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Abstract

This paper is devoted to the study of the existence and uniqueness
of the invariant measure associated to the transition semigroup of a
diffusion process in a bounded open subset of R

n. For this purpose,
we investigate first the invariance of a bounded open domain with
piecewise smooth boundary showing that such a property holds true
under the same conditions that insure the invariance of the closure of
the domain. A uniqueness result for the invariant measure is obtained
in the class of all probability measures that are absolutely continuous
with respect to Lebesgue’s measure. A sufficient condition for the
existence of such a measure is also provided.
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1 Introduction

Given a compact set K ⊂ R
n, let us consider the transition semigroup

Ptϕ(x)
.
= E[ϕ(X(t, x))] x ∈ K , ϕ ∈ C(K)
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corresponding to the diffusion process X(t, x) associated with the stochastic
differential equation

{
dX(t) = b(X(t))dt + σ(X(t)) dW (t) t ≥ 0

X(0) = x
(1.1)

Naturally, in order for Pt to be well-defined, a preliminary problem to ad-
dress is the invariance of K under the stochastic flow of (1.1). On the other
hand, even when K is invariant, the infinitesimal generator of Pt may be
difficult to identify for diffusions in general space dimension n ≥ 2. How-
ever, the complete analysis of the one-dimensional case by Feller [20] shows
that no extra boundary conditions are necessary when the diffusion never
reaches the boundary of K. For this reason, we are also interested in condi-
tions ensuring the invariance of the open domain K̊.

The invariance of a closed domain K under a given diffusion has been
investigated by several authors. First, for K of class C3 and sufficiently
smooth coefficients b, σ, Friedman [19] studied the invariance of K using the
distance function and the elliptic operator

L0ϕ(x) =
1

2
Tr [a(x)∇2ϕ(x)] + 〈b(x),∇ϕ(x)〉 ,

where a(x) = σ(x)σ∗(x). In particular, in [19] it is shown that, if ∂K is
regular, then a sufficient condition for the invariance of K is

{
(i) L0δK(x) ≥ 0

(ii) 〈a(x)∇δK(x),∇δK(x)〉 = 0
∀x ∈ ∂K , (1.2)

where δK stands for the oriented distance from ∂K. Notice that condition
(ii) implies that a(x) is a singular matrix for all x ∈ ∂K.

Following this, in [1], Aubin and the second author introduced the notion
of stochastic contingent cone to provide necessary and sufficient conditions
for the viability of K—as well as its invariance—under minimal regularity
assumptions. Another approach to the problem was proposed in [7], using
viscosity solutions of a second order Hamilton-Jacobi equation. Later on, in
[5, 6], second order jets were used to study invariance and viability, while in
[12] the second and third author applied the Stratonovich drift to give first
order necessary and sufficient conditions for the invariance of an arbitrary
closed set for a stochastic control system. Then, using the distance func-
tion, in [10, 14] a condition similar to (1.2) was shown to be necessary and
sufficient for the invariance of closed convex sets, while in [11] a sufficient
condition for the invariance of the interior was derived.
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In this paper, we begin the analysis considering the invariance problem
for an open set K̊ with piecewise smooth boundary. Such a problem was
studied by Friedman and Pinsky [17] (see also [18, chapter 9]) for C3-smooth
domains and coefficients b, σ of class C1: they proved that (1.2) is a sufficient
condition for the invariance of K̊. In section 3, we will further investigate the
above problem showing that condition (1.2) is indeed necessary and sufficient
for the invariance of the interior of K under milder regularity assumptions,
see Theorem 3.2.

Then, using the invariance of the interior of K, we study the transition
semigroup showing, first, that its infinitesimal generator on C(K) is given
by operator L0 above. Consequently, for every λ > 0 and every continuous
function f : K → R, we obtain an existence and uniqueness result for the
elliptic equation

λϕ− L0ϕ = f in K

without imposing boundary conditions.
Finally, we apply our results to study the existence and uniqueness of

invariant measures for Pt. Observe that, since K is bounded, Pt always
admits at least one invariant measure. On the other hand, unlike the semi-
groups that are associated with operators defined in the whole space R

n

(see e.g. [23] and the references therein), Pt can have several invariant mea-
sures, which, moreover, need not be absolutely continuous with respect to
Lebesgue’s measure. In this paper, taking advantage of the interior invari-
ance result described above, we prove that Pt has at most one invariant mea-
sure on C(K), in the class of all probability measures that are absolutely
continuous with respect to Lebesgue’s measure. Moreover, strengthening
condition (1.2), we are able to prove the existence of such a measure.

This paper is organized as follows: section 2 contains notations and
all preliminary results; section 3 develops our interior invariance result for
piecewise smooth domains. Section 4 provides the characterization of the in-
finitesimal generator of Pt. Finally, section 5 is devoted to the analysis of the
invariant measure for Pt, absolutely continuous with respect to Lebesgue’s
measure. We conclude with a few examples and an appendix.

2 Notation

Given a metric space (E , d), B(E) stands for the Borel σ-algebra in E , and
Bb(E) for the space of all bounded Borel functions ϕ : E → R.

Let n be a positive integer. We denote by:

• 〈·, ·〉 the Euclidean scalar product in R
n;
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• | · | the Euclidean norm in R
n;

• ej = (

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0), where j = 1, . . . , n, the elements of the

canonical base of R
n;

• x ⊗ y the tensor product of x, y ∈ R
n, i.e., (x ⊗ y)z = 〈y, z〉x for all

z ∈ R
n;

• B(x0, r) the open ball of radius r > 0, centered at x0 ∈ R
n, and we

set Br = B(0, r);

• L(Rn,Rm) the space of all linear maps Λ : R
n → R

m, where m is
a positive integer, and any element σ ∈ L(Rn, Rm) will be identified
with the unique n ×m matrix that represents σ with respect to the
canonical bases of R

n and R
m;

• ‖Λ‖ the operator norm of Λ ∈ L(Rn,Rm), i.e., ‖Λ‖ = max|x|=1 |Λx|;

• Tr [Λ] the trace of Λ ∈ L(Rn,Rn), i.e., Tr [Λ] =
∑

j〈Λej , ej〉;

• µn the Lebesgue measure on B(Rn);

• 1lS the characteristic function of a set S;

• ∇ϕ , ∇2ϕ and ∆ϕ the gradient vector, the Hessian matrix, and the
Laplacian of the function ϕ, respectively.

Given a positive integer m and Lipschitz continuous maps b : R
n → R

n

and σ : R
n → L(Rn; Rm), consider the stochastic differential equation

{
dX(t) = b(X(t))dt + σ(X(t)) dW (t) t ≥ 0

X(0) = x
(2.1)

where W (t) is a standard m-dimensional Brownian motion on a complete
filtered probability space (Ω,F , {Ft}t≥0,P). It is well-known that, for any
x ∈ R

n, problem (2.1) has a unique solution that we shall denote by X(·, x).
Moreover, X(·, x) is P − a.s. continuous.

Let S ⊂ R
n be a nonempty set. We denote by dS the Euclidean distance

function from S, that is,

dS(x) = inf
y∈S

|x− y| ∀x ∈ R
n .
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It is well-known that dS is a Lipschitz function of constant 1. If S is closed,
then the above infimum is a minimum, which is attained on a set that will
be called the projection of x ∈ R

n onto S, labeled projS(x), that is,

projS(x) = {y ∈ S | |x− y| = dS(x)} ∀x ∈ R
n .

We say that S is invariant for X(·, ·) iff

x ∈ S =⇒ X(t, x) ∈ S P − a.s. ∀t ≥ 0 . (2.2)

For every x ∈ S, the hitting time of ∂S is the random variable defined by

τS(x) = inf{ t ≥ 0 : X(t, x) ∈ ∂S } .

Let K be a closed subset of R
n with nonempty interior K̊ and bound-

ary ∂K. A well-known function in metric analysis is the so-called oriented
distance from ∂K, that is, the function

δK(x) =

{
d∂K(x) if x ∈ K

−d∂K(x) if x ∈ Kc.

In what follows we will use the following sets, defined for any ε > 0:

• Nǫ = {x ∈ R
n : |δK(x)| < ǫ}

• Kε = K ∩Nε

• K̊ε = K̊ ∩Nε

In this paper, we will use the following function spaces:

Cb(A): all bounded continuous functions on the open set A;

C2,1(A): all twice differentiable functions on A, with bounded Lipschitz
second order derivatives;

C2,1
loc (A): all twice differentiable functions on A, with locally Lipschitz second

order derivatives;

C(K): all continuous functions ϕ : K → R;

C1(K): all continuously differentiable functions in a neighborhood of K;

H2(A): the Sobolev space of all Borel functions ϕ : A → R that are square
integrable on A, together with their second order derivatives in the
sense of distributions.
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H2
loc(A): all Borel functions ϕ : A → R that belong to H2(A′) for every

open set A′ such that A′ ⊂ A.

We say that K is a closed domain of class C2,1 if it is a closed connected
subset of R

n such that for all x ∈ ∂K there exist r > 0 and a function
φ : B(x, r) → R of class C2,1(B(x, r)) such that

∂K ∩B(x, r) = {y ∈ B(x, r) | φ(y) = 0}.

More generally, we shall say that K is a piecewise C2,1-smooth domain if

K =

m⋂

j=1

Kj ,

where Kj are closed domains of class C2,1. It is well-known that

K compact domain of class C2,1 ⇐⇒ ∃ε0 > 0 : δK ∈ C2,1(Nε0) (2.3)

see, e.g., [16]. A useful consequence of the above property is that

∀ x ∈ Kε0

{
(a) ∃! x̄ ∈ ∂K : δK(x) = |x− x̄|

(b) ∇δK(x) = ∇δK(x̄) = −νK(x̄)
(2.4)

where νK(x̄) stands for the outward unit normal to K at x̄.
It is easy to see that, if K is a compact domain of class C2,1, then there

is a sequence {Qi} of compact domains of class C2,1 such that

Qi ⊂ Q̊i+1 and
∞⋃

i=1

Qi = K̊ . (2.5)

Indeed, owing to (2.3), it suffices to take, for all i large enough,

Qi =
{
x ∈ R

n | δK(x) ≥
1

i

}
.

Finally, we observe that, if K is a compact set and {Qi} is an increasing
sequence of compact domains of class C2,1 satisfying (2.5), then ∀x ∈ K̊




∃ix ∈ N : τQi

(x) < τQi+1(x) < τK(x) , ∀i ≥ ix

lim
i→∞

τQi
(x) = τK(x)

P − a.s. (2.6)

Indeed, let x ∈ K̊ and let ix be the first integer i such that x ∈ Qi. Then,
since X(·, x) is continuous, {τQi

(x)}i≥ix is an increasing sequence of random
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variables bounded above by τK(x). So, {τQi
(x)} converges to some random

variable τ(x) which satisfies τ(x) ≤ τK(x). If P(τ(x) < τK(x)) > 0, then

P(τ(x) < t0 < τK(x)) > 0

for some t0 > 0. Consequently,

X(t0, x) /∈ ∪iQi P − a.s. on {τ(x) < t0 < τK(x)} .

So,
X(t0, x) ∈ ∂K P − a.s. on {τ(x) < t0 < τK(x)} ,

in contrast with the definition of τK(x).

3 Invariance of the interior of K

In this section, we will study the invariance properties of a compact piece-
wise C2,1-smooth domain K with respect to the flow X(·, ·) associated with
equation (2.1) (with Lipschitz continuous coefficients b and σ).

Necessary and sufficient conditions for the invariance of the compact set
K were formulated in [10] in terms of the differential operator

{
D(L0) =

{
ϕ ∈ C(K)

∣∣ ϕ ∈ H2
loc(K̊) , L0ϕ ∈ C(K)

}

L0ϕ(x) := 1
2 Tr [a(x)∇2ϕ(x)] + 〈b(x),∇ϕ(x)〉 x ∈ K ,

(3.1)

where a(x) is defined in terms of the diffusion coefficient σ:

a(x) = σ(x)σ∗(x) ≥ 0 ∀x ∈ K .

From [14] it follows that, if in addition K is convex, then K is invariant with
respect to the X(·, ·) if and only if the following conditions are satisfied:

{
(i) L0δK(x) ≥ 0

(ii) 〈a(x)∇δK(x),∇δK(x)〉 = 0
∀x ∈ ∂K (3.2)

Notice that, on account of (2.4), the above conditions imply that the elliptic
operator L0 is necessarily degenerate on ∂K, in the normal direction to ∂K.

We observe that, when K is a smooth domain of class C3, condition (3.2)
is sufficient for the invariance of the interior K̊ of K in the sense that

P(τK(x) <∞) = 0 ∀x ∈ K̊ . (3.3)
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(see [17] and also [18]). Such a property heavily relies on the Lipschitz
continuity of b and σ, as well as on the smoothness of ∂K. It is not true, in
general, if b and σ are just continuous.

We will now generalize and improve the above result assuming that

K =

m⋂

j=1

Kj (3.4)

where Kj are closed domains of class C2,1 with the following property: for
some ε1 > 0 and all j ∈ {1, . . . ,m}

proj∂Kj(x) ∈ ∂K ∀x ∈ K̊ ∩Kj
ε1
, (3.5)

(recall that Kj
ε1 = {x ∈ Kj : |δKj (x)| < ε1}).

For every x ∈ ∂K we denote by J(x) the set of all active indeces at x:

j ∈ J(x) ⇐⇒ x ∈ ∂Kj .

Using, for simplicity, the abbreviated notation δj for the oriented distance
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Figure 1: Assumption (3.5).

δKj , let us also assume that

0 /∈ co
{
∇δj(x)

∣∣ j ∈ J(x)
}

∀x ∈ ∂K . (3.6)

Then, Clarke’s tangent cone to K at every x ∈ K has nonempty interior.
For this reason, K coincides with the closure of K̊. Moreover, according to
[4, chapter 4], Clarke’s normal cone to K at any point x ∈ ∂K is given by

NK(x) =
∑

j∈J(x)

R−∇δj(x) . (3.7)

Finally, we observe that the existence of a sequence {Qi} of compact domains
of class C2,1 satisfying (2.5) is also guaranteed when K is a compact set with
the above properties (3.4), (3.5) and (3.6).
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Example 3.1 A typical example of a piecewise smooth domain satisfying
conditions (3.4), (3.5), and (3.6) is the cube

K =
{
x ∈ R

n
∣∣ max

1≤j≤n
|xj| ≤ 1

}
.

Notice that ∂K = {x ∈ R
n | maxj |xj | = 1},

J(x) =
{
j ∈ {1, . . . , n}

∣∣ |xj | = 1
}

∀x ∈ ∂K

and
∇δj(x) = −

xj

|xj|
ej ∀x ∈ ∂K , ∀j ∈ J(x) . (3.8)

We now give our interior invariance result for piecewise smooth domains.

Theorem 3.2 Assume (3.4), (3.5), and (3.6). Then the following three
statements are equivalent:

(a) K is invariant;

(b) for all x ∈ ∂K and j ∈ J(x)

{
(i) L0δj(x) ≥ 0

(ii) 〈a(x)∇δj(x),∇δj(x)〉 = 0 ;

(c) K̊ is invariant.

Proof: It is not restrictive to assume that ε1 > 0 is such that, for every
j ∈ {1, . . . ,m}, there exist functions gj ∈ C2,1(Rn) satisfying





0 ≤ gj ≤ 1 on Kj

0 < gj on Kj \Kj
ε1

gj ≡ δj on Kj
ε1

(3.9)

Assume (a). Then, according to [12],

σ∗(x)p = 0 ∀x ∈ ∂K , ∀p ∈ NK(x) .

Consequently, owing to (3.7), property (b)(ii) holds true. To obtain (i), fix
x ∈ ∂K and let j ∈ J(x). Then, gj(X(t, x)) ≥ 0 P − a.s. for all t ≥ 0, and
gj(x) = 0. Therefore,

d

dt
E

[
gj(X(·, x))

]
|t=0

≥ 0 .
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Therefore, applying Itô’s formula (see, e.g., [9, p. 61]),

d

dt
E

[
gj(X(·, x))

]
|t=0

= E
[
L0gj(x)

]
≥ 0

Since gj ≡ δj on a neighborhood of ∂Kj, we deduce (i).
We shall now prove that (b) ⇒ (c). Let us consider the function

V (x)
.
= −

m∑

j=1

log gj(x) ∀x ∈ K̊ .

Then,

L0V (x) = −
m∑

j=1

1

gj(x)
L0gj(x) +

m∑

j=1

1

g2
j (x)

|σ∗(x)∇gj(x)|
2 . (3.10)

We claim that, for all j = 1, . . . ,m,

1

g2
j (x)

|σ∗(x)∇gj(x)|
2 −

1

gj(x)
L0gj(x) ≤ c ∀x ∈ K̊ (3.11)

for some constant c ≥ 0. Indeed, the above estimate holds true when δj(x) ≥
ε1 since gj is strictly positive on {x ∈ K̊ | δj(x) ≥ ε1}. So, we have to prove

(3.11) for all x ∈ K̊ ∩Kj
ε1 , that is,

1

δ2j (x)
|σ∗(x)∇δj(x)|

2 −
1

δj(x)
L0δj(x) ≤ c ∀x ∈ K̊ ∩Kj

ε1
. (3.12)

For x ∈ K̊ ∩ Kj
ε1 let x denote the projection of x on the boundary of Kj.

Then, owing to (ii), for all x ∈ K̊ ∩Kj
ε1 we have that

|σ∗(x)∇δj(x)| = |(σ∗(x) − σ∗(x))∇δj(x) + σ∗(x)∇δj(x)|

= |(σ∗(x) − σ∗(x))∇δj(x)|

≤ ‖σ∗(x) − σ∗(x)‖

≤ c1|x− x| = c1δj(x)

where c1 is a Lipschitz constant for σ. Consequently,

1

δ2j (x)
|σ∗(x)∇δj(x)|

2 ≤ c21 ∀x ∈ K̊ ∩Kj
ε1
. (3.13)

Also, observe that the function

L0δj(x) =
1

2
Tr [σ(x)σ∗(x)∇2δj(x)] + 〈b(x),∇δj(x)〉
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is Lipschitz continuous in K̊ ∩Kj
ε1. Thus, (i) yields

−
1

δj(x)
L0δj(x) = −

1

δj(x)

(
L0δj(x) − L0δj(x)

)
−

1

δj(x)
L0δj(x)

≤
1

δj(x)

∣∣L0δj(x) − L0δj(x)
∣∣

≤
c2

δj(x)
|x− x| = c2 (3.14)

for all x ∈ K̊ ∩Kj
ε1, where c2 is a Lipschitz constant for L0δj . So, combining

(3.13) and (3.14), we deduce (3.12).
Now, by (3.11) and (3.10),

L0V (x) ≤M ∀x ∈ K̊ (3.15)

for some constant M ≥ 0. Let us set

V (x) = lim
K̊∋y→x

V (y) = ∞ ∀x ∈ ∂K.

Next, let {Qi} be a sequence of compact domains of class C2,1 satisfying
(2.5) and consider their stopping times τQi

. By Itô’s formula we have, for
all x ∈ Qi and t ≥ 0,

V (X(t ∧ τQi
(x), x)) = V (x) +

∫ t∧τQi
(x)

0
(L0V )(X(s, x))ds

+

∫ t∧τQi
(x)

0
〈∇V (X(s, x)), σ(X(s, x))dW (s)〉 .

Hence, taking expectation and recalling (3.15),

E
[
V (X(t ∧ τQi

(x), x))
]

= V (x) + E

∫ t∧τQi
(x)

0
L0V (X(s, x))ds

≤ V (x) +Mt .

Owing to (2.6) and Fatou’s lemma, the above inequality yields

E
[
V (X(t ∧ τK(x), x))

]
≤ V (x) +Mt ∀t ≥ 0 , ∀x ∈ K̊ . (3.16)

Since the function in the right-hand above is finite on K̊, we deduce that

P(τK(x) ≤ t) = P
(
V (X(t ∧ τK(x), x)) = ∞

)
= 0 ∀t ≥ 0 , ∀x ∈ K̊ .
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To conclude that K̊ is invariant, take a sequence tk ↑ ∞ and observe that

0 = P(τK(x) ≤ tk) ↑ P(τK(x) <∞) ∀x ∈ K̊ .

Finally, let us show that (c) implies (a). Suppose K̊ is invariant and
fix x ∈ K. Recalling that K coincides with the closure of K̊, let {xk} be
a sequence in K̊ such that xk → x. Then, by our invariance assumption,
X(t, xk) ∈ K , P − a.s. for all t ≥ 0. Since X(t, xk) → X(t, x) , P − a.s. for
all t ≥ 0, we conclude that X(t, x) ∈ K, P − a.s., for all t ≥ 0. Since x is
an arbitrary point in K, we have shown that K is invariant. �

Under a stronger assumption, one can improve the estimates of the above
proof to obtain the following result that will be used in section 5.2.

Proposition 3.3 Assume (3.4), (3.5), and (3.6), and suppose

∀x̄ ∈ ∂K , ∀j ∈ J(x̄)

{
(i) lim supK̊∋x→x̄

L0δj(x)
δj(x) log δj(x) < 0

(ii) 〈a(x̄)∇δj(x̄),∇δj(x̄)〉 = 0

Then, there is a nonnegative function V ∈ C2,1
loc (K̊) such that

{
V (x) = −

∑m
j=1 log δj(x) ∀ x ∈ K̊ε1/2

L0V (x) ≤M − αV (x) ∀ x ∈ K̊
(3.17)

for some constants α > 0 and M ≥ 0.

Remark 3.4 In particular, assumption (i) holds true if

L0δj(x) > 0 ∀x ∈ ∂K ∩ ∂Kj , j = 1, . . . ,m .

Observe that the above condition was used in [11] to prove the invariance
of K̊ for diffusion processes with a continuous drift.

We sketch the proof of Proposition 3.3 below, focussing on the only point
in which it differs from the proof of Theorem 3.2.

Proof: The reasoning goes in the same way as above up to (3.13). Then,
in view of assumption (i), there exist positive numbers α and ρ such that

−
1

δj(x)
L0δj(x) ≤ α log δj(x) ∀x ∈ K̊ ∩Kj

ρ . (3.18)

So, combining (3.10), (3.13) and (3.18), we conclude that, for some M > 0,

L0V (x) ≤M − αV (x) ∀ x ∈ K̊ . �
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4 Transition semigroup

In this section we will assume the following without further notice:

• K is a compact set satisfying (3.4), (3.5) and (3.6);

• condition (b) of Theorem 3.2 holds true.

We recall that one can find then a sequence {Qi} of compact domains of
class C2,1 satisfying (2.5), that is Qi ⊂ Q̊i+1 and

⋃∞
i=1Qi = K̊.

Then, we know that K and K̊ are invariant for the stochastic flow X.
So, as recalled above, the elliptic operator L0 defined in (3.1) is degenerate
on ∂K in the sense specified by condition (b). Later on, we will further
assume that L0 is uniformly elliptic on all compact subsets of K̊, that is,

det a(x) > 0 ∀x ∈ K̊ . (4.1)

The main objective of our analysis is the study of the transition semi-
group Pt associated with the stochastic flow X(·, ·), that is, the semigroup
on Bb(K) defined by

Ptϕ(x) := E[ϕ(X(t, x))] ∀ϕ ∈ Bb(K) , ∀x ∈ K , ∀t ≥ 0 . (4.2)

As is easily seen, Pt is a Markov semigroup, that is,
{

(i) ϕ ≥ ψ =⇒ Ptϕ ≥ Ptψ

(ii) Pt1lK = 1lK

We begin with some preliminary properties of Pt.

Proposition 4.1 Pt is a Feller semigroup on Bb(K), and its restriction to
C(K) is strongly continuous.

Proof: The Feller property of Pt is easy to check. Indeed,

ϕ ∈ C(K) =⇒ Ptϕ ∈ C(K) ∀t ≥ 0

owing to the continuity of the map x 7→ X(t, x). Notice that we will use the
same symbol Pt to denote the restriction of Pt to C(K).

In order to prove that Pt is a strongly continuous semigroup on C(K),
observe that, since C1(K) is dense in C(K) and ‖Pt‖ ≤ 1 (1), it is enough to
show that

lim
t↓0

Ptϕ = ϕ uniformly in K (4.3)

(1)Here, ‖Pt‖ denotes the norm Pt regarded as a bounded linear operator on C(K).
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for every ϕ ∈ C1(K). Now, for any such function ϕ we have that

|Ptϕ(x)−ϕ(x)| ≤ ‖ϕ‖C1(K)

{
E[|X(t, x) − x|2]

}1/2
∀x ∈ K , ∀t ≥ 0 . (4.4)

Moreover, by Hölder’s inequality,

|X(t, x) − x|2 ≤ 2

∣∣∣∣
∫ t

0
b(X(s, x))ds

∣∣∣∣
2

+ 2

∣∣∣∣
∫ t

0
σ(X(s, x))dW (s)

∣∣∣∣
2

≤ 2t

∫ t

0
|b(X(s, x))|2ds+ 2

∣∣∣∣
∫ t

0
σ(X(s, x))dW (s)

∣∣∣∣
2

.

So, taking expectation yields

E(|X(t, x) − x|2) ≤ 2t2‖b‖2 + 2t‖σ‖2
,

where we have set ‖b‖ = maxx∈K |b(x)| and ‖σ‖ = maxx∈K ‖σ(x)‖. Thus,
(4.3) follows recalling (4.4). �

Remark 4.2 As a corollary of Theorem 3.2, we have that the transition
semigroup Pt defined in (4.2) satisfies

Ptϕ(x) = E[ϕ(X(t, x))1lt≤τK (x)] ∀t ≥ 0 , ∀x ∈ K̊ (4.5)

for every ϕ ∈ Bb(K). Now, for all i ∈ N consider the so-called stopped
semigroups

P i
tϕ(x) = E[ϕ(X(t, x))1lt≤τQi

(x)] (t ≥ 0 , x ∈ Qi) (4.6)

associated with stopping times τQi
(x). Then, by (4.5) and (2.6), we conclude

that P i
t approximate Pt on K̊ in the sense that, for every ϕ ∈ Bb(K),

lim
i→∞

P i
tϕ(x) = Ptϕ(x) ∀t ≥ 0 , ∀x ∈ K̊. (4.7)

Remark 4.3 Under hypothesis (4.1) we have that L0 is uniformly elliptic
on Qi for all i ∈ N. So, by classical results (see, e.g., [22]), for any ϕ ∈ C(K)
the Dirichlet problem





∂tu(t, x) = L0u(t, x) t ≥ 0, x ∈ Qi

u(t, x) = 0 t > 0, x ∈ ∂Qi

u(0, x) = ϕ(x) x ∈ Qi .

(4.8)
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has a unique solution ui ∈ C([0,∞);Lp(Qi)) for every p ≥ 1, which satisfies

∂tui(t, ·), ∂h∂kui(t, ·) ∈ Lp(Qi) ∀t > 0 , ∀h, k = 1, . . . , n (4.9)

Moreover, ui is given by the formula

ui(t, x) = P i
tϕ(x) (t ≥ 0, x ∈ Qi) , (4.10)

where P i
t is the semigroup defined in (4.6), see, e.g., [8, section 6.2.2]. Ob-

serve, however, that ui can be also represented by the formula

ui(t, x) =

∫

Qi

Gi(t, x, y)ϕ(y)dy (t ≥ 0, x ∈ Qi) , (4.11)

where Gi(t, x, y) is the Green function of the parabolic operator in (4.8). It
is well-known that Gi(t, x, y) is strictly positive for all t ≥ 0 and x, y ∈ Q̊i

(see, e.g., [22]). By the maximum principle we conclude that

Gi(t, x, y) ↑ G(t, x, y) ∀t ≥ 0 , ∀x, y ∈ K̊ , x 6= y

Therefore,
G(t, x, y) > 0 (t ≥ 0, x, y ∈ K̊ , x 6= y) . (4.12)

Also, on account of (4.10), (4.11) and (4.7), for all ϕ ∈ C(K) we have

Ptϕ(x) =

∫

K
G(t, x, y)ϕ(y)dy ∀t ≥ 0, ∀x ∈ K̊ . (4.13)

Let L be the infinitesimal generator of the strongly continuous semigroup
Pt on C(K). The following theorem ensures that L coincides with operator
L0.

Theorem 4.4 Assume (4.1) and let λ > 0. Then, for every f ∈ C(K)
there exists a unique solution ϕf ∈ D(L0) of the equation

λϕ− L0ϕ = f in K. (4.14)

Moreover, ϕf ∈ D(L) and Lϕf = L0ϕ
f .

The above result can be proved in several ways. In particular, it can be
obtained in a more general framework using viscosity solutions. For the
sake of completeness, in the appendix we provide a self-contained proof of
Theorem 4.4 which only requires classical tools.

15



5 Invariant measure for Pt

In this section, we will study the existence and uniqueness of the invariant
measure µ for the transition semigroup Pt defined by (4.2), in the class of
all absolutely continuous measures with respect to Lebesgue’s measure µn.
We will make, without further notice, the following assumptions:

• K is a compact set satisfying (3.4), (3.5) and (3.6);

• condition (b) of Theorem 3.2 holds true;

• the interior ellipticity condition (4.1) is satisfied.

Let {Qi} be a sequence of compact domains of class C2,1 satisfying (2.5).
Let us recall that a probability measure µ on (K,B(K)) is said to be

invariant for Pt if, for any t ≥ 0,

∫

K
Ptϕ(x)µ(dx) =

∫

K
ϕ(x)µ(dx) ∀ϕ ∈ C(K) . (5.1)

5.1 Uniqueness

We will show the following uniqueness result.

Theorem 5.1 Pt possesses at most one invariant measure in the class of
all probability measures that are absolutely continuous with respect to µn.

For the proof of the above theorem we will need several intermediate steps.
To begin, let us introduce the following metric ρK in K̊ :

ρK(x, y) =

∣∣∣∣
1

δK(x)
−

1

δK(y)

∣∣∣∣ + |x− y|, x, y ∈ K̊. (5.2)

It is easy to see that (K̊, ρK) is a complete metric space.

Remark 5.2 It is worth noting that a set Q ⊂ K̊ is compact in (K̊, ρK) if
and only Q is compact in Rn with the Euclidean metric. Indeed, suppose
that Q is compact in R

n. Then, Q ⊂ Qi for some positive integer i. Thus,
for all x ∈ Q, δK(x) > 0. Consider any sequence xk ∈ Q and x ∈ Q such
that |xk −x| → 0. Then, ρK(x, xk) → 0. Consequently, Q is also compact in
(K̊, ρK). Conversely, assume that Q is compact in (K̊, ρK) and let x, xk ∈ Q
be such that ρK(x, xk) → 0. Then, |xk − x| → 0. So, Q is compact in the
Euclidean metric.
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Taken (K̊, ρK), consider the semigroup

P̊tϕ(x) := E[ϕ(X(t, x))] ∀ϕ ∈ Bb(K̊) , x ∈ K̊ , t ≥ 0 . (5.3)

Recall that a probability measure µ on (K̊,B(K̊)) is invariant for P̊t iff

∫

K̊
P̊tϕ(x)µ(dx) =

∫

K̊
ϕ(x)µ(dx) ∀ϕ ∈ Cb(K̊) , t ≥ 0 . (5.4)

Our next result is intended to compare the notion of invariant measure for
Pt with the one for P̊t.

Lemma 5.3 (a) If µ << µn is an invariant measure for Pt, then its
restriction to (K̊,B(K̊)) is an invariant measure for P̊t.

(b) If µ << µn is an invariant measure for P̊t, then it can be uniquely
extended to an invariant measure for Pt.

Proof. First of all, we observe that, in view of definitions (4.2) and (5.3),

Ptϕ(x) = P̊tϕ(x) ∀t ≥ 0 , ∀x ∈ K̊ , (5.5)

where ϕ denotes any function in C(K) as well as its restriction to K̊.

(a) Let µ << µn be an invariant measure for Pt, and let ϕ ∈ Cb(K̊). We
shall localize φ in a neighborhood of each domain Qi: take the positive
sequence

εi = min
x∈Qi

δK(x) ∀i ≥ 1

and define

ϕi(x)
.
=

{
ϕ(x)

[
1 − 1

εi
dQi

(x)
]
+

if x ∈ K̊

0 if x ∈ ∂K

where [s]+ = max{s, 0}. Then, ϕi ∈ C(K). Moreover,

|ϕi(x)| ≤ |ϕ(x)| and lim
i→∞

ϕi(x) = ϕ(x) ∀x ∈ K̊ (5.6)

because ϕ ≡ ϕi on Qi. Therefore,

lim
i

∫

K
ϕi(x)µ(dx) =

∫

K
ϕ(x)µ(dx) =

∫

K̊
ϕ(x)µ(dx) , (5.7)
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where the last equality can be justified recalling that µ << µn and
observing that, since ∂K is piecewise smooth, µn(∂K) = 0. Also,
owing to (5.6) and definition (5.3), we obtain

|P̊tϕi(x)| ≤ sup
K̊

|ϕ| and lim
i
P̊tϕi(x) = P̊tϕ(x) ∀x ∈ K̊ .

So, recalling (5.5), by the Dominated Convergence theorem we obtain

∫

K
Ptϕi(x)µ(dx) =

∫

K̊
P̊tϕi(x)µ(dx)

i→∞
−→

∫

K̊
P̊tϕ(x)µ(dx) . (5.8)

On account of (5.7) and (5.8) µ is invariant for P̊t.

(b) Let µ be an invariant measure for P̊t, absolutely continuous with re-
spect to Lebesgue’s measure, and let ϕ ∈ C(K). Then ϕ restricted to
K̊ is a bounded continuous function. Thus, again by (5.5),

∫

K
ϕ(x)µ(dx) =

∫

K̊
ϕ(x)µ(dx) =

∫

K̊
P̊tϕ(x)µ(dx)

=

∫

K̊
Ptϕ(x)µ(dx) =

∫

K
Ptϕ(x)µ(dx) .

So, µ is invariant for Pt. �

Our next result establishes important properties of P̊t.

Lemma 5.4 The transition semigroup P̊t is irreducible and strongly Feller.

Proof: Let us first prove that P̊t is irreducible, that is, for every open subset
A of (K̊, ρK),

P̊t1lA(x) > 0 ∀t > 0 , ∀x ∈ K̊ .

Let x0 ∈ A and let B(x0, r) be contained in A together with its closure.
Then, B(x0, r) ⊂ Qi for some integer i. So, recalling (4.11), by the maximum
principle we obtain

P̊t1lB(x0,r)(x) ≥ P i
t 1lB(x0,r)(x) =

∫

Qi

Gi(t, x, y)dy > 0 .

So, P̊t is irreducible.
Let us now show that P̊t is strongly Feller, that is,

P̊tϕ ∈ Cb(K̊) ∀t > 0 , ∀ϕ ∈ Bb(K̊) .
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For any ϕ ∈ Bb(K̊), all t > 0 and all positive integers i, we know that
P i

tϕ|Qi
∈ C(Qi) since the stopped semigroup P i

t is strongly Feller by well-
known regularity properties of solutions to parabolic equations. On the
other hand, for any compact set Q in (K̊, ρK) or, equivalently (according to
Remark 5.2), in K, we have that

|Ptϕ(x) − P i
tϕ(x)| ≤ E

[∣∣ϕ(X(t, x))
∣∣(1 − 1lt≤τQi

(x)

)]

≤ sup
K̊

|ϕ|P(τQi
(x) < t) ∀x ∈ Q .

Now, in view of Theorem 3.2, property (2.6) ensures that, for any t ∈ (0,∞),

P(τQi
(x) < t) ↓ 0 (i→ ∞) ∀x ∈ K̊ .

So, Dini’s Theorem implies that the above convergence is uniform on Q,
which yields, in turn, the continuity of P̊tϕ on K̊. �

Proof of Theorem 5.1: Let µ and µ̃ be two invariant measures (2) for Pt,
both absolutely continuous with respect to Lebesgue’s measure. Then, in
view of Lemma 5.3 (a), their restrictions to (K̊,B(K̊))—still labeled µ and
µ̃—are invariant for P̊t. Therefore, Khas’minskii’s regularity result (see, e.g.,
[15, Proposition 4.1.1]) and Doob’s uniqueness theorem (see, e.g., [15, The-
orem 4.2.1]) ensure that µ and µ̃ coincide on (K̊,B(K̊)). So, they coincide
on K as well, since µ, µ̃ << µn. �

We conclude this section with two useful properties of P̊t.

Proposition 5.5 Let µ be an invariant measure for P̊t. Then

(a) µ << µn;

(b) for any ϕ ∈ Cb(K̊)

lim
t→∞

P̊tϕ(x) =

∫

K
ϕ(y)µ(dy) ∀x ∈ K̊ .

Proof: Let µ be an invariant measure for P̊t, and let B ∈ B(K̊) be such
that µn(B) = 0. Since µ is a regular measure, from (5.4) we deduce, by a
standard approximation argument, that

∫

K̊
P̊t1lB(x)µ(dx) =

∫

K̊
1lB(x)µ(dx) = µ(B) .

(2)In particular, both µ and eµ are probability measures.
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Then, owing to (4.13),

µ(B) =

∫

K̊

(∫

B
G(t, x, y)dx

)
µ(dx) ,

where G is Green’s function. Since
∫
B G(t, x, y)dx = 0, (a) follows.

Finally, property (b) is an immediate consequence of Doob’s theorem
(see, e.g., [15, Theorem 4.2.1]). �

5.2 A sufficient condition for existence

In this section we will give sufficient conditions for the existence of an in-
variant measure µ for Pt, absolutely continuous with respect to µn.

Let us recall that a family {µt}t≥0 of probability measures on a complete
metric space E is said to be tight if, for any ε > 0, there exists a compact
subset Qε of E such that µt(Qε) ≥ 1 − ε for every t ≥ 0.

Now, denote by πt(x, ·) the law of X(t, x), that is, the measure

πt(x,A) = P(X(t, x) ∈ A) ∀A ∈ B(K) . (5.9)

Lemma 5.6 Let x0 ∈ K̊ be such that

E

[ m∑

j=1

∣∣ log δj(X(t, x0))
∣∣
]
≤ C ∀t ≥ 0 (5.10)

for some C ≥ 0. Then {πt(x0, dy)}t≥0 is tight.

Proof: For any integer i, let Qc
i = K̊ \Qi and consider the positive sequence

εi = min
x∈Qi

δK(x) .

Since δK(x) < εi on Qc
i , we have

πt(x0, Q
c
i ) =

∫

Qc
i

πt(x0, dy) ≤
1∣∣ log εi

∣∣

∫

K̊

m∑

j=1

∣∣ log δj(y)
∣∣ πt(x0, dy)

=
1∣∣ log εi

∣∣ E

[ m∑

j=1

∣∣ log δj(X(t, x0))
∣∣
]
≤

C∣∣ log εi
∣∣ .

Since εi → 0 as i→ ∞, the above inequality implies that, given ǫ > 0,

πt(x0, Qi) = 1 − πt(x0, Q
c
i ) > 1 − ǫ ∀t ≥ 0 ,

for all i large enough. So, {πt(x0, dy)}t≥0 is tight. �

Our next result completes the analysis of the existence and uniqueness of
the invariant measure for Pt.
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Theorem 5.7 Assume

∀x̄ ∈ ∂K , ∀j ∈ J(x̄)

{
(i) lim supK̊∋x→x̄

L0δj(x)
δj(x) log δj(x) < 0

(ii) 〈a(x̄)∇δj(x̄),∇δj(x̄)〉 = 0

Then Pt possesses a unique invariant measure µ << µn.

Proof: Since uniqueness is granted by Theorem 5.1, let us concentrate on
existence. Suppose we can find an invariant measure for the semigroup
P̊t that we introduced in (5.3). Then, µ would be absolutely continuous
with respect to µn in view of Proposition 5.5 (a). Thus, on account of
Lemma 5.3 (b), µ would also be extendable to an invariant measure for Pt,
which would obviously remain absolutely continuous with respect to µn. So,
to complete the proof it is enough to construct an invariant measure for P̊t.

Now, the Krylov-Bogoliubov theorem (see, e.g. [9, Theorem 7.1]) ensures
that P̊t possesses an invariant measure if, for some x0 ∈ K̊, the family of
probability measures {πt(x0, dy)}t≥0 is tight. So, thanks to Lemma 5.6, it
suffices to obtain (5.10). Let α > 0 and V be given by Proposition 3.3. Fix
x0 ∈ K̊, apply Itô’s formula to V (X(t, x0)), and take expectation to obtain

E
[
V (X(t, x0))

]
= V (x0) + E

∫ t

0
(L0V )(X(s, x0))ds ∀t ≥ 0 .

Then, taking into account (3.17),

d

dt
E

[
V (X(t, x0))

]
= E

[
(L0V )(X(t, x0))

]
≤M − αE

[
V (X(t, x0))

]
.

This yields

E
[
V (X(t, x0))

]
≤ e−αtV (x0) +

M

α
∀t ≥ 0 .

Since V coincides with
∑m

j=1

∣∣ log δj(X(t, x0))
∣∣ near ∂K, (5.10) follows. �

5.3 Examples

We conclude with three examples describing possible applications of our
invariance result.

Example 5.8 Let us consider the stochastic differential equation (2.1) in
the closed unit ball K = B1 ⊂ R

2, where b : B1 → R
2 is a Lipschitz vector

field and σ is defined as follows. Let

ν(x) =
(x1, x2)

|x|
, ξ(x) =

(x2,−x1)

|x|
∀x ∈ B1 \B2/3 ,
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and let θ ∈ C1([0, 1]) be such that

0 ≤ θ ≤ 1 , θ ≡

{
1 on B1/3

0 on B1 \B2/3

Define, for every x ∈ B1,

σ(x) = θ(|x|)I +
(
1 − θ(x)

)[(
1 − |x|2

)
ν(x) ⊗ ν(x) + λξ(x) ⊗ ξ(x)

]

where I is the identity matrix and λ ∈ R. Then, it is easy to check that

L0δK(x) = −
λ2

2
− 〈b(x), x〉 ∀x ∈ ∂K .

Therefore, by Theorem 3.2 we have that B1 is invariant for X if and only if

max
|x|=1

〈b(x), x〉 ≤ −
λ2

2
.

Moreover, owing to Theorem 5.1, semigroup Pt has at most one invariant
measure µ << µ2. Furthermore, such a measure does exist if

max
|x|=1

〈b(x), x〉 < −
λ2

2
.

Example 5.9 In the closed cube Q1 ⊂ R
n (see Example 3.1) let us consider

the stochastic differential equation (2.1), where b(x) = (b1(x), . . . , bn(x)) is
a Lipschitz vector field and

σ(x) =

n∑

j=1

(1 − x2
j)ej ⊗ ej ∀x ∈ Q1 .

Then, conditions (3.4), (3.5), and (3.6) hold true, and

L0ϕ =
1

2

n∑

j=1

(1 − x2
j )∂

2
jϕ+ 〈b(x),∇ϕ〉 .

Therefore, recalling (3.8), we conclude that Q̊1 is invariant if and only if

bj(x)
xj

|xj |
≤ 0 ∀x ∈ ∂Q1 , ∀j ∈ J(x) .

Under the above assumption we have that semigroup Pt has at most one
invariant measure µ << µ2, whose existence is guaranteed if

bj(x)
xj

|xj |
< 0 ∀x ∈ ∂Q1 , ∀j ∈ J(x) .
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Example 5.10 Let us consider the stochastic differential equation in the
closed unit ball K = B1 ⊂ R

n,

{
dX(t) = b(X(t))dt + (1 − |X(t)|2) dW (t), t ≥ 0
X(0) = x,

(5.11)

where b : B1 → R
n is a Lipschitz vector field. The corresponding Kol-

mogorov operator is

L0ϕ =
1

2
(1 − |x|2)2∆ϕ+ 〈b(x),∇ϕ〉 .

Applying Theorems 3.2 and 5.1, one checks easily that B1 is invariant for
X if and only if

max
|x|=1

〈b(x), x〉 ≤ 0 ,

and that Pt has at most one invariant measure µ << µ2 under the above
assumption. Moreover, by Theorem 5.7, such a measure does exist if

lim inf
|x|↑1

〈b(x), x〉

(1 − |x|) log(1 − |x|)
> 0 . (5.12)

Now, let us compute the density ρ of µ with respect to Lebesgue’s measure,
in the case when b(x) = βx (where β is a given real number). Note that, for
such a vector field,

(5.12) ⇐⇒ β < 0 .

Differentiating both sides of equation (5.1) with respect to t, the problem
reduces to finding an integrable function ρ such that

div
[
(1 − |x|2)2∇ρ(x) − 2(1 − |x|2)ρ(x)x− 2βρ(x)x

]
= 0 ∀x ∈ B1 .

Therefore, it suffices to solve the equation

(1 − |x|2)2∇ρ(x) − 2(1 − |x|2)ρ(x)x− 2βρ(x)x = 0 ∀x ∈ B1 ,

that is easily seen to possess the solution

ρ(x) =
1

1 − |x|2
e

β

1−|x|2 ∀x ∈ B1 . (5.13)

The above integrable function being integrable since β < 0, (5.13) gives the
required density.

23



6 Appendix

We will prove Theorem 4.4 in three steps.

1. Existence and regularity. Observe that, since one can argue with the
positive and negative part of f separately, it suffices to prove the ex-
istence of a solution to (4.14) for f ≥ 0. Having fixed f , define

ϕf (x) =

∫ ∞

0
e−λtPtf(x)dt ∀x ∈ K . (6.1)

Then, as is well-known, ϕf ∈ D(L) and

Lϕf = λϕf − f in K. (6.2)

Now, for i ∈ N large enough, let

ϕf
i (x) :=

∫ ∞

0
e−λtP i

t f(x)dt (x ∈ Qi) ,

where P i
t are the stopped semigroups defined in (4.6). Owing to (4.7),

ϕf
i (x) ↑ ϕf (x) (i→ ∞) ∀x ∈ K̊ . (6.3)

Moreover, on account of (4.6),

ϕf
i (x) =

∫ ∞

0
e−λt

E[f(X(t, x)1lt≤τQi
(x)]dt ∀x ∈ Qi .

Since our diffusion process is nondegenerate in Qi and Qi is a compact
domain of class C2,1, it is well-known that ϕf

i satisfies
{
λϕf

i − L0ϕ
f
i = f in Qi

ϕf
i = 0 on ∂Qi .

(6.4)

Thus, by classical elliptic theory we conclude that, for all i ∈ N, ϕf
i

belongs to H2(Qi). Also, for any open subset A of K̊ such that Ā ⊂ K̊,

‖ϕf
i ‖H2(A) ≤ CA (6.5)

for a suitable constant CA, independent of i (see, e.g., [23, Appendix A]).
So, from (6.5) and (6.3) we deduce that ϕf ∈ H2

loc(K̊), and (6.4) yields

L0ϕ
f = λϕf − f in K̊ . (6.6)

Since the right-hand side above is continuous in K, (6.6) holds on the
closed domain K and L0ϕ

f ∈ C(K). Therefore, ϕf ∈ D(L0) and, in
view of (6.2), L0ϕ

f = Lϕf .
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2. An auxilary problem. Let ϕ1 ∈ D(L0) be the solution of (4.14) for
f ≡ 1, that we constructed in the previous step. Since Pt1 = 1, by
(6.1) we conclude that

ϕ1(x) =
1

λ
∀x ∈ K .

Moreover, owing to (6.3),

ϕ1
i (x) ↑

1

λ
(i→ ∞) ∀x ∈ K̊ , (6.7)

where ϕ1
i is the solution of (6.4) for f ≡ 1.

3. Uniqueness. We will show that, if
{
u ∈ D(L0)

λu− L0u = 0 in K ,

then u ≡ 0. Let

v(x) :=
1

λ
−

u(x)

λ(1 + ‖u‖C(K))
x ∈ K .

Then 



v ∈ D(L0)

v(x) > 0 ∀x ∈ K

λv − L0v = 1 in K .

Therefore, comparing v and the solution ϕ1
i of (6.4) for f ≡ 1 on Qi,

we obtain
v(x) ≥ ϕ1

i (x) ∀x ∈ Qi

for all i ∈ N large enough. Hence, in view of (6.7),

v(x) ≥
1

λ
∀x ∈ K ,

which in turn implies that u(x) ≤ 0 for all x ∈ K. By the same
argument applied to −u we conclude that u ≡ 0. �
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