Optimal Control Problems for Differential Inclusions

Piermarco Cannarsa

University of Rome “Tor Vergata”

16th French-German-Polish Conference on Optimization

Kraków, Poland

September 23-27, 2013
Outline

1. Three basic issues in optimal control
 - Existence of solutions
 - Necessary conditions
 - Dynamic programming

2. Semiconcavity results for nonparameterized control systems
 - Semiconcavity for Mayer problem
 - Semiconcavity for the minimum time problem
Outline

1. Three basic issues in optimal control
 - Existence of solutions
 - Necessary conditions
 - Dynamic programming

2. Semiconcavity results for nonparameterized control systems
 - Semiconcavity for Mayer problem
 - Semiconcavity for the minimum time problem
Mayer problem for parameterized control systems

\[t \leq T \quad x \in \mathbb{R}^N \quad y_{t,x,\alpha}(\cdot) \text{ solution} \]

\[
\begin{cases}
\dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\
y(t) = x
\end{cases}
\]

where

- \(A \) compact
- \(\alpha : [t, T] \rightarrow A \) measurable
- \(f \in C(\mathbb{R}^N \times A; \mathbb{R}^N) \) continuous
 - \(|f(x, a)| \leq C_0(1 + |x|)\)
 - \(|f(x, a) - f(y, a)| \leq C_1|x - y|\)

given \(\phi \in \text{Lip}(\mathbb{R}^N) \) want to minimize

\[\alpha \mapsto \phi(y_{t,x,\alpha}(T)) \]
Associated differential inclusion

the control system

\[
\begin{aligned}
\dot{y}(s) &= f(y(s), \alpha(s)) \quad s \in (t, T) \\
y(t) &= x
\end{aligned}
\]

\hspace{1cm} (CS)

can be recast as the differential inclusion

\[
\begin{aligned}
\dot{y}(s) &\in F(y(s)) \quad \text{a.e in } (t, T) \\
y(t) &= x
\end{aligned}
\]

\hspace{1cm} (DI)

where \(F(x) = \{ f(x, a) : a \in A \} \)

Our goal

point out analogies and differences in the way to address

- existence of solutions
- necessary conditions
- dynamic programming method and optimality conditions

when passing from parameterized to nonparameterized control systems
Associated differential inclusion

the control system

\[
\begin{align*}
\dot{y}(s) &= f(y(s), \alpha(s)) \quad s \in (t, T) \\
y(t) &= x
\end{align*}
\]

\[\text{(CS)}\]

can be recast as the differential inclusion

\[
\begin{align*}
\dot{y}(s) &\in F(y(s)) \quad \text{a.e in} \quad (t, T) \\
y(t) &= x
\end{align*}
\]

\[\text{(DI)}\]

where \[F(x) = \{f(x, a) : a \in A\}\]

Our goal

point out analogies and differences in the way to address

- existence of solutions
- necessary conditions
- dynamic programming method and optimality conditions

when passing from parameterized to nonparameterized control systems
Associated differential inclusion

the control system

\[
\begin{align*}
\dot{y}(s) &= f(y(s), \alpha(s)) \quad s \in (t, T) \\
y(t) &= x
\end{align*}
\] \hspace{1cm} (CS)

can be recast as the differential inclusion

\[
\begin{align*}
\dot{y}(s) &\in F(y(s)) \quad \text{a.e in } (t, T) \\
y(t) &= x
\end{align*}
\] \hspace{1cm} (DI)

where \(F(x) = \{ f(x, a) : a \in A \} \)

Our goal

point out analogies and differences in the way to address

- existence of solutions
- necessary conditions
- dynamic programming method and optimality conditions

when passing from parameterized to nonparameterized control systems
Outline

1. Three basic issues in optimal control
 - Existence of solutions
 - Necessary conditions
 - Dynamic programming

2. Semiconcavity results for nonparameterized control systems
 - Semiconcavity for Mayer problem
 - Semiconcavity for the minimum time problem
Existence of solutions

\[
\begin{align*}
\min_\alpha \phi(y_{t,x,\alpha}(T)) \quad \text{subject to} \quad & \begin{cases}
\dot{y}(s) = f(y(s), \alpha(s)) \\
y(t) = x
\end{cases} \quad s \in (t, T)
\end{align*}
\]

Theorem

If \(f(x, A) \) is convex then (M) has a solution

- control system is recast as differential inclusion

\[
\begin{align*}
\begin{cases}
\dot{y}(s) \in F(y(s)) \quad \text{a.e in} \quad (t, T) \\
y(t) = x
\end{cases}
\end{align*}
\]

where \(F(x) = \{ f(x, a) : a \in A \} \)

- compactness of trajectories of (DI) since \(F(\cdot) \) has compact convex images
Existence of solutions

\[\min_{\alpha} \phi(y_{t,x,\alpha}(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases} \]

(MP)

Theorem

If \(f(x, A) \) is convex then (M) has a solution

- control system is recast as differential inclusion
 \[\begin{cases} \dot{y}(s) \in F(y(s)) & \text{a.e in } (t, T) \\ y(t) = x \end{cases} \]
 (DI)

where \(F(x) = \{ f(x, a) : a \in A \} \)

- compactness of trajectories of (DI) since \(F(\cdot) \) has compact convex images
Existence of solutions

\[
\min_{\alpha} \phi(y_{t,x}, \alpha(T)) \quad \text{subject to} \quad \begin{cases}
\dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\
y(t) = x
\end{cases}
\] (MP)

Theorem

If \(f(x, A) \) *is convex then (M) has a solution*

- control system is recast as differential inclusion

\[
\begin{cases}
\dot{y}(s) \in F(y(s)) & \text{a.e in} \ (t, T) \\
y(t) = x
\end{cases}
\] (DI)

where \(F(x) = \{ f(x, a) : a \in A \} \)

- compactness of trajectories of (DI) since \(F(\cdot) \) has compact convex images
Existence of solutions

\[
\min_{\alpha} \phi(y_{t,x},\alpha(T)) \quad \text{subject to} \quad \begin{cases}
 \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\
y(t) = x
\end{cases}
\] (MP)

Theorem

If \(f(x, A) \) is convex then (M) has a solution

- control system is recast as differential inclusion

 \[
 \begin{cases}
 \dot{y}(s) \in F(y(s)) & \text{a.e in} \ (t, T) \\
y(t) = x
 \end{cases}
 \] (DI)

where \(F(x) = \{ f(x, a) : a \in A \} \)

- compactness of trajectories of (DI) since \(F(\cdot) \) has compact convex images
Existence of solutions

min_{\alpha} \phi(y_{t,x,\alpha}(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases} \quad (MP)

Theorem

If \(f(x, A) \) is convex then (M) has a solution

- control system is recast as differential inclusion

\[
\begin{cases}
\dot{y}(s) \in F(y(s)) & \text{a.e in} \ (t, T) \\
y(t) = x
\end{cases} \quad (DI)
\]

where \(F(x) = \{ f(x, a) : a \in A \} \)

- compactness of trajectories of (DI) since \(F(\cdot) \) has compact convex images
Set-valued functions

$F : \mathbb{R}^N \to \mathbb{R}^N$ is assumed to satisfy

- $F(x) \neq \emptyset$ convex compact $\forall x$
- F locally Lipschitz with respect to dist_H (Hausdorff)
- $\exists r > 0$ so that $\max\{|v| : v \in F(x)\} \leq r(1 + |x|)$

the Hausdorff distance of two compact sets $S, S' \subset \mathbb{R}^N$

- semidistance

$$\text{dist}_H^+(S, S') = \inf\{\varepsilon : S \subseteq S' + \varepsilon B\}$$

- distance

$$\text{dist}_H(S, S') = \max\{\text{dist}_H^+(S, S'), \text{dist}_H^+(S', S)\}$$
Set-valued functions

\(F : \mathbb{R}^N \rightrightarrows \mathbb{R}^N \) is assumed to satisfy

- \(F(x) \neq \emptyset \) convex compact \(\forall x \)
- \(F \) locally Lipschitz with respect to \(\text{dist}_H \) (Hausdorff)
- \(\exists r > 0 \) so that \(\max\{|v| : v \in F(x)\} \leq r(1 + |x|) \)

the Hausdorff distance of two compact sets \(S, S' \subset \mathbb{R}^N \)

- semidistance
 \(\text{dist}_H^+(S, S') = \inf\{\varepsilon : S \subseteq S' + \varepsilon B\} \)

- distance
 \(\text{dist}_H(S, S') = \max\{\text{dist}_H^+(S, S'), \text{dist}_H^+(S', S)\} \)
Set-valued functions

\(F : \mathbb{R}^N \rightrightarrows \mathbb{R}^N \) is assumed to satisfy

- \(F(x) \neq \emptyset \) convex compact \(\forall x \)
- \(F \) locally Lipschitz with respect to \(\text{dist}_H \) (Hausdorff)
- \(\exists r > 0 \) so that \(\max\{|v| : v \in F(x)\} \leq r(1 + |x|) \)

the Hausdorff distance of two compact sets \(S, S' \subset \mathbb{R}^N \)

- semidistance
 \[
 \text{dist}_H^+(S, S') = \inf\{\varepsilon : S \subseteq S' + \varepsilon B\}
 \]

- distance
 \[
 \text{dist}_H(S, S') = \max\{\text{dist}_H^+(S, S'), \text{dist}_H^+(S', S)\}
 \]
Mayer problem for differential inclusions

given
- \(\phi \in \text{Lip}(\mathbb{R}^N) \) and \(F : \mathbb{R}^N \rightrightarrows \mathbb{R}^N \) with
 - \(F(x) \neq \emptyset \) convex compact \(\forall x \)
 - \(F \) locally Lipschitz with respect to \(\text{dist}_H \) (Hausdorff)
 - \(\exists r > 0 \) so that \(\max\{|v| : v \in F(x)\} \leq r(1 + |x|) \)
- \(T \in \mathbb{R}, \; t \leq T, \; x \in \mathbb{R}^N \)

\[y(s) \in F(y(s)) \; \text{a.e in} \; (t, T) \]
\[y(t) = x \]

Theorem

The infimum

\[\inf \left\{ \phi(y(T)) : y \in \mathcal{Y}_T(t, x) \right\} \]

is attained
Mayer problem for differential inclusions

given

- \(\phi \in \text{Lip}(\mathbb{R}^N) \) and \(F : \mathbb{R}^N \rightrightarrows \mathbb{R}^N \) with
 - \(F(x) \neq \emptyset \) convex compact \(\forall x \)
 - \(F \) locally Lipschitz with respect to \(\text{dist}_H \) (Hausdorff)
 - \(\exists r > 0 \) so that \(\max\{|v| : v \in F(x)\} \leq r(1 + |x|) \)
- \(T \in \mathbb{R}, \ t \leq T, \ x \in \mathbb{R}^N \)

denote by \(\mathcal{Y}_T(t, x) \) all absolutely continuous arcs

\[
\begin{cases}
\dot{y}(s) \in F(y(s)) & \text{a.e in } (t, T) \\
y(t) = x
\end{cases}
\]

Theorem

The infimum

\[
\inf \left\{ \phi(y(T)) : y \in \mathcal{Y}_T(t, x) \right\}
\]

is attained
Outline

1. Three basic issues in optimal control
 - Existence of solutions
 - Necessary conditions
 - Dynamic programming

2. Semiconcavity results for nonparameterized control systems
 - Semiconcavity for Mayer problem
 - Semiconcavity for the minimum time problem
Maximum Principle: parameterized case

want to find necessary conditions for a control α^* to be optimal

$$\phi(y_{t,x}, \alpha^*(T)) = \min_{\alpha} \phi(y_{t,x}, \alpha(T))$$

Theorem

- $\partial_x f \in C(\mathbb{R}^N \times A; \mathbb{R}^{N \times N})$ and $\phi \in C^1(\mathbb{R}^N)$
- α^* and $y^* := y_{t,x}, \alpha^*$ optimal pair

let p^* be the solution of the adjoint problem

$$\begin{cases}
\dot{p}(s) = -\partial_x f(y^*(s), \alpha^*(s))^\text{tr} p(s) & (s \in [0, T]) \\
p(T) = -\nabla \phi(y^*(T))
\end{cases}$$

then

$$p^*(s) \cdot f(y^*(s), \alpha^*(s)) = \max_{a \in A} p^*(s) \cdot f(y^*(s), a) \quad (s \in [0, T] \ a.e.)$$
Maximum Principle: parameterized case

want to find necessary conditions for a control \(\alpha^* \) to be optimal

\[
\phi(y_t, x, \alpha^*(T)) = \min_\alpha \phi(y_t, x, \alpha(T))
\]

Theorem

- \(\partial_x f \in C(\mathbb{R}^N \times A; \mathbb{R}^{N \times N}) \) and \(\phi \in C^1(\mathbb{R}^N) \)
- \(\alpha^* \) and \(y^* := y_{t, x, \alpha^*} \) optimal pair

let \(p^* \) be the solution of the adjoint problem

\[
\begin{cases}
 \dot{p}(s) = -\partial_x f(y^*(s), \alpha^*(s))^\text{tr} p(s) & (s \in [0, T]) \\
 p(T) = -\nabla \phi(y^*(T))
\end{cases}
\]

then

\[
p^*(s) \cdot f(y^*(s), \alpha^*(s)) = \max_{a \in A} p^*(s) \cdot f(y^*(s), a) & (s \in [0, T] \text{ a.e.})
\]
Maximum Principle: parameterized case

want to find necessary conditions for a control α^* to be optimal

$$\phi(y_{t,x},\alpha^*(T)) = \min_{\alpha} \phi(y_{t,x},\alpha(T))$$

Theorem

- $\partial_x f \in C(\mathbb{R}^N \times A; \mathbb{R}^{N \times N})$ and $\phi \in C^1(\mathbb{R}^N)$
- α^* and $y^* := y_{t,x,\alpha^*}$ optimal pair

let p^* be the solution of the adjoint problem

$$\begin{cases}
\dot{p}(s) = -\partial_x f(y^*(s), \alpha^*(s))^\text{tr} p(s) & (s \in [0, T]) \\
p(T) = -\nabla \phi(y^*(T))
\end{cases}$$

then

$$p^*(s) \cdot f(y^*(s), \alpha^*(s)) = \max_{a \in A} p^*(s) \cdot f(y^*(s), a) \quad (s \in [0, T] \text{ a.e.})$$
Necessary conditions: nonparameterized case

Let \(\phi : \mathbb{R}^N \to \mathbb{R} \) be Lipschitz and let \(F : \mathbb{R}^N \rightrightarrows \mathbb{R}^N \) satisfy

- \(F(x) \neq \emptyset \) convex compact \(\forall x \)
- \(F \) locally Lipschitz with respect to \(\text{dist}_H \) (Hausdorff)
- \(\exists r > 0 \) so that \(\max\{ |v| : v \in F(x) \} \leq r(1 + |x|) \)

want to find necessary conditions for a trajectory \(y^* \) to be optimal

\[
\phi(y^*(T)) = \min \left\{ \phi(y(T)) : \begin{cases} \dot{y} \in F(y) \\ y(t) = x \end{cases} \right\}
\]

difficulty: existence of smooth parameterizations the Hamiltonian \(H : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \) associated to \(F \) is defined by

\[
H(x, p) = \max_{v \in F(x)} p \cdot v
\]

there is a one-to-one correspondence between \(H \) and \(F \):

\[
v \in F(x) \iff p \cdot v \leq H(x, p) \quad \forall p \in \mathbb{R}^N
\]
Necessary conditions: nonparameterized case

Let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be Lipschitz and let $F : \mathbb{R}^N \Rightarrow \mathbb{R}^N$ satisfy

- $F(x) \neq \emptyset$ convex compact $\forall x$
- F locally Lipschitz with respect to dist_H (Hausdorff)
- $\exists r > 0$ so that $\max\{|v| : v \in F(x)\} \leq r(1 + |x|)$

Want to find necessary conditions for a trajectory y^* to be optimal

$$\phi(y^*(T)) = \min \left\{ \phi(y(T)) : \begin{cases} \dot{y} \in F(y) \\ y(t) = x \end{cases} \right\}$$

difficulty: existence of smooth parameterizations

The Hamiltonian $H : \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$ associated to F is defined by

$$H(x, p) = \max_{v \in F(x)} p \cdot v$$

There is a one-to-one correspondence between H and F:

$$v \in F(x) \iff p \cdot v \leq H(x, p) \quad \forall p \in \mathbb{R}^N$$
Necessary conditions: nonparameterized case

let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be Lipschitz and let $F : \mathbb{R}^N \rightrightarrows \mathbb{R}^N$ satisfy

- $F(x) \neq \emptyset$ convex compact $\forall x$
- F locally Lipschitz with respect to dist_H (Hausdorff)
- $\exists r > 0$ so that $\max\{|v| : v \in F(x)\} \leq r(1 + |x|)$

want to find necessary conditions for a trajectory y^* to be optimal

$$\phi(y^*(T)) = \min \left\{ \phi(y(T)) : \begin{cases} \dot{y} \in F(y) \\ y(t) = x \end{cases} \right\}$$

difficulty: existence of smooth parameterizations the Hamiltonian

$H : \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$ associated to F is defined by

$$H(x, p) = \max_{v \in F(x)} p \cdot v$$

there is a one-to-one correspondence between H and F:

$$v \in F(x) \iff p \cdot v \leq H(x, p) \quad \forall p \in \mathbb{R}^N$$
The nonsmooth Maximum Principle

Theorem

Let

\[\phi(y^*(T)) = \min \left\{ \phi(y(T)) : \begin{cases} \dot{y} \in F(y) \\ y(t) = x \end{cases} \right\} \]

Then there exists \(p^* : [t, T] \rightarrow \mathbb{R}^N \) absolutely continuous so that

(a) \((-\dot{p}^*(s), \dot{y}^*(s)) \in \partial H(y^*(s), p^*(s)) \) for a.e. \(s \in [0, T] \)

(b) \(p^*(T) \in -\partial \phi(y^*(T)) \)

- \(\partial \phi(x) \) denotes the Clarke subgradient of \(\phi \) at \(x \), that is,
 \[\partial \phi(x) = \text{co} \left\{ p \in \mathbb{R}^N : p = \lim_{n} \nabla \phi(x_n) \right\} \]

- Condition (b) above encodes maximum principle
 \[p^*(s) \cdot \dot{y}^*(s) = H(y^*(s), p^*(s)) = \max_{v \in F(y(s))} p^*(s) \cdot v \]
The nonsmooth Maximum Principle

Theorem

Let

\[
\phi(y^*(T)) = \min \left\{ \phi(y(T)) : \begin{cases} \dot{y} \in F(y) \\ y(t) = x \end{cases} \right\}
\]

Then there exists \(p^* : [t, T] \to \mathbb{R}^N \) absolutely continuous so that

(a) \((- \dot{p}^*(s), \dot{y}^*(s)) \in \partial H(y^*(s), p^*(s)) \) for a.e. \(s \in [0, T] \)

(b) \(p^*(T) \in -\partial \phi(y^*(T)) \)

- \(\partial \phi(x) \) denotes the Clarke subgradient of \(\phi \) at \(x \), that is,

\[
\partial \phi(x) = \overline{co}\{ p \in \mathbb{R}^N : p = \lim_n \nabla \phi(x_n) \}
\]

- condition (b) above encodes maximum principle

\[
p^*(s) \cdot \dot{y}^*(s) = H(y^*(s), p^*(s)) = \max_{v \in F(y(s))} p^*(s) \cdot v
\]
Outline

1. Three basic issues in optimal control
 - Existence of solutions
 - Necessary conditions
 - Dynamic programming

2. Semiconcavity results for nonparameterized control systems
 - Semiconcavity for Mayer problem
 - Semiconcavity for the minimum time problem
Dynamic Programming method

Mayer problem

\[
\min_{\alpha} \phi(y_{t}, x, \alpha(T)) \quad \text{subject to} \quad \begin{cases}
\dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\
y(t) = x
\end{cases}
\]

(MP)

- define the value function of (MP)

\[
V(t, x) = \min_{\alpha} \phi(y_{t}, x, \alpha(T)) \quad (t, x) \in (-\infty, T] \times \mathbb{R}^N
\]

- consider the Hamilton-Jacobi equation

\[
\begin{cases}
-u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\
u(T, x) = \phi(x) & x \in \mathbb{R}^N
\end{cases}
\]

(HJ)

- characterize \(V \) via (HJ)

- recover optimality conditions from the properties of \(V \) (feedback)
Dynamic Programming method

Mayer problem

\[\min_{\alpha} \phi(y_{t,x}, \alpha(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases} \]

\((MP) \)

- define the value function of \((MP)\)

\[V(t, x) = \min_{\alpha} \phi(y_{t,x}, \alpha(T)) \quad (t, x) \in (-\infty, T] \times \mathbb{R}^N \]

- consider the Hamilton-Jacobi equation

\[\begin{cases} -u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\ u(T, x) = \phi(x) & x \in \mathbb{R}^N \end{cases} \]

\((HJ) \)

- characterize \(V \) via \((HJ)\)

- recover optimality conditions from the properties of \(V \) (feedback)
Dynamic Programming method

Mayer problem

\[\min_{\alpha} \phi(y_{t,x}, \alpha(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases} \quad (MP) \]

- define the value function of \((MP)\):

\[V(t, x) = \min_{\alpha} \phi(y_{t,x}, \alpha(T)) \quad (t, x) \in (-\infty, T] \times \mathbb{R}^N \]

- consider the Hamilton-Jacobi equation

\[\begin{cases} -u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\ u(T, x) = \phi(x) & x \in \mathbb{R}^N \end{cases} \quad (HJ) \]

- characterize \(V \) via \((HJ)\)

- recover optimality conditions from the properties of \(V \) (feedback)
Dynamic Programming method

Mayer problem

\[\min_{\alpha} \phi(y_t, x, \alpha(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases} \] (MP)

- define the value function of (MP)

\[V(t, x) = \min_{\alpha} \phi(y_t, x, \alpha(T)) \quad (t, x) \in (-\infty, T] \times \mathbb{R}^N \]

- consider the Hamilton-Jacobi equation

\[\begin{cases} -u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\ u(T, x) = \phi(x) \quad x \in \mathbb{R}^N \end{cases} \] (HJ)

- characterize \(V \) via (HJ)

- recover optimality conditions from the properties of \(V \) (feedback)
Dynamic Programming method

Mayer problem

\[\min_{\alpha} \phi(y(t, x, \alpha(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases} \] (MP)

- define the value function of (MP)
 \[V(t, x) = \min_{\alpha} \phi(y(t, x, \alpha(T)) \quad (t, x) \in (-\infty, T] \times \mathbb{R}^N \]

- consider the Hamilton-Jacobi equation
 \[\begin{cases} -u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\ u(T, x) = \phi(x) & x \in \mathbb{R}^N \end{cases} \] (HJ)

- characterize \(V \) via (HJ)
 - recover optimality conditions from the properties of \(V \) (feedback)
Dynamic Programming method

Mayer problem

\[
\min_{\alpha} \phi(y_{t,x},\alpha(T)) \quad \text{subject to} \quad \left\{ \begin{array}{l}
\dot{y}(s) = f(y(s), \alpha(s)) \quad s \in (t, T) \\
y(t) = x
\end{array} \right.
\]

- define the value function of (\(MP\))

\[
V(t, x) = \min_{\alpha} \phi(y_{t,x},\alpha(T)) \quad (t, x) \in (-\infty, T] \times \mathbb{R}^N
\]

- consider the Hamilton-Jacobi equation

\[
\begin{cases}
-u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\
u(T, x) = \phi(x) & x \in \mathbb{R}^N
\end{cases}
\]

- characterize \(V\) via (\(HJ\))

- recover optimality conditions from the properties of \(V\) (feedback)
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
-u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\
u(T, x) = \phi(x) & x \in \mathbb{R}^N
\end{cases}
\]

(HJ)

- has no global smooth solution
- may have infinitely many Lipschitz solutions satisfying (HJ) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave u satisfying (HJ) a.e.
Weak solutions to Hamilton-Jacobi equations

\[
\begin{align*}
- u_t(t, x) + H(x, -\nabla u(t, x)) &= 0 \\
\quad u(T, x) &= \phi(x)
\end{align*}
\]

- has no global smooth solution
- may have infinitely many Lipschitz solutions satisfying \((HJ)\) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
 - the viscosity solution is the unique semiconcave \(u\) satisfying \((HJ)\) a.e.
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
-u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\
u(T, x) = \phi(x) & x \in \mathbb{R}^N
\end{cases}
\]

\((HJ) \)

- has no global smooth solution
- may have infinitely many Lipschitz solutions satisfying \((HJ)\) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u\) satisfying \((HJ)\) a.e.
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
-u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\
\quad u(T, x) = \phi(x) & x \in \mathbb{R}^N
\end{cases}
\] (HJ)

- has no global smooth solution
- may have infinitely many Lipschitz solutions satisfying (HJ) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u \) satisfying (HJ) a.e.
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
-u_t(t, x) + H(x, -\nabla u(t, x)) = 0 & (t, x) \in (-\infty, T) \times \mathbb{R}^N \\
u(T, x) = \phi(x) & x \in \mathbb{R}^N
\end{cases}
\] \hspace{1cm} (HJ)

- has no global smooth solution
- may have infinitely many Lipschitz solutions satisfying (HJ) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u \) satisfying (HJ) a.e.
Semiconcave functions

Definition

We say that a continuous function \(u : \mathbb{R}^N \rightarrow \mathbb{R} \) is (linearly) semiconcave if there exists a constant \(K > 0 \) (a semiconcavity constant for \(u \)) such that

\[
 u(x + z) + u(x - z) - 2u(x) \leq K|z|^2
\]

for all \(x, z \in \mathbb{R}^N \)

- \(u \) is semiconcave with semiconcavity \(K \) if any only if the function

\[
 x \mapsto u(x) - \frac{K}{2}|x|^2
\]

is concave

- \(v \) is semiconvex with semiconvexity constant \(K \) if \(-v\) is semiconcave with semiconcavity constant \(K \)
Semiconcave functions

Definition

We say that a continuous function $u : \mathbb{R}^N \rightarrow \mathbb{R}$ is (linearly) semiconcave if there exists a constant $K > 0$ (a semiconcavity constant for u) such that

$$u(x + z) + u(x - z) - 2u(x) \leq K|z|^2$$

for all $x, z \in \mathbb{R}^N$.

- u is semiconcave with semiconcavity K if any only if the function $x \mapsto u(x) - \frac{K}{2}|x|^2$ is concave.

- v is semiconvex with semiconvexity constant K if $-v$ is semiconcave with semiconcavity constant K.

P. Cannarsa (Rome Tor Vergata)
Semiconcave functions

Definition

We say that a continuous function $u : \mathbb{R}^N \to \mathbb{R}$ is (linearly) semiconcave if there exists a constant $K > 0$ (a semiconcavity constant for u) such that

$$u(x + z) + u(x - z) - 2u(x) \leq K|z|^2$$

for all $x, z \in \mathbb{R}^N$

- u is semiconcave with semiconcavity K if any only if the function

$$x \mapsto u(x) - \frac{K}{2}|x|^2$$

is concave

- v is semiconvex with semiconvexity constant K if $-v$ is semiconcave with semiconcavity constant K
Semiconcave functions

Definition

We say that a continuous function $u : \mathbb{R}^N \to \mathbb{R}$ is (linearly) semiconcave if there exists a constant $K > 0$ (a semiconcavity constant for u) such that

$$u(x + z) + u(x - z) - 2u(x) \leq K|z|^2$$

for all $x, z \in \mathbb{R}^N$.

- u is semiconcave with semiconcavity K if any only if the function
 $$x \mapsto u(x) - \frac{K}{2}|x|^2$$
 is concave.

- v is semiconvex with semiconvexity constant K if $-v$ is semiconcave with semiconcavity constant K.
For more on semiconcave functions see

- Control theory
- Nonsmooth and variational analysis
 Rockafellar (1982)
- Differential geometry
- Monographs
 C – Sinestrari (Birkhäuser, 2004)
 Villani (Springer, 2009)
For more on semiconcave functions see

- **Control theory**

- **Nonsmooth and variational analysis**
 Rockafellar (1982)

- **Differential geometry**

- **Monographs**
 C – Sinestrari (Birkhäuser, 2004)
 Villani (Springer, 2009)
For more on semiconcave functions see

- Control theory
- Nonsmooth and variational analysis
 - Rockafellar (1982)
- Monographs
 - C – Sinestrari (Birkhäuser, 2004)
 - Villani (Springer, 2009)
Semiconcavity of V

Value function

$$V(t, x) = \inf_{\alpha} \phi(y_{t,x,\alpha}(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases}$$

Theorem (C – Frankowska, 1991)

Assume

- ϕ semiconcave
- $\|f_x(x, a) - f_x(y, a)\| \leq C_2|x - y|$ for all $x, y \in \mathbb{R}^N$, $a \in A$

Then V is (linearly) semiconcave on $(-\infty, T] \times \mathbb{R}^N$

the proof uses the fact that f is a smooth parameterization of the process
Semiconcavity of V

Value function

$$V(t, x) = \inf_\alpha \phi(y_{t,x,\alpha}(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) &= f(y(s), \alpha(s)) \quad s \in (t, T) \\ y(t) &= x \end{cases} \quad (MP)$$

Theorem (C – Frankowska, 1991)

Assume

- ϕ semiconcave
- $\|f_x(x, a) - f_x(y, a)\| \leq C_2|x - y|$ for all $x, y \in \mathbb{R}^N, a \in A$

Then V is (linearly) semiconcave on $(-\infty, T] \times \mathbb{R}^N$

the proof uses the fact that f is a smooth parameterization of the process...
Semiconcavity of V

Value function

$$V(t, x) = \inf_{\alpha} \phi(y_{t,x,\alpha}(T)) \quad \text{subject to} \quad \begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\ y(t) = x \end{cases} \quad (MP)$$

Theorem (C – Frankowska, 1991)

Assume

- ϕ semiconcave
- $\|f_x(x, a) - f_x(y, a)\| \leq C_2|x - y|$ for all $x, y \in \mathbb{R}^N$, $a \in A$

Then V is (linearly) semiconcave on $(-\infty, T] \times \mathbb{R}^N$

The proof uses the fact that f is a smooth parameterization of the process.
Semiconcavity of V

Value function

\[V(t, x) = \inf_{\alpha} \phi(y_t, x, \alpha(T)) \] subject to \[
\begin{cases}
\dot{y}(s) = f(y(s), \alpha(s)) & s \in (t, T) \\
y(t) = x
\end{cases}
\] (MP)

Theorem (C – Frankowska, 1991)

Assume

- ϕ semiconcave
- $\|f_x(x, a) - f_x(y, a)\| \leq C_2|x - y|$ for all $x, y \in \mathbb{R}^N$, $a \in A$

Then V is (linearly) semiconcave on $(-\infty, T] \times \mathbb{R}^N$

the proof uses the fact that f is a smooth parameterization of the process
Sketch of the proof

\[x, z \in \mathbb{R}^N \]

- \(\alpha \) optimal at \(x \)
- \(y(\cdot) = y_{t,x,\alpha}(\cdot), \ y_\pm(\cdot) = y_{t,x\pm z,\alpha}(\cdot) \)

by semiconcavity of \(\phi \) and smoothness of flow

\[
V(t, x + z) + V(t, x - z) - 2V(t, x) \\
\leq \phi(y_+(T)) + \phi(y_-(T)) - 2\phi(y(T)) \\
= \phi(y_+(T)) + \phi(y_-(T)) - 2\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) \\
\leq c|y_+(T) - y_-(T)|^2 \leq c|z|^2 \\
+ 2\left[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T))\right] \\
\leq c|y_+(T) + y_-(T) - 2y(T)| \leq c|z|^2
\]
Sketch of the proof

\(x, z \in \mathbb{R}^N \)

- \(\alpha \) optimal at \(x \)
- \(y(\cdot) = y_{t,x,\alpha}(\cdot), \ y_{\pm}(\cdot) = y_{t,x \pm z,\alpha}(\cdot) \)

by semiconcavity of \(\phi \) and smoothness of flow

\[
V(t, x + z) + V(t, x - z) - 2V(t, x) \\
\leq \phi(y_+(T)) + \phi(y_-(T)) - 2\phi(y(T)) \\
= \phi(y_+(T)) + \phi(y_-(T)) - 2\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) \\
\leq c|y_+(T) - y_-(T)|^2 \leq c|z|^2 \\
+ 2\left[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T)) \right] \\
\leq c|y_+(T) + y_-(T) - 2y(T)| \leq c|z|^2
\]
Sketch of the proof

\(x, z \in \mathbb{R}^N \)

- \(\alpha \) optimal at \(x \)
- \(y(\cdot) = y_{t,x,\alpha}(\cdot) \), \(y_{\pm}(\cdot) = y_{t,x \pm z,\alpha}(\cdot) \)

by semiconcavity of \(\phi \) and smoothness of flow

\[
\begin{align*}
V(t, x + z) + V(t, x - z) - 2V(t, x) & \leq \phi(y_+(T)) + \phi(y_-(T)) - 2\phi(y(T)) \\
& = \phi(y_+(T)) + \phi(y_-(T)) - 2\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) \\
& \leq \left|y_+(T) - y_-(T)\right|^2 \leq c|z|^2
\end{align*}
\]

\[
+2\left[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T))\right] \leq c|y_+(T) + y_-(T) - 2y(T)| \leq c|z|^2
\]
Outline

1. Three basic issues in optimal control
 - Existence of solutions
 - Necessary conditions
 - Dynamic programming

2. Semiconcavity results for nonparameterized control systems
 - Semiconcavity for Mayer problem
 - Semiconcavity for the minimum time problem
a semiconcavity result

Value function

\[V(t, x) = \min \left\{ \phi(y(T)) \mid \begin{array}{l} \dot{y} \in F(y) \\ y(t) = x \end{array} \right\} \]

- \(\phi : \mathbb{R}^N \to \mathbb{R} \) semiconcave
- \(F(x) \neq \emptyset \) convex compact dist-\(H \)-Lipschitz and \(\max\{|v| : v \in F(x)\} \leq r(1 + |x|) \)
- \(H(x, p) = \max_{v \in F(x)} p \cdot v \)

Theorem (C – Wolenski)

Assume

(H1) \(x \mapsto H(x, p) \) semiconvex with constant \(c|p| \)
(H2) \(\nabla_p H(x, p) \) Lipschitz in \(x \) uniformly for \(|p| = 1 \)

Then \(V \) is semiconcave on \((-\infty, T] \times \mathbb{R}^N \)
a semiconcavity result

Value function

$$V(t, x) = \min \left\{ \phi(y(T)) \mid \dot{y} \in F(y), y(t) = x \right\}$$

- \(\phi : \mathbb{R}^N \to \mathbb{R} \) semiconcave
- \(F(x) \neq \emptyset \) convex compact dist\(\mathcal{H} \)-Lipschitz and \(\max\{|v| : v \in F(x)\} \leq r(1 + |x|) \)
- \(H(x, p) = \max_{v \in F(x)} p \cdot v \)

Theorem (C – Wolenski)

Assume

(H1) \(x \mapsto H(x, p) \) semiconvex with constant \(c|p| \)
(H2) \(\nabla_p H(x, p) \) Lipschitz in \(x \) uniformly for \(|p| = 1 \)

Then \(V \) is semiconcave on \((\minus\infty, T] \times \mathbb{R}^N\)
a semiconcavity result

Value function

\[V(t,x) = \min \left\{ \phi(y(T)) \mid \begin{align*}
\dot{y} &\in F(y) \\
y(t) &= x
\end{align*} \right\} \]

- \(\phi : \mathbb{R}^N \to \mathbb{R} \) semiconcave
- \(F(x) \neq \emptyset \) convex compact dist\(\mathcal{H} \)-Lipschitz and \(\max \{|v| : v \in F(x)\} \leq r(1 + |x|) \)
- \(H(x,p) = \max_{v \in F(x)} p \cdot v \)

Theorem (C – Wolenski)

Assume

(H1) \(x \mapsto H(x,p) \) semiconvex with constant \(c|p| \)

(H2) \(\nabla_p H(x,p) \) Lipschitz in \(x \) uniformly for \(|p| = 1 \)

Then \(V \) is semiconcave on \((-\infty, T] \times \mathbb{R}^N \)
proof I: construction of perturbed trajectories

- Lipschitz regularity of V known
- fix $x, z \in \mathbb{R}^N$, want to show: $V(t, x + z) + V(t, x - z) - 2V(t, x) \leq c|z|^2$
- let y be optimal and invoke maximum principle to obtain
 $$\begin{cases}
 \dot{y}(s) = \nabla_p H(y(s), p(s)), & y(t) = x \\
 -p(s) \in \partial_x H(y(s), p(s)), & -p(T) \in \partial^+ \phi(y(T))
 \end{cases}$$

- supposing $p(s) \neq 0$ define $y_\pm(\cdot)$ by
 $$\begin{cases}
 \dot{y}_\pm(s) = \nabla_p H(y_\pm(s), p(s)) \\
 y_\pm(t) = x \pm z
 \end{cases}$$
 and observe
 - $|y_+(s) - y_-(s)| \leq c|z|$ and $|y_\pm(s) - y(s)| \leq c|z|$
 - $p \cdot \dot{y} = H(y, p)$ and $p \cdot \dot{y}_\pm = H(y_\pm, p)$
proof I: construction of perturbed trajectories

- Lipschitz regularity of V known

 - fix $x, z \in \mathbb{R}^N$, want to show: $V(t, x + z) + V(t, x - z) - 2V(t, x) \leq c|z|^2$

- let y be optimal and invoke maximum principle to obtain

 \[
 \begin{cases}
 \dot{y}(s) = \nabla_p H(y(s), p(s)) , & y(t) = x \\
 -\dot{p}(s) \in \partial_x H(y(s), p(s)) , & -p(T) \in \partial^+ \phi(y(T))
 \end{cases}
 \]

- supposing $p(s) \neq 0$ define $y_{\pm}(\cdot)$ by

 \[
 \begin{cases}
 \dot{y}_{\pm}(s) = \nabla_p H(y_{\pm}(s), p(s)) \\
 y_{\pm}(t) = x \pm z
 \end{cases}
 \]

 and observe

 - $|y_{\pm}(s) - y_-(s)| \leq c|z|$ and $|y_{\pm}(s) - y(s)| \leq c|z|$
 - $p \cdot \dot{y} = H(y, p)$ and $p \cdot \dot{y}_{\pm} = H(y_{\pm}, p)$
proof I: construction of perturbed trajectories

- Lipschitz regularity of V known
- fix $x, z \in \mathbb{R}^N$, want to show: $V(t, x + z) + V(t, x - z) - 2V(t, x) \leq c|z|^2$
- let y be optimal and invoke maximum principle to obtain

\[
\begin{aligned}
\dot{y}(s) &= \nabla_p H(y(s), p(s)) , \\
\dot{p}(s) &\in \partial_x H(y(s), p(s)) , \\
y(t) &= x \\
-p(s) &\in \partial_x H(y(s), p(s)) , \\
-p(T) &\in \partial^+ \phi(y(T))
\end{aligned}
\]

- supposing $p(s) \neq 0$ define $y_\pm(\cdot)$ by

\[
\begin{aligned}
\dot{y}_\pm(s) &= \nabla_p H(y_\pm(s), p(s)) \\
y_\pm(t) &= x \pm z
\end{aligned}
\]

and observe

- $|y_+(s) - y_-(s)| \leq c|z|$ and $|y_\pm(s) - y(s)| \leq c|z|$
- $p \cdot \dot{y} = H(y, p)$ and $p \cdot \dot{y}_\pm = H(y_\pm, p)$
proof I: construction of perturbed trajectories

- Lipschitz regularity of V known
- fix $x, z \in \mathbb{R}^N$, want to show: $V(t, x + z) + V(t, x - z) - 2V(t, x) \leq c|z|^2$
- let y be optimal and invoke maximum principle to obtain

$$\begin{align*}
\dot{y}(s) &= \nabla_p H(y(s), p(s)) , \\
-y'(s) &\in \partial_x H(y(s), p(s)) , \\
-p'(s) &\in \partial^+ \phi(y(T))
\end{align*}$$

- supposing $p(s) \neq 0$ define $y_{\pm}(\cdot)$ by

$$\begin{align*}
\dot{y}_{\pm}(s) &= \nabla_p H(y_{\pm}(s), p(s)) \\
y_{\pm}(t) &= x \pm z
\end{align*}$$

and observe

- $|y_{+}(s) - y_{-}(s)| \leq c|z|$ and $|y_{\pm}(s) - y(s)| \leq c|z|$
- $p \cdot \dot{y} = H(y, p)$ and $p \cdot \dot{y}_\pm = H(y_\pm, p)$
proof I: construction of perturbed trajectories

- Lipschitz regularity of V known
- fix $x, z \in \mathbb{R}^N$, want to show: $V(t, x + z) + V(t, x - z) - 2V(t, x) \leq c|z|^2$
- let y be optimal and invoke maximum principle to obtain

\[
\begin{cases}
\dot{y}(s) = \nabla_p H(y(s), p(s)), & y(t) = x \\
-\dot{p}(s) \in \partial_x H(y(s), p(s)), & -p(T) \in \partial^+ \phi(y(T))
\end{cases}
\]

- supposing $p(s) \neq 0$ define $y_\pm(\cdot)$ by

\[
\begin{cases}
\dot{y}_\pm(s) = \nabla_p H(y_\pm(s), p(s)) \\
y_\pm(t) = x \pm z
\end{cases}
\]

and observe

- $|y_+(s) - y_-(s)| \leq c|z|$ and $|y_\pm(s) - y(s)| \leq c|z|$
- $p \cdot \dot{y} = H(y, p)$ and $p \cdot \dot{y}_\pm = H(y_\pm, p)$
proof II: use of transversality condition

\[V(t, x + z) + V(t, x - z) - 2V(t, x) \]
\[\leq \phi(y_+(T)) + \phi(y_-(T)) - 2\phi(y(T)) \]
\[= \phi(y_+(T)) + \phi(y_-(T)) - 2\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) \]
\[\leq c|y_+(T) - y_-(T)|^2 \leq c|z|^2 \]
\[+ 2\left[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T)) \right] \]

since \(-p(T) \in \partial^+ \phi(y(T))\) one has

\[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T)) \]
\[\leq -p(T) \cdot \left[\frac{y_+(T) + y_-(T)}{2} - y(T) \right] + c\left| \frac{y_+(T) + y_-(T)}{2} - y(T) \right|^2 \]
\[\leq c|z|^2 \]
proof II: use of transversality condition

\[V(t, x + z) + V(t, x - z) - 2V(t, x) \]

\[\leq \phi(y_+(T)) + \phi(y_-(T)) - 2\phi(y(T)) \]

\[= \phi(y_+(T)) + \phi(y_-(T)) - 2\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) \]

\[\leq c|y_+(T) - y_-(T)|^2 \leq c|z|^2 \]

\[+ 2\left[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T)) \right] \]

since \(-p(T) \in \partial^+ \phi(y(T))\) one has

\[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T)) \]

\[\leq -p(T) \cdot \left[\frac{y_+(T) + y_-(T)}{2} - y(T) \right] + c\left| \frac{y_+(T) + y_-(T)}{2} - y(T) \right|^2 \]

\[\leq c|z|^2 \]
proof II: use of transversality condition

\[V(t, x + z) + V(t, x - z) - 2V(t, x) \]

\[\leq \phi(y_+(T)) + \phi(y_-(T)) - 2\phi(y(T)) \]

\[= \phi(y_+(T)) + \phi(y_-(T)) - 2\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) \]

\[\leq c|y_+(T) - y_-(T)|^2 \leq c|z|^2 \]

\[+ 2\left[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T)) \right] \]

since \(-p(T) \in \partial^+ \phi(y(T))\) one has

\[\phi\left(\frac{y_+(T) + y_-(T)}{2}\right) - \phi(y(T)) \]

\[\leq -p(T) \cdot \left[\frac{y_+(T) + y_-(T)}{2} - y(T) \right] + c \left| \frac{y_+(T) + y_-(T)}{2} - y(T) \right|^2 \]

\[\leq c|z|^2 \]
proof III: use of maximum principle

\[-p(T) \cdot \left[\frac{y_+(T) + y_-(T)}{2} - y(T) \right] = \frac{1}{2} \int_t^T \left[-\dot{p} \cdot (y_+ + y_- - 2y) + p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \right] ds \]

\[\frac{1}{2} \int_t^T p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \, ds \]

\[= \int_t^T \left[H(y, p) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \]

\[= \int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] ds \]

\[+ \int_t^T \left[H\left(\frac{y_+ + y_-}{2}, p \right) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \]

\[\leq c|p||y_+ - y_-|^2 \leq c|z|^2 \]

\[\int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] ds \]

\[\leq \int_t^T \left[\dot{p} \cdot \left(\frac{y_+ + y_-}{2} - y \right) + c|p| \left| \frac{y_+ + y_-}{2} - y \right|^2 \right] ds \]

\[\leq c|z|^2 \]
proof III: use of maximum principle

\[-p(T) \cdot \left[\frac{y+(T)+y-(T)}{2} - y(T) \right] \]

\[= \frac{1}{2} \int_t^T \left[-\dot{p} \cdot (y_+ + y_- - 2y) + p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \right] \, ds \]

\[= \frac{1}{2} \int_t^T p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \, ds \]

\[= \int_t^T \left[H(y, p) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] \, ds \]

\[= \int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] \, ds \]

\[+ \int_t^T \left[H\left(\frac{y_+ + y_-}{2}, p \right) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] \, ds \]

\[\leq c|p||y_+ - y_-|^2 \leq c|z|^2 \]

\[\int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] \, ds \]

\[\leq \int_t^T \left[\dot{p} \cdot \left(\frac{y_+ + y_-}{2} - y \right) + c|p| \left| \frac{y_+ + y_-}{2} - y \right|^2 \right] \, ds \]

\[\leq c|z|^2 \]
proof III: use of maximum principle

\[-p(T) \cdot \left[\frac{y_+(T) + y_-(T)}{2} - y(T) \right] \]

\[= \frac{1}{2} \int_t^T \left[-\dot{p} \cdot (y_+ + y_- - 2y) + p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \right] ds \]

\[= \frac{1}{2} \int_t^T p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \ ds \]

\[= \int_t^T \left[H(y, p) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \]

\[= \int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] ds \]

\[+ \int_t^T \left[H\left(\frac{y_+ + y_-}{2}, p \right) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \]

\[\leq c|p||y_+ - y_-|^2 \leq c|z|^2 \]

\[\int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] ds \]

\[\leq \int_t^T \left[\dot{p} \cdot \left(\frac{y_+ + y_-}{2} - y \right) + c|p| \left| \frac{y_+ + y_-}{2} - y \right|^2 \right] ds \]

\[\leq c|z|^2 \]
proof III: use of maximum principle

\[-p(T) \cdot \left[\frac{y_+(T)+y_-(T)}{2} - y(T) \right] \]
\[= \frac{1}{2} \int_t^T \left[-\dot{p} \cdot (y_+ + y_- - 2y) + p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \right] ds \]
\[\frac{1}{2} \int_t^T p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \, ds \]
\[= \int_t^T \left[H(y, p) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \]
\[= \int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p\right) \right] ds \]
\[+ \int_t^T \left[H\left(\frac{y_+ + y_-}{2}, p\right) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \leq c|p||y_+ - y_-|^2 \leq c|z|^2 \]

\[\int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p\right) \right] ds \leq \int_t^T \left[-\dot{p} \cdot \left(\frac{y_+ + y_-}{2} - y \right) + c|p| \left| \frac{y_+ + y_-}{2} - y \right|^2 \right] ds \leq c|z|^2 \]
proof III: use of maximum principle

\[-p(T) \cdot \left[\frac{y_+(T) + y_-(T)}{2} - y(T) \right] \]

\[= \frac{1}{2} \int_t^T \left[-\dot{p} \cdot (y_+ + y_- - 2y) + p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \right] ds \]

\[\frac{1}{2} \int_t^T p \cdot (2\dot{y} - \dot{y}_+ - \dot{y}_-) \] ds

\[= \int_t^T \left[H(y, p) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \]

\[= \int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] ds \]

\[+ \int_t^T \left[H\left(\frac{y_+ + y_-}{2}, p \right) - \frac{H(y_+, p) + H(y_-, p)}{2} \right] ds \]

\[\leq c|p| |y_+ - y_-|^2 \leq c|z|^2 \]

\[\int_t^T \left[H(y, p) - H\left(\frac{y_+ + y_-}{2}, p \right) \right] ds \]

\[\leq \int_t^T \left[\dot{p} \cdot \left(\frac{y_+ + y_-}{2} - y \right) + c|p| \left| \frac{y_+ + y_-}{2} - y \right|^2 \right] ds \]

\[\leq c|z|^2 \]
Outline

1. Three basic issues in optimal control
 - Existence of solutions
 - Necessary conditions
 - Dynamic programming

2. Semiconcavity results for nonparameterized control systems
 - Semiconcavity for Mayer problem
 - Semiconcavity for the minimum time problem
Glossary

\(\mathcal{Y}(x) \) admissible trajectories at \(x \): solutions to
\[
\begin{aligned}
\dot{y}(t) &\in F(y(t)) \\
y(0) &= x
\end{aligned}
\]

also of interest parameterized case: \(F(x) = f(x, A) \)

\(S \) target: nonempty closed subset of \(\mathbb{R}^N \)

\(\mathcal{T}(\cdot) \) minimum time function:
\[
\mathcal{T}(x) = \inf_{y \in \mathcal{Y}(x)} \{ t \geq 0 : y(t) \in S \}
\]

\(C, C_t \) controllable sets:
\[
\begin{aligned}
C &= \{ x \in \mathbb{R}^n | \mathcal{T}(x) < \infty \} \\
C_t &= \{ x \in \mathbb{R}^n | \mathcal{T}(x) \leq t \} \quad \text{(in time } t \geq 0)\end{aligned}
\]

(HJ) Hamilton-Jacobi equation:
\[
\begin{cases}
H(x, -\nabla \mathcal{T}) = 1 & \text{in } C \setminus S \\
\mathcal{T}(x) = 0 & x \in \partial S \\
(\mathcal{T}(x) \to +\infty) & x \to \partial C
\end{cases}
\]
Petrov condition & Lipschitz continuity of $\mathcal{T}(\cdot)$

inward pointing condition

F satisfies the **inward pointing (or Petrov) condition** on S if $\exists r > 0$ such that

$$H(x, -\nu) = \max_{\nu \in F(x)} -\nu \cdot \nu \geq r|\nu|$$ \hspace{1cm} (PC)

for any $x \in \partial S$ and any proximal normal ν to S at x

under (PC):

- \mathcal{C} is an **open neighborhood** of S
- $\mathcal{T}(\cdot)$ is **locally Lipschitz** on \mathcal{C}

Inner ball property & semiconcavity of \(T(\cdot) \)

Inner ball property

\(S \) has the **inner ball (or interior sphere) property** if, for some \(r > 0 \),

\[
\forall x \in \partial S \; \exists y \in S \; \text{such that} \; x \in B_r(y) \subset S \quad \text{(IB)}
\]

under \((PC)\) and \((IB)\):

\(T(\cdot) \) **locally semiconcave** on \(C \setminus \text{int}(S) \)

- **C-Sinestrari (1995):**

 (a) \(F(x) = f(x, A) \)

 (b) \(\| f_x(x, a) - f_x(y, a) \| \leq C_2 |x - y| \)

- **C-Marino, Wolenski (2012):**

 (a') \(x \mapsto H(x, p) \) semiconvex

 (b') \(x \mapsto \nabla_p H(x, p) \) Lipschitz
Our goal
To obtain semiconcavity removing the inner ball property (from S)

Theorem (C-Frankowska, 2006)
Assume (PC) and suppose

- $F(x) = f(x, A)$ has the inner ball property $\forall x$ near ∂S
- $\|f_x(x, a) - f_x(y, a)\| \leq C_2 |x - y|$
- $x \mapsto \nabla_p H(x, p)$ Lipschitz

Then $T(\cdot)$ is locally semiconcave on $\mathcal{C} \setminus S$

C-Khai T. Nguyen (2011): above conclusion also true under the following

- $F(x)$ has the inner ball property $\forall x$ near ∂S
- $x \mapsto H(x, p)$ semiconvex
- $x \mapsto \nabla_p H(x, p)$ Lipschitz
Our goal

To obtain semiconcavity removing the inner ball property (from S)

Theorem (C-Frankowska, 2006)

Assume (PC) and suppose

- $F(x) = f(x, A)$ has the inner ball property $\forall x$ near ∂S
- $\|f_x(x, a) - f_x(y, a)\| \leq C_2|x - y|$
- $x \mapsto \nabla \rho H(x, p)$ Lipschitz

Then $T(\cdot)$ is locally semiconcave on $C \setminus S$

C-Khai T. Nguyen (2011): above conclusion also true under the following

- $F(x)$ has the inner ball property $\forall x$ near ∂S
- $x \mapsto H(x, p)$ semiconvex
- $x \mapsto \nabla \rho H(x, p)$ Lipschitz
Maximum principle & dual arc inclusion

Theorem

Let $x \notin S$ and

- $y \in \mathcal{Y}(x)$ time-optimal, $T = T(x)$
- ν inner normal to S at $y(T)$ with $|\nu| = 1$ and $r := H(y(T), \nu) > 0$

Then $\exists p : [0, T] \rightarrow \mathbb{R}^N$ such that

$$
\begin{cases}
\dot{y} = \nabla_p H(y, p) \\
-\dot{p} \in \partial_x H(y, p), \quad p(T) = \frac{1}{r} \nu
\end{cases}
$$

and $-p(t) \in \partial^+ T(y(t)) \quad \forall t \in [0, T)$

- C-Frankowska, Sinestrari (2000): $F(x) = f(x, A)$
- C-Marino, Wolenski (2013): $F(x)$
 - $x \mapsto H(x, p)$ semiconvex
 - $x \mapsto \nabla_p H(x, p)$ Lipschitz
Maximum principle & dual arc inclusion

Theorem
Let \(x \notin S \) and
- \(y \in \mathcal{Y}(x) \) time-optimal, \(T = T(x) \)
- \(\nu \) inner normal to \(S \) at \(y(T) \)
 with \(|\nu| = 1 \) and \(r := H(y(T), \nu) > 0 \)

Then \(\exists \ p : [0, T] \to \mathbb{R}^N \) such that

\[
\begin{align*}
\dot{y} &= \nabla_p H(y, p) \\
-\dot{p} &\in \partial_x H(y, p), \quad p(T) = \frac{1}{r} \nu
\end{align*}
\]

and \(-p(t) \in \partial^+ \mathcal{T}(y(t)) \) \(\forall t \in [0, T] \)

- C-Frankowska, Sinestrari (2000): \(F(x) = f(x, A) \)
- C-Marino, Wolenski (2013): \(F(x) \)
 - \(x \mapsto H(x, p) \) semiconvex
 - \(x \mapsto \nabla_p H(x, p) \) Lipschitz
The constancy of H

Theorem

Let $x \notin S$ and

- $y \in \mathcal{Y}(x)$ time-optimal, $T = T(x)$
- ν inner normal to S at $y(T)$ with $|\nu| = 1$ and $r := H(y(T), \nu) > 0$
- $p : [0, T] \to \mathbb{R}^N$ such that

$$
\begin{align*}
\dot{y} &= \nabla_p H(y, p) \\
-\dot{p} &= \partial_x H(y, p), \quad p(T) = \frac{1}{r}\nu
\end{align*}
$$

Then $H(y(t), p(t)) \equiv 1$ for all $t \in (0, T)$

Proof based on the fact that for any $x \notin S$ and $-p \in \partial^+ T(x)$:

- $H(x, p) \leq 1$ (subsolution property), and
- if x is an optimal point (interior to optimal arc), then $H(x, p) = 1$
The constancy of H

Theorem

Let $x \notin S$ and

- $y \in \mathcal{V}(x)$ time-optimal, $T = T(x)$
- ν inner normal to S at $y(T)$ with $|\nu| = 1$ and $r := H(y(T), \nu) > 0$
- $p : [0, T] \to \mathbb{R}^N$ such that
 \[
 \begin{cases}
 \dot{y} = \nabla_p H(y, p) \\
 -\dot{p} \in \partial_x H(y, p), \quad p(T) = \frac{1}{r} \nu
 \end{cases}
 \quad \text{and} \quad -p(t) \in \partial^+ T(y(t)) \quad \forall t \in [0, T)
 \]

Then $H(y(t), p(t)) \equiv 1$ for all $t \in (0, T)$

Proof based on the fact that for any $x \notin S$ and $-p \in \partial^+ T(x)$:

- $H(x, p) \leq 1$ (subsolution property), and
- if x is an optimal point (interior to optimal arc), then $H(x, p) = 1$
The constancy of H

Theorem

Let $x \notin S$ and

- $y \in \mathcal{Y}(x)$ time-optimal, $T = T(x)$
- ν inner normal to S at $y(T)$ with $|\nu| = 1$ and $r := H(y(T), \nu) > 0$
- $p : [0, T] \to \mathbb{R}^N$ such that

\[
\begin{cases}
\dot{y} = \nabla_p H(y, p) \\
-\dot{p} \in \partial_x H(y, p), \quad p(T) = \frac{1}{r} \nu
\end{cases}
\quad \text{and} \quad -p(t) \in \partial^+ T(y(t)) \quad \forall t \in [0, T)
\]

Then $H(y(t), p(t)) \equiv 1$ for all $t \in (0, T)$

Proof based on the fact that for any $x \notin S$ and $-p \in \partial^+ T(x)$:

- $H(x, p) \leq 1$ (subsolution property), and
- if x is an optimal point (interior to optimal arc), then $H(x, p) = 1$
The constancy of H

Theorem

Let $x \notin S$ and

- $y \in \mathcal{V}(x)$ time-optimal, $T = T(x)$
- ν inner normal to S at $y(T)$ with $|\nu| = 1$ and $r := H(y(T), \nu) > 0$
- $p : [0, T] \to \mathbb{R}^N$ such that
 \[
 \begin{cases}
 \dot{y} = \nabla_p H(y, p) \\
 -\dot{p} \in \partial_x H(y, p), \quad p(T) = \frac{1}{r} \nu
 \end{cases}
 \quad \text{and} \quad -p(t) \in \partial^+ T(y(t)) \quad \forall \ t \in [0, T]
 \]

Then $H(y(t), p(t)) \equiv 1$ for all $t \in (0, T)$

Proof based on the fact that for any $x \notin S$ and $-p \in \partial^+ T(x)$:

- $H(x, p) \leq 1$ (subsolution property), and
- if x is an optimal point (interior to optimal arc), then $H(x, p) = 1$
Theorem

Assume

- $T(\cdot)$ locally semiconcave on $C \setminus \text{int}(S)$
- $x \notin S$ and $y \in \mathcal{Y}(x)$ with $y(T) \in S$
- $p : [0, T] \to \mathbb{R}^N$ measurable such that
 \[
 \begin{align*}
 -p(t) &\in \partial^+ T(y(t)) \\
 \dot{y}(t) &= \nabla_p H(y(t), p(t)) \\
 H(y(t), p(t)) &\equiv 1
 \end{align*}
 \]
 $t \in [0, T]$ a.e.

Then $T = T(x)$ and y is time-optimal
Optimality conditions

Theorem

Assume

- $T(\cdot)$ locally semiconcave on $C\setminus \text{int}(S)$
- $x \notin S$ and $y \in \mathcal{Y}(x)$ with $y(T) \in S$
- $p : [0, T] \rightarrow \mathbb{R}^N$ measurable such that

\[
\begin{align*}
 -p(t) &\in \partial^+ T(y(t)) \\
 \dot{y}(t) &= \nabla_p H(y(t), p(t)) \\
 H(y(t), p(t)) &\equiv 1
\end{align*}
\]

$t \in [0, T]$ a.e.

Then $T = T(x)$ and y is time-optimal.
Optimality conditions

Theorem

Assume

- $T(\cdot)$ locally semiconcave on $C \setminus \text{int}(S)$
- $x \not\in S$ and $y \in \mathcal{Y}(x)$ with $y(T) \in S$
- $p : [0, T] \rightarrow \mathbb{R}^N$ measurable such that

\[
\begin{cases}
-p(t) \in \partial^+ T(y(t)) \\
\dot{y}(t) = \nabla_p H(y(t), p(t)) \\
H(y(t), p(t)) \equiv 1
\end{cases}
\quad t \in [0, T] \ a.e.
\]

Then $T = T(x)$ and y is time-optimal
Beyond semiconcavity

Why go beyond semiconcavity? For several reasons including:

- treatment of state constraints
- relaxing controllability assumptions for time optimal control
Beyond semiconcavity

Why go beyond semiconcavity? For several reasons including:

- treatment of state constraints
- relaxing controllability assumptions for time optimal control
Why go beyond semiconcavity? For several reasons including:

- treatment of state constraints
- relaxing controllability assumptions for time optimal control
Removing Petrov condition

Roughly speaking, semiconcavity of \mathcal{T} is equivalent to:

\begin{itemize}
 \item \textbf{(PC)} inward pointing condition on ∂S
 \begin{equation*}
 \max_{\nu \in F(x)} -\nu \cdot \nu \geq r|\nu| \quad (x \in \partial S, \nu \perp S)
 \end{equation*}
 \item \textbf{(PS)} exterior ball property of the hypograph
 \begin{equation*}
 \text{hypo}(\mathcal{T}) = \{(x, \tau) \in C \times \mathbb{R} : \tau \leq \mathcal{T}(x)\}
 \end{equation*}
\end{itemize}

Removing (PC) retaining (PS) possible under mild controllability assumptions:

- C-Khai T. Nguyen (2011)
Removing Petrov condition

Roughly speaking, semiconcavity of \(T \) is equivalent to:

\[
\text{(PC) inward pointing condition on } \partial S
\]

\[
\max_{\nu \in F(x)} - \nu \cdot \nu \geq r |\nu| \quad (x \in \partial S, \nu \perp S)
\]

\[
\text{(PS) exterior ball property of the hypograph}
\]

\[
\text{hypo}(T) = \{(x, \tau) \in C \times \mathbb{R} : \tau \leq T(x)\}
\]

Removing (PC) retaining (PS) possible under mild controllability assumptions:

- C-Khai T. Nguyen (2011)
Conclusions

Passing from parameterized to non parameterized models has +’s and −’s:

- **advantages:**
 - allows to treat systems with no smooth parameterization
 - preserves most of the basic results

- **disadvantages:**
 - often requires different proofs
 - still needs assumptions to be relaxed
Conclusions

Passing from parameterized to non parameterized models has +’s and −’s:

- **advantages:**
 - allows to treat systems with no smooth parameterization
 - preserves most of the basic results

- **disadvantages:**
 - often requires different proofs
 - still needs assumptions to be relaxed
Conclusions

Passing from parameterized to non parameterized models has +’s and −’s:

- **advantages:**
 - allows to treat systems with no smooth parameterization
 - preserves most of the basic results

- **disadvantages:**
 - often requires different proofs
 - still needs assumptions to be relaxed
Conclusions

Passing from parameterized to non-parameterized models has +’s and −’s:

- **advantages:**
 - allows to treat systems with no smooth parameterization
 - preserves most of the basic results

- **disadvantages:**
 - often requires different proofs
 - still needs assumptions to be relaxed
Merci

Danke

Dziękuuję