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Notation

• R = (−∞,∞) stands for the real line, R+ for [0,∞), and R∗+ for (0,∞).

• N∗ = N \ {0} = {1, 2, . . . } and Z∗ = Z \ {0} = {±1,±2, . . . }.

• For any λ ∈ C, <λ and =λ denote the real and imaginary parts of λ,
respectively.

• | · | stands for the norm of a Banach space X, as well as for the absolute
value of a real number or the modulus of a complex number.

• L(X) is the Banach space of all bounded linear operators Λ : X → X
equipped with norm ‖Λ‖ = sup|x|61 |Λx|.

• For any metric space (X, d), Cb(X) denotes the Banach space of all
bounded uniformly continuous functions f : X → R with norm

‖f‖∞,X = sup
x∈X
|f(x)|.

• Given a Banach space (X, | · |) and a closed interval I ⊆ R (bounded
or unbounded), we denote by Cb(I;X) the Banach space of all bounded
uniformly continuous functions f : I → X with norm

‖f‖∞,I = sup
s∈I
|f(s)|.

• Πω =
{
λ ∈ C : <λ > ω

}
for any ω ∈ R.
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1 Semigroups of bounded linear operators

1.1 Uniformly continuous semigroups

Let (X, | · |) be a (real or complex) Banach space. We denote by L(X) the
Banach algebra of all bounded linear operators Λ : X → X with norm

‖Λ‖ = sup
|x|61
|Λx|.

Definition 1 A semigroup of bounded linear operators on X is a map S :
[0,∞)→ L(X) with the following properties:

(a) S(0) = I,

(b) S(t+ s) = S(t)S(s) for all t, s > 0.

Equivalent notations are S(·), {S(t)}t>0, and even the simpler form S(t).

Definition 2 The infinitesimal generator of a semigroup of bounded linear
operators S(t) is the map A : D(A) ⊂ X → X defined byD(A) =

{
x ∈ X : ∃ limt↓0

S(t)x−x
t

}
Ax = limt↓0

S(t)x−x
t ∀x ∈ D(A)

(1.1.1)

Exercise 1 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
semigroup of bounded linear operators S(t). Prove that

(a) D(A) is a subspace of X,

(b) A is a linear operator.

Definition 3 A semigroup S(t) of bounded linear operators on X is uniformly
continuous if

lim
t↓0
‖S(t)− I‖ = 0.

Exercise 2 Let S(t) be a uniformly continuous semigroup of bounded linear
operators. Prove that for all τ > 0 there exists Mτ > 0 such that

‖S(t)‖ 6Mτ ∀t ∈ [0, τ ].

Remark 1 A semigroup S(t) is uniformly continuous if and only if

lim
s→t
‖S(s)− S(t)‖ = 0 ∀t > 0.
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Example 1 let A ∈ L(X). Then

etA :=
∞∑
n=0

tn

n!
Anx

is a uniformly continuous semigroup of bounded linear operators on X. More-
over, A is the infinitesimal generatorof etA. Indeed, the proof of the following
properties is left as an exercise.

(a) etA ∈ L(X) because
∑∞

n=0
tn

n!A
nx converges for all t > 0.

(b) e(t+s)A = etAesA for all s, t > 0.

(c) ‖etA − I‖ = ‖
∑∞

n=1
tn

n!A
n‖ 6 t‖A‖et‖A‖ for all t > 0.

(d) ‖ etA−It −A‖ = ‖
∑∞

n=2
tn−1

n! A
n‖ 6 t‖A‖2et‖A‖ for all t > 0.

Theorem 1 For any linear operator A : D(A) ⊂ X → X the following prop-
erties are equivalent:

(a) A is the infinitesimal generator of a uniformly continuous semigroup,

(b) A ∈ L(X).

Proposition 1 Let S(t) and T (t) be uniformly continuous semigroups of bounded
linear operators on X and let A ∈ L(X). If

lim
t↓0

S(t)− I
t

= A = lim
t↓0

T (t)− I
t

,

then S(t) = T (t) for all t > 0.

Let T > 0. For any A ∈ L(X), a solution of the Cauchy problem{
y′(t) = Ay(t) (t ∈ [0, T ])

y(0) = x ∈ X
(1.1.2)

is a function y ∈ C1([0, T ];X) which satisfies (1.1.2) pointwise.

Proposition 2 Problem (1.1.2) has a unique solution given by y(t) = etAx.

Example 2 Consider the integral equation{
∂u
∂t (t, x) =

∫ 1
0 k(x, y)u(t, y) dy (t ∈ [0, T ])

u(0, x) = u0(x)
(1.1.3)
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where k ∈ L2
(
[0, 1]× [0, 1]

)
and u0 ∈ L2(0, 1). Problem (1.1.3) can be seen as

an abstract Cauchy problem of the form{
u′(t) = Ku(t) (t ∈ [0, T ])

u(0) = u0 ∈ X
(1.1.4)

where X = L2(0, 1) and

Ku(x) =

∫ 1

0
k(x, y)u(t, y) dy ∀x ∈ X

is a bounded linear operator on X. Then Proposition 2 insures that (1.1.4)
has a unique solution u ∈ C1([0, T ];X) given by u(t) = etKu0.

1.2 Strongly continuous semigroups

Example 3 Let Cb(R) be the Banach space of all bounded uniformly contin-
uous functions f : R→ R with the uniform norm

‖f‖∞ = sup
x∈R
|f(x)|.

For any t ∈ R+ define(
S(t)f

)
(x) = f(x+ t) ∀f ∈ Cb(R).

The reader is invited to check that:

1. S(t) is a semigroup of bounded linear operators on Cb(R),

2. S(t) fails to be uniformly continuous,

3. for all f ∈ Cb(R) we have that ‖S(t)f − f‖∞ → 0 as t ↓ 0.

Definition 4 A semigroup S(t) of bounded linear operators on X is called
strongly continuous (or of class C0) if

lim
t↓0

S(t)x = x ∀x ∈ X. (1.2.1)

Theorem 2 Let S(t) be a C0-semigroup of bounded linear operators on X.
Then there exist ω > 0 and M > 1 such that

‖S(t)‖ 6Meωt ∀t > 0. (1.2.2)

5



When ω = 0 in (1.2.2), S(t) is called uniformly bounded. If, in addition,
M = 1, we say that S(t) is a contraction semigroup.

Proof. We first prove the following:

∃τ > 0 and M > 1 such that ‖S(t)‖ 6M ∀t ∈ [0, τ ]. (1.2.3)

We argue by contradiction assuming there exists a sequence tn ↓ 0 such that
‖S(tn)‖ > n for all n > 1. Then, the principle of uniform boundedness implies
that, for some x ∈ X, ‖S(tn)x‖ → ∞ as n→∞, in contrast with (1.2.1).

Now, given t ∈ R+, let n ∈ N and δ ∈ [0, τ [ be such that

t = nτ + δ.

Then, in view of (1.2.3),

‖S(t)‖ = ‖S(δ)S(τ)n‖ 6M ·Mn = M · (M1/τ )nτ 6M · (M1/τ )t

which yields (1.2.2) with ω = logM
τ . �

Corollary 1 Let S(t) be a C0-semigroup of bounded linear operators on X.
Then for every x ∈ X the map t 7→ S(t)x is continuous from R+ into X.

1.3 The infinitesimal generator of a C0-semigroup

Theorem 3 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup of bounded linear operators on X, denoted by S(t). Then the
following properties hold true.

(a) For all t > 0

lim
h↓0

1

h

∫ t+h

t
S(s)x ds = S(t)x ∀x ∈ X.

(b) For all t > 0 and x ∈ X∫ t

0
S(s)x ds ∈ D(A) and A

(∫ t

0
S(s)x ds

)
= S(t)x− x.

(c) D(A) is dense in X.

(d) For all x ∈ D(A) and t > 0 we have that S(t)x ∈ D(A), t 7→ S(t)x is
continuously differentiable, and

d

dt
S(t)x = AS(t)x = S(t)Ax.
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(e) For all x ∈ D(A) and all 0 6 s 6 t we have that

S(t)x− S(s)x =

∫ t

s
S(τ)Axdτ =

∫ t

s
AS(τ)x dτ.

Proof. All integrals are to be understood in the Riemann sense.

(a) This point is an immediate consequence of the strong continuity of S.

(b) For any t > h > 0 we have that

S(h)− I
h

(∫ t

0
S(s)x ds

)
=

1

h

∫ t

0
(S(h+ s)− S(s))x ds

=
1

h

(∫ t+h

h
S(s)x ds−

∫ t

0
S(s)x ds

)
=

1

h

(∫ t+h

t
S(s)x ds−

∫ h

0
S(s)x ds

)
.

Therefore, by (a),

lim
h↓0

S(h)− I
h

(∫ t

0
S(s)x ds

)
= S(t)x− x

which proves (b).

(c) This point follows from (a) and (b).

(d) For all x ∈ D(A), t > 0, and h > 0 we have that

S(h)− I
h

S(t)x = S(t)
S(h)− I

h
x→ S(t)Ax as h ↓ 0.

Therefore S(t)x ∈ D(A) and AS(t)x = S(t)Ax = d+

dt S(t)x. In order to
prove the existence of the left derivative, observe that for all 0 < h < t

S(t− h)x− S(t)x

−h
= S(t− h)

S(h)− I
h

x.

Moreover, by (1.2.2),∣∣∣S(t− h)
S(h)− I

h
x− S(t)Ax

∣∣∣
6
∣∣∣S(t− h)

∣∣∣ · ∣∣∣S(h)− I
h

x− S(h)Ax
∣∣∣

6Meωt
∣∣∣S(h)− I

h
x− S(h)Ax

∣∣∣ −→ 0 as h ↓ 0.

Therefore

S(t− h)x− S(t)x

−h
−→ S(t)Ax = AS(t)x as h ↓ 0,

showing that the left and right derivatives coincide.
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(e) This point follows from (d).

The proof is complete. �

1.4 Closedness of A

We recall that X ×X is a Banach space with norm

‖(x, y)‖ = |x|+ |y| ∀(x, y) ∈ X ×X.

Definition 5 An operator A : D(A) ⊂ X → X is said to be closed if its graph

graph(A) :=
{

(x, y) ∈ X ×X : x ∈ D(A) , y = Ax
}

is a closed subset of X ×X.

Exercise 3 Prove that A : D(A) ⊂ X → X is closed if and only if for any
sequence {xn} ⊂ D(A){

xn → x

Axn → y
=⇒ x ∈ D(A) and Ax = y. (1.4.1)

Proposition 3 The infinitesimal generator of a C0-semigroup S(t) is a closed
operator.

Proof. Let A : D(A) ⊂ X → X be the infinitesimal generator of S(t) and let
{xn} ⊂ D(A) be as in (1.4.1). By Theorem 3−(d) we have that, for all t > 0,

S(t)xn − xn =

∫ t

0
S(s)Axndx.

Hence, taking the limit as n→∞ and dividing by t, we obtain

S(t)x− x
t

=
1

t

∫ t

0
S(s)ydx.

Passing to the limit as t ↓ 0, we conclude that Ax = y. �

Remark 2 From Proposition 3 it follows that the domain D(A) of the in-
finitesimal generator of a C0-semigroup is a Banach space with the graph norm

|x|D(A) = |x|+ |Ax| ∀x ∈ D(A).
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Proposition 4 (Cauchy problem) Let S be a C0-semigroup of bounded lin-
ear operators on Xand A : D(A) ⊂ X → X be its infinitesimal generator.
Then for every x ∈ D(A) the Cauchy problem{

y′(t) = Ay(t)

y(0) = x
(1.4.2)

has a unique solution y ∈ C1([0,∞);X) ∩ C([0,∞);D(A))1 given by

y(t) = S(t)x ∀t > 0.

Proof. The fact that y(t) = S(t)x satisfies (1.4.2) is point (d) of Theo-
rem 3. Let us show that this is the unique solution of the problem. Let
z ∈ C1([0,∞);X) ∩ C([0,∞);D(A)) be a solution of (1.4.2), fix t > 0, and set

u(s) = S(t− s)z(s) , ∀s ∈ [0, t].

Then

u′(s) = −AS(t− s)z(s) + S(t− s)Az(s) = 0 , ∀s ∈ [0, t].

Therefore, z(t) = u(t) = u(0) = y(t). �

Exercise 4 Let S(t) and T (t) be C0-semigroups with generator A : D(A) ⊂
X → X and B : D(B) ⊂ X → X, respectively. Show that

A = B =⇒ S(t) = T (t) ∀t > 0.

Exercise 5 Find the infinitesimal generator of the C0-semigroup of left trans-
lations discussed in Exampe 3.

Example 4 (Transport equation in Cb(R)) Returning to the left-trans-
lation semigroup on Cb(R) of Example 3, by Proposition 4 and Exercise 5
we conclude that for each f ∈ C1

b (R) the unique solution of the problem{
∂u
∂t (t, x) = ∂u

∂x (t, x) (t, x) ∈ R+ × R
u(0, x) = f(x) x ∈ R

is given by u(t, x) = f(x+ t).

Exercise 6 Let Ω ⊂ Rn be a bounded domain with boundary of class C2.
Define {

D(A) = H2(Ω) ∩H1
0 (Ω)

Au = ∆u ∀u ∈ D(A).

Prove that A is a closed operator.

1Here D(A) is ragarded as a Banach space with the graph norm.
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1.5 Spectral properties of closed operators

Let A : D(A) ⊂ X → X be a closed operator on a complex Banach space X.

Definition 6 The resolvent set of A, ρ(A), is the set of all λ ∈ C such that
λI − A : D(A) → X is bijective. The set σ(A) = C \ ρ(A) is called the
spectrum of A. For any λ ∈ ρ(A) the linear operator

R(λ,A) := (λI −A)−1 : X → X

is called the resolvent of A at λ.

Example 5 On X = C([0, 1]) with the uniform norm consider the linear
operator A : D(A) ⊂ X → X defined by{

D(A) = C1([0, 1])

Af = f ′, ∀f ∈ D(A)

is closed (Exercise). Then σ(A) = C because for any λ ∈ C the function
fλ(x) = eλx satisfies

λfλ(x)− f ′λ(x) = 0 ∀x ∈ [0, 1].

On the other hand, for the closed operator A0 defined by{
D(A0) =

{
f ∈ C1([0, 1]) : f(0) = 0

}
A0f = f ′, ∀f ∈ D(A0),

we have that σ(A0) = ∅. Indeed, for any g ∈ X the problem{
λf(x)− f ′(x) = g(x) x ∈ [0, 1]

f(0) = 0

admits the unique solution

f(x) = −
∫ x

0
eλ(x−s)g(s) dx (x ∈ [0, 1])

which belongs to D(A0).

Proposition 5 Any closed operator A : D(A) ⊂ X → X on a complex Ba-
nach space X has the following properties.

(a) R(λ,A) ∈ L(X) for any λ ∈ ρ(A).

(b) For any λ ∈ ρ(A)
AR(λ,A) = λR(λ,A)− I. (1.5.1)
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(c) The resolvent identity holds:

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A) ∀λ, µ ∈ ρ(A). (1.5.2)

(d) For any λ, µ ∈ ρ(A)

R(λ,A)R(µ,A) = R(µ,A)R(λ,A). (1.5.3)

Proof. Let λ, µ ∈ ρ(A).

(a) Since A is closed, so is λI − A and aslo R(λ,A) = (λI − A)−1. So,
R(λ,A) ∈ L(X) by the closed graph theorem.

(b) This point follows from the definition of R(λ,A).

(c) By (1.5.1) we have that

[λR(λ,A)−AR(λ,A)]R(µ,A) = R(µ,A)

and
R(λ,A)[µR(µ,A)−AR(µ,A)] = R(λ,A).

Since AR(λ,A) = R(λ,A)A on D(A), (1.5.2) follows.

(d) Apply (1.5.2) to compute

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A)

R(µ,A)−R(λ,A) = (λ− µ)R(µ,A)R(λ,A).

Adding the above identities side by side yields the conclusion.

The proof is complete. �

Theorem 4 Let λ0 ∈ ρ(A). Then, for any λ ∈ C such that

|λ− λ0| <
1

‖R(λ0, A)‖
, (1.5.4)

the resolvent R(λ,A) is given by the (Neumann) series

R(λ,A) =

∞∑
n=0

(λ0 − λ)nR(λ0, A)n+1. (1.5.5)

Consequently, the resolvent set ρ(A) is open in C, λ 7→ R(λ,A) is analytic on
ρ(A), and for any λ ∈ ρ(A)

dn

dλn
R(λ,A) = (−1)n n!R(λ,A)n+1 ∀n ∈ N. (1.5.6)
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Proof. For all λ ∈ C and λ0 ∈ ρ(A) we have that

λI −A = λ0I −A+ (λ− λ0)I = [I − (λ0 − λ)R(λ0, A)](λ0I −A).

This operator is bijective if and only if [I − (λ0 − λ)R(λ0, A)] is invertible,
which is the case if λ satisfies (1.5.4). Then

R(λ,A) = R(λ0, A)[I − (λ0 − λ)R(λ0, A)]−1 =
∞∑
n=0

(λ0 − λ)nR(λ0, A)n+1.

The analyticity of R(λ,A) and (1.5.6) follows from (1.5.5). �

1.6 Integral representation of R(λ,A)

Theorem 5 (Integral representation) Let A : D(A) ⊂ X → X be the
infinitesimal generator of a C0-semigroup of bounded linear operators on X,
S(t), such that

‖S(t)‖ 6Meωt ∀t > 0 (1.6.1)

for some constants M > 1 and ω ∈ R. Then ρ(A) contains the half-plane

Πω =
{
λ ∈ C : <λ > ω

}
(1.6.2)

and

R(λ,A)x =

∫ ∞
0

e−λtS(t)x dt ∀x ∈ X , ∀λ ∈ Πω. (1.6.3)

Proof. We must prove that, given any λ ∈ Πω and x ∈ X, the equation

λu−Au = x (1.6.4)

has a unique solution given by (1.6.3).

Existence: observe that u :=
∫∞

0 e−λtS(t)x dt ∈ X because <λ > ω. More-
over, for all h > 0,

S(h)u− u
h

=
1

h

{∫ ∞
0

e−λtS(t+ h)x dt−
∫ ∞

0
e−λtS(t)x dt

}
=

1

h

{
eλh
∫ ∞
h

e−λtS(t)x dt−
∫ ∞

0
e−λtS(t)x dt

}
=

eλh − 1

h
u− eλh

h

∫ h

0
e−λtS(t)x dt.

So

lim
h↓0

S(h)u− u
h

= λu− x

which in turn yields that u ∈ D(A) and (1.6.4) holds true.
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Uniqueness: let u ∈ D(A) be a solution of (1.6.4). Then∫ ∞
0

e−λtS(t)(λu−Au) dt = λ

∫ ∞
0

e−λtS(t)u dt−
∫ ∞

0
e−λt

d

dt
S(t)u dt = u

which implies that u is given by (1.6.3). �

Proposition 6 Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be closed
linear operators in X and suppose B ⊂ A, that is,

D(B) ⊂ D(A) and Ax = Bx ∀x ∈ D(B).

If ρ(A) ∩ ρ(B) 6= ∅, then A = B.

Proof. It suffices to show that D(A) ⊂ D(B). Let x ∈ D(A), λ ∈ ρ(A)∩ρ(B),
and set

y = λx−Ax and z = R(λ,B)y.

Then z ∈ D(B) and λz − Bz = λx− Ax. Since B ⊂ A, λz − Bz = λz − Az.
Thus, (λI −A)(x− z) = 0. So, x = z ∈ D(B). �

Example 6 (Right-translation semigroup on R+) On the real Banach
space

X = {f ∈ Cb(R+) : f(0) = 0}

with the uniform norm, consider the right-translation semigroup

(
S(t)f

)
(x) =

{
f(x− t) x > t

0 x ∈ [0, t]
∀x, t > 0.

It is easy to check that S is a C0-semigroup on X with ‖S(t)‖ = 1 for all
t > 0. In order to characterize its infinitesimal generator A, let us consider
the operator B : D(B) ⊂ X → X defined by{

D(B) =
{
f ∈ X : f ′ ∈ X

}
Bf = −f ′, ∀f ∈ D(B).

We claim that:

(i) B ⊂ A
Proof. Let f ∈ D(B). Then, for all x, t > 0 we have

(
S(t)f

)
(x)− f(x)

t
=

−
f(x)
t = −f ′(xt), 0 6 x 6 t

f(x−t)−f(x)
t = −f ′(xt) x > t
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with 0 6 x− xt 6 t. Therefore

sup
x>0

∣∣∣(S(t)f
)
(x)− f(x)

t
+ f ′(x)

∣∣∣ 6 sup
|x−y|6t

|f ′(x)− f ′(y)| → 0 as t ↓ 0

because f ′ is uniformly continuous. �

(ii) 1 ∈ ρ(B)

Proof. For any g ∈ X the unique solution f of the problem{
f ∈ D(B)

f(x) + f ′(x) = g(x) ∀x > 0

is given by

f(x) =

∫ x

0
es−xg(s) ds (x > 0). �

Since 1 ∈ ρ(A) by Proposition 5, Proposition 6 yields that A = B.

1.7 Asymptotic behaviour of C0-semigroups

Let S(t) be a C0-semigroup of bounded linear operators on X.

Definition 7 The number

ω0(S) = inf
t>0

log ‖S(t)‖
t

(1.7.1)

is called the type or growth bound of S(t).

Proposition 7 The growth bound of S satisfies

ω0(S) = lim
t→∞

log ‖S(t)‖
t

<∞. (1.7.2)

Moreover, for any ε > 0 there exists Mε > 0 such that

‖S(t)‖ 6Mεe
(ω0(S)+ε)t ∀t > 0. (1.7.3)

Proof. The fact that ω0(S) < ∞ is a direct consequence of (1.7.1). In order
to prove (1.7.2) it suffices to show that

lim sup
t→∞

log ‖S(t)‖
t

6 ω0(S). (1.7.4)

For any ε > 0 let tε > 0 be such that

log ‖S(tε)‖
tε

< ω0(S) + ε. (1.7.5)
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Let us write any t > tε as t = ntε + δ with n0n(ε) ∈ N and δ = δ(ε) ∈ [0, tε[.
Then, by (1.2.2) and (1.7.5),

‖S(t)‖ 6 ‖S(δ)‖ ‖S(tε)‖n 6Meωδ entε(ω0(S)+ε) = Me(ω−ω0(S)−ε)δe(ω0(S)+ε)t

which proves (1.7.3) with Mε = Me(ω−ω0(S)−ε)δ. Moreover, taking the loga-
rithm of both sides of the above inequality we get

log ‖S(t)‖
t

6 ω0(S) + ε+
logM + (ω − ω0(S)− ε)δ

t

and (1.7.4) follows as t→∞. �

Definition 8 For any operator A : D(A) ⊂ X → X we define the spectral
bound of A as

s(A) = sup{<λ : λ ∈ σ(A) }.

Corollary 2 Let S(t) be a C0-semigroup on X with infinitesimal generator
A. Then

−∞ 6 s(A) 6 ω0(S) < +∞.

Proof. By combining Theorem 5 and (1.7.3) we conclude that

Πω0(S)+ε ⊂ ρ(A) ∀ε > 0.

Therefore, s(A) 6 ω0(S) + ε for all ε > 0. The conclusion follows. �

Example 7 For fixed T > 0 and p > 1 let X = Lp(0, T ) and

(
S(t)f

)
(x) =

{
f(x− t) x ∈ [t, T ]

0 x ∈ [0, t)
∀x ∈ [0, T ] , ∀t > 0.

Then S is a C0-semigroup of bounded linear operators on X which satisfies
‖S(t)‖ 6 1 for all t > 0. Moreover, observe that S is nilpotent, that is, we
have S(t) ≡ 0, ∀t > T. Deduce that ω0(S) = −∞. So, the spectral bound of
the infinitesimal generator of S(t) also equals −∞.

Example 8 (−∞ < s(A) = ω0(S)) In the Banach space

X = Cb(R+;C),

with the uniform norm, the left-translation semigroup(
S(t)f

)
(x) = f(x+ t) ∀x, t > 0

is a C0-semigroup of contractions on X which satisfies ‖S(t)‖ = 1 (Exercise).
Therefore

ω0(S) = 0.
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The infinitesimal generator of S(t) is given by{
D(A) = C1

b (R+;C)

Af = f ′ ∀f ∈ D(A).

By Theorem 5 we have that

ρ(A) ⊃
{
λ ∈ C : <λ > 0

}
.

We claim that
σ(A) ⊃

{
λ ∈ C : <λ 6 0

}
.

Indeed, for any λ ∈ C the function fλ(x) := eλx satisfies λf−f ′ = 0. Moreover,
fλ ∈ D(A) for <λ 6 0. Therefore

s(A) = 0.

Example 9 (s(A) < ω0(S)) Let us denote by C0(R+;C) the Banach space of
all continuous functions f : R+ → C such that

lim
x→∞

f(x) = 0

with the uniform norm. We define X to be the Banach space (Exercise) of all
functions f ∈ C0(R+;C) such that

‖f‖ := sup
x∈R+

|f(x)|+
∫ ∞

0
|f(x)|exdx <∞.

Once again, the left-translation semigroup(
S(t)f

)
(x) = f(x+ t) ∀x, t > 0

is a C0-semigroup of contractions on X. Indeed, for all t > 0

‖S(t)f‖ = sup
x∈R+

|f(x+ t)|+
∫ ∞

0
|f(x+ t)|exdx

6 sup
x∈R+

|f(x)|+ e−t
∫ ∞

0
|f(x)|exdx.

Moreover, ‖S(t)‖ = 1 (Exercise). Therefore

ω0(S) = 0.

The infinitesimal generator of S(t) is given by{
D(A) =

{
f ∈ X : f ′ ∈ X

}
Af = f ′ ∀f ∈ D(A).
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For any λ ∈ C the function fλ(x) := eλx satisfies λf − f ′ = 0 and fλ ∈ D(A)
for <λ < −1. So,

s(A) > −1. (1.7.6)

We claim that
ρ(A) ⊃

{
λ ∈ C : <λ > −1

}
. (1.7.7)

Indeed, a direct calculation shows that, for any g ∈ X, the function

f(x) =

∫ ∞
0

e−λt
(
S(t)g

)
(x)dt =

∫ ∞
0

e−λtg(x+ t)dt (x > 0)

satisfies λf − f ′ = g. Consequently, if we show that f ∈ X, then f ∈ D(A)
follows and so λ ∈ ρ(A). In order to check f ∈ X, observe that, for all x > 0,

|f(x)| 6
∫ ∞

0

∣∣e−λtg(x+ t)
∣∣dt

=

∫ ∞
0

e−t<λ
∣∣g(x+ t)

∣∣ex+te−x−tdt

= e−x
∫ ∞

0
e−t(1+<λ)ex+t

∣∣g(x+ t)
∣∣dt (1.7.8)

6 e−x
∫ ∞
x

es
∣∣g(s)

∣∣ds
which insures that f ∈ C0(R+;C). Furthermore, by (1.7.8) we compute∫ ∞

0
|f(x)|exdx 6

∫ ∞
0

dx

∫ ∞
0

e−t(1+<λ)ex+t
∣∣g(x+ t)

∣∣dt
=

∫ ∞
0

e−t(1+<λ)dt

∫ ∞
0

ex+t
∣∣g(x+ t)

∣∣dx
6

∫ ∞
0

e−t(1+<λ)dt

∫ ∞
0

eτ
∣∣g(τ)

∣∣dτ <∞.
From (1.7.6) and (1.7.7) it follows that s(A) = −1 < 0 = ω0(S).

Exercise 7 Let S(t) be a C0-semigroup of bounded linear operators on X.
Prove that ω0(S) < 0 if and only if

lim
t→+∞

‖S(t)‖ = 0. (1.7.9)

Solution. One only needs to show that (1.7.9) implies that ω0(S) < 0. Let
t0 > 0 be such that ‖S(t0)‖ < 1/e. For any t > 0 let n ∈ N be the unique
integer such that

nt0 6 t <
(
n+ 1

)
t0. (1.7.10)

Then

‖S(t)‖ =
∥∥S(nt0)S(t− nt0)∥∥ 6 Meω(t−nt0)

en
6

Meωt0

en
.
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Therefore, on account of (1.7.9), we conclude that

log ‖S(t)‖
t

6
log
(
Meωt0

)
t

− n

t

6
log
(
Meωt0

)
t

−
( 1

t0
− 1

t

)
∀t > 0.

Taking the limit as t→ +∞ we conclude that ω0(S) < 0. �

1.8 The Hille-Yosida generation theorem

Theorem 6 Let M > 1 and ω ∈ R. For a linear operator A : D(A) ⊂ X → X
the following properties are equivalent:

(a) A is closed, D(A) is dense in X, and

ρ(A) ⊇ Πω =
{
λ ∈ C : <λ > ω

}
(1.8.1)

‖R(λ,A)k‖ 6 M

(<λ− ω)k
∀k > 1,∀λ ∈ Πω (1.8.2)

(b) A is the infinitesimal generator of a C0-semigroup, S(t), such that

‖S(t)‖ 6Meωt ∀t > 0. (1.8.3)

Proof of (b)⇒ (a) The fact that A is closed, D(A) is dense in X, and (1.8.1)

holds true has already been proved, see Theorem 3-(c), Proposition 3, and
Theorem 5. In order to prove (1.8.2) observe that, by using (1.6.3) to compute
the k-th derivative of the resolvent of A, we obtain

dk

dλk
R(λ,A)x = (−1)k

∫ ∞
0

tke−λtS(t)x dt ∀x ∈ X , ∀λ ∈ Πω.

Therefore, ∥∥∥ dk
dλk

R(λ,A)
∥∥∥ 6M ∫ ∞

0
tke−(<λ−ω)t dt =

M k!

(<λ− ω)k+1

where the integral is easily computed by induction. The conclusion follows
recalling (1.5.6). �

Lemma 1 Let A : D(A) ⊂ X → X be as in (a) of Theorem 6. Then:

(i) For all x ∈ X
lim
n→∞

nR(n,A)x = x. (1.8.4)
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(ii) The Yosida Approximation An of A, defined as

An = nAR(n,A) (n > 1) (1.8.5)

is a sequence of bounded operator on X which satisfies

AnAm = AmAn ∀n,m > 1 (1.8.6)

and

lim
n→∞

Anx = Ax ∀x ∈ D(A). (1.8.7)

(iii) For all m,n > 2ω, x ∈ D(A), t > 0 we have that

‖etAn‖ 6 Me
nωt
n−ω 6Me2ωt (1.8.8)

|etAnx− etAmx| 6 M2te2ωt|Anx−Amx|. (1.8.9)

Consequently, for all x ∈ D(A) the sequence un(t) := etAnx is Cauchy
in C([0, T ];X) for any T > 0.

Proof of (i): owing to (1.5.1), for any x ∈ D(A) we have that

|nR(n,A)x− x| = |AR(n,A)x| = |R(n,A)Ax| 6 M |Ax|
n− ω

(n→∞)−→ 0,

where we have used (1.8.2) with k = 1. Moreover, again by (1.8.2) ,

‖nR(n,A)‖ 6 Mn

n− ω
6 2M ∀n > 2ω.

The last two inequalities yield the conclusion because D(A) is dense in X.
Indeed, let x ∈ X and fix any ε > 0. Let xε ∈ D(A) be such that |xε−x| < ε.
Then

|nR(n,A)x− x| 6 |nR(n,A)(x− xε)|+ |nR(n,A)xε − xε|+ |xε − x|

< (2M + 1)ε+
M |Axε|
n− ω

(n→∞)−→ (2M + 1)ε.

Since ε is arbitrary, (1.8.4) follows.

Proof of (ii): observe that An ∈ L(X) because

An = n2R(n,A)− nI ∀n > 1. (1.8.10)

Moreover, in view of (1.5.3) we have that

AnAm = [n2R(n,A)− nI] [m2R(m,A)−mI]

= [m2R(m,A)−mI] [n2R(n,A)− nI] = AmAn.
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Finally, owing to (1.8.4), for all x ∈ D(A) we have that

Anx = nAR(n,A)x = nR(n,A)Ax
(n→∞)−→ Ax.

Proof of (iii): recalling (1.8.10) we have that

etAn = e−nt
∞∑
k=0

n2ktkR(n,A)k

k!
, ∀t > 0.

Therefore, in view of (1.8.2),

‖etAn‖ 6Me−nt
∞∑
k=0

n2ktk

k!(n− ω)k
= Me

nωt
n−ω 6Me2ωt

for all t > 0 and n > 2ω. This proves (1.8.8).
Next, observe that for any x ∈ D(A) we have that{

(un − um)′(t) = An(un − um)(t) + (An −Am)um(t) ∀t > 0

(un − um)(0) = 0.

where we have set un(t) = etAnx. Therefore, for all t > 0 we have that

etAnx− etAmx =

∫ t

0
e(t−s)An(An −Am)esAmx ds

=

∫ t

0
e(t−s)AnesAm(An −Am)x ds (1.8.11)

because An and esAmx commute in view of (1.8.6). Thus, by combining
(1.8.11) and (1.8.8) we obtain

|etAnx− etAmx| 6 M2

∫ t

0
e2ω(t−s)e2ωs|Anx−Amx|, ds

6 M2 t e2ωt |Anx−Amx|.

In view of (1.8.7), the last inequality shows that etAnx is a Cauchy sequence
in C([0, T ];X) for any T > 0, thus completing the proof. �

Exercise 8 Use a density argument to prove that etAnx is a Cauchy sequence
on all compact subsets of R+ for all x ∈ X.

Proof of (a)⇒ (b) On account of Lemma 1 and Exercise 8, we have that

etAnx is a Cauchy sequence on all compact subsets of R+ for all x ∈ X.
Consequently, the limit (uniform on all [0, T ] ⊂ R+)

S(t)x = lim
n→∞

etAnx, ∀x ∈ X, (1.8.12)
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defines a C0-semigroup of bounded linear operators on X. Moreover, passing
to the limit as n→∞ in (1.8.8), we conclude that ‖S(t)‖ 6Meωt, ∀t > 0.

Let us identify the infinitesimal generator of S(t). By (1.8.8), for x ∈ D(A)
we have that∣∣∣ d

dt
etAnx− S(t)Ax

∣∣∣ 6 |etAnAnx− etAnAx|+ |etAnAx− S(t)Ax|

6Me2ωt|Anx−Ax|+ |etAnAx− S(t)Ax| (n→∞)−→ 0

uniformly on all compact subsets of R+ by (1.8.12). Therefore, for all T > 0
and x ∈ D(A) we have thatetAnx

(n→∞)−→ S(t)x

d
dt e

tAnx
(n→∞)−→ S(t)Ax

uniformly on [0, T ].

This implies that

S′(t)x = S(t)Ax, ∀x ∈ D(A) , ∀t > 0. (1.8.13)

Now, let B : D(B) ⊂ X → X be the infinitesimal generator of S(t). Then
A ⊂ B in view of (1.8.13). Moreover, Πω ⊂ ρ(A) by assumption (a) and
Πω ⊂ ρ(B) by Proposition 5. So, on account of Proposition 6, A = B. �

Remark 3 The above proof shows that condition (a) in Theorem 6 can be
relaxed as follows:

(a′) A is closed, D(A) is dense in X, and

ρ(A) ⊇]ω,∞[ (1.8.14)

‖R(n,A)k‖ 6 M

(n− ω)k
∀k > 1, ∀n > ω. (1.8.15)

Remark 4 When M = 1, the countably many bounds in condition (a) follow
from (1.8.2) for k = 1, that is,

‖R(λ,A)‖ 6 1

<λ− ω
∀k > 1 , ∀λ ∈ Πω.

Example 10 (Second order parabolic equations in L2(Ω)) Let Ω ⊂ Rn
be a bounded domain with boundary of class C2. Define{

D(A) = H2(Ω) ∩H1
0 (Ω)

Au =
∑n

i,j=1Dj(aijDj)u+
∑n

i=1 biDiu+ cu ∀u ∈ D(A).

where
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(H1) aij ∈ C1(Ω) satisfies aij = aji for all i, j = 1, . . . , n and

n∑
i,j=1

aij(x)ξjξi > θ|ξ|2 ∀ξ ∈ Rn, x ∈ Ω

(H2) bi ∈ L∞(Ω) for all i = 1, . . . , n and c ∈ L∞(Ω).

In order to apply the Hille-Yosida theorem to show that A is the infinitesimal
generator of a C0-semigroup S(t) on L2(Ω), one can check that the following
assumptions are satisfied.

1. D(A) is dense in L2(Ω).

[This is a known property of Sobolev spaces.]

2. A is a closed operator.

Proof. Let uk ∈ D(A) be such that

uk
k→∞−→ u and Auk

k→∞−→ f.

Then, for all h, k > 1 we have that vhk := uh − uk satisfies{∑n
i,j=1Dj(aijDj)vhk +

∑n
i=1 biDivhk + cvhk =: fhk in Ω

vhk = 0 on ∂Ω.

So, elliptic regularity insures that

‖vhk‖2,Ω 6 C
(
‖fhk‖0,Ω + ‖vhk‖0,Ω

)
for some constant C > 0. The above inequality implies that {uk} is a
Cauchy sequence in D(A) and this yields f = Au. �

3. ∃ω ∈ R such that ρ(A) ⊃]ω,∞[.

[This follows from elliptic theory.]

4. ‖R(λ,A)‖ 6 1
λ−ω for all k > 1 and λ > ω.

[This follows from elliptic theory.]

Then, for any u0 ∈ H2(Ω) ∩H1
0 (Ω), the function u(t, x) =

(
S(t)u0

)
(x) is the

unique solution of the initial-boundary value problem
∂u
∂t =

∑n
i,j=1Dj(aijDj)u+

∑n
i=1 biDiu+ cu in ]0,∞[×Ω

u = 0 on ]0,∞[×∂Ω

u(0, x) = u0(x) x ∈ Ω.

in the class

C1
(
[0,∞);L2(Ω)

)
∩ C
(
[0,∞);H2(Ω) ∩H1

0 (Ω)
)
.
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Exercise 9 Let S(t) be the C0-semigroup on L2(Ω) associated with the initial-
boundary value problem

∂u
∂t = ∆u in ]0,∞[×Ω

u = 0 on ]0,∞[×∂Ω

u(0, x) = u0(x) x ∈ Ω

(1.8.16)

Show that ω0(S) < 0.

Solution. We know from Example 10 that the infinitesimal generator of S(t)
is the operator A defined by{

D(A) = H2(Ω) ∩H1
0 (Ω)

Au = ∆u ∀u ∈ D(A).

For u0 ∈ D(A), let u(t, x) =
(
S(t)u0

)
(x). Then u satisfies (1.8.16). So

d

dt

(1

2

∫
Ω
|u(t, x)|2dx

)
= −1

2

∫
Ω
|Du(t, x)|2dx ∀t > 0.

Moreover, by Poincaré’s inequality we have that∫
Ω
|u(t, x)|2dx 6 c(Ω)

∫
Ω
|Du(t, x)|2dx.

Therefore,
d

dt
|u(t)|2 6 − 2

c(Ω)
|u(t)|2

which ensures, by Gronwall’s lemma, that

|u(t)| 6 e−t/c(Ω)|u0| ∀t > 0.

By a density argument, one concludes that the above inequality holds true for
any x ∈ L2(Ω), so that ωo(S) 6 −1/c(Ω). �
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1.9 Additional exercises for Chapter 1

Exercise 10 Let X be a Banach space and let A : D(A) ⊂ X → X be the
infinitesimal generator of a C0-semigroup of bounded linear operators on X.
Prove that, for every n > 1,

D(An) :=
{
x ∈ D(An−1) : Ax ∈ D(A)}

is dense in X.

Solution. For n = 1 the conclusion follows from Theorem 3. Let the conclusion
be true for some n > 1 and fix any y ∈ X. Then, for any ε > 0 there exists
xε ∈ D(An) such that |xε − y| < ε. Moreover,

An
(1

t

∫ t

0
S(s)xε ds

)
=

1

t

∫ t

0
S(s)Anxε ds

Since
1

t

∫ t

0
S(s)xε ds ∈ D(A) ∀t > 0

we conclude that

1

t

∫ t

0
S(s)xε ds ∈ D(An+1) ∀t > 0.

Moreover, there exists tε > 0 such that∣∣∣ 1

tε

∫ tε

0
S(s)xε ds− y

∣∣∣ 6 ∣∣∣ 1

tε

∫ tε

0
S(s)xε ds− xε

∣∣∣+ |xε − y| < 2ε. �

Exercise 11 Given a uniformly bounded C0-semigroup , ‖S(t)‖ 6M , define

|x|S = sup
t>0
|S(t)x| , ∀x ∈ X. (1.9.1)

Show that:

1. | · |S is a norm on X,

2. |x| 6 |x|S 6M |x| for all x ∈ X, and

3. S is a contraction semigroup with respect to | · |S .

Exercise 12 Let S be C0-semigroup of bounded linear operators on X and
let K ⊂ X be compact. Prove that for every t0 > 0

lim
t→t0

sup
x∈K

∣∣S(t)x− S(t0)x
∣∣ = 0 . (1.9.2)
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Solution. We may assume S ∈ G(M, 0) for some M >) without loss of gener-
ality. Let t0 > 0 and fix any ε > 0. Since K is totally bounded, there exist
x1, . . . , xNε ∈ X such that

K ⊂
Nε⋃
n=1

B
(
xn,

ε

M

)
.

Moreover, there exists τ > 0 such that

|t− t0| < τ =⇒
∣∣S(t)xn − S(t0)xn

∣∣ < ε ∀n = 1, . . . , Nε.

Thus, for all |t − t0| < τ we have that, if x ∈ K is such that x ∈ B
(
xn,

ε
M

)
,

then ∣∣S(t)x− S(t0)x
∣∣

6
∣∣S(t)x− S(t)xn

∣∣+
∣∣S(t)xn − S(t0)xn

∣∣+
∣∣S(t0)xn − S(t0)x

∣∣
6 2M |x− xn|+ ε < 3ε.

So, the limit of
∣∣S(t)x− S(t0)x

∣∣ as t→ t0 is uniform on K. �

Exercise 13 Prove that if A : D(A) ⊂ X → X is a closed operator and
B ∈ L(X), then A+B : D(A) ⊂ X → X is also closed.

Exercise 14 Let A : D(A) ⊂ X → X be a closed operator satisfying (1.8.2)
but suppose D(A) fails to be dense in X. In the Banach space Y := D(A),
define the operator B, called the part of A in Y , by{

D(B) =
{
x ∈ D(A) : Ax ∈ Y

}
Bx = Ax ∀x ∈ D(B).

Prove that B is the infinitesimal generator of a C0-semigroup on Y .

Solution. R(λ,A)(Y ) ⊂ D(B) for all λ ∈ C such that <λ > ω. Indeed, owing
to (1.5.1) for all x ∈ D(A) we have that

lim
n→∞

nR(n,A)x = lim
n→∞

{
R(n,A)Ax+ x

}
= x. (1.9.3)

Since ‖nR(n,A)‖ is bounded, (1.9.3) holds true for all x ∈ Y . Hence, D(B) is
dense in Y . Consequently, B satisfies in Y all the assumptions of Theorem 6.
�

Exercise 15 For any fixed p > 1, let X = Lp(R) and define, ∀f ∈ X,(
S(t)f

)
(x) = f(x+ t) ∀x ∈ R , ∀t > 0. (1.9.4)

Prove that S is C0-semigroup which fails to be uniformly continuous.
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(Observe that (1.9.4) makes sense for t < 0 as well. On the other hand, if one
takes X = Lp(R+), then (1.9.4) makes sense only for t > 0.)

Solution. Suppose S is uniformly continuous and let τ > 0 be such that
‖S(t)− I‖ < 1/2 for all t ∈ [0, τ ]. Then by taking fn(x) = n1/pχ[0,1/n](x) for
p <∞ and n > 1/τ we have that |fn| = 1 and

|S(τ)fn − fn| =
(∫

R
n|χ[0,1/n](x+ τ)− χ[0,1/n](x)|pdx

) 1
p

= 21/p.

Exercise 16 Denoting by |f |p the norm of f in Lp(R) and by W 1,p(R) the
Banach space of all locally absolutely continuous functions f : R → R such
that

|f |1,p := |f |p + |f ′|p <∞, (1.9.5)

show that the infinitesimal generator of the left-translation semigroup S(t)
on Lp(R) defined in (1.9.4) is given by{

D(A) = W 1,p(R)

Af(x) = f ′(x) (x ∈ R a.e.) ∀f ∈ D(A).
(1.9.6)

Exercise 17 Let p > 2. On X = Lp(0, π) consider the operator defined by{
D(A) = W 2,p(0, π) ∩W 1,p

0 (0, π)

Af(x) = f ′′(x) x ∈ (0, π) a.e.
(1.9.7)

where
W 1,p

0 (0, π) =
{
f ∈W 1,p(0, π) : f(0) = 0 = f(π)

}
.

Since C∞c (0, π) ⊂ D(A), we have that D(A) is dense in X. Show that A
is closed and satisfies condition (a′) of Remark 3 with M = 1 and ω = 0.
Theorem 6 will imply that A generates a C0-semigroup of contractions on X.

Solution. Step 1: σ(A) = {−n2 : n ∈ N}.
Fix any g ∈ X. We will show that, for all λ 6= n2(n > 1), the Sturm-Liouville
system {

λf(x)− f ′′(x) = g(x), 0 < x < π

f(0) = 0 = f(π)
(1.9.8)

admits a unique solution f ∈ D(A). Denoting by

g(x) =

∞∑
n=1

gn sin(nx) (x ∈ [0, π])

the Fourier series of g, we seek a candidate solution f of the form

f(x) =
∞∑
n=1

fn sin(nx) (x ∈ [0, π]).
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In order to satisfy (1.9.8) one must have

(λ+ n2)fn = gn ∀n > 1.

So, for any λ 6= −n2, (1.9.8) has a unique solution given by

f(x) =
∞∑
n=1

gn
λ+ n2

sin(nx) (x ∈ [0, π]).

From the above representation it follows that f ∈ H2(0, π)∩H1
0 (0, π). In fact,

returning to the equation in (1.9.8) one concludes that f ∈ D(A).

Step 2: resolvent estimate.
By multiplying both members of the equation in (1.9.8) by |f |p−2f and inte-
grating over (0, π) one obtains, for all λ > 0,

λ

∫ π

0
|f(x)|pdx+ (p− 1)

∫ p

0
|f(x)|p−2|f ′(x)|2dx =

∫ π

0
g(x)|f(x)|p−2f(x) dx

which yields

|f |p 6
1

λ
|g|p ∀λ > 0.

Step 3: conclusion.
By Proposition 4 we conclude that for each f ∈ W 2,p(0, π) ∩W 1,p

0 (0, π) the
unique solution of

∂u
∂t (t, x) = ∂2u

∂x2
(t, x) (t, x) ∈ R+ × (0, π)

u(t, 0) = 0 = u(t, π) t > 0

u(0, x) = f(x) x ∈ (0, π)

is given by u(t, x) = (S(t)f)(x). �

Exercise 18 Let S(t) be the C0-semigroup generated by operatorA in (1.9.7).
Prove that, for any f ∈ Lp(0, π),

(S(t)f)(x) =

∫ π

0
K(t, x, y)f(y) dy , ∀t > 0, x ∈ (0, π) a.e.

where

K(t, x, y) =
2

π

∞∑
k=1

e−k
2t sin(kx) sin(ky).

Exercise 19 Let f ∈W 2,p(R) with p > 2. Solve the Cauchy problem{
∂u
∂t (t, x) = ∂2u

∂x2
(t, x) (t, x) ∈ R+ × R

u(0, x) = f(x) x ∈ R.
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Solution. The operator defined by{
D(A) = W 2,p(R)

Af(x) = f ′′(x) x ∈ R a.e.

is densely defined and closed. Let us begin by studying the problem{
f ∈ D(A)

λf − f ′′ = g ∈ X
(1.9.9)

in the special case p = 2. Taking the Fourier transform of both members of
the above equation we find

(λ+ ξ2)f̂(ξ) = ĝ(ξ) ∀ξ ∈ R.

So, for any λ > 0 we have that the solution to problem (1.9.9) is given by

f(x) = (g ∗ φλ)(x) with φλ(x) =
e−
√
λ |x|

2
√
λ

,

that is,

f(x) =
1

2
√
λ

{∫ x

−∞
g(y)e−

√
λ (x−y)dy +

∫ ∞
x

g(y)e−
√
λ (y−x)dy

}
.

Moreover, the above representation formula holds true for any p > 2. We
have thus proved that (0,∞) ⊂ ρ(A). Finally, by multiplying both members
of the equation in (1.9.8) by |f |p−2f and integrating over R we obtain as in
Exercise 17

λ

∫ ∞
−∞
|f |pdx+ (p− 1)

∫ ∞
−∞
|f |p−2|f ′|2dx =

∫ ∞
−∞

g|f |p−2f dx

which yields

|f |p 6
1

λ
|g|p.

Therefore, A satisfies condition (a′) of Remark 3 and generates a C0-semigroup
of bounded linear operators on X which gives the solution of our problem. �

Exercise 20 On X = {f ∈ C([0, π]) : f(0) = 0 = f(π)} with the uniform
norm, consider the linear operator A : D(A) ⊂ X → X defined by{

D(A) =
{
f ∈ C2([0, 1]) : f(0) = f(π) = 0 = f ′′(0) = f ′′(π)}

Af = f ′′, ∀f ∈ D(A).

Show that A generates a C0-semigroup of contractions on X and derive the
initial-boundary value problem which is solved by such semigroup.
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Solution. We only prove that ‖R(λ,A)‖ 6 1/λ for all λ > 0. Fix any g ∈ X
and let f = R(λ,A)g. Let x0 ∈ [0, π] be such that |f(x0)| = |f |∞. If f(x0) > 0,
then x0 ∈ (0, π) is a maximum point of f . So, f ′′(x0) 6 0 and we have that

λ|f |∞ = λf(x0) 6 λf(x0)− f ′′(x0) = g(x0) 6 |g|∞.

On the other hand, if f(x0) < 0, then x0 ∈ (0, π) once again and x0 is a
minimum point of f . Thus, f ′′(x0) > 0 and

λ|f |∞ = −λf(x0) 6 −λf(x0) + f ′′(x0) = −g(x0) 6 |g|∞.

In any case, we have that λ|f |∞ 6 |g|∞. �

Exercise 21 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
uniformly bounded semigroup ‖S(t)‖ 6 M . Prove the Laundau-Kolmogorov
inequality:

|Ax|2 6 4M2 |x| |A2x| ∀x ∈ D(A2), (1.9.10)

where {
D(A2) = {x ∈ D(A) : Ax ∈ D(A)}
A2x = A(Ax) , ∀x ∈ D(A2).

(1.9.11)

Solution. Assume M = 1. For any x ∈ D(A2) and all t > 0 we have∫ t

0
(t− s)S(s)A2x ds =

[
(t− s)S(s)Ax

]s=t
s=0

+

∫ t

0
S(s)Axds

= −tAx+
[
S(s)x

]s=t
s=0

= −tAx+ S(t)x− x.

Therefore, for all t > 0,

|Ax| 6 1

t
|S(t)x− x|+ 1

t

∫ t

0
(t− s)|S(s)A2x|ds

6
2

t
|x|+ t

2
|A2x|. (1.9.12)

If A2x = 0, then the above inequality yields Ax = 0 by letting t → ∞. So,
(1.9.10) is true in this case. On the other hand, for A2x 6= 0 the function of t
on the right-hand side of (1.9.12) attains its minimum at

t0 =
2|x|1/2

|A2x|1/2
.

By taking t = t0 in (1.9.12) we obtain (1.9.10) once again. �

Exercise 22 Use the Landau-Kolmogorov inequality to deduce the interpo-
lation inequality

|f ′|p 6 2
√
|f |p |f ′′|p ∀f ∈W 2,p(R).
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2 Special classes of semigroups

2.1 Dissipative operators

Let H be a Hilbert space with scalar product 〈·, ·〉.

Definition 9 We say that an operator A : D(A) ⊂ H → H is dissipative if

< 〈Ax, x〉 6 0 ∀x ∈ D(A). (2.1.1)

Example 11 In H = L2(R+;C) consider the operator{
D(A) = H1(R+;C)

Af(x) = f ′(x) x ∈ R+ a.e.

Then

2< 〈Af, f〉 = 2<
(∫ ∞

0
f ′(x)f(x) dx

)
=

∫ ∞
0

d

dx
|f(x)|2 dx = −|f(0)|2 6 0.

So, A is dissipative.

Proposition 8 An operator A : D(A) ⊂ H → H is dissipative if and only if

|(λI −A)x| > λ|x| ∀x ∈ D(A) and ∀λ > 0. (2.1.2)

Proof. Let A be dissipative. Then for every λ > 0

|(λI −A)x|2 = λ2|x|2 − 2λ<〈Ax, x〉+ |Ax|2 > λ2|x|2 ∀x ∈ D(A).

Conversely, suppose A satisfies (2.1.2). Then for every λ > 0 and x ∈ D(A)

λ2|x|2 − 2λ<〈Ax, x〉+ |Ax|2 = |(λI −A)x|2 > λ2|x|2

So, 2λ<〈Ax, x〉 6 |Ax|2 which in turn yields (2.1.1) as λ→∞. �

The above characterization can be used to extend the notion of dissipative
operators to a Banach space X.

Definition 10 We say that an operator A : D(A) ⊂ X → X is dissipative if

|(λI −A)x| > λ|x| ∀x ∈ D(A) and ∀λ > 0. (2.1.3)

Remark 5 It follows from (2.1.3) that, if A is dissipative then

λI −A : D(A)→ X

is one-to-one for all λ > 0.
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Proposition 9 Let A : D(A) ⊂ X → X be dissipative. If

∃λ0 > 0 such that (λ0I −A)D(A) = X, (2.1.4)

then the following properties hold:

(a) λ0 ∈ ρ(A) and ‖R(λ0, A)‖ 6 1/λ0,

(b) A is closed,

(c) (λI −A)D(A) = X and ‖R(λ,A)‖ 6 1/λ for all λ > 0.

We observe that point (a) follows from Remark 5 and inequality (2.1.3). As
for point (b), we note that, since R(λ0, A) is closed, λ0I − A is also closed,
and therefore A is closed.

Proof of (c). By point (a) the set

Λ =
{
λ ∈]0,∞[ : (λI −A)D(A) = X

}
is contained in ρ(A) which is open in C. This implies that Λ is also open. Let
us show that Λ is closed: let Λ 3 λn → λ > 0 and fix any y ∈ X. There exists
xn ∈ D(A) such that

λnxn −Axn = y. (2.1.5)

From (2.1.2) it follows that |xn| 6 |y|/λn 6 C for some C > 0. Again by
(2.1.2),

λm|xn − xm| 6 |λm(xn − xm)−A(xn − xm)|
6 |λm − λn| |xn|+ |λnxn −Axn − (λmxm −Axm)|
6 C|λm − λn|.

Therefore {xn} is a Cauchy sequence. Let xn → x. Then Axn → λx − y by
(2.1.5). Since A is closed by point (b), x ∈ D(A) and λx − Ax = y. This
show that λI − A is surjective and implies that λ ∈ Λ. Thus, Λ is both open
and closed in (0,∞). Moreover, Λ 6= ∅ because λ0 ∈ Λ. So, Λ = (0,∞). The
inequality ‖R(λ,A)‖ 6 1/λ is a consequence of dissipativity. �

Definition 11 A dissipative operator A : D(A) ⊂ X → X is called maximal
dissipative if (2.1.4) holds true.

Theorem 7 Let X be a reflexive Banach space. If A : D(A) ⊂ X → X is a
maximal dissipative operator, then D(A) is dense in X.

We give the proof assuming that X is a Hilbert space. The case of a reflexive
Banach space is treated in exercises 24 to 27.
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Proof. Let z ∈ X be such that 〈z, x〉 = 0 for all x ∈ D(A). We will show that
z = 0, or

〈z, y〉 = 0 ∀y ∈ X.
Since (I −A) is surjective, the above is equivalent to

0 = 〈z, x−Ax〉 ∀x ∈ D(A).

Finally, what we need to prove is that

〈z, x〉 = 0 ∀x ∈ D(A) =⇒ 〈z,Ax〉 = 0 ∀x ∈ D(A). (2.1.6)

Let x ∈ D(A). Since nI −A is onto, there exists a sequence {xn} ⊂ D(A)
such that

nx = nxn −Axn ∀n > 1. (2.1.7)

Since Axn = n(xn − x) ∈ D(A), we have that xn ∈ D(A2) and

Ax = Axn −
1

n
A2xn or Axn =

(
I − 1

n
A
)−1

Ax.

Since ‖(I − 1
n A)−1‖ 6 1 by (2.1.2), the above identity yields |Axn| 6 |Ax|.

So, by (2.1.7) we obtain

|xn − x| 6
1

n
|Ax|.

Therefore, xn → x. Moreover, since {Axn} is bounded, there is a subsequence
Axnk

such that Axnk
⇀ y. Since A is closed, we have that y = Ax. Therefore,

〈z,Ax〉 = lim
k→∞
〈z,Axnk

〉 = lim
k→∞

nk〈z, xnk
− x〉

and (2.1.6) follows from the vanishing of the rightmost term above. �

Example 12 We now show that the above density may be fail in a general
Banach space. On X = C([0, 1]) with the uniform norm consider the linear
operator A : D(A) ⊂ X → X defined by{

D(A) =
{
u ∈ C1([0, 1]) : u(0) = 0

}
Au(x) = −u′(x) ∀x ∈ [0, 1].

Then, for all λ > 0 and f ∈ X we have that the equation λu − Au = f has
the unique solution u ∈ D(A) given by

u(x) =

∫ x

0
eλ(y−x)f(y) dy (x ∈ [0, 1])

Thereforre, λI −A is onto. Moreover,

λ|u(x)| 6
∫ x

0
λeλ(y−x)‖f‖∞ dy = (1− e−λx)‖f‖∞ 6 ‖λu−Au‖∞.

So, A is dissipative. On the other hand, D(A) is not dense in X because all
functions in D(A) vanish at x = 0.

32



Theorem 8 (Lumer-Phillips 1) Let A : D(A) ⊂ X → X be a densely
defined linear operator. Then the following properties are equivalent:

(a) A is the infinitesimal generator of a C0-semigroup of contractions,

(b) A is maximal dissipative.

Proof of (a)⇒ (b) In view of Theorem 5, we have that ]0,∞[⊂ ρ(A). So,

(λI − A)D(A) = X for all λ > 0. Moreover, by the Hille-Yosida theorem for
all λ > 0 and y ∈ X we have that λ|R(λ,A)y| 6 |y| or, setting x = R(λ,A)y,

λ|x| 6 |(λI −A)x| ∀x ∈ D(A).

So, A is maximal dissipative. �

Proof of (b)⇒ (a) We have that:

(i) D(A) is dense by hypothesis,

(ii) A is closed by Proposition 9-(b),

(iii) ]0,∞[⊂ ρ(A) and ‖R(λ,A)‖ 6 1/λ for all λ > 0 by Proposition 9-(c).

The conclusion follows by the Hille-Yosida theorem. �

Example 13 (Wave equation in L2(Ω)) Let Ω ⊂ Rn be a bounded do-
main with boundary of class C2. For any given f ∈ H2(Ω) ∩ H1

0 (Ω) and
g ∈ H1

0 (Ω), consider the problem
∂2u
∂t2

(t, x) = ∆u in ]0,∞[×Ω

u = 0 on ]0,∞[×∂Ω

u(0, x) = f(x) , ∂u
∂t (0, x) = g(x) x ∈ Ω

(2.1.8)

Let H be the Hilbert space H1
0 (Ω)× L2(Ω) with the scalar product〈( u

v

)
,
( ū
v̄

)〉
=

∫
Ω

(
Du(x) ·Dū(x) + v(x)v̄(x)

)
dx.

Define A : D(A) ⊂ H → H by
D(A) =

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω)

A
( u

v

)
=
( 0 1

∆ 0

)( u

v

)
=
( v

∆u

) (2.1.9)

We will show that A is the infinitesimal generator of a C0-semigroup of con-
tractions on H by checking that A is maximal dissipative.
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Let
( u
v

)
∈ D(A). Then, integrating by parts we obtain

〈
A
( u
v

)
,
( u
v

)〉
=

∫
Ω

(
Du(x) ·Dv(x) + v(x)∆u(x)

)
dx = 0 . (2.1.10)

So, A is dissipative.
Now, consider the resolvent equation

( u

v

)
∈ D(A)

(I −A)
( u

v

)
=
( f

g

)
∈ H

(2.1.11)

which is equivalent to the system
u ∈ H2(Ω) ∩H1

0 (Ω), v ∈ H1
0 (Ω)

u− v = f ∈ H1
0 (Ω)

v −∆u = g ∈ L2(Ω).

(2.1.12)

Using elliptic theory one can show that the boundary value problem{
u ∈ H2(Ω) ∩H1

0 (Ω),

u−∆u = f + g ∈ L2(Ω)

has a unique solution. Then, taking v = u− f ∈ H1
0 (Ω) we obtain the unique

solution of problem (2.1.12). So, A is maximal dissipative and therefore A is
the infinitesimal generator of a C0-semigroup of contractions, S(t), thanks to
Theorem 8.

For any f ∈ H2(Ω) ∩ H1
0 (Ω) , g ∈ H1

0 (Ω), let u(t) (t ∈ R+) be the first
component of

S(t)
( f
g

)
Then u is the unique solution of problem (2.1.8) in the space

C2
(
R+;L2(Ω)

)
∩ C1

(
R+;H1

0 (Ω)
)
∩ C
(
R+;H2(Ω) ∩H1

0 (Ω)
)
.

2.2 Strongly continuous groups

Definition 12 A C0-group of bounded linear operators on X is is a map G :
R→ L(X) with the following properties:

(a) G(0) = I and G(t+ s) = G(t)G(s) for all t, s ∈ R,

(b) for all x ∈ X

34



lim
t→0

G(t)x = x. (2.2.1)

Definition 13 The infinitesimal generator of a C0-group of bounded linear
operators on X, G(t), is the map A : D(A) ⊂ X → X defined byD(A) =

{
x ∈ X : ∃ limt→0

S(t)x−x
t

}
Ax = limt→0

S(t)x−x
t ∀x ∈ D(A)

Theorem 9 Let M > 1 and ω > 0. For a linear operator A : D(A) ⊂ X → X
the following properties are equivalent:

(a) A is the infinitesimal generator of a C0-group, G(t), such that

‖G(t)‖ 6Meω|t| ∀t ∈ R. (2.2.2)

(b) A and −A are the infinitesimal generators of C0-semigroups, S+(t) and
S−(t)) respectively, satisfying

‖S±(t)‖ 6Meωt ∀t > 0. (2.2.3)

(c) A is closed, D(A) is dense in X, and

ρ(A) ⊇
{
λ ∈ C : |<λ| > ω

}
(2.2.4)

‖R(λ,A)k‖ 6 M

(|<λ| − ω)k
∀k > 1, ∀|<λ| > ω (2.2.5)

Remark 6 Let A and S±(t) be as in point (b) above. We claim that

(i) S+(t)S−(s) = S−(s)S+(t) for all s, t > 0,

(ii) S+(t)−1 = S−(t) for all t > 0.

Indeed, S+(t) and S−(t) commute because

S±(t) = lim
n→∞

e±tAn ,

where etAn and e−tAm commute since An and Am do so. Hence, (i) holds true.
Consequently,

S(t) := S+(t)S−(t) (t > 0)

is also a C0-semigroup and, for all x ∈ D(A) = D(−A), we have that

S(t)x− x
t

= S+(t)
S−(t)x− x

t
+
S+(t)x− x

t

t↓0−→ −Ax+Ax = 0.

So, d
dt S(t)x = 0 for all t > 0. Hence, S(t)x = x for all t > 0 and x ∈ D(A).

By density, S(t)x = x for all x ∈ X, which yields S+(t)−1 = S−(t).
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Proof of (a)⇒ (b) Define, for all t > 0,

S+(t) = G(t) and S−(t) = G(−t).

Then it can be checked that S±(t) is C0-semigroup satisfying (2.2.3). More-
over, observing that

S−(t)x− x
t

=
G(−t)x− x

t
= −G(−t)G(t)x− x

t
,

it is easy to show that ±A is the infinitesimal generator of S±(t). �

Proof of (b)⇒ (c) By the Hille-Yosida theorem we conclude that A is closed,

D(A) is dense in X, and

ρ(A) ⊇ Πω =
{
λ ∈ C : <λ > ω

}
‖R(λ,A)k‖ 6 M

(<λ− ω)k
∀k > 1, ∀λ ∈ Πω.

Since
(λI +A)−1 = −(−λI −A)−1, (2.2.6)

we have that −ρ(A) = ρ(−A) ⊇ Πω, or

ρ(A) ⊇ −Πω =
{
λ ∈ C : <λ < −ω

}
,

and

‖R(λ,A)k‖ = ‖R(−λ,−A)k‖ 6 M

(−<λ− ω)k
∀k > 1, ∀λ ∈ −Πω. �

Proof of (c)⇒ (a) Recalling (2.2.6), by the Hille-Yosida theorem it follows

that ±A is the infinitesimal generator of a C0-semigroup, S±(t), satisfying
(2.2.3). For all x ∈ X define

G(t)x =

{
S+(t)x (t > 0)

S−(−t)x (t < 0).

Then, it follows that (2.2.1) and (2.2.2) hold true, and A is the infinitesimal
generator of G(t). Let us check that G(t+ s) = G(t)G(s) for all t > 0 and all
s 6 0 such that t+ s > 0. We have that

G(t)G(s) = S+(t)S−(−s) = S+(t+ s)S+(−s)S+(−s)−1 = G(t+ s). �

Corollary 3 Let A : D(A) ⊂ X → X be a densely defined linear operator. If
both A and −A are maximal dissipative, the A is the infinitesimal generator of
a C0-group, G(t), which satisfies ‖G(t)‖ = 1 for all t ∈ R.
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Proof. By the Lumer-Phillips theorem, A and −A are infinitesimal generators
of C0-semigroups of contractions, S+(t) and S−(t) respectively. Therefore,
Theorem 9 ensures that A is the infinitesimal generator of a C0-group, G(t).
Moreover, 1 = ‖S+(t)S−(t)‖ 6 ‖S+(t)‖ ‖S−(t)‖ 6 1. Hence, ‖G(t)‖ = 1. �

Example 14 (Wave equation continued) We return to the wave equa-
tion that was studied in Example 13. We proved that operator A, defined in
(2.1.9), is maximal dissipative. We claim that −A is maximal dissipative as
well. Indeed, equation (2.1.10) implies that −A is dissipative. Moreover, the
resolvent equation for −A takes the form

u ∈ H2(Ω) ∩H1
0 (Ω), v ∈ H1

0 (Ω)

u+ v = f ∈ H1
0 (Ω)

v + ∆u = g ∈ L2(Ω) ,

which can be uniquely solved arguing exactly as we did for system (2.1.12).

Then, by Corollary 3, A is the infinitesimal generator of a C0-group, G(t),
which satisfies ‖G(t)‖ = 1 for all t ∈ R. So, for any f ∈ H2(Ω) ∩H1

0 (Ω) , g ∈
H1

0 (Ω), the first component u(t) (t ∈ R+) of

G(t)
( f
g

)
is the unique solution of problem (2.1.8) in the space

C2
(
R;L2(Ω)

)
∩ C1

(
R;H1

0 (Ω)
)
∩ C
(
R;H2(Ω) ∩H1

0 (Ω)
)
.

2.3 The adjoint of a linear operator

In this section, we consider the special case when
(
X, 〈·, ·〉

)
is a Hilbert space.

We denote by jX : X∗ → X the Riesz isomorphism, which associates with any
φ ∈ X∗ the unique element jX(φ) ∈ X such that

φ(x) = 〈x, jX(φ)〉 ∀x ∈ X.

Let A : D(A) ⊂ X → X be a densely defined linear operator.

Remark 7 The set

D(A∗) =
{
y ∈ X

∣∣ ∃C > 0 : x ∈ D(A) =⇒ |〈Ax, y〉| 6 C|x|
}

(2.3.1)

is a subspace of X and, for any y ∈ D(A∗), the linear map x 7→ 〈Ax, y〉 can
be uniquely extended to a bounded linear functional φy ∈ X∗.
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Definition 14 The adjoint of A is the map A∗ : D(A∗) ⊂ X → X defined by

A∗y = jX(φy) ∀y ∈ D(A∗)

where D(A∗) and φy are defined in Remark 7.

Proposition 10 Let A : D(A) ⊂ X → X be a densely defined linear operator.
Then A∗ : D(A∗) ⊂ X → X is a closed linear operator satisfying the identity

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ D(A),∀y ∈ D(A∗). (2.3.2)

Proof. We only prove that A∗ is closed, leaving the remaining item for the
reader to check. Let {yn} ⊂ D(A∗) and y, z ∈ X be such that{

yn → y

A∗yn → z
(n→∞)

Then {A∗yn} is bounded, say |A∗yn| 6 C. So, recalling (2.3.2), we have that

|〈Ax, yn〉| = |〈x,A∗yn〉| 6 C|x| ∀x ∈ D(A)

This yields
|〈Ax, y〉| 6 C|x| ∀x ∈ D(A)

which in turn implies that y ∈ D(A∗). Moreover

〈Ax, y〉 = lim
n→∞

〈Ax, yn〉 = 〈x, z〉 ∀x ∈ D(A).

Thus, 〈x,A∗y − z〉 = 0 for all x ∈ D(A). Since D(A) is dense, A∗y = z. �

Theorem 10 (Lumer-Phillips 2) Let A : D(A) ⊂ X → X be a densely
defined closed linear operator. If A and A∗ are dissipative, then A is the
infinitesimal generator of a contraction semigroup on X.

Proof. In view of Theorem 8 it suffices to show that ]0,∞[⊂ ρ(A). For this
purpose, since λI −A is one-to-one for any λ > 0, one just has to check that

(λI −A)D(A) = X ∀λ > 0.

Step 1: (λI −A)D(A) is dense in X for every λ > 0.
Let y ∈ X be such that

〈λx−Ax, y〉 = 0 ∀x ∈ D(A).

The identity 〈Ax, y〉 = λ〈x, y〉 yields y ∈ D(A∗) and the fact that

〈x, λy −A∗y〉 = 0,
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first for all x ∈ D(A) and then, by density, for all x ∈ X. So, λy − A∗y = 0.
Since, being dissipative, λI −A∗ is also one-to-one, we conclude that y = 0.

Step 2: λI −A is onto for every λ > 0.
Fix any y ∈ X. By Step 1, there exists {xn} ⊂ D(A) such that

λxn −Axn =: yn → y as n→∞.

By (2.1.2) we deduce that, for all n,m > 1,

|xn − xm| 6
1

λ
|yn − ym|

which insures that {xn} is a Cauchy sequence in X. Therefore, there exists
x ∈ X such that {

xn → x

Axn = λxn − yn → λx− y
(n→∞)

Since A is closed, x ∈ D(A) and λx−Ax = y. �

Definition 15 A densely defined linear operator A : D(A) ⊂ X → X is
called:

(a) symmetric if A ⊂ A∗, that is,

D(A) ⊂ D(A∗) and Ax = A∗x ∀x ∈ D(A).

(b) self-adjoint if A = A∗.

Remark 8 Observe that a symmetric operator A is self-adjoint if and only if
D(A) ⊆ D(A∗). Moreover, in view of Proposition 10, any self-adjoint operator
is closed.

Corollary 4 (Lumer-Phillips 3) Let A : D(A) ⊂ X → X be a densely
defined closed linear operator. If A is self-adjoint and dissipative, then A is
the infinitesimal generator of a contraction semigroup on X.

Example 15 In X = L2(0, 1;C), consider the linear operator{
D(A) = H1

0 (0, 1;C)

Au(x) = i u′(x) x ∈ [0, 1] a.e.

Then, A is densely defined and symmetric. Indeed, for all u, v ∈ D(A),

〈Au, v〉 = i

∫ 1

0
u′(x)v(x) dx (2.3.3)

=
[
iu(x)v(x)

]x=1

x=0
− i
∫ 1

0
u(x)v′(x) dx = 〈u,Av〉.
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On the other hand, A fails to be self-adjoint because, as we show next,

D(A∗) ⊇ H1(0, 1;C),

so that D(A) ( D(A∗). Indeed, integrating by parts as in (2.3.3), for all
v ∈ H1(0, 1;C) and u ∈ H1

0 (0, 1;C) we have that

∣∣〈Au, v〉∣∣ =
∣∣∣− i∫ 1

0
u(x)v′(x) dx

∣∣∣ 6 |u|2|v′|2. �

Proposition 11 Let A : D(A) ⊂ X → X be a densely defined closed linear
operator such that ρ(A) ∩ R 6= ∅. If A is symmetric, then A is self-adjoint.

Proof. We prove that D(A∗) ⊂ D(A) in two steps. Fix any λ ∈ ρ(A) ∩ R.

Step 1: R(λ,A) = R(λ,A)∗

Since R(λ,A) ∈ L(X), in view of Exercise 23 it suffices to show that

〈R(λ,A)x, y〉 = 〈x,R(λ,A)y〉 ∀x, y ∈ X.

Fix any x, y ∈ X and set

u = R(λ,A)x and v = R(λ,A)y

so that u, v ∈ D(A) and

λu−Au = x and λv −Av = y.

Since A is symmetric, we have that

〈R(λ,A)x, y〉 = 〈u, y〉 = 〈u, λv −Av〉 = 〈λu−Au, v〉 = 〈x,R(λ,A)y〉.

Step 2: D(A∗) ⊂ D(A)

Let u ∈ D(A∗) and set x = λu−A∗u. Observe that, for all v ∈ D(A),

〈x, v〉 = 〈λu−A∗u, v〉 = 〈u, λv −Av〉.

Now, take any y ∈ X and let v = R(λ,A)y. Then the above identity yields

〈x,R(λ,A)y〉 = 〈u, y〉 ∀y ∈ X.

So, by Step 1 we conclude that u = R(λ,A)∗x = R(λ,A)x ∈ D(A). �

Example 16 Let Ω ⊂ Rn be a bounded domain with boundary of class C2.
Define {

D(A) = H2 ∩H1
0 (Ω;C)

Au(x) = ∆u(x)− V (x)u(x) x ∈ Ω a.e.
(2.3.4)
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where we assume V ∈ L∞(Ω). Let us check that A is self-adjoint in L2(Ω;C).
Indeed, integration by parts insures that A is symmetric. So, by Proposi-
tion 11, it suffices to check that ρ(A)∩R 6= ∅. We claim that, for λ ∈ R large
enough, for any h ∈ L2(Ω;C) the problem{

w ∈ H2 ∩H1
0 (Ω;C)

(λ+ V )w −∆w = h x ∈ Ω
(2.3.5)

has a unique solution. Equivalently, by setting f = <h, g = =h ∈ L2(Ω)
and u = <w, v = =w, we have to prove solvability for the boundary value
problems{

u ∈ H2 ∩H1
0 (Ω)

(λ+ V )u−∆u = f x ∈ Ω
and

{
v ∈ H2 ∩H1

0 (Ω)

(λ+ V )v −∆v = g x ∈ Ω.

The latter is a well-established fact in elliptic theory.

The following property of self-adjoint operators is very useful. We recall
that an operator U ∈ L(X) is unitary if UU∗ = U∗U = I.

Theorem 11 (Stone) Let X be a complex Hilbert space. For any densely
defined linear operator A : D(A) ⊂ X → X the following properties are
equivalent:

(a) A is self-adjoint,

(b) iA is the infinitesimal generator of a C0-group of unitary operators.

Proof of (a)⇒ (b) Since A is self-adjoint, A is closed and we have that

〈Ax, x〉 = 〈x,A∗x〉 = 〈x,Ax〉 = 〈Ax, x〉 ∀x ∈ D(A).

Thus, 〈Ax, x〉 is real so that

<〈iAx, x〉 = 0 ∀x ∈ D(A).

The above identity implies that ±iA is dissipative. Since

〈iAx, y〉 = i〈x,Ay〉 = 〈x,−iAy〉 ∀x, y ∈ D(A),

we have that (iA)∗ = −iA. So, by Theorem 10 we deduce that ±iA is the in-
finitesimal generator of a C0-semigroup of contractions. Then, by Theorem 9,
iA generates a C0 group G(t). Such a group is unitary because

1 = ‖G(t)G(−t)‖ = ‖G(t)G(t)∗‖ 6 1. �
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Proof of (b)⇒ (a) Let iA be the infinitesimal generator of a C0-group of

unitary operators on X, say G(t). Then, for all x ∈ D(A), we have that

iAx = lim
t→0

G(t)x− x
t

= − lim
t→0

G(−t)x− x
t

= − lim
t→0

G(t)∗x− x
t

=

= − lim
t→0

(G(t)− I
t

)∗
x = −(iA)∗x = iA∗x.

Thus, x ∈ D(A∗) and Ax = A∗x. By running the above computation back-
wards, we conclude that D(A∗) ⊆ D(A). Therefore, A is self-adjoint. �

Example 17 (Schrödinger equation in a bounded domain) Let us con-
sider the initial-boundary value problem

1
i
∂u
∂t (t, x) = ∆u(t, x)− V (x)u(t, x) (t, x) ∈ R× Ω

u(t, x) = 0 t ∈ R , x ∈ ∂Ω

u(0, x) = u0(x) x ∈ Ω

(2.3.6)

where Ω ⊂ Rn is a bounded domain with boundary of class C2 and V ∈ L∞(Ω).
In Example 16, we have already checked that the operator A, defined in (2.3.4),
is self-adjoint on L2(Ω;C). Therefore, by Theorem 11 we conclude that, for
any u0 ∈ H2 ∩H1

0 (Ω;C), problem (2.3.6) has a unique solution

u ∈ C1
(
R;L2(Ω;C)

)
∩ C
(
R;H2 ∩H1

0 (Ω;C)
)
. �
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2.4 Additional exercises for Chapter 2

Exercise 23 Prove that, if A ∈ L(X), then A∗ is also bounded.

Exercise 24 We recall that the duality set of a point x ∈ X is defined as

Φ(x) =
{
φ ∈ X∗ : 〈x, φ〉 = |x|2 = ‖φ‖2

}
. (2.4.1)

Observe that the Hahn-Banach theorem ensures Φ(x) 6= ∅.
We also recall that, for all x ∈ X,

∂|x| =
{
φ ∈ X∗ : |x+ h| − |x| > 〈h, φ〉 , ∀x, h ∈ X

}
. (2.4.2)

Prove that

Φ(x) = x∂|x| =
{
ψ ∈ X∗ : ψ = |x|φ , φ ∈ ∂|x|

}
.

Exercise 25 Prove that, for any operator A : D(A) ⊂ X → X the following
properties are equivalent:

(a) A is dissipative,

(b) for all x ∈ D(A) there exists φ ∈ Φ(x) such that < 〈Ax, φ〉 6 0.

Exercise 26 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup of contractions. Prove that, for all x ∈ D(A),

< 〈Ax, φ〉 6 0 ∀φ ∈ Φ(x).

Exercise 27 Mimic the proof of Theorem 7 in the case of a Hilbert space to
treat the general case of a reflexive Banach space.
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3 The inhomogeneous Cauchy problem

In this chapter, we assume that
(
X, 〈·, ·〉

)
is a separable Hilbert space and

denote by {ej}j∈N a complete orthonormal system in X.

We study the Cauchy problem{
u′(t) = Au(t) + f(t)

u(0) = x,
(3.0.1)

where f ∈ L2(0, T ;X) and A : D(A) ⊂ X → X is the infinitesimal generator
of a C0-semigroup on X, S(t), which satisfies the growth condition (1.8.3). For
the extension of this theory to a general Banach space, we refer the reader to
the classic monograph by Pazy [3] or the more recent text [2].

3.1 Notions of solution

Definition 16 Let x ∈ X and f ∈ L2(0, T ;X).

(I) We say that u ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) is a strict solution of
(3.0.1) if u(0) = x and

u′(t) = Au(t) + f(t) (t ∈ [0, T ] a.e.)

(II) We say that u ∈ C
(
[0, T ];X

)
is a strong solution of (3.0.1) if there

exists a sequence un ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) such that
un → u in C

(
[0, T ];X

)
u′n −Aun → f in L2(0, T ;X)

un(0)→ x in X

(n→∞) (3.1.1)

3.2 Well posedness in L2(0, T ;H)

Theorem 12 (Existence and uniqueness of strong solutions) For any
x ∈ X and f ∈ L2(0, T ;X) there exists a unique strong solution u of (3.0.1),
which is given by the variation-of-constants formula

u(t) = S(t)x+

∫ t

0
S(t− s)f(s) ds (3.2.1)

Moreover, un := nR(n,A)u satisfies

un ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) and un
(n→∞)−→ u in C

(
[0, T ];X

)
.

44



Observe that u in (3.2.1) is well defined in view of Proposition 17.

Proof. Step 1: existence. Let u be given by (3.2.1) and define
un(t) = nR(n,A)u(t)

fn(t) = nR(n,A)f(t)

xn = nR(n,A)x

∀n ∈ N , n > ω

where ω > 0 is such that (1.8.3) holds true. Then

un(t) = S(t)xn +

∫ t

0
S(t− s)fn(s) ds (t ∈ [0, T ]). (3.2.2)

Since xn ∈ D(A) and fn ∈ L2(0, T ;D(A)), by propositions 16 and 17 we
conclude that

un ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) and

{
u′n −Aun = fn

un(0) = xn.

Moreover, invoking Lemma 1 we conclude that xn → x as n→∞ while

fn(t)
(n→∞)−→ f(t) and |fn(t)| 6 Mn

n− ω
|f(t)| (a.e. t ∈ [0, T ])

Therefore, fn
(n→∞)−→ f in L2(0, T ;X).

Finally,we have that

sup
t∈[0,T ]

|un(t)− u(t)| 6MeωT
(
|xn − x|+

∫ T

0
|fn(s)− f(s)| ds

)
(n→∞)−→ 0.

So, u is a strong solution of (3.0.1).

Step 1: uniqueness.

Let v be a strong solution of (3.0.1) and let {vn} be a sequence satisfying
(3.1.1). Setting fn = v′n −Avn, for any fixed t ∈]0, T ] we have that

d

ds

(
S(t− s)vn(s)

)
= S(t− s)fn(s) (a.e. s ∈ [0, t]).

By integrating over [0, t] we deduce that vn satisfies (3.2.2). Then, passing to
the limit as n→∞ we conclude that v is given by (3.2.1). �

The following result provides a useful approximation of strong solutions.

Proposition 12 Let {xn} ⊂ X and {fn} ⊂ L2(0, T ;X) be such that

xn
X−→ x and fn

L2(0,T ;X)−→ f (n→∞).
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Let un satisfy {
u′n(t) = Anun(t) + fn(t), t ∈ (0, T )

un(0) = xn
(3.2.3)

where An = n2R(n,A) − n (n > ω) is the Yosida approximation of A. Then
{un}n is bounded in C

(
[0, T ];X

)
and

un(t)
(n→∞)−→ u(t) ∀t ∈ [0, T ],

where u is the strong solution of (3.0.1).

Proof. Since An ∈ L(X) we have that

un(t) = etAnxn +

∫ t

0
e(t−s)Anfn(s) ds (t ∈ [0, T ]).

Thus, recalling (1.8.8) and (1.8.12), we obtain

|etAnxn − S(t)x| 6Me2ωt|xn − x|+ |etAnx− S(t)x| n→∞−→ 0

uniformly on [0, T ]. Moreover,

∣∣∣ ∫ t

0

(
e(t−s)Anfn(s)− S(t− s)f(s)

)
ds
∣∣∣

6M
∫ t

0
e2ω(t−s)|fn(s)− f(s)|ds C([0,T ];X)−→ 0.

+

∫ t

0
|e(t−s)Anf(s)− S(t− s)f(s)|ds.

By Lebesgue’s dominated convergence theorem, for any t ∈ [0, T ] we have that

lim
n→∞

∫ t

0
|e(t−s)Anf(s)− S(t− s)f(s)|ds = 0.

The conclusion follows. �

3.3 Regularity

Our first result guarantees that the strong solution of (3.0.1) is strict when f
has better “space regularity”.

Theorem 13 Let x ∈ D(A) and let f ∈ L2(0, T ;D(A)). Then the strong
solution u of problem (3.0.1) is strict.
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Proof. Let u be the strong solution of problem (3.0.1) and let un be the
solution of (3.2.3) with fn ≡ f . Then

vn(t) := Anun(t) (t ∈ [0, T ])

satisfies {
v′n(t) = Anvn(t) +Anf(t), t ∈ (0, T )

vn(0) = Anx

where

Anx
(n→∞)−→ Ax and Anf

(n→∞)−→ Af in L2(0, T ;X).

So, Proposition 12 ensures that vn is bounded in C
(
[0, T ];X

)
and converges

point-wise to the strong solution of{
v′(t) = Av(t) +Af(t), t ∈ (0, T )

v(0) = Ax

which is given by

v(t) = S(t)Ax+

∫ t

0
S(t− s)Af(s) ds = Au(t) (t ∈ [0, T ] a.e.)

Moreover, owing to Proposition 16 we have that v = Au. This shows that
u ∈ C([0, T ];D(A)). Furthermore,

u′n = Anun + f = vn + f
L2(0,T ;;X)−→ Au+ f (n→∞)

because vn is bounded in C
(
[0, T ];X

)
and converges point-wise. Therefore,

u ∈ H1(0, T ;X) and u′(t) = Au(t) + f(t) for a.e. t ∈ [0, T ]. �

We will now show a similar result if f has better “time regularity”. In this
case, one can prove that strong solutions are classical in the following sense.
Let x ∈ D(A) and let f ∈ C

(
[0, T ];X

)
.

Definition 17 We say that u ∈ C1
(
[0, T ];X

)
∩ C
(
[0, T ];D(A)

)
is a classical

solution of (3.0.1) if u(0) = x and

u′(t) = Au(t) + f(t) ∀t ∈ [0, T ].

Theorem 14 Let x ∈ D(A) and let f ∈ H1(0, T ;X). Then the strong solu-
tion u of problem (3.0.1) is classical.

We begin by studying the case of x = 0.
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Lemma 2 For any f ∈ H1(0, T ;X) define

FA(t) =

∫ t

a
S(t− s)f(s) ds (t ∈ [0, T ]). (3.3.1)

Then FA ∈ C1
(
[0, T ];X

)
∩ C
(
[0, T ];D(A)

)
and

F ′A(t) = AFA(t) + f(t) = S(t)f(0) +

∫ t

0
S(t− s)f ′(s)ds (t ∈ [0, T ]).

Proof. Since FA can be rewritten as

FA(t) =

∫ t

0
S(s)f(t− s)ds (t ∈ [0, T ]),

by differentiating the integral we conclude that

F ′A(t) = S(t)f(0) +

∫ t

0
S(t− s)f ′(s)ds ∀t ∈ [0, T ].

In view of Proposition 17, this implies that FA ∈ C1
(
[0, T ];X

)
.

Moreover, returning to (3.3.1), for all t ∈ [0, T ] we also have that

F ′A(t) = lim
h↓0

1

h

{∫ t+h

0
S(t+ h− s)f(s) ds−

∫ t

0
S(t− s)f(s) ds

}
= lim

h↓0

{S(h)− I
h

∫ t

0
S(t− s)f(s) ds+

1

h

∫ t+h

t
S(t+ h− s)f(s) ds

}
.

Since

lim
h↓0

1

h

∫ t+h

t
S(t+ h− s)f(s) ds = f(t),

the above identity implies that FA(t) ∈ D(A) and

FA(t) = F ′A(t)− f(t) ∀t ∈ [0, T ].

Consequently, FA ∈ C
(
[0, T ];D(A)

)
and the proof is complete. �

Proof of Theorem 14. Let u be the strong solution of problem (3.0.1). Then

u(t) = S(t)x+ FA(t) ∀t ∈ [0, T ],

where FA is defined in (3.3.1). The conclusion follows from Theorem 3 and
Lemma 2. �

Example 18 In general, the strong solution of (3.0.1) fails to be classical, or
even strict, assuming just f ∈ C([0, T ];X). Indeed, let y ∈ X \D(A) and take
f(t) = S(t)y. Then the strong solution of (3.0.1) with x = 0 is given by

u(t) = tS(t)y ∀t > 0

which fails to be differentiable for t > 0.
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3.4 Maximal regularity for dissipative operators

For special classes of generators the strong solution of (3.0.1) enjoys additional
regularity properties, as we show in this section.

Theorem 15 Let A : D(A) ⊂ X → X be a densely defined self-adjoint dissi-
pative operator and let f ∈ L2(0, T ;X). Define

FA(t) =

∫ t

a
S(t− s)f(s) ds (t ∈ [0, T ]).

Then FA is the strict solution of the Cauchy problem{
u′(t) = Au(t) + f(t)

u(0) = 0.
(3.4.1)

Moreover, t 7→ 〈AFA(t), FA(t)〉 is absolutely continuous on [0, T ],

d

dt
〈AFA(t), FA(t)〉 = 2< 〈F ′A(t), AFA(t)〉 (a.e. t ∈ [0, T ]), (3.4.2)

and
‖AFA‖2 6 ‖f‖2. (3.4.3)

Lemma 3 Let A : D(A) ⊂ X → X be a densely defined self-adjoint dissipa-
tive operator and let v ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) be such that v(0) = 0.
Then t 7→ 〈Av(t), v(t)〉 is absolutely continuous on [0, T ] and

d

dt
〈Av(t), v(t)〉 = 2< 〈v′(t), Av(t)〉 (a.e. t ∈ [0, T ]). (3.4.4)

Proof. Define vn(t) = 〈Anv(t), v(t)〉 (t ∈ [0, T ]), where An = nAR(n,A) is the
Yosida approximation of A. Then vn is absolutely continuous on [0, T ] and

d

dt
〈Anv(t), v(t)〉 = 2< 〈v′(t), Anv(t)〉 (a.e. t ∈ [0, T ])

or

〈Anv(t), v(t)〉 = 2<
∫ t

0
〈v′(s), Anv(s)〉ds ∀t ∈ [0, T ]. (3.4.5)

Now, since for a.e. t ∈ [0, T ]

Anv(t) = nR(n,A)Av(t)
(n→∞)−→ Av(t)

|Anv(t)| 6 |Av(t)| ,

we can pass to the limit as n→∞ in (3.4.5) to obtain

〈Av(t), v(t)〉 = 2<
∫ t

0
〈v′(s), Av(s)〉ds ∀t ∈ [0, T ].
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So, t 7→ 〈Av(t), v(t)〉 is absolutely continuous on [0, T ] and satisfies (3.4.4). �

Proof of Theorem 15. Define

fn(t) = nR(n,A)f(t) and Fn(t) = nR(n,A)FA(t) ∀t ∈ [0, T ]

and observe that

Fn(t) =

∫ t

a
S(t− s)fn(s) ds (t ∈ [0, T ]).

Owing to Theorem 13, we have that Fn ∈ H1(0, T ;X)∩L2(0, T ;D(A)) satisfies
Fn(0) = 0 and

F ′n(t) = AFn(t) + fn(t) (a.e. t ∈ [0, T ]). (3.4.6)

Moreover, by (3.4.2) we have that

2

∫ t

0
< 〈F ′n(s), AFn(s)〉ds = 〈AFn(t), Fn(t)〉 6 0 ∀t ∈ [0, T ]

because A is dissipative. Therefore, by multiplying each member of (3.4.6) by
2AFn(t), taking real parts, and integrating over [0, T ] we obtain

2

∫ T

0
|AFn(t)|2dt 6 −2

∫ T

0
< 〈fn(t), AFn(t)〉dt

6
∫ T

0

(
|fn(t)|2 + |AFn(t)|2

)
dt.

Hence ∫ T

0
|AFn(t)|2dt 6

∫ T

0
|fn(t)|2dt 6

∫ T

0
|f(t)|2dt.

Thus, {Fn}n is bounded in H1(0, T ;X)∩L2(0, T ;D(A)). Therefore, there ex-
ists a subsequence {Fnk

}k and a function F∞ such that

Fnk

(n→∞)
⇀ F∞ in H1(0, T ;X) ∩ L2(0, T ;D(A)).

Recalling that Fnk

(n→∞)−→ F in C
(
[0, T ];X

)
by Theorem 12, we conclude that

F ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)).
Now, fix any g ∈ L2(0, T ;X). Then, taking the product of each member

of (3.4.6) with g we have that∫ T

0
〈F ′n(t), g(t)〉 dt =

∫ T

0
〈AFn(t) + fn(t), g(t)〉 dt.

So, in the limit as n→∞,∫ T

0
〈F ′(t)−AF (t)− f(t), g(t)〉 dt = 0 ∀g ∈ L2(0, T ;X)
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which in turn yields F ′(t) = AF (t) + f(t) for a.e. t ∈ [0, T ]. �

Since the strong solution of (3.0.1) is given by (3.2.1), by Theorem 15 we
obtain the following.

Corollary 5 Let A : D(A) ⊂ X → X be a densely defined self-adjoint dissi-
pative operator and let x ∈ D(A). Then, for any f ∈ L2(0, T ;X) the strong
solution of (3.0.1) is strict.

Remark 9 The above result ca be refined by introducing an intermediate
subspace between X and D(A), namely the interpolation space [X,D(A)]1/2,
which is such that t 7→ S(t)x belongs to H1(0, T ;X) ∩ L2(0, T ;D(A)) for any
x ∈ [X,D(A)]1/2. The reader is referred to [1] for such an extension.
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4 Appendix A: Riemann integral on C([a, b];X)

We recall the construction of the Riemann integral for a continuous function
f : [a, b]→ X, where X is a Banach space and −∞ < a < b <∞.

Let us consider the family of partitions of [a, b]

Π(a, b) =
{
π = {ti}ni=0 : n > 1, a = t0 < t1 < · · · < tn = b

}
and define

diam(π) = max
16i6n

(t1 − ti−1) (π ∈ Π(a, b)).

For any π ∈ Π(a, b), π = {ti}ni=0, we set

Σ(π) =
{
σ = (s1, . . . , sn) : si ∈ [ti−1, ti], 1 6 i 6 n = b

}
.

Finally, for any π ∈ Π(a, b), π = {ti}ni=0, and σ ∈ Σ(π), σ = (s1, . . . , sn), we
define

Sσπ (f) =

n∑
i=1

f(si)(t1 − ti−1).

Theorem 16 The limit

lim
diam(π)↓0

Sσπ (f) =:

∫ b

a
f(t)dt

exists uniformly for σ ∈ Σ(π).

Lemma 4 For any ε > 0 there exists δ > 0 such that for all π, π′ ∈ Π(a, b)
with π ⊆ π′ we have that

diam(π) < δ =⇒
∣∣Sσπ (f)− Sσ′π′ (f)

∣∣ < ε

for all σ ∈ Σ(π) and σ′ ∈ Σ(π′).

Proof. Since f is uniformly continuous, for any ε > 0 there exists δ > 0 such
that for all t, s ∈ [a, b]

|t− s| < δ =⇒ |f(t)− f(s)| < ε

b− a
. (4.0.1)

Let {
π = {ti}ni=0 , σ = (s1, . . . , sn)

π′ = {t′j}mj=0 , σ′ = (s′1, . . . , s
′
m)

be such that π ⊆ π′ and diam(π) < δ. Then there exist positive integers

0 = j0 < j1 < · · · < jn = m
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such that t′ji = ti for all i = 0, . . . , n. For any such i, it holds that

t1 − ti−1 = t′ji − t
′
ji−1

=

ji∑
j=ji−1+1

(t′j − t′j−i).

Then

Sσπ (f)− Sσ′π′ (f) =

n∑
i=1

f(si)(t1 − ti−1)−
m∑
j=1

f(s′j)(t
′
j − t′j−1)

=
n∑
i=1

ji∑
j=ji−1+1

(
f(si)− f(s′j)

)
(t′j − t′j−1)

Since for all i = 1, . . . , n we have that

si, s
′
j ∈ [ti−1, ti] ∀ji−1 + 1 6 j 6 ji,

from (4.0.1) it follows that

∣∣Sσπ (f)− Sσ′π′ (f)
∣∣ 6 n∑

i=1

ji∑
j=ji−1+1

∣∣f(si)− f(s′j)
∣∣(t′j − t′j−1)

6
ε

b− a

n∑
i=1

(t1 − ti−1) = ε.

The proof is complete. �

Proof of Theorem 16. For any given ε > 0 let δ be as in Lemma 4. Let
π, π′ ∈ Π(a, b) be such that diam(π) < δ and diam(π′) < δ. Finally, let
σ ∈ Σ(π) and σ′ ∈ Σ(π′). Define π′′ = π ∪ π′ and fix any σ′′ ∈ Σ(π′′). Then∣∣Sσπ (f)− Sσ′π′ (f)

∣∣ 6 ∣∣Sσπ (f)− Sσ′′π′′ (f)
∣∣+
∣∣Sσ′′π′′ (f)− Sσ′π′ (f)

∣∣ < 2ε.

This completes the proof since ε is arbitrary. �

Proposition 13 For any f, g ∈ C([a, b];X) and λ ∈ C we have that∫ b

a

(
f(t) + g(t)

)
dt =

∫ b

a
f(t)dt+

∫ b

a
g(t)dt∫ b

a
λf(t)dt = λ

∫ b

a
f(t)dt∣∣∣ ∫ b

a
f(t)dt

∣∣∣ 6 ∫ b

a
|f(t)|dt.
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Moreover, for any Λ ∈ L(X) we have that

Λ
(∫ b

a
f(t)dt

)
=

∫ b

a
Λf(t)dt.

Furthermore, if A : D(A) ⊂ X → X is a closed operator and f ∈ C([a, b];D(A)),
then

A
(∫ b

a
f(t)dt

)
=

∫ b

a
Af(t)dt.
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5 Appendix B: Lebesgue integral on L2(a, b;H)

Let
(
H, 〈·, ·〉

)
be a separable Hilbert space and let {ej}j∈N be a complete

orthonormal system in H.

5.1 The Hilbert space L2(a, b;H)

Definition 18 A function f : [a, b]→ H is said to be Borel (resp. Lebesgue)
measurable if so is the scalar function t 7→ 〈f(t), x〉 for every x ∈ H.

Remark 10 Let f : [a, b]→ H.

1. Since, for any x ∈ H,

〈f(t), x〉 =

∞∑
j=1

〈f(t), ej〉 〈x, ej〉 (t ∈ [a, b]),

we conclude that f is Borel (resp. Lebesgue) measurable if and only if
so is the scalar function t 7→ 〈f(t), ej〉 for every j ∈ N.

2. Since

|f(t)|2 =
∞∑
j=1

∣∣〈f(t), ej〉
∣∣2 (t ∈ [a, b]),

we have that, if f is Borel (resp. Lebesgue) measurable, then so is the
scalar function t 7→ ‖f(t)‖.

Definition 19 We denote by L2(a, b;H) the space of all Lebesgue measurable
functions f : [a, b]→ H such that

‖f‖2 :=
(∫ b

a
|f(t)|2dt

) 1
2
<∞ ,

where two functions f and g are identified if f(t) = g(t) for a.e. t ∈ [a, b].

Proposition 14 L2(a, b;H) is a Hilbert space with the hermitian product

(f |g)0 =

∫ b

a
〈f(t), g(t)〉dt (f, g ∈ L2(a, b;H)).

Proof. We only prove completeness. �

Remark 11 For any f ∈ L2(a, b;H) we have that

∞∑
j=1

∣∣∣ ∫ b

a
〈f(t), ej〉dt

∣∣∣2 6 (b− a)

∞∑
j=1

∫ b

a

∣∣〈f(t), ej〉
∣∣2dt <∞.
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Therefore
∞∑
j=1

ej

∫ b

a
〈f(t), ej〉dt ∈ H.

Definition 20 For any f ∈ L2(a, b;H) we define∫ b

a
f(t)dt =

∞∑
j=1

ej

∫ b

a
〈f(t), ej〉dt .

Proposition 15 For any f ∈ L2(a, b;H) the following properties hold true.

(a) For any x ∈ H we have that

〈
x,

∫ b

a
f(t)dt

〉
=

∫ b

a
〈x, f(t)〉dt

(b)
∣∣∣ ∫ b

a
f(t)dt

∣∣∣ 6 ∫ b

a
|f(t)|dt

(c) For any Λ ∈ L(H) we have that

Λ
(∫ b

a
f(t)dt

)
=

∫ b

a
Λf(t)dt .

Proposition 16 Let A : D(A) ⊂ H → H be a closed linear operator. Then
for any f ∈ L2(a, b;D(A)) we have that∫ b

a
f(t)dt ∈ D(A) and A

(∫ b

a
f(t)dt

)
=

∫ b

a
Af(t)dt .

Proposition 17 Let A : D(A) ⊂ H → H be the infinitesimal generator of a
C0-semigroup on H, S(t), which satisfies the growth condition (1.8.3). Then,
for any f ∈ L2(a, b;H),

(a) for any t ∈ [a, b] the function s 7→ S(t− s)f(s) belongs to L2(a, t;H), and

(b) the function

FA(t) =

∫ t

a
S(t− s)f(s) ds (t ∈ [a, b])

belongs to C
(
[a, b];H

)
.
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Proof. In order to check measurability for s 7→ S(t − s)f(s) it suffices to
observe that, for all x ∈ H and a.e. s ∈ [0, t],

〈S(t− s)f(s), x〉 = 〈f(s), S(t− s)∗x〉 =

∞∑
j=1

〈f(s), ej〉 〈S(t− s)∗x, ej〉.

Since s 7→ 〈S(t − s)∗x, ej〉 is continuous and s 7→ 〈f(s), ej〉 is measurable for
all j ∈ N, the measurability of s 7→ S(t− s)f(s) follows. Moreover, by (1.8.3)
we have that

|S(t− s)f(s)| 6Meω(t−s)|f(s) (s ∈ [a, t] a.e.),

which completes the proof of (a).

In order to prove point (b), fix t ∈]a, b[ and let tn → t. Fix δ ∈]0, t − a[
and let nδ ∈ N be such that tn > t− δ for all n > nδ. Then we have that∣∣FA(tn)− FA(t)

∣∣
6

∫ t−δ

a

∣∣[S(tn − s)f(s)− S(t− s)
]
f(s)

∣∣ ds
+

∫ tn

t−δ

∣∣S(tn − s)f(s)
∣∣ ds+

∫ t

t−δ

∣∣S(t− s)f(s)
∣∣ ds.

To complete the proof it suffices to observe that

lim
n→∞

∫ t−δ

a

∣∣[S(tn − s)f(s)− S(t− s)
]
f(s)

∣∣ ds = 0

by the dominated convergence theorem, while the remaining terms on the
right-hand side of the above inequality are small with δ. �

5.2 The Sobolev space H1(a, b;H)

Definition 21 We define H1(a, b;H) to be the subspace of L2(a, b;H) which
consists of all (equivalence classes of) functions u ∈ L2(a, b;H) such that

u(t)− u(a) =

∫ t

a
f(s)ds t ∈ [a, b] a.e. (5.2.1)

for some f ∈ L2(a, b;H).

Remark 12 The proof of the following facts is left to the reader.

1. The function f in (5.2.1) is uniquely determined up to sets of measure
zero. We call such a function the weak derivative of u and set u′ = f .
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2. H1(a, b;H) is a Hilbert space with the scalar product

(u|v)1 =

∫ b

a

[
〈u(t), v(t)〉+ 〈u′(t), v′(t)〉

]
dt (u, v ∈ H1(a, b;H)).

3. All the elements of H1(a, b;H) have an absolutely continuous represen-
tative.
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