�
d
dt

hu" ; v"i C ��B�v"
��2� dt D 0 ;356

whence357

1
"

ku"(T)k2 C
Z T

0

��B�v"
��2 dt D hu0 ; v"(0)i : (21)358

Now, apply estimate (16) with u D u"(T)
"

and note that359

v"(T � t) D etA� u"(T)
"

to obtain360

Z T

0

��B�v"(t)
��2 dt � C kv"(0)k2361

for some positive constant C. Hence, (20) follows from362

(21) and (19).363

Finally, from (20) one deduces the existence of364

a weakly convergent subsequence f" j in L2(0; T ; F). Then,365

called f 0 the weak limit of f" j , u" j (t) ! u f0 (t) for all366

t 2 [0; T]. So, owing to (20), u f0 (T) D 0.367

Heat Equation 368

It is not hard to see that the heat equation (9) with Dirich- 369

let boundary conditions (2) fails to be exactly controllable. 370

On the other hand, one can show that it is null controllable 371

in any time T > 0, hence approximately controllable. Let 372

! be an open subset of˝ such that ! � ˝ . 373

Taking 374

H D L2(˝) D F ; B f D 1! f 8 f 2 L2(˝) 375

and A as in (8), one obtains that, for any u0 2 L2(˝) and 376

f 2 L2(QT ), the initial-boundary value problem 3778̂<
:̂
@tu D �u C 1! f in QT

u D 0 on ˙T

u(0; x) D u0(x) x 2 ˝
(22) 378

has a unique mild solution u f 2 C([0; T]; L2(˝)). More- 379

over, multiplying both sides of equation (9) by u and inte- 380

grating by parts, it is easy to see that 381

@xi u 2 L2(QT ) 8i D 1; : : : ; n : (23) 382

Notice that the above property already suffices to explain 383

why the heat equation cannot be exactly controllable: it is 384

impossible to attain a state u1 2 L2(˝) which fails to sat- 385

isfy (23). 386

On the other hand, null controllability holds true in 387

any positive time. 388

Theorem 2 Let T > 0 and let ! be an open subset of ˝ 389

such that ! � ˝ . Then the heat equation (9) with homoge- 390

neous Dirichlet boundary conditions is null controllable in 391

time T, i. e., for every initial condition u0 2 L2(˝) there is 392

a control function f 2 L2(QT ) such that the solution uf of 393

(22) satisfies u f (T; �) � 0. Moreover, 394“
QT

j f j2 dx dt � CT

Z
˝

ju0j2 dx 395

for some positive constant CT. 396

The above property is a consequence of the abstract result 397

in Theorem 1 and of concrete estimates for solutions of 398

parabolic equations. Indeed, in order to apply Theorem 1 399

one has to translate (16) into an estimate for the heat op- 400

erator. Now, observing that both A and B are self-adjoint, 401

one promptly realizes that (16) reduces to 402Z T

0

Z
!

jv(t; x)j2 dx dt � C
Z
˝

jv(T; x)j2 dx (24) 403

for every solution v of the problem 404(
@tv D �v in QT

v D 0 on ˙T :
(25) 405
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6 Control of Partial Differential Equations

Estimate (24) is called an observability inequality for the406

heat operator for obvious reasons: problem (25) is not407

well-posed since the initial condition is missing. Neverthe-408

less, if, “observing” a solution v of such a problem on the409

“small” cylinder (0; T) � !, you find that it vanishes, then410

you can conclude that v(T; �) � 0 in the whole domain˝ .411

Thus, v(0; �) � 0 by backward uniqueness.412

In conclusion, as elegant as the abstract approach to413

null controllability may be, one is confronted by the dif-414

ficult task of proving observability estimates. In fact, for415

the heat operator there are several ways to prove inequality416

(24). One of the most powerful, basically due to Fursikov417

and Imanuvilov [65], relies on global Carleman estimates.418

Compared to other methods that can be used to derive ob-419

servability, such a technique has the advantage of applying420

to second order parabolic operators with variable coeffi-421

cients, as well as to more general operators.422

Global Carleman estimates are a priori estimates in423

weighted norms for solutions of the problem424 (
@tv D �v C f in QT

v D 0 on ˙T :
(26)425

regardless of initial conditions. Theweight function is usu-426

ally of the form427

 r(t; x)
:D �(t)

�
e2rk�k1;˝ � er�(x)

�
(t; x) 2 QT ; (27)428

where r is a positive constant, � is a given function in429

C2(˝) such that430

r�(x) ¤ 0 8x 2 ˝ ; (28)431

and432

�(t) :D 1
t(T � t)

0 < t < T :433

Note that434

� > 0 ; �(t) ! 1 t ! 0 ; T435

 r > 0 ;  r(t; x) ! 1 t # 0 ; t " T :436

Using the above notations, a typical global Carleman esti-437

mate for the heat operator is the following result obtained438

in [65]. Let us denote by �(x) the outword unit normal to439

� at a point x 2 � , and by440

@�

@�
(x) D r�(x) � �(x)441

the normal derivative of � at x.442

Theorem 3 Let ˝ be a bounded domain of Rn with 443

boundary of class C2, let f 2 L2(QT ), and let � be a func- 444

tion satisfying (28). Let v be a solution of (26). Then there 445

are positive constants r; s0 and C such that, for any s > s0, 446

447

s3
“

QT

�3(t)jv(t; x)j2 e�2s r dx dt 448

� C
“

QT

j f (t; x)j2 e�2s r dx dt 449

C Cs
Z T

0
�(t)dt 450

�
Z
�

@�

@�
(x)

ˇ̌̌
ˇ̌ @v
@�

(t; x)

ˇ̌̌
ˇ̌
2

e�2s r dH n�1(x) (29) 451

452

It is worth underlying that, thanks to the singular behavior 453

of � near 0 and T, the above result is independent of the 454

initial value of v. Therefore, it can be applied, indifferently, 455

to any solution of (26) as well as to any solution of the 456

backward problem 457

(
@tv C�v D f in QT

v D 0 on ˙T :
458

Moreover, inequality (29) can be completed adding first 459

and second order terms to its right-hand side, each with 460

its own adapted power of s and � . 461

Instead of trying to sketch the proof of Theorem 3, 462

which would go beyond the scopes of this note, it is in- 463

teresting to explain how it can be used to recover the ob- 464

servability inequality (24), which is what is needed to show 465

that the heat equation is null controllable. The reason- 466

ing—not completely straightforward—is based on the fol- 467

lowing topological lemma, proved in [65]. 468

Lemma 1 Let˝ � Rn be a bounded domain with bound- 469

ary� of class Ck, for some k � 2, and let! � ˝ be an open 470

set such that ! � ˝ . 471

Then there is function � 2 Ck (˝) such that 472

(
(i) �(x) D 0 and @�

@�
(x) < 0 8x 2 �

(i i) fx 2 ˝jr�(x) D 0g � ! :
(30) 473

Now, given a solution v of (25) and an open set! such that 474

! � ˝ , let ! 0 �� ! 00 �� ! be subdomains with smooth 475

boundary. Then the above lemma ensures the existence of 476

a function � such that 477

fx 2 ˝jr�(x) D 0g � ! 0 : 478
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Control of Partial Differential Equations 7

“Localizing” problem (25) onto ˝ 0 :D ˝ n ! 0 by a cutoff479

function � 2 C1(Rn) such that480

0 � � � 1 ; � � 1 on Rnn! 00 ; � � 0 on ! 0 ;481

that is, taking w D �v, gives482

(
@tw D �w C h in Q0

T
:D (0; T) �˝ 0

w(t; �) D 0 on @˝ 0 D @˝ [ @! 0 ;
(31)483

with h :D �v��C 2r� � ru. Since r� ¤ 0 on ˝ 0, The-484

orem 3 can be applied to w on Q0
T to obtain485

486

s3
“

Q0

T

�3jwj2 e�2s r dx dt487

� C
“

Q0

T

jhj2 e�2s r dx dt488

C Cs
Z T

0
� dt

Z
�

@�

@�

ˇ̌̌
ˇ@w@�

ˇ̌̌
ˇ
2
e�2s r dH n�1

489

C Cs
Z T

0
� dt

Z
@!0

@�

@�

ˇ̌̌
ˇ@w@�

ˇ̌̌
ˇ
2
e�2s r dH n�1

490

� C
“

Q0

T

jhj2 e�2s r dx dt491

492

for s sufficiently large. On the other hand, for any493

0 < T0 < T1 < T ,494

495

s3
“

Q0

T

�3jwj2 e�2s r dx dt496

� s3
Z T1

T0
dt
Z
˝n!

�3jwj2 e�2s r dx dt497

�
Z T1

T0
dt
Z
˝n!

jvj2 dx498

499

Therefore, recalling the definition of h,500

501 Z T1

T0
dt
Z
˝n!

jvj2 dx � C
“

Q0

T

jhj2 e�2s r dx dt502

� C
Z T

0
dt
Z
!00n!0

	jr2�j2v2 C jr�j2jrvj2
 e�2s r dx503

� C
Z T

0
dt
Z
!

jvj2 dx C C
Z T

0
dt504

�
Z
!00n!0

jrvj2 e�2s r dx :505

506

Now, fix T0 D T/3 ; T1 D 2T/3 and use Caccioppoli’s in-507

equality (a well-known estimate for solution of elliptic and508

parabolic PDE’s) 509

510Z T

0
dt
Z
!00n!0

jrvj2 e�2s r dx 511

� C
Z T

0
dt
Z
!

jvj2 e�2s r dx ; 512

513

to conclude that 514Z 2T/3

T/3
dt
Z
˝n!

jvj2 dx � C
Z T

0
dt
Z
!

jvj2 dx 515

or 516Z 2T/3

T/3
dt
Z
˝

jvj2 dx � (1 C C)
Z T

0
dt
Z
!

jvj2 dx 517

for some constant C. Then, the dissipativity of the heat op- 518

erator (that is, the fact that
R
˝ jv(t; x)j2 dx is decreasing 519

with respect to t) implies that 520

521Z
˝

v2(T; x) dx � 3
T

Z 2T/3

T/3
dt
Z
˝

v2(t; x) dx 522

� (1 C C)
3
T

Z T

0
dt
Z
!

v2(t; x) dx ; 523

524

which is exactly (24). 525

Wave Equation 526

Compared to the heat equation, the wave equation (5) ex- 527

hibits a quite different behavior from the point of view of 528

exact controllability. Indeed, on the one hand, there is no 529

obstruction to exact controllability since no regularizing 530

effect is connected with wave propagation. On the other 531

hand, due to the finite speed of propagation, exact control- 532

lability cannot be expected to hold true in arbitrary time, 533

as null controllability does for the heat equation. 534

In fact, a typical result that holds true for the wave 535

equation is the following, where a boundary control of 536

Dirichlet type acts on a part �1 � � , while homogeneous 537

boundary conditions are imposed on �0 D � n �1: 538

8̂<
:̂
@2t u D �u in QT

u D f 1�1 on ˙T

u(0; x) D u0(x) ; @tu(0; x) D u1(x) x 2 ˝
(32) 539

Observe that problem (32) is well-posed taking 540

u0 2L2(˝) ; u1 2 H�1(˝)

f 2L2(0; T ; L2(� ))

u 2C([0; T]; L2(˝)) \ C1([0; T];H�1(˝)) :

541
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8 Control of Partial Differential Equations

Theorem 4 Let ˝ be a bounded domain of Rn with542

boundary of class C2 and suppose that, for some point543

x0 2 Rn,544 (
(x � x0) � �(x) > 0 8x 2 �1
(x � x0) � �(x) � 0 8x 2 �0 :

545

Let546

R D sup
x2˝

jx � x0j :547

If T>2R, then, for all (u0; u1); (v0; v1) 2 L2(˝) � H�1(˝)548

there is a control function f 2 L2(0; T ; L2(� )) such that the549

solution uf of (32) satisfies550

u f (T; x) D v0(x) ; @tu f (T; x) D v1(x) :551

As we saw for abstract evolution equations, the above ex-552

act controllability property is proved to be equivalent to553

an observability estimate for the dual homogeneous prob-554

lem using, for instance, the Hilbert Uniqueness Method555

(HUM) by J.-L. Lions [86].556

Bibliographical Comments557

The literature on controllability of parabolic equations and558

related topics is so huge, that no attempt to provide a com-559

prehensive account of it would fit within the scopes of560

this note. So, the following comments have to be taken as561

a first hint for the interested reader to pursue further bib-562

liographical research.563

The theory of exact controllability for parabolic equa-564

tions was initiated by the seminal paper [58] by Fattorini565

and Russell. Since then, it has experienced an enormous566

development. Similarly, the multiplier method to obtain567

observability inequalities for the wave equation was devel-568

oped in [17,73,74,77,86]. Some fundamental early contri-569

butions were surveyed by Russell [108]. The next essen-570

tial progress was made in the work by Lebeau and Rob-571

biano [83] and then by Fursikov and Imanuvilov in a series572

of papers. In [65] one can find an introduction to global573

Carleman estimates, as well as applications to the con-574

trollability of several ODE’s. In particular, the presenta-575

tion of this paper as for observability inequalities and Car-576

leman estimates for the heat operator is inspired by the577

last monograph. General perspectives for the understand-578

ing of global Carleman estimates and their applications to579

unique continuation and control problems for PDE’s can580

be found in the works by Tataru [113,114,115,116]. Usu-581

ally, the above approach requires coefficients to be suffi-582

ciently smooth. Recently, however, interesting adaptations583

of Carleman estimates to parabolic operators with discon- 584

tinuous coefficients have been obtained in [21,82]. 585

More recently, interest has focussed on control prob- 586

lems for nonlinear parabolic equations. Different ap- 587

proaches to controllability problems have been proposed 588

in [57] and [44]. Then, null and approximate controlla- 589

bility results have been improved by Fernandez–Cara and 590

Zuazua [61,62]. Techniques to produce insensitizing con- 591

trols have been developed in [117]. These techniques have 592

been successfully applied to the study of Navier–Stokes 593

equations by several authors, see e. g. [63]. 594

Fortunately, several excellent monographs are now 595

available to help introduce the reader to this subject. For 596

instance, the monograph by Zabczyk [121] could serve as 597

a clean introduction to control and stabilization for finite- 598

and infinite-dimensional systems.Moreover, [22,50,51], as 599

well as [80,81] develop all the basic concepts of control and 600

system theory for distributed parameter systems with spe- 601

cial emphasis on abstract formulation. Specific references 602

for the controllability of the wave equation byHUM can be 603

found in [86] and [74]. More recent results related to series 604

expansion and Ingham type methods can be found in [75]. 605

For the control of Navier–Stokes equations the reader is 606

referred to [64], as well as to the book by Coron [43], which 607

contains an extremely rich collection of classical results 608

and modern developments. 609

Stabilization 610

Stabilization of flexible structures such as beams, plates, 611

up to antennas of satellites, or of fluids as, for instance, in 612

aeronautics, is an important part of CT. In this approach, 613

one wants either to derive feedback laws that will allow 614

the system to autoregulate once they are implemented, or 615

study the asymptotic behavior of the stabilized system i. e. 616

determine whether convergence toward equilibrium states 617

as times goes to infinity holds, determine its speed of con- 618

vergence if necessary or study howmany feedback controls 619

are required in case of coupled systems. 620

Different mathematical tools have been introduced to 621

handle such questions in the context of ODE’s and then 622

of PDE’s. Stabilization of ODE’s goes back to the work of 623

Lyapunov and Lasalle. The important property is that tra- 624

jectories decay along Lyapunov functions. If trajectories 625

are relatively compact in appropriate spaces and the sys- 626

tem is autonomous, then one can prove that trajectories 627

converge to equilibria asymptotically. However, the con- 628

struction of Lyapunov functions is not easy, in general. 629

This section will be concerned with some aspects of 630

the stabilization of second order hyperbolic equations, our 631

model problem being represented by the wave equation 632
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Control of Partial Differential Equations 9

with distributed damping633

8̂<
:̂
@t tu ��u C a(x)ut D 0 in ˝ � R ;

u D 0 on ˙ D (0;1) � �
(u; @tu)(0) D (u0; u1) on ˝ ;

(33)634

in a bounded domain ˝ � Rn with a smooth bound-635

ary � . For n D 2, u(t; x) represents the displacement636

of point x of the membrane at time t. Therefore, equa-637

tion (33) describes an elastic system. The energy of such638

a system is given by639

E(t) D 1
2

Z
˝

	jut(t; x)j2 C jru(t; x)j2
 dx :640

When a � 0, the feedback term a(x)ut models friction:641

it produces a loss of energy through a dissipation phe-642

nomenon. More precisely, multiplying the equation in643

(33) by ut and integrating by parts on˝ , it follows that644

E0(t) D �
Z
˝

a(x)jut j2 dx � 0 ; 8t � 0 : (34)645

On the other hand, if a � 0, then the system is conserva-646

tive, i. e., E(t) D E(0) for all t � 0.647

Another well-investigated stabilization problem for648

the wave equation is when the feedback is localized on649

a part � 0 of the boundary � , that is,650

8̂̂
ˆ̂<
ˆ̂̂̂:

@t tu ��u D 0 in ˝ � R
@u
@�

C ut D 0 on ˙0 D (0;1) � �0
u D 0 on ˙1 D (0;1) � (� n �0)
(u; @tu)(0) D (u0; u1)

(35)651

In this case, the dissipation relation (34) takes the form652

E0(t) D �
Z
�0

jut j2 dH n�1 � 0 ; 8t � 0 :653

In many a situation—such as to improve the quality of654

an acoustic hall—one seeks to reduce vibrations to a min-655

imum: this is why stabilization is an important issue in656

CT. We note that the above system has a unique station-657

ary solution—or, equilibrium—given by u � 0. Stabiliza-658

tion theory studies all questions related to the convergence659

of solutions to such an equilibrium: existence of the limit,660

rate of convergence, different effects of nonlinearities in661

both displacement and velocity, effects of geometry, cou-662

pled systems, damping effects due to memory in viscoelas-663

tic materials, and so on.664

System (33) is said to be:665

� strongly stable if E(t) ! 0 as t ! 1; 666

� (uniformly) exponentially stable if E(t) � C e�˛tE(0) 667

for all t � 0 and some constants ˛ > 0 and C � 0, in- 668

dependent of u0; u1. 669

This note will focus on some of the above issues, such as 670

geometrical aspects, nonlinear damping, indirect damping 671

for coupled systems and memory damping. 672

Geometrical Aspects 673

A well-known property of the wave equation is the so- 674

called finite speed of propagation, which means that, if the 675

initial conditions u0; u1 have compact support, then the 676

support of u(t; �) evolves in time at a finite speed. This ex- 677

plains why, for the wave equation, the geometry of˝ plays 678

an essential role in all the issues related to control and sta- 679

bilization. 680

The size and localization of the region in which the 681

feedback is active is of great importance. In this paper such 682

a region, denoted by !, is taken as a subset of ˝ of posi- 683

tive Lebesgue measure. More precisely, a is assumed to be 684

continuous on˝ and such that 685

a � 0 on ˝ and a � a0 on ! ; (36) 686

for some constant a0 > 0. In this case, the feedback is said 687

to be distributed. Moreover, it is said to be globally dis- 688

tributed if ! D ˝ and locally distributed if˝ n ! has pos- 689

itive Lebesgue measure. 690

Two main methods have been used or developed to 691

study stabilization, namely the multiplier method and mi- 692

crolocal analysis. The one that gives the sharpest results is 693

based on microlocal analysis. It goes back to the work of 694

Bardos, Lebeau and Rauch [17], giving geodesics sufficient 695

conditions on the region of active control for exact con- 696

trollability to hold. These conditions say that each ray of 697

geometric optics should meet the control region. Burq and 698

Gérard [25] showed that these results hold under weaker 699

regularity assumptions on the domain and coefficients of 700

the operators (see also [26,27]). These geodesics condi- 701

tions are not explicit, in general, but they allow to get decay 702

estimates of the energy under very general hypotheses. 703

The multiplier method is an explicit method, based 704

on energy estimates, to derive decay rates (as well as ob- 705

servability and exact controllability results). For bound- 706

ary control and stabilization problems it was developed 707

in the works of several authors, such as Ho [38,73], J.-L. 708

Lions [86], Lasiecka–Triggiani, Komornik–Zuazua [76], 709

and many others. Zuazua [123] gave an explicit geomet- 710

ric condition on ! for a semilinear wave equation sub- 711

ject to a locally distributed damping. Such a condition 712
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10 Control of Partial Differential Equations

was then relaxed K. Liu [87] (see also [93]) who intro-713

duced the so-called piecewise multiplier method. Lasiecka714

and Triggiani [80,81] introduced a sharp trace regularity715

method which allow to estimate boundary terms in en-716

ergy estimates. There also exist intermediate results be-717

tween the geodesics conditions of Bardos–Lebeau–Rauch718

and the multiplier method, obtained by Miller [95] using719

differentiable escape functions.720

Zuazua’s multiplier geometric condition can be de-721

scribed as follows. If a subset O of ˝ is given, one can722

define an "-neighborhood of O in ˝ as the subset of723

points of ˝ which are at distance at most " of O. Zuazua724

proved that if the set ! is such that there exists a point725

x0 2 Rn—an observation point—for which ! contains an726

"-neighborhood of � (x0) D fx 2 @˝ ; (x � x0) � �(x) �727

0g, then the energy decays exponentially. In this note, we728

refer to this condition as (MGC).729

If a vanishes for instance in a neighborhood of the two730

poles of a ball ˝ in Rn , one cannot find an observation731

point x0 such that (MGC) holds. K. Liu [87] (see also [93])732

introduced a piecewise multiplier method which allows to733

choose several observation points, and therefore to handle734

the above case.735

Introduce disjoint lipschitzian domains ˝ j of ˝ ,736

j D 1; : : : ; J, and observation points x j 2 RN , j D 1; : : : ;737

J and define738

	 j(x j) D fx 2 @˝ j ; (x � x j) � � j(x) � 0g739

Here �j stands for the unit outward normal vector to the740

boundary of˝ j. Then the piecewisemultiplier geometrical741

condition for ! is:742

! 	 N"

�
[J

jD1	 j(x
j) [ �

˝n [J
jD1 ˝ j

��
(PWMGC)743

It will be denoted by (PWMGC) condition in the sequel.744

Assume now that a vanishes in a neighborhood of the745

two poles of a ball inRn . Then, one can choose two subsets746

˝1 and˝2 containing, respectively, the two regions where747

a vanishes and apply the piecewise multiplier method with748

J D 2 and with the appropriate choices of two observation749

points and ". Themultipliermethod consists of integrating750

by parts expressions of the form751

752 Z T

t

Z
˝

�
@2t u ��u C a(x)ut

�
Mu dx dt D 0753

80 � t � T ;754
755

where u stands for a (strong) solution of (33), with an756

appropriate choice of Mu. Multipliers have generally the757

form758

Mu D (m(x) � ru C c u) (x) ;759

where m depends on the observation points and  760

is a cut-off function. Other multipliers of the form 761

Mu D ��1(ˇu), where ˇ is a cut-off function and ��1
762

is the inverse of the Laplacian operator with homogeneous 763

Dirichlet boundary conditions, have also be used. 764

The geometric conditions (MGC) or (PWMGC) serve 765

to bound above by zero terms which cannot be controlled 766

otherwise. One can then prove that the energy satisfies an 767

estimate of the form 768

769Z T

t
E(s) ds 770

� cE(t) C
Z T

t

 Z
˝

a(x)jut j2 C
Z
!

jut j2
!
ds 771

8t � 0 : (37) 772
773

Once this estimate is proved, one can use the dissipa- 774

tion relation to prove that the energy satisfies integral in- 775

equalities of Gronwall type. This is the subject of the next 776

section. 777

Decay Rates, Integral Inequalities 778

and Lyapunov Techniques 779

The Linear Feedback Case Using the dissipation rela- 780

tion (34), one has 781

782Z T

t

Z
˝

ajutj2 dx ds �
Z T

t
�E0(s) ds � E(t) 783

8 0 � t � T : 784
785

On the other hand, thanks to assumption (36) on a 786

787Z T

t

Z
!

u2t dx ds � 1
a0

Z T

t

Z
˝

ajut j2 dx ds 788

� 1
a0

E(t) 80 � t � T : 789

790

By the above inequalities and (37), E satisfies 791Z T

t
E(s) ds � cE(t) ; 80 � t � T : (38) 792

Since E is a nonincreasing function and thanks to this in- 793

tegral inequality, Haraux [71] (see also Komornik [74]) 794

proved that E decays exponentially at infinity, that is 795

E(t) � E(0) exp
�
1 � t/c) ; 8t � c : (39) 796

This proof is as follows. Define 797

�(t) D exp(t/c)
Z 1

t
E(s) ds 8t � 0 : 798
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Control of Partial Differential Equations 11

Thanks to (38) � is nonincreasing on [0;1), so that799

�(t) � �(0) D
Z 1

0
E(s) ds :800

Using once again (38) with t D 0 in this last inequality and801

the definition of � , one has802 Z 1

t
E(s) ds � cE(0) exp(�t/c) 8t � 0 :803

Since E is a nonnegative and nonincreasing function804

805

cE(t) �
Z t

t�c
E(s) ds �

Z 1

t�c
E(s) ds806

� cE(0) exp(�(t � c)/c) ;807
808

so that (39) is proved. One can remark that for t � c,809

E(t) � E(0) � exp
�
1 � t/c).810

An alternative method is to introduce a modified (or811

perturbed) energy E" which is equivalent to the natural812

one for small values of the parameter " as in Komornik and813

Zuazua [76]. Then one shows that this modified energy814

satisfies a differential Gronwall inequality so that it decays815

exponentially at infinity. The exponential decay of the nat-816

ural energy follows then at once. In this case, the modified817

energy is indeed a Lyapunov function for the PDE. The818

natural energy cannot be in general such a Lyapunov func-819

tion due to the finite speed of propagation (consider initial820

data which have compact support compactly embedded in821

˝n!).822

There are also very interesting approaches using the823

frequency domain approach, or spectral analysis such as824

developed by K. Liu [87] Z. Liu and S. Zheng [88]. In the825

sequel, we concentrate on the integral inequality method.826

Thismethod has been generalized in several directions and827

we present in this note some results concerning extensions828

to829

� nonlinear feedback830

� indirect or single feedback for coupled system831

� memory type feedbacks832

Generalizations to Nonlinear Feedbacks Assume now833

that the feedback term a(x)ut in (33) is replaced by a non-834

linear feedback a(x)
(ut) where 
 is a smooth, increasing835

function satisfying v
(v) � 0 for v 2 R, linear at 1 and836

with polynomial growth close to zero, that is: 
(v) D jvjp837

for jvj � 1 where p 2 (1;1).838

Assume moreover that ! satisfies Zuazua’s multiplier839

geometric condition (MGC) or Liu’s piecewise multiplier840

method (PWMGC). Then using multipliers of the space841

and time variables defined as E(s)(p�1)/2 Mu(x) where 842

Mu(x) are multipliers of the form described in section 5.1 843

and integrating by parts expressions of the form 844

845Z T

t
E(s)(p�1)/2

846

�
Z
˝

�
@2t u ��u C a(x)
(ut)

�
Mu(x) dx ds D 0 ; 847

848

one can prove that the energy E of solutions satisfies the 849

following inequality for all 0 � t � T 850

851Z T

t
E(pC1)/2(s) dt 852

� cE(pC1)/2(t) C c
Z T

t
E(p�1)/2(s) 853

�
�Z

˝


(ut)2 C
Z
!

jut j2
�
: 854

855

One can remark than an additional multiplicative weight 856

in time depending on the energy has to be taken. This 857

weight is E(p�1)/2. Then as in the linear case, but in a more 858

involved way, thanks to the dissipation relation 859

E0(t) D �
Z
˝

a(x)ut
(ut) ; (40) 860

one can prove that E satisfies the following nonlinear inte- 861

gral inequality 862

Z T

t
E(pC1)/2(s) ds � cE(t) ; 80 � t � T : 863

Thanks to the fact that E is nonincreasing, a well- 864

known result Komornik [74] shows that E is polynomially 865

decaying, as t�2/(p�1) at infinity. The above type results 866

have been obtained by many authors under weaker form 867

(see also [40,41,71,98,122]). 868

Extensions to nonlinear feedbacks without growth 869

conditions close to zero have been studied by Lasiecka and 870

Tataru [78], Martinez [93], W. Liu and Zuazua [89], Eller 871

Lagnese and Nicaise [56] and Alabau–Boussouira [5]. We 872

present the results obtained in this last reference since they 873

provide optimal decay rates. 874

Themethod is as follows. Define respectively the linear 875

and nonlinear kinetic energies 876( R
! jut j2 dx ;R
˝ ja(x)
(ut)j2 dx ;

877

and use a weight function in time f (E(s)) which is to be de- 878

termined later on in an optimal way. Integrating by parts 879
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12 Control of Partial Differential Equations

expressions of the form880

Z T

t
f (E(s))

Z
˝

�
@2t u��uCa(x)
(ut )

�
Mu(x) dx ds D 0 ;881

one can prove that the energy E of solutions satisfies the882

following inequality for all 0 � t � T883

884 Z T

t
E(s) f (E(s)) ds � c f (E(t)) C c

Z T

t
f (E(s))885

�
�Z

˝

ja(x)
(ut)j2 C
Z
!

jut j2
�
: (41)886

887

The difficulty is to determine the optimal weight un-888

der general growth conditions on the feedback close to 0,889

in particular for cases for which the feedback decays to 0890

faster than polynomials.891

Assume now that the feedback satisfies892

g(jvj) � j
(v)j � Cg�1(jvj) ; 8jvj � 1 ; (42)893

where g is continuously differentiable on R strictly in-894

creasing with g(0) D 0 and895 8̂<
:̂
g 2 C2([0; r0]) ; r0 sufficiently small ;
H(:) D p

:g(p:) is strictly convex on 	0; r20
 ;
g is odd :

896

Moreover, 
 is assumed to have a linear growth with re-897

spect to the second variable at infinity. We define the opti-898

mal weight function f as follows.899

We first extendH to a function Ĥ define on all R900

Ĥ(x) D
(
H(x) if x 2 	0; r20
 ;
C1 otherwise ;

901

then, define a function F as follows:902

F(y) D

8̂<
:̂
Ĥ�(y)

y
if y 2 (0;C1) ;

0 if y D 0 ;
903

where Ĥ� stands for the convex conjugate of Ĥ, that is904

Ĥ�(y) D sup
x2R

fx y � Ĥ(x)g :905

Then the optimal weight function f is determined in the906

following way907

f (s) D F�1(s/2ˇ) s 2 	0; 2ˇr20� ;908

where ˇ is of the form max(�1; �2E(0)), �1 and �2 being909

explicit positive constants.910

One can prove that the above formulas make sense, 911

and in particular that F is invertible and smooth. More 912

precisely, F is twice continuously differentiable strictly in- 913

creasing, one-to-one function from [0;C1) onto [0; r20). 914

Note that since the feedback is supposed to be linear at 915

infinity, if one wants to obtain results for general growth 916

types of the feedback, one can assume convexity of H only 917

in a neighborhood of 0. 918

One can prove from (41) that there exists an (explicit) 919

T0 > 0 such that for all initial data, E satisfies the following 920

nonlinear integral inequality 921Z T

t
E(s) f (E(s)) ds � T0E(t) 80 � t � T : (43) 922

This inequality is proved thanks to convexity argu- 923

ments as follows. Thanks to the convexity of Ĥ, one can 924

use Jensen’s inequality and 42), so that 925

926Z
˝t

ja(x)
(ut)j2 dx � 	1(t)Ĥ�1
927

�
�

1
	1(t)

Z
˝

a(x)ut
(ut ) dx
�

928

929

In a similar way, one proves that 930Z
!t

jut j2 dx � 	2(t)Ĥ�1
�

1
	2(t)

Z
˝

a(x)ut
(ut) dx
�

931

where ˝ t and !t are time-dependent sets of respective 932

Lebesgue measures 	1(t) and 	2(t) on which the velocity 933

ut(t; x) is sufficiently small. Using the above two estimates, 934

together with the linear growth of 
 at infinity, one proves 935

936Z T

t
f (E(s))

�Z
˝

ja(x)
(ut)j2 C
Z
!

jut j2
�

937

�
Z T

t
f (E(s))Ĥ�1

�
1
c

Z
˝

a(x)ut
(ut ) dx
�

938

939

Using then Young’s inequality, together with the dissi- 940

pation relation (40) in the above inequality, one obtains 941Z T

t
f (E(s))

�Z
˝

ja(x)
(ut)j2 C
Z
!

jut j2
�

� C1

Z T

t
Ĥ?

�
f (E(s)

�
ds C C2E(t) ;

(44) 942

where Ci > 0 i D 1; 2 is a constant independent of the ini- 943

tial data. Using the dissipation relation (40) in the above 944

inequality, this gives for all 0 � t � T 945

Combining this last inequality with (41) give 946Z T

t
E(s) f (E(s)) ds � ˇ

Z T

t
(Ĥ)?

�
f (E(s)

�
ds C C2E(t) 947
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Control of Partial Differential Equations 13

where ˇ is chosen of the form max(�1; �2E(0)), �1 and �2948

being explicit positive constants to guarantee that the ar-949

gument E of f stays in the domain of definition of f . Thus950

(43) is proved, thanks to the fact that the weight function951

has been chosen so that952

ˇĤ?( f (E(s)) D 1
2
E(s) f (E(s)) 8 0 � s :953

Therefore E satisfies a nonlinear integral inequality with954

a weight function f (E) which is defined in a semi-explicit955

way in general cases of feedback growths.956

The last step is to prove that a nonincreasing and957

nonnegative absolutely continuous function E satisfying958

a nonlinear integral inequality of the form (43) is decay-959

ing at infinity, and to establish at which rate this holds. For960

this, one proceeds as in [5].961

Let � > 0 and T0 > 0 be fixed given real numbers and962

F be a strictly increasing function from [0;C1) on [0; �),963

with F(0) D 0 and lim y ! C1F(y) D �.964

For any r 2 (0; �), we define a function Kr from (0; r]965

on [0;C1) by966

Kr(�) D
Z r

�

dy
yF�1(y)

; (45)967

and a function  r which is a strictly increasing onto func-968

tion defined from [ 1
F�1(r) ;C1) on [ 1

F�1(r) ;C1) by969

 r(z) D z C Kr(F(
1
z
)) � z; 8z � 1

F�1(r)
; (46)970

Then one can prove that if E is a nonincreasing, ab-971

solutely continuous function from [0;C1) on [0;C1),972

satisfying 0 < E(0) < � and the inequality973

Z T

t
E(s)F�1(E(s)) ds � T0E(S) ; 8 0 � t � T : (47)974

Then E satisfies the following estimate:975

E(t) � F

 
1

 �1
r ( t

T0 )

!
; 8t � T0

F�1(r)
; (48)976

where r is any real such that977

1
T0

Z C1

0
E(�)F�1(E(�)) d� � r � � :978

Thus, one can apply the above result to E with � D r20979

and show that lim t ! C1E(t) D 0, the decay rate being980

given by the estimate (48).981

If g is polynomial close to zero, one gets back that the982

energy E(t) decays as t
�2
p�1 at infinity. If g(v) behaves as983

exp(�1/jvj) close to zero, then E(t) decays as 1/(ln(t))2 at 984

infinity. 985

The usefulness of convexity arguments has been first 986

pointed out by Lasiecka and Tataru [78] using Jensen’s 987

inequality and then in different ways by Martinez [93] 988

(the weight function does not depend on the energy) 989

and W. Liu and Zuazua [89] and Eller Lagnese and 990

Nicaise [56]. Optimal decay rates have been obtained 991

by Alabau–Boussouira [5,6] using a weight function de- 992

termined through the theory of convex conjugate func- 993

tions and Young’s (named also as Fenchel–Moreau’s) in- 994

equality. This argument was also used by W. Liu and 995

Zuazua [89] in a slightly different way and combined 996

to a Lyapunov technique. Optimality of estimates in [5] 997

is proved in one-dimensional situation and for bound- 998

ary dampings applying optimality results of Vancosteno- 999

ble [119] (see also Martinez and Vancostenoble [118]). 1000

Indirect Damping for Coupled Systems 1001

Many complex phenomena are modelized through cou- 1002

pled systems. In stabilizing (or controlling) energies of the 1003

vector state, one has very often access only to some com- 1004

ponents of this vector either due to physical constraints or 1005

to cost considerations. In this case, the situation is to sta- 1006

bilize a full system of coupled equation through a reduced 1007

number of feedbacks. This is called indirect damping. This 1008

notion has been introduced by Russell [109] in 1993. 1009

As an example, we consider the following system: 1010

1011(
@2t u ��u C @tu C ˛v D 0
@2t v ��v C ˛u D 0

1012

in ˝ � R ; u D 0 D v on @˝ � R : (49) 1013
1014

Here, the first equation is damped through a linear dis- 1015

tributed feedback, while no feedback is applied to the sec- 1016

ond equation. The question is to determine if this coupled 1017

system inherits any kind of stability for nonzero values of 1018

the coupling parameter ˛ from the stabilization of the first 1019

equation only. 1020

In the finite dimensional case, stabilization (or control) 1021

of coupled ODE’s can be analyzed thanks to a powerful 1022

rank type condition named Kalman’s condition. The situ- 1023

ation is much more involved in the case of coupled PDE’s. 1024

One can show first show that the above system fails to 1025

be exponentially stable (see also [66] for related results). 1026

More generally, one can study the stability of the system 1027

(
u00 C A1u C Bu0 C ˛v D 0
v00 C A2v C ˛u D 0

(50) 1028
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14 Control of Partial Differential Equations

in a separable Hilbert space H with norm j � j, where1029

A1;A2 and B are self-adjoint positive linear operators in1030

H. Moreover, B is assumed to be a bounded operator. So,1031

our analysis applies to systems with internal damping sup-1032

ported in the whole domain ˝ such as (49); the reader is1033

referred to [1,2] for related results concerning boundary1034

stabilization problems (see also Beyrath [23,24] for local-1035

ized indirect dampings).1036

In light of the above observations, system (50) fails to1037

be exponentially stable, at least when H is infinite dimen-1038

sional and A1 has a compact resolvent as in (49). Indeed1039

it is shown in Alabau, Cannarsa and Komornik [8] that1040

the total energy of sufficiently smooth solutions of (50) de-1041

cays polynomially at infinity whenever j˛j is small enough1042

but nonzero. From this result we can also deduce that any1043

solution of (50) is strongly stable regardless of its smooth-1044

ness: this fact follows by a standard density argument since1045

the semigroup associated with (50) is a contraction semi-1046

group.1047

A brief description of the key ideas of the approach de-1048

veloped in [2,8] is as follows. Essentially, one uses a finite1049

iteration scheme and suitable multipliers to obtain an esti-1050

mate of the form1051

1052 Z T

0
E(u(t); v(t))dt � c

jX
kD0

E(u(k)(0); v(k)(0))1053

8 T � 0 ; (51)1054
1055

where j is a positive integer and E denotes the total energy1056

of the system1057

1058

E(u; v) D 1
2
�jA1/2

1 uj2 C ju0j2�1059

C 1
2
�jA1/2

2 vj2 C jv0j2�C ˛hu; vi :1060
1061

Once (51) is proved, an abstract lemma due to Alabau [1,2]1062

shows that E(u(t); v(t)) decays polynomially at 1. This1063

abstract lemma can be stated as follows.1064

Let A be the infinitesimal generator of a continuous1065

semi-group exp(tA) on an Hilbert spaceH , and D(A) its1066

domain. For U0 in H we set in all the sequel U(t) D1067

exp(tA)U0 and assume that there exists a functional E de-1068

fined on C([0;C1);H ) such that for every U0 in H ,1069

E(exp(:A)) is a non-increasing, locally absolutely contin-1070

uous function from [0;C1) on [0;C1). Assume more-1071

over that there exist an integer k 2 N? and nonnegative1072

constants cp for p D 0; : : : k such that 1073

1074Z T

S
E(U(t))dt �

kX
pD0

cpE(U (p)(S)) 1075

80 � S � T ;8U0 2 D(Ak) : (52) 1076
1077

Then the following inequalities hold for every U0 in 1078

D(Akn) and all 0 � S � T where n is any positive integer: 1079

Z T

S
E(U(�))

(� � S)n�1

(n � 1)!
d� � c

knX
pD0

E(U (p)(S)) ; (53) 1080

and 1081

1082

E(U(t)) � c
knX
pD0

E(U (p)(0))t�n
1083

8t > 0 ; 8U0 2 D(Akn) ; 1084
1085

where c is a constant which depends on n. 1086

First (53) is proved by induction on n. For n D 1, it re- 1087

duces to the hypothesis (52). Assume now that (53) holds 1088

for n and let U0 be given in D(Ak(nC1)). Then we have 1089

1090Z T

S

Z T

t
E(U(�))

(� � t)n�1

(n � 1)!
d� dt 1091

� c
knX
pD0

Z T

S
E(U (p)(t))dt 1092

8 0 � S � T ;8U0 2 D(Akn): 1093
1094

SinceU0 is in D(Ak(nC1)) we deduce thatU (p)(0) D ApU0
1095

is in D(Ak) for p 2 f0; : : : kng. Hence we can apply the 1096

assumption (52) to the initial data U (p)(0). This together 1097

with Fubini’s Theorem applied on the left hand side of the 1098

above inequality give (53) for n C 1. Using the property 1099

that E(U(t)) is non increasing in (53) we easily obtain the 1100

last desired inequality. 1101

Applications on wave-wave, wave-Petrowsky equa- 1102

tions and various concrete examples hold. 1103

The above results have been studied later on by Batkai, 1104

Engel, Prüss and Schnaubelt [18] using very interesting 1105

resolvent and spectral criteria for polynomial stability of 1106

abstract semigroups. The above abstract lemma in [2] 1107

has also been generalized using interpolation theory. One 1108

should note that this integral inequality involving higher 1109

order energies of solutions is not of differential nature con- 1110

trarily to the Haraux’s and Komornik’s integral inequal- 1111

ities. Another approach based on decoupling techniques 1112
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Control of Partial Differential Equations 15

and for slightly different abstract systems have been intro-1113

duced by Ammar Khodja Bader and Ben Abdallah [12].1114

Spectral conditions have also been studied by Z.1115

Liu [88] and later on by Z. Liu and Rao [90], Loreti and1116

Rao [92] for peculiar abstract systems and in general for1117

coupled equations only of the same nature (wave-wave for1118

instance), so that a dispersion relation for the eigenvalues1119

of the coupled system can be derived.Also these last results1120

are given for internal stabilization only. From the above1121

limitations, Z. Liu–Rao and Loreti–Rao’s results are less1122

powerful in generality than the ones given by Alabau, Can-1123

narsa and Komornik [8] and Alabau [2]. Moreover results1124

through energy type estimates and integral inequalities can1125

be generalized to include nonlinear indirect dampings as1126

shown in [7]. On the other side spectral methods are very1127

precise for the obtention of optimal decay rates provided1128

that one can determine at which speed the eigenvalues ap-1129

proach the imaginary axis for high frequencies.1130

Memory Dampings1131

We consider the following model problem1132

8̂̂
ˆ̂<
ˆ̂̂̂:

utt(t; x) ��u(t; x) C R t
0 ˇ(t � s)�u(s; x) ds D

ju(t; x)j�u(t; x)
u(t; �)j@˝ D 0
(u(0; �); ut (0; �)) D (u0; u1)

(54)1133

where 0 < 	 � 2
N�2 holds. The secondmember is a source1134

term. The damping1135

Z t

0
ˇ(t � s)�u(s; x) ds1136

is of memory type.1137

The energy is defined by1138

Eu(t) D 1
2

kut(t)k2L2(˝) dx

C 1
2

�
1 �

Z t

0
ˇ(s) ds

�
kru(t)k2L2(˝)

� 1
	 C 2

ku(t)k�C2
L�C2(˝)

C 1
2

Z t

0
ˇ(t � s)kru(t) � ru(s)k2L2(˝) ds

1139

The damping term produces dissipation of the energy, that 1140

is (for strong solutions) 1141

1142

E0
u(t) D �1

2
ˇ(t)kru(t)k2 1143

C 1
2

Z t

0
ˇ0(t)kru(s) � ru(t)k2 ds � 0 1144

1145

One can consider more general abstract equations of the 1146

form 1147

1148

u00(t) C Au(t) �
Z t

0
ˇ(t � s)Au(s) ds D rF(u(t)) 1149

t 2 (0;1) (55) 1150
1151

in a Hilbert space X, where A : D(A) � X ! X is an ac- 1152

cretive self-adjoint linear operator with dense domain, and 1153

rF denotes the gradient of a Gâteaux differentiable func- 1154

tional F : D(A1/2) ! R. In particular, equation (54) fits 1155

into this framework as well as several other classical equa- 1156

tions of mathematical physics such as the linear elasticity 1157

system. 1158

We consider the following assumptions. 1159

Assumptions (H1) 1160

1. A is a self-adjoint linear operator on X with dense do- 1161

main D(A), satisfying 1162

hAx; xi � Mkxk2 8x 2 D(A) (56) 1163

for some M > 0. 1164

2. ˇ : [0;1) ! [0;1) is a locally absolutely continuous 1165

function such that 1166

1167Z 1

0
ˇ(t)dt < 1ˇ(0) > 0 ˇ0(t) � 0 1168

for a.e. t � 0 : 1169
1170

3. F : D(A1/2) ! R is a functional such that 1171

1. F is Gâteaux differentiable at any point x 2 D(A1/2); 1172

2. for any x 2 D(A1/2) there exists a constant c(x) > 0 1173

such that 1174

jDF(x)(y)j � c(x)kyk; for any y 2 D(A1/2); 1175

where DF(x) denotes the Gâteaux derivative of F in 1176

x; consequently, DF(x) can be extended to the whole 1177

space X (and we will denote by rF(x) the unique 1178

vector representingDF(x) in the Riesz isomorphism, 1179

that is, hrF(x); yi D DF(x)(y), for any y 2 X); 1180
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16 Control of Partial Differential Equations

3. for any R > 0 there exists a constant CR > 0 such1181

that1182

krF(x) � rF(y)k � CRkA1/2x � A1/2yk1183

for all x; y 2 D(A1/2) satisfying kA1/2xk ; kA1/2yk �1184

R.1185

Assumptions (H2)1186

1. There exist p 2 (2;1] and k > 0 such that1187

ˇ0(t) � �kˇ1C 1
p (t) for a.e. t � 01188

(here we have set 1
p D 0 for p D 1).1189

2. F(0) D 0, rF(0) D 0, and there is a strictly increas-1190

ing continuous function  : [0;1) ! [0;1) such that1191

 (0) D 0 and1192

jhrF(x); xij �  (kA1/2xk)kA1/2xk2 8x 2 D(A1/2) :1193

Under these assumptions, global existence for suffi-1194

ciently small (resp. all) initial data in the energy space1195

can be proved for nonvanishing (resp. vanishing) source1196

terms.1197

It turns out that the above energy methods based on1198

multiplier techniques combined with linear and nonlinear1199

integral inequalities can be extended to handle memory1200

dampings and applied to various concrete examples such1201

as wave, linear elastodynamic and Petrowsky equations for1202

instance. This allows to show in [10] that exponential as1203

well as polynomial decay of the energy hold if the kernel1204

decays respectively exponentially or polynomially at infin-1205

ity.1206

Themethod is as follows. One evaluates expressions of1207

the form1208 Z T

t
hu00(s) C Au(s) �

Z t

0
ˇ 
 Au(s) � rF(u(s);Mui ds1209

where the multipliers Mu are of the form �(s)(c1(ˇ 
1210

u)(s) C c2(s)u) with � which is a differentiable, nonin-1211

creasing and nonnegative function, and c1 being a suitable1212

constant, whereas c2 may be chosen dependent on ˇ.1213

Integrating by parts the resulting relations and per-1214

forming some involved estimates, one can prove that for1215

all t0 > 0 and all T � t � t01216

1217 Z T

t
�(s)E(s) ds � C�(0)E(t) C

Z T

t
�(s)1218

�
Z s

0
ˇ(s � �)

��A1/2u(s) � A1/2u(�)
��2 d� ds ;1219

1220

If p D 1, that is if the kernel ˇ decays exponentially, one 1221

can easily bound the last term of the above estimate by 1222

cE(t) thanks to the dissipation relation. 1223

If p 2 (2;1), one has to proceed differently since the 1224

term 1225Z T

t
�(s)

Z s

0
ˇ(s � �) ��A1/2u(s) � A1/2u(�)

��2 d� ds 1226

cannot be directly estimated thanks to the dissipation rela- 1227

tion. To bound this last term, one can generalize an argu- 1228

ment of Cavalcanti and Oquendo [37] as follows. Define, 1229

for any m � 1, 1230

1231

'm (t) :D
Z t

0
ˇ1� 1

m (t � s)kA1/2u(s) � A1/2u(t)k2 ds ; 1232

t � 0 : (57) 1233
1234

Then, we have for any T � S � 0 1235

1236Z T

S
E

m
p
u (t)

Z t

0
ˇ(t � s)kA1/2u(s) � A1/2u(t)k2 dsdt 1237

� CE
p

pCm
u (S)

 Z T

S
E
1C m

p
u (t)'m(t)dt

! m
pCm

(58) 1238

1239

for some constant C > 0. Then one proves Suppose that, 1240

if for some m � 1, the function 'm defined in (57) is 1241

bounded. Then, for any S0 > 0 there is a positive con- 1242

stant C such that 1243

1244Z 1

S
E
1C m

p
u (t)dt � C

�
E

m
p
u (0) C k'mk

m
p1
�
Eu(S) 1245

8 S � S0 : (59) 1246
1247

One uses this last result first withm D 2 noticing that '2 is 1248

bounded and � D E2/p . This gives a first energy decay rate 1249

as (t C 1)�p/2. This estimate shows that '1 is bounded. 1250

Then one applies once again the last result withm D 1 and 1251

� D E1/p . One deduces then that E decays as (t C 1)�p
1252

which is the optimal decay rate expected. 1253

Bibliographical Comments 1254

For an introduction to the multiplier method, we refer 1255

the interested reader to the books of J.-L. Lions [86], Ko- 1256

mornik [74] and the references therein. The celebrated 1257

result of Bardos Lebeau and Rauch is presented in [86]. 1258

A general abstract presentation of control problems for 1259

hyperbolic and parabolic equations can be found in the 1260

book of Lasiecka and Triggiani [80,81]. Results on spec- 1261

tral methods and the frequency domain approach can be 1262
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Control of Partial Differential Equations 17

found in the book of Z. Liu [88]. There also exists an in-1263

teresting approach developed for bounded feedback oper-1264

ators by Haraux and extended to the case of unbounded1265

feedbacks by Ammari and Tucsnak [11]. In this approach,1266

the polynomial (or exponential) stability of the damped1267

system is proved thanks to the corresponding observabil-1268

ity for the undamped (conservative) system. Such observ-1269

ability results for weakly coupled undamped systems have1270

been obtained for instance in [3].1271

Many other very interesting issues have been studied1272

connected to semilinear wave equations [34,123] and the1273

references therein, to the case of wave damped equations1274

with nonlinear source terms [39].1275

Well-posedness and asymptotic properties for PDE’s1276

with memory terms have first been studied by Dafer-1277

mos [53,54] for convolution kernels with past history1278

(convolution up to t D �1), by Prüss [103] and Prüss1279

and Propst [102] in which the efficiency of different mod-1280

els of dampings are compared to experiments (see also1281

Londen Petzeltova and Prüss [91]). Decay estimates for1282

the energy of solutions using multiplier methods com-1283

bined with Lyapunov type estimates for an equivalent en-1284

ergy are proved in Munoz Rivera [97], Munoz Rivera and1285

Salvatierra [96], Cavalcanti and Oquendo [37] and Giorgi1286

Naso and Pata [67] and many other papers.1287

Optimal Control1288

As for positional control, also for optimal control prob-1289

lems it is convenient to adopt the abstract formulation in-1290

troduced in Sect. “Abstract Evolution Equations”. Let the1291

state space be represented by the Hilbert space H, and the1292

state equation be given in the form (12), that is1293

(
u0(t) D Au(t) C B f (t) t 2 [0; T]
u(0) D u0 :

(60)1294

Recall that A is the infinitesimal of a strongly continu-1295

ous semigroup, etA, in H, B is a (bounded) linear opera-1296

tor from F (the control space) to H, and uf stands for the1297

unique (mild) solution of (60) for a given control function1298

f 2 L2(0; T ;H).1299

A typical optimal control problem of interest for PDE’s1300

is the Bolza problem which consists in1301

8̂<
:̂

minimizing the cost functional
J( f ) :D R T

0 L(t; u f (t); f (t))dt C `
�
u f (T)

�
over all controls f 2 L2(0; T ; F) :

(61)1302

Here, T is a positive number, called the horizon, whereas L1303

and ` are given functions, called the running cost and final1304

cost, respectively. Such functions are usually assumed to be 1305

bounded below. 1306

A control function f� 2 L2(0; T ; F) at which the above 1307

minimum is attained is called an optimal control for prob- 1308

lem (61) and the corresponding solution u f� of (60) is said 1309

to be an optimal trajectory. Alltogether, fu f� ; f�g is called 1310

an optimal (trajectory/control) pair. 1311

For problem (61) the following issues will be addressed 1312

in the sections below: 1313

� the existence of controls minimizing functional J; 1314

� necessary conditions that a candidate solution must sat- 1315

isfy; 1316

� sufficient conditions for optimality provided by the dy- 1317

namic programming method. 1318

Other problems of particular interest to CT for PDE’s 1319

are problems with an infinite horizon (T D 1), problems 1320

with a free horizon T and a final target, and problems with 1321

constraints on both control variables and state variables. 1322

Moreover, the study of nonlinear variants of (60), includ- 1323

ing semilinear problems of the form 1324

(
u0(t) D Au(t) C h(t; u(t); f (t)) t 2 [0; T]
u(0) D u0 ;

(62) 1325

is strongly motivated by applications. The discussion of all 1326

these variants, however, will not be here pursued in detail. 1327

Traditionally, in optimal control theory, state variables 1328

are denoted by the letters x; y; : : :, whereas u; v; : : : are re- 1329

served for control variables. For notational consistency, in 1330

this section u(�) will still denote the state of a given system 1331

and f (�) a control function, while � will stand for a fixed 1332

element of control space F. 1333

Existence of Optimal Controls 1334

From the study of finite dimensional optimization it is a fa- 1335

miliar fact that the two essential ingredients to guarantee 1336

the existence of minima are compactness and lower semi- 1337

continuity. Therefore, it is clear that, in order to obtain 1338

a solution of the optimal control problem (60)–(61), one 1339

has to make assumptions that allow to recover such prop- 1340

erties. The typical hypotheses that are made for this pur- 1341

pose are the following: 1342

� coercivity: there exist constants c0 > 0 and c1 2 R such 1343

that 1344

1345

`(�) � c1 and L(t; u; �) � c0k�k2 C c1 1346

8(t; u; �) 2 [0; T] � H � F (63) 1347
1348
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18 Control of Partial Differential Equations

� convexity: for every (t; u) 2 [0; T] � H1349

� 7! L(t; u; �) is convex on F : (64)1350

Under the above hypotheses, assuming lower semicon-1351

tinuity of ` and of the map L(t; �; �), it is not hard to show1352

that problem (60)–(61) has at least one solution. Indeed,1353

assumption (63) allows to show that any minimizing se-1354

quence of controls f fkg is bounded in L2(0; T ;H). So, it1355

admits a subsequence, still denoted by f fkg which con-1356

verges weakly in L2(0; T ;H) to some function f . Then, by1357

linearity, u fk (t) converges to u f (t) for every t 2 [0; T]. So,1358

using assumption (64), it follows that f is a solution of1359

(60)–(61).1360

The problem becomes more delicate when the Tonelli1361

type coercivity condition (63) is relaxed, or the state equa-1362

tion is nonlinear as in (62). Indeed, the convergence of1363

u fk (t) is no longer ensured, in general. So, in order to re-1364

cover compactness, one has to make further assumptions,1365

such as the compactness of etA, or structural properties of1366

L and h. For further reading, one may consult the mono-1367

graphs [22,85], and [79], for problems where the running1368

and final costs are given by quadratic forms (the so-called1369

Linear Quadratic problem), or [84] and [59] for more gen-1370

eral optimal control problems.1371

Necessary Conditions1372

Once the existence of a solution to problem (60)–(61) has1373

been established, the next important step is to provide con-1374

ditions to detect a candidate solution, possibly showing1375

that it is, in fact, optimal. By and large the optimality con-1376

ditions of most common use are the ones known as Pon-1377

tryagin’s Maximum Principle, named after the Russian1378

mathematician L.S. Pontryagin who greatly contributed to1379

the development of control theory, see [100,101].1380

So, suppose fu�; f�g, where u� D u f� is a candidate1381

optimal pair, and consider the so-called adjoint system1382

8̂<
:̂

�p0(t) D A�p(t) C @uL(t; u�(t); f�(t)) D 0
t 2 [0; T] a.e.

p(T) D @`(u�(T)) ;
1383

where @uL(t; u; �) and @`(u) denote the Fréchet gradients1384

of the maps L(t; �; �) and ` at u, respectively. Observe that1385

the above is a backward linear Cauchy problem with ter-1386

minal condition, which can obviously be reduced to a for-1387

ward one by the change of variable t ! T � t. So, it ad-1388

mits a unique mild solution, labeled p�, which is called the1389

adjoint state associated with fu�; f�g.1390

Pontryagin’s Maximum Principle states that, if fu�; 1391

f�g is optimal, then 1392

1393

hp�(t); B f�(t)i C L(t; u�(t); f�(t)) D 1394

min
�2F

	hp�(t); B�i C L(t; u�(t); �)



1395

t 2 [0; T] a.e. (65) 1396
1397

The name Maximum Principle rather than Minimum 1398

Principle, as it would be more appropriate, is due to the 1399

fact that, traditionally, attention was focussed on themax- 1400

imization—instead of minimization—of the functional in 1401

(61). Even today, in most models from economics, one is 1402

interested in maximizing payoffs, such as revenues, utility, 1403

capital and so on. In that case, (65) would still be true, with 1404

a “max” instead of a “min”. 1405

At first glance, it might be hard to understand the rev- 1406

elance of (65) to problem (61). To explain this, introduce 1407

the function, called theHamiltonian, 1408

1409

H (t; u; p) D min
�2F

	hp; B�i C L(t; u; �)



1410

(t; u; p) 2 [0; T] � H � H : (66) 1411
1412

Then, Fermat’s rule yields B�p C @�L(t; u; �) D 0 at ev- 1413

ery � 2 F at which the minimum in (66) is attained. 1414

Therefore, from (65) it follows that 1415

B�p�(t)C@�L(t; u�(t); f�(t)) D 0 t 2 [0; T] a.e. (67) 1416

which provides a much-easier-to-use optimality condi- 1417

tion. 1418

There is a vast literature on necessary condition for 1419

optimality for distributed parameter systems. The set-up 1420

that was considered above can be generalized in several 1421

ways: one can consider nonlinear state equations as in 1422

(62), nonsmooth running and finals costs, constraints on 1423

both state and control, problems with infinite horizon or 1424

exit times. Further reading and useful references on most 1425

of these extensions can be found in the aforementioned 1426

monographs [22,79,84,85], and in [59] which is mainly 1427

concerned with time optimal control problems. 1428

Dynamic Programming 1429

Though useful as it may be, Pontryagin’s Maximum Prin- 1430

ciple remains a necessary condition. So, without further 1431

information, it does not suffice to prove the optimality of 1432

a give trajectory/control pair. Moreover, even when the 1433

map � 7! @�L(t; u; �) turns out to be invertible, the best 1434

result identity (67) can provide, is a representation of f�(t) 1435

in terms of u�(t) and p�(t): not enough to determine 1436

f�(t), in general. 1437
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Control of Partial Differential Equations 19

This is why other methods to construct optimal con-1438

trols have been proposed over the years. One of the most1439

interesting ones is the so-called dynamic programming1440

method (abbreviated, DP), initiated by the work of R. Bell-1441

man [20]. Such a method will be briefly described below in1442

the set-up of distributed parameter systems.1443

Fix T > 0, s such that 0 � s � T , and consider the op-1444

timal control problem1445

1446

to minimize1447

Js;v( f ) D
Z T

s
L
�
t; us;vf (t); f (t)

�
dt C `

�
us;vf (T)

�
(68)

1448

1449

over all control functions f 2 L2(s; T ; F), where us;vf (t) is1450

the solution of the controlled system1451 (
u0(t) D Au(t) C B f (t) t 2 [s; T]
u(s) D v :

(69)1452

The value function U associated to (68)-(69) is the real-1453

valued function defined by1454

U(s; v) D inf
f2L2(s;T ;F)

Js;v( f ) 8(s; v) 2 [0; T]�H : (70)1455

A fundamental step of DP is the following result, known1456

as Bellman’s optimality principle.1457

Theorem 5 For any (s; v) 2 [0; T] � H and any f 21458

L2(s; T ; F)1459

1460

U(s; v) �
Z r

s
L
�
t; us;vf (t); f (t)

�
dt C U

�
r; us;vf (r)

�
1461

8r 2 [s; T] :1462
1463

Moreover, f �(�) is optimal if and only if1464

1465

U(s; v) D
Z r

s
L
�
t; us;vf (t); f (t)

�
dt C U

�
r; us;vf (r)

�
1466

8r 2 [s; T] :1467
1468

The connection between DP and optimal control is based1469

on the properties of the value function. Indeed, applying1470

Bellman’s optimality principle, one can show that, if U is1471

Fréchet differentiable, then1472 8̂<
:̂
@sU(s; v) C hAv; @vU(s; v)i CH (s; v; @vU(s; v)) D 0

(s; v) 2 (0; T) � D(A)
U(T; v) D `(v) v 2 H

1473

where H is the Hamiltonian defined in (66). The above1474

equation is the celebrated Hamilton–Jacobi equation of1475

DP. To illustrate its connections with the original opti- 1476

mal control problem, a useful formal argument—that can, 1477

however, be made rigorous—is the following. Consider 1478

a sufficiently smooth solutionW of the above problem and 1479

let (s; v) 2 (0; T) � D(A). Then, for any trajectory/control 1480

pair fu; f g, 1481

d
dt

W(t; u(t)) D @sW(t; u(t)) C h@vW(t; u(t));Au(t)

C B f (t)i
D h@vW(t; u(t)); B f (t)i

�H (t; u(t); @vW(t; u(t)))
� �L(t; u(t); f (t))

(71) 1482

by the definition ofH . Therefore, integrating from s to T, 1483

`(u(T)) � W(s; v) � �
Z T

s
L(t; u(t); f (t))dt; 1484

whence Js;v( f ) � W(s; v). Thus, taking the infimum over 1485

all f 2 L2(s; T ; F), 1486

W(s; v) � U(s; v) 8(s; v) 2 (0; T) � D(A) : (72) 1487

Now, suppose there is a control function f� 2 L2(s; T ; F) 1488

such that, for all t 2 [s; T], 1489

1490

h@vW(t; u�(t)); B f�(t)i C L(t; u�(t); f�(t)) 1491

D H (t; u�(t); @vW(t; u�(t))) ; (73) 1492
1493

where u�(�) D us;vf� (�). Then, from (71) and (73) it follows 1494

that 1495

d
dt

W(t; u�(t)) D �L(t; u(t); f (t)) ; 1496

whence 1497

W(s; v) D Js;v( f�) � U(s; v) : 1498

From the above inequality and (72) it follows that 1499

W(s; v) D U(s; v) for all (s; v) 2 (0; T) � D(A), hence for 1500

all (s; v) 2 (0; T) � H sinceD(A) is dense inH. So, f� is an 1501

optimal control. 1502

Note 2 The above considerations lead to the following 1503

procedure to obtain optimal an optimal trajectory: 1504

� find a smooth solution of the Hamilton–Jacobi equa- 1505

tion; 1506
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20 Control of Partial Differential Equations

� for every (t; v) 2 (0; T) � D(A) provide a feedback1507

f (t; v) such that1508

1509

h@vW(t; v); B f (t; v)i C L(t; v; f (t; v))1510

D H (t; v; @vW(t; v))1511
1512

� solve the so-called closed loop equation1513 (
u0(t) D Au(t) C B f (t; u(t)) t 2 [s; T]
u(s) D v

1514

Notice that not only is trajectory u optimal, but the1515

corresponding control f is given in feedback form as well.1516

Linear Quadratic Optimal Control1517

One of the most successful applications of DP is the so-1518

called Linear Quadratic optimal control problem. Con-1519

sider problem (68)–(69) with costs L and ` given by1520

1521

L(t; u; �) D hM(t)u; ui C hN(t)�; �i1522

8(T; u; �) 2 [0; T] � H � F1523
1524

and1525

`(u) D hDu; ui 8u 2 H ;1526

where1527

� M : [0; T] ! L(H) is continuous, M(t) is symmetric1528

and hM(t)u; ui � 0 for every (t; u) 2 [0; T] � H;1529

� N : [0; T] ! F is continuous, N(t) is symmetric and1530

hN(t)�; �i � c0j�j2 for every (t; �) 2 [0; T] � F and1531

some constant c0 > 0;1532

� D 2 L(H) is symmetric and hDu; ui � 0 for every1533

u 2 H.1534

Then, assumptions (63) and (64) are satisfied. So, a solu-1535

tion to (68)–(69) does exist. Moreover, it is unique because1536

of the strict convexity of functional Js;v .1537

In order to apply DP, one computes the Hamiltonian1538

H (t; u; p) D min
�2F

h
hp; B�i C hM(t)u; ui C hN(t)�; �i

i

D hM(t)u; ui � 1
4

hBN�1(t)B�p; pi ;
1539

where the above minimum is attained at1540

��(t; p) D �1
2
N�1(t)B�p : (74)1541

Therefore, the Hamilton–Jacobi equation associated to the1542

problem is1543 8̂̂̂
<̂
ˆ̂̂̂:

@sW(s; v) C hAv; @vW(s; v)i C hM(s)v; vi
� 1

4 hBN�1(s)B�@vW(s; v); @vW(s; v)i D 0
8(s; v) 2 (0; T) � D(A)

w(T; v) D hDv; vi 8v 2 H

1544

It is quite natural to search a solution of the above problem 1545

in the form 1546

W(s; v) D hP(s)v; vi 8(s; v) 2 [0; T] � H ; 1547

with P : [0; T] ! L(H) continuous, symmetric and such 1548

that hP(t)u; ui � 0. Substituting into the Hamilton–Jacobi 1549

equation yields 15508̂̂̂
<̂
ˆ̂̂̂:

hP0(s)v; vi C h[A�P(s) C P(s)A]v; vi C hM(s)v; vi
�hBN�1(s)B�P(s)v; P(s)vi D 0

8(s; v) 2 (0; T) � D(A)
hP(T)v; vi D hDv; vi 8v 2 H

1551

Therefore, P must be a solution of the so-called Riccati 1552

equation 15538̂<
:̂
P0(s) C A�P(s) C P(s)A C M(s)

�P(s)BN�1(s)B�P(s) D 0 8s 2 (0; T)
P(T) D D

1554

Once a solution P(�) the Riccati equation is known, the 1555

procedure described in Note 2 can be applied. Indeed, re- 1556

calling (74) and the fact that @vW(t; v) D 2P(t)v, one con- 1557

cludes that f (t; v) D �N�1(t)B�P(t)v is a feedback law. 1558

So, solving the closed loop equation 1559(
u0(t) D [A � BN�1(t)B�P(t)]u(t) t 2 (s; T)
u(s) D v

1560

one obtains the unique optimal trajectory of problem 1561

(68)–(69). 1562

In sum, by DP one reduces the original Linear 1563

Quadratic optimal control problem to the problem of find- 1564

ing the solution of the Riccati equation, which is easier to 1565

solve than the Hamilton–Jacobi equation. 1566

Bibliographical Comments 1567

Different variants of the Riccati equation have been suc- 1568

cessfully studied by several authors in connection with 1569

different state equations and cost functionals, including 1570

boundary control problems and problems for other func- 1571

tional equations, see [22,79] and the references therein. 1572

Sometimes, the solution of the Riccati equation related to 1573

a linearizedmodel provides feedback stabilization for non- 1574

linear problems as in [104]. 1575

Unfortunately, the DP method is hard to implement 1576

for general optimal control problems, because of several 1577

obstructions: nonsmoothness of solutions to Hamilton– 1578

Jacobi equations, selection problems that introduce dis- 1579

continuities, unboundedness of the coefficients, numer- 1580

ical complexity. Besides the Linear Quadratic case, the 1581
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Control of Partial Differential Equations 21

so-called Linear Convex case is the other example that1582

can be studied by DP under fairly general conditions,1583

see [14]. For nonlinear optimal control problems some1584

of the above difficulties have been overcome extending1585

the notion of viscosity solutions to infinite dimensional1586

spaces, see [45,46,47,48,49], see also [28,29,30,31,32,33]1587

and [112]. Nevertheless, finding additional ideas to make1588

a generalized use of DP for distributed parameter systems1589

possible, remains a challenging problem for the next gen-1590

erations.1591

Future Directions1592

In addition to all considerations spread all over this arti-1593

cle on promising developments of recent—as well as es-1594

tablished—research lines, a few additional topics deserve1595

to be mentioned.1596

The one subject that has received the highest atten-1597

tion, recently, is that of numerical approximation of con-1598

trol problems, from the point of view of both controlla-1599

bility and optimal control. Here the problem is that, due1600

to high frequency spurious numerical solutions, stable al-1601

gorithms for solving initial-boundary value problems do1602

not necessarily yield convergent algorithms for computing1603

controls. This difficulty is closely related to the existence1604

of concentrated numerical solutions that escape the obser-1605

vation mechanisms. Nevertheless, some interesting results1606

have been obtained so far, see, e. g., [124,125].1607

Several interesting results for nonlinear control prob-1608

lems have been obtained by the return method, devel-1609

oped initially by Coron [42] for a stabilization problem.1610

This and other techniques have then been applied to1611

fluid models ([68,69]), the Korteweg–de Vries equation1612

([105,106,107], and Schrödinger type equations ([19]), see1613

also [43] and the references therein. It seems likely that1614

these ideas, possibly combined with other techniques like1615

Carleman estimates as in [70], will lead to new exiting re-1616

sults in the years to come.1617

A final comment on null controllability for degener-1618

ate parabolic equations is in order. Indeed, many prob-1619

lems that are relevant for applications are described by1620

parabolic equation equations in divergence form1621

@tu D r�(A(x)ru)Cb(x)�ruCc(t; x)uC f in QT ;1622

or in the general form1623

@tu D Tr [A(x)r2u]Cb(x)�ruCc(t; x)uC f in QT ;1624

where A(x) is a symmetric matrix, positive definite in1625

˝ but possibly singular on � . For instance, degenerate1626

parabolic equations arise in fluid dynamics as suitable1627

transformations of the Prandtl equations, see, e. g., [94]. 1628

They can also be obtained as Kolmogorov equations of 1629

diffusions processes on domains that are invariant for 1630

stochastic flows, see, e. g., [52]. The latter interpretation 1631

explains why they have been applied to biological prob- 1632

lems, such as gene frequency models for population genet- 1633

ics (see, e. g., the Wright–Fischer model studied in [111]). 1634

So far, null controllability properties of degenerate 1635

parabolic equations have been fully understood only in di- 1636

mension one: for some kind of degeneracy, null controlla- 1637

bility holds true (see [36] and [9]), but, in general, one can 1638

only expect regional null controllability (see [35]). Since 1639

very little is known on null controllability for degenerate 1640

parabolic equations in higher space dimensions, it is con- 1641

ceivable that such a topic will provide interesting problems 1642

for future developments. 1643
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