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Notation

R = (—00, 00) stands for the real line, R for [0, c0), and R* for (0, c0).
N* =N\ {0} ={1,2,...} and Z* = Z\ {0} = {=1,+2,...}.

For any A € C, R\ and S\ denote the real and imaginary parts of A,
respectively.

| - | stands for the norm of a Banach space X, as well as for the absolute
value of a real number or the modulus of a complex number.

L(X) is the Banach space of all bounded linear operators A : X — X
equipped with norm [[A[| = sup|; <, [Az].

For any metric space (X,d), Cp(X) denotes the Banach space of all
bounded uniformly continuous functions f : X — R with norm

[ lloc,x = sup | f(z)]-
zeX

Given a Banach space (X,|-]|) and a closed interval I C R (bounded
or unbounded), we denote by Cp(/; X) the Banach space of all bounded
uniformly continuous functions f : I — X with norm

[/ lloc,r = sup | f(s)
sel

Hw:{)\EC : %)\>w}foranyw6R.



1 Semigroups of bounded linear operators

1.1 Uniformly continuous semigroups

Let (X,]|-]) be a (real or complex) Banach space. We denote by £(X) the
Banach algebra of all bounded linear operators A : X — X with norm

Al = sup [Ax].

|z[<1

Definition 1 A semigroup of bounded linear operators on X is a map S :
[0,00) = L(X) with the following properties:

(a) 5(0) =1,
(b) S(t+s)=S(t)S(s) forallt,s > 0.
Equivalent notations are S(-), {S(t) }+>0, and even the simpler form S(¢).

Definition 2 The infinitesimal generatorof a semigroup of bounded linear
operators S(t) is the map A : D(A) C X — X defined by

D(A) = {z € X : 3limy, 2=}

(1.1.1)

Az = limyo S0r=r Va € D(A)

Exercise 1 Let A : D(A) € X — X be the infinitesimal generatorof a
semigroup of bounded linear operators S(t). Prove that

(a) D(A) is a subspace of X,
(b) A is a linear operator.

Definition 3 A semigroup S(t) of bounded linear operators on X is uniformly
continuous if

lim || S(t) — I|| = 0.

i (1) 1

Exercise 2 Let S(¢) be a uniformly continuous semigroup of bounded linear
operators. Prove that for all 7 > 0 there exists M, > 0 such that
|1S(t)] < M, vt € [0, 7].

Remark 1 A semigroup S(t) is uniformly continuous if and only if

lim [|S(s) — S(t)| =0 VYt > 0.

s—t



Example 1 let A € £(X). Then

X n
A= g — A"y

|

nzon.

is a uniformly continuous semigroup of bounded linear operators on X. More-
over, A is the infinitesimal generatorof e'4. Indeed, the proof of the following
properties is left as an exercise.

(a) et € L(X) because Y o2 L A"z converges for all ¢ > 0.
(b) e(t+9)A = etAesA for all s,¢ > 0.

(&) flet — 11| = [ 552, G An | < ¢ AfletIAl for all ¢ > o.

(d) ==

tA_T

— Al = [ 200, AR < ]| Af2eA for all ¢ > 0.

n=2 n!

Theorem 1 For any linear operator A : D(A) C X — X the following prop-
erties are equivalent:

(a) A is the infinitesimal generator of a uniformly continuous semigroup,

(b) A€ L(X).

Proposition 1 Let S(t) and T'(t) be uniformly continuous semigroups of bounded
linear operators on X and let A € L(X). If

i S —1 T -1
tl0 t tl0

then S(t) =T(t) for allt >0

Let T > 0. For any A € L(X), a solution of the Cauchy problem

{y/(t) = Ay(t) (t€0,T)) (1.1.2)

is a function y € C1([0, T]; X) which satisfies (1.1.2) pointwise.

Proposition 2 Problem (1.1.2) has a unique solution given by y(t) = etx.

Example 2 Consider the integral equation

= [y k(z,y)u(t,y)dy (¢t €[0,T)) (113)
(0 96) = uo(x ) a



where k € L*([0,1] x [0,1]) and ug € L*(0,1). Problem (1.1.3) can be seen as
an abstract Cauchy problem of the form

(1.1.4)
where X = L?(0,1) and

1
Ku(x) = /0 k(z,y)u(t,y) dy Ve e X

is a bounded linear operator on X. Then Proposition 2 insures that (1.1.4)
has a unique solution u € C*([0, T]; X) given by u(t) = e uq.
1.2 Strongly continuous semigroups

Example 3 Let Cy(R) be the Banach space of all bounded uniformly contin-
uous functions f : R — R with the uniform norm

[flloo = Sup f(@)].
For any ¢t € R, define
(SOf) (@) =fle+t)  VfECR).
The reader is invited to check that:
1. S(t) is a semigroup of bounded linear operators on Cy(R),

2. S(t) fails to be uniformly continuous,

3. for all f € Cp(R) we have that ||S(t)f — flloc = 0 ast ] 0.

Definition 4 A semigroup S(t) of bounded linear operators on X is called
strongly continuous (or of class Cp) if

li t)x = Ve e X. 1.2.1
;f(r)lS()m x S ( )

Theorem 2 Let S(t) be a Co-semigroup of bounded linear operators on X.
Then there exist w > 0 and M > 1 such that

IS@H)|| < Me¥t vt > 0. (1.2.2)

5



When w = 0 in (1.2.2), S(¢) is called uniformly bounded. If, in addition,
M =1, we say that S(t) is a contraction semigroup.

Proof. We first prove the following:
dr>0 and M >1 suchthat |S(t)|| <M Vtel0,r] (1.2.3)

We argue by contradiction assuming there exists a sequence t,, | 0 such that

|S(tn)|| = n for all n > 1. Then, the principle of uniform boundedness implies

that, for some z € X, ||S(t,)z|| — oo as n — oo, in contrast with (1.2.1).
Now, given t € Ry, let n € N and ¢ € [0, 7] be such that

t=nt+09.
Then, in view of (1.2.3),
IS@ = 1SS < M - M = M- (MY < M - (M7

which yields (1.2.2) with w = 8 O

T

Corollary 1 Let S(t) be a Cy-semigroup of bounded linear operators on X.
Then for every x € X the map t — S(t)x is continuous from Ry into X.

1.3 The infinitesimal generator of a Cj)-semigroup

Theorem 3 Let A : D(A) C X — X be the infinitesimal generator of a
Co-semigroup of bounded linear operators on X, denoted by S(t). Then the
following properties hold true.

(a) For allt >0

1
lim

t+h
i h/t S(s)xds = S(t)x Vo e X.

(b) Forallt >0 andx € X
t t
/ S(s)xds € D(A) and A(/ S(s)x ds) =S{t)r — =.
0 0

(¢) D(A) is dense in X.

(d) For all x € D(A) and t > 0 we have that S(t)z € D(A), t — S(t)x is
continuously differentiable, and

d
p S(t)r = AS(t)x = S(t)Ax.



(e) For allx € D(A) and all 0 < s <t we have that

S(t)z — S(s)z = / ' S(r) A dr — / " AS () dr.

S
Proof. All integrals are to be understood in the Riemann sense.
(a) This point is an immediate consequence of the strong continuity of S.

(b) For any ¢t > h > 0 we have that

S(hiL— [</Ot S(s)xds> _ ;/Ot(S(hﬂLs) — S(s))z ds
— }1L</ht+h S(s)xds — /Ot S(s)xds)

1 t+h h
_h</t S(s):xds—/o S(s)xds).
Therefore, by (a),

E%W(/;S(S)CECZS) =S{t)r —x

which proves (b).
(c) This point follows from (a) and (b).
(d) For all z € D(A), t >0, and h > 0 we have that

Therefore S(t)x € D(A) and AS(t)x = S(t)Az = % S(t)z. In order to
prove the existence of the left derivative, observe that for all 0 < h < ¢
St —h)x —S(t)x S<h>_[ac

—h h
Moreover, by (1.2.2),

— S(t—h)

S(h) — I

S(t — h) z— S(t)A:z:’

Sth) =1 x— S(h)AZL“

793—5(@144 3 0ashlo.

Therefore
S(t—h)x — S(t)z
—h

showing that the left and right derivatives coincide.

— S(t)Ax = AS(t)x as hl0,

7



(e) This point follows from (d).

The proof is complete. O

1.4 Closedness of A

We recall that X x X is a Banach space with norm
@yl = |zl + 1yl V(z,y) e X x X.
Definition 5 An operator A: D(A) C X — X is said to be closed if its graph
graph(A) = {(z,y) € X x X : z € D(A), y = Az}
is a closed subset of X x X.

Exercise 3 Prove that A : D(A) C X — X is closed if and only if for any
sequence {x,} C D(A)

n —
{x v = x€D(A) and Az =y. (1.4.1)
Az, —y

Proposition 3 The infinitesimal generator of a Co-semigroup S(t) is a closed
operator.

Proof. Let A: D(A) C X — X be the infinitesimal generator of S(t) and let
{zn} € D(A) be as in (1.4.1). By Theorem 3—(d) we have that, for all ¢ > 0,

t
S(t)xy — xp = / S(s)Azxpdx.
0
Hence, taking the limit as n — oo and dividing by ¢, we obtain

Stxz—z 1 [
— = t/o S(s)ydz.

Passing to the limit as ¢t | 0, we conclude that Ax = y. U

Remark 2 From Proposition 3 it follows that the domain D(A) of the in-
finitesimal generator of a Cg-semigroup is a Banach space with the graph norm

[Z[pay = |z| + [Ax| Vz € D(A).

8



Proposition 4 (Cauchy problem) Let S be a Cy-semigroup of bounded lin-
ear operators on Xand A : D(A) C X — X be its infinitesimal generator.
Then for every x € D(A) the Cauchy problem

(1.4.2)

has a unique solution y € C1([0,00); X) NC([0,0); D(A))! given by
y(t) = S(t)z vVt > 0.

Proof. The fact that y(t) = S(t)z satisfies (1.4.2) is point (d) of Theo-
rem 3. Let us show that this is the unique solution of the problem. Let
z € CL([0,00); X) NC([0,00); D(A)) be a solution of (1.4.2), fix ¢ > 0, and set

u(s) = S(t—s)z(s), Vsel0,t].
Then
u'(s) = —AS(t — 8)z(s) + S(t — s)Az(s) =0, Vse[0,t].
Therefore, z(t) = u(t) = u(0) = y(t). O
Exercise 4 Let S(t) and T'(t) be Cyp-semigroups with generator A : D(A) C
X — X and B: D(B) C X — X, respectively. Show that
A=B = S@t)=T({t) Vt=0.

Exercise 5 Find the infinitesimal generator of the Cy-semigroup of left trans-
lations discussed in Exampe 3.

Example 4 (Transport equation in C3(R)) Returning to the left-trans-
lation semigroup on Cy(R) of Example 3, by Proposition 4 and Exercise 5
we conclude that for each f € C}(R) the unique solution of the problem

%(t,l’):%(t’:p) (t,x)€R+XR
U(O’x):f(x) z€e€R
is given by u(t,z) = f(z +1t).

Exercise 6 Let  C R" be a bounded domain with boundary of class C2.

Define
{D(A) = H2(Q) N HL(Q)

Au = Au Vu € D(A).

Prove that A is a closed operator.

"Here D(A) is ragarded as a Banach space with the graph norm.
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1.5 Spectral properties of closed operators

Let A: D(A) C X — X be a closed operator on a complex Banach space X.

Definition 6 The resolvent set of A, p(A), is the set of all A € C such that
M — A D(A) — X is bijective. The set 0(A) = C\ p(A) is called the
spectrum of A. For any X € p(A) the linear operator

RNA) =M -A)1: X=X
is called the resolvent of A at A.

Example 5 On X = C([0,1]) with the uniform norm consider the linear
operator A : D(A) C X — X defined by

D(A) = c'([0,1])
Af=f, VfeD(A)

is closed (Ezercise). Then o(A) = C because for any A € C the function
() = e satisfies

AMa(z) = fr(z) =0 Vo el0,1].
On the other hand, for the closed operator Ay defined by
D(Ag) = {f €C!([0.1]) : f(0) =0}
Aof = f's Vf € D(A),
we have that o(Ag) = @. Indeed, for any g € X the problem
M(@) = f'(z) =g(z) = €l0,1]
f(0)=0

admits the unique solution

fo=- [ " AeIg(s)dz (x € 0,1))

0

which belongs to D(Ay).

Proposition 5 Any closed operator A : D(A) C X — X on a complex Ba-
nach space X has the following properties.

(a) R(\, A) € L(X) for any X € p(A).

(b) For any X € p(A)
AR(M\ A) = AR\ A) — 1. (1.5.1)

10



(c) The resolvent identity holds:

R(MA)—R(u, A) = (u—NR(N, A)R(p, A) VA € p(A). (1.5.2)

(d) For any A\, u € p(A)

R\, A)R(u, A) = R(u, A)R(X, A). (1.5.3)

Proof. Let A\, i € p(A).

(a) Since A is closed, so is A\ — A and aslo R(\, A) = (A — A)~1. So,
R(M\, A) € L(X) by the closed graph theorem.

(b) This point follows from the definition of R(A, A).
(c) By (1.5.1) we have that

and
R(X, A)[pR(p, A) — AR(u, A)] = R(A, A).

Since AR(\, A) = R(\, A)A on D(A), (1.5.2) follows.
(d) Apply (1.5.2) to compute

RN A) = R(p, A) = (n— AR, A)R(p, A)
R(:U'v A) - R()‘7 A4) = ()‘ — u)R(p, A)R(A, A).

Adding the above identities side by side yields the conclusion.

The proof is complete. O

Theorem 4 Let Ao € p(A). Then, for any A € C such that

1
P Vi [ —— (1.5.4)
[1R(Xo, Al
the resolvent R(\, A) is given by the (Neumann) series
RN A) = (Ao —A)"R(Xo, A", (1.5.5)
n=0

Consequently, the resolvent set p(A) is open in C, A\ — R(\, A) is analytic on
p(A), and for any X € p(A)

d% ROLA) = (—1)"nl RO\, A wn e N, (1.5.6)

11



Proof. For all A € C and )¢ € p(A) we have that
M—-A=X I—-A+A=X)I=[—-(No—NR(No,A)]( Aol — A).

This operator is bijective if and only if [I — (Ao — A\)R(No, A)] is invertible,
which is the case if A satisfies (1.5.4). Then

R(X, A) = R0, AL = (Ao = MR, )] =3 (Ao = N)"R(ho, 4)".
n=0
The analyticity of R(A, A) and (1.5.6) follows from (1.5.5). O

1.6 Integral representation of R(\, A)

Theorem 5 (Integral representation) Let A : D(A) C X — X be the
infinitesimal generator of a Co-semigroup of bounded linear operators on X,
S(t), such that

IS < Me*t  Vt=0 (1.6.1)

for some constants M > 1 and w € R. Then p(A) contains the half-plane
I, ={AeC : RA>w} (1.6.2)

and
R\, Az = / e MSt)xdt Ve X, VAell,. (1.6.3)
0

Proof. We must prove that, given any A\ € I, and x € X, the equation
A —Au =z (1.6.4)

has a unique solution given by (1.6.3).

Existence: observe that u := [;° e S(t)zdt € X because R\ > w. More-
over, for all h > 0,

S(h)u —u

h { /0 T e Mt 4 hywdt — /0 b e_’\tS(t)xdt}

1
h
1 )\h/oo Y /Oo —\t
= —Je e "S(t)x dt — e "S(t)x dt
G (e~ | (e dt}

Ah 1 e h

Q)

_ e —)t
= U A e S(t)x dt.
So S(h
lim m =\u—=zx
10

which in turn yields that u € D(A) and (1.6.4) holds true.

12



Uniqueness: let u € D(A) be a solution of (1.6.4). Then

/ e MS(t)(\u — Au) dt = )\/ e MS(t)udt — / e M 4 St)udt =u
0 0 0 dt

which implies that u is given by (1.6.3). O

Proposition 6 Let A: D(A) C X - X and B: D(B) C X — X be closed
linear operators in X and suppose B C A, that is,

D(B)Cc D(A) and Ax = Bx Yz € D(B).
If p(A) N p(B) # &, then A = B.

Proof. 1t suffices to show that D(A) C D(B). Let z € D(A), A € p(A)Np(B),
and set
y=Ar—Azx and z= R(\ B)y.

Then z € D(B) and Az — Bz = Az — Az. Since B C A, \z — Bz = \z — Az.
Thus, (A — A)(z — 2) =0. So, x = z € D(B). O

Example 6 (Right-translation semigroup on R;) On the real Banach
space

X ={fe€CRy) : f(0) =0}

with the uniform norm, consider the right-translation semigroup

flz—=t) z>t

Va,t > 0.
0 z € [0,1]

(St)f)(2) = {

It is easy to check that S is a Cp-semigroup on X with ||S(¢)|| = 1 for all
t > 0. In order to characterize its infinitesimal generator A, let us consider
the operator B : D(B) C X — X defined by

DB)={feX : ffeX}
Bf =—f', VfeD(B).

We claim that:

(1) BCA
Proof. Let f € D(B). Then, for all z,t > 0 we have

(SO @) - f@)  [-EE==F@),  o0<z<t

t [ (LGS A R R

13



with 0 <z — x4 < t. Therefore

(S(t)f) (@) — f(x)

; + f(@) < sup |f'(z)—F(y)] =0 as t]O

lz—y|<t

sup
0]

because f’ is uniformly continuous. O

(ii) 1 € p(B)
Proof. For any g € X the unique solution f of the problem
/€ D(B)
F(@)+ (@) = g(z) VYo >0

is given by

Since 1 € p(A) by Proposition 5, Proposition 6 yields that A = B.

1.7 Asymptotic behaviour of Cy-semigroups

Let S(t) be a Cyp-semigroup of bounded linear operators on X.

Definition 7 The number

wo(S) = ing &SI

inf == (1.7.1)

is called the type or growth bound of S(t).

Proposition 7 The growth bound of S satisfies

wo(S) = lim log ISl < 0. (1.7.2)

t—00 t

Moreover, for any € > 0 there exists My > 0 such that
1S(1)|| < Moeo®)F)t wi >0, (1.7.3)

Proof. The fact that wp(S) < oo is a direct consequence of (1.7.1). In order
to prove (1.7.2) it suffices to show that

lim sup IOng(t)H < wp(9). (1.7.4)

t—o00

For any € > 0 let t- > 0 be such that

log’f(te)” < wo(S) +¢. (1.7.5)

14



Let us write any t > t. as t = nt. + ¢ with nOn(¢) € N and § = d(e) € [0, t.][.
Then, by (1.2.2) and (1.7.5),

1S@)| < IS ISt < M0 ente(wo(S)+e) — pfelw—wo(S)—e)d ,(wo(S)+e)t

which proves (1.7.3) with M, = Me—«0(5)=€)d  Moreover, taking the loga-
rithm of both sides of the above inequality we get

08 SO 51 4 1M (o n(S) ~
and (1.7.4) follows as t — co. O

Definition 8 For any operator A : D(A) C X — X we define the spectral
bound of A as
s(A) =sup{RA : Aeo(A)}.

Corollary 2 Let S(t) be a Cy-semigroup on X with infinitesimal generator
A. Then
—00 < $(A4) < wp(S) < +o0.

Proof. By combining Theorem 5 and (1.7.3) we conclude that
Hwo(S)+5 - p(A) Ve > 0.

Therefore, s(A) < wp(S) + ¢ for all € > 0. The conclusion follows. O

Example 7 For fixed 7> 0 and p > 1 let X = LP(0,7) and
flz—t) zelt,T]
S(t = Ve e [0,T], Vt > 0.
(50)1)(@) {0 Cop el

Then S is a Cyp-semigroup of bounded linear operators on X which satisfies
|S(t)]| <1 for all ¢ > 0. Moreover, observe that S is nilpotent, that is, we
have S(t) =0, V¢t > T. Deduce that wo(S) = —oo. So, the spectral bound of
the infinitesimal generator of S(t) also equals —oo.

Example 8 (—oco < s(A) = wp(S)) In the Banach space
X =C(Ry;C),
with the uniform norm, the left-translation semigroup
(S@)f)(@)=f(z+t) Va,t>0

is a Cp-semigroup of contractions on X which satisfies ||S(t)|| = 1 (Exercise).
Therefore
CU()(S ) = 0.

15



The infinitesimal generator of S(t) is given by
{D(A) = CL(R4;C)
Af =f Vf e D(A).
By Theorem 5 we have that
p(A) D {reC : RA>0}.

We claim that
c(A) D> {AeC : RA<O0}.

Indeed, for any A € C the function f () := e satisfies \f — f/ = 0. Moreover,
fa € D(A) for RA < 0. Therefore

s(A) = 0.

Example 9 (s(A) < wo(S)) Let us denote by Co(R; C) the Banach space of
all continuous functions f : Ry — C such that

lim f(x)=0

T—00

with the uniform norm. We define X to be the Banach space (Ezercise) of all
functions f € Co(R4;C) such that

1]l = sup |f(z)] + /0 (@) dr < .

zeR
Once again, the left-translation semigroup
(S(t)f)(z) = f(z+1) Vo, t >0

is a Cg-semigroup of contractions on X. Indeed, for all ¢t > 0

SO = sup [f(@+0)] + /0 (o + B)letda

$ER+

< sup [f@)| + et /0 @)t d.

zER
Moreover, ||S(t)|| =1 (Ezercise). Therefore
wo(S) =0.

The infinitesimal generator of S(t) is given by

DA)={feX : fleX}
Af = f Vf € D(A).

16



For any A € C the function fy(z) := e satisfies A\f — f' = 0 and f\ € D(A)
for RA < —1. So,
s(A) > —1. (1.7.6)

We claim that
A)D>{AeC : RA> -1} (1.7.7)

Indeed, a direct calculation shows that, for any g € X, the function

f(z) = /000 e*’\t(S(t)g) (x)dt = /OOO e Mg(x +t)dt (x > 0)

satisfies A\f — f/ = g. Consequently, if we show that f € X, then f € D(A)
follows and so A € p(A). In order to check f € X, observe that, for all x > 0,

/OO }e_)‘tg(:c + t)‘dt
0

o0
= / e*t%)“g(x—i-tﬂemﬂeﬂftdt
0

[/ ()]

N

_ e‘”/ e~HIHRN) 4 gy 1| d (1.7.8)
0

/AN
)
4
a\
8
(]
=y
o
Va)

which insures that f € Co(R;C). Furthermore, by (1.7.8) we compute

/ |f(z)]le®dx < / da;/ —HIHRA) e"g(x +t)|dt
0

= / (Hm)dt/ e g(z + t)|da
0 0

/ e_t(Hm)dt/ e"|g(r)|dr < oo.
0 0

From (1.7.6) and (1.7.7) it follows that s(4) = —1 < 0 = wp(S).

N

Exercise 7 Let S(t) be a Cp-semigroup of bounded linear operators on X.
Prove that wy(S) < 0 if and only if

Jim [IS@)]] = 0. (1.7.9)
Solution. One only needs to show that (1.7.9) implies that wo(S) < 0. Let
to > 0 be such that ||S(to)|| < 1/e. For any t > 0 let n € N be the unique

integer such that
nto <t < (n+ 1)to. (1.7.10)

Then

w(t—nto) wt
IS@) = ||S (nto) S(t — nty)|| < M0 M

en en
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Therefore, on account of (1.7.9), we conclude that

log ISl _ log(Me)
t

~X

t t
log (Me®t 1 1
< D) (L) g
t to
Taking the limit as t — 400 we conclude that wg(S) < 0. O

1.8 The Hille-Yosida generation theorem

Theorem 6 Let M > 1 andw € R. For a linear operator A : D(A) C X — X
the following properties are equivalent:

(a) A is closed, D(A) is dense in X, and

p(A) DI, ={AeC : RA>w} (1.8.1)

M
F )[R — >1 11, 1.8.2
IBOL A < gy WE = LA € (182)

(b) A is the infinitesimal generator of a Cy-semigroup, S(t), such that

ISt < Me¥t vt > 0. (1.8.3)

‘ Proof of (b) = (a) ‘ The fact that A is closed, D(A) is dense in X, and (1.8.1)
holds true has already been proved, see Theorem 3-(c), Proposition 3, and
Theorem 5. In order to prove (1.8.2) observe that, by using (1.6.3) to compute
the k-th derivative of the resolvent of A, we obtain

dk [e's)
7 B Az = (—1)’“/ the MS(t)xdt Vo e X, YA eIl
0
Therefore,
d* o M k!
—R(\ A H gM/ the=RA-w)t gy —
Hd)JfR( ) 0 - (RN — w)Ft1

where the integral is easily computed by induction. The conclusion follows
recalling (1.5.6). O

Lemma 1 Let A: D(A) C X — X be as in (a) of Theorem 6. Then:
(i) Forallz € X

lim nR(n, A)z = . (1.8.4)

n—o0
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(i) The Yosida Approximation A, of A, defined as
Ap, =nAR(n, A) (n>1) (1.8.5)

s a sequence of bounded operator on X which satisfies

ApAn = AL AL Vn,m>1 (1.8.6)
and
le Apx = Ax Vx € D(A). (1.8.7)

(i1i) For all m,n > 2w, v € D(A), t > 0 we have that

[efn]| < Menss < Met (1.8.8)
<

letAng — e M?te®! Az — Az, (1.8.9)

tA

Consequently, for all x € D(A) the sequence uy(t) := e"“nx is Cauchy

in C([0,T]; X) for any T > 0.
Proof of (i): owing to (1.5.1), for any = € D(A) we have that

M|Ax| (n—oo
InR(n, Az — x| = |[AR(n, A)z| = |R(n, A)Az| < |Az| (n=0) 0,

n—w

where we have used (1.8.2) with £ = 1. Moreover, again by (1.8.2) ,

Mn
n—w

|InR(n, A)|| < <2M  Vn > 2w.

The last two inequalities yield the conclusion because D(A) is dense in X.
Indeed, let z € X and fix any € > 0. Let 2. € D(A) be such that |z, —z| < e.
Then

InR(n, A)x — z| < |nR(n, A)(x — z)| + InR(n, A)xe — x| + |xe — x|

M|Az.| (
—w

< (2M +1)e + ") (oM 1)e.
n

Since ¢ is arbitrary, (1.8.4) follows.
Proof of (ii): observe that A, € L(X) because

A, =n*R(n,A) —nl  ¥Yn>1. (1.8.10)
Moreover, in view of (1.5.3) we have that

ApA,, = [n*R(n, A) —nl][m*R(m, A) — ml]
= [m2R(m, A) — mI] [n’R(n, A) — nl] = A, Ap.
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Finally, owing to (1.8.4), for all z € D(A) we have that

Apz =nAR(n,A)x = nR(n, A)Ax 2%) A

Proof of (iit): recalling (1.8.10) we have that
o0 2kik k
tAn _ —nt n>t"R(n, A)
(& =e kz T, Vit 2 0.
=0

Therefore, in view of (1.8.2),

tAn ot N 2 Dwt 2wt
He ”<M€ ZW:Men*WSMe
k=0

for all t > 0 and n > 2w. This proves (1.8.8).
Next, observe that for any x € D(A) we have that

{(un — um) (8) = Ap(tn — um)(t) + (An — Ap)um(t) V>0
(up, — um)(0) = 0.

where we have set u,(t) = etAng. Therefore, for all t > 0 we have that
¢
z—efdmy = / el=9An (A, — Ap)es A ds
0

t
= /e(ts)A"eSAm(An—Am)xds (1.8.11)
0

because A, and ez commute in view of (1.8.6). Thus, by combining
(1.8.11) and (1.8.8) we obtain

|etA”a; — etAmx\

N

t

M2/ 29295\ A 0 — Apa|, ds
0

< M?*te*'| Az — Apal.

In view of (1.8.7), the last inequality shows that et4ng is a Cauchy sequence
in C([0,T]; X) for any T > 0, thus completing the proof. O

Exercise 8 Use a density argument to prove that etz is a Cauchy sequence
on all compact subsets of Ry for all x € X.

‘Pmof of (a) = (b)‘ On account of Lemma 1 and Exercise 8, we have that

et4nz is a Cauchy sequence on all compact subsets of Ry for all z € X.
Consequently, the limit (uniform on all [0,7] C Ry)

S(t)z = lim erz, Vre X, (1.8.12)

n—oo
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defines a Cyp-semigroup of bounded linear operators on X. Moreover, passing
to the limit as n — oo in (1.8.8), we conclude that ||S(t)|| < Me“!, Vt > 0.

Let us identify the infinitesimal generator of S(¢). By (1.8.8), for x € D(A)
we have that

d
pn eAng — S(t)Azx| < | Ay — et Ax| + et Az — S(t) Ax|
< Me® Apx — Ax| + | Az — S(t) Az| =)

uniformly on all compact subsets of Ry by (1.8.12). Therefore, for all 7' > 0
and z € D(A) we have that

etAny (njf) S(t)x

% etAn g (njf) S(t)Ax

uniformly on [0, 7.

This implies that
S'(t)xr = S(t)Az, V€ D(A), vVt > 0. (1.8.13)

Now, let B : D(B) C X — X be the infinitesimal generator of S(¢). Then
A C B in view of (1.8.13). Moreover, II, C p(A) by assumption (a) and
I1,, C p(B) by Proposition 5. So, on account of Proposition 6, A = B. O

Remark 3 The above proof shows that condition (a) in Theorem 6 can be
relaxed as follows:

(a') A is closed, D(A) is dense in X, and

p(A) DJw, 00| (1.8.14)
M
(n—w)*

|R(n, A)¥|| < Vk > 1,Vn > w. (1.8.15)

Remark 4 When M = 1, the countably many bounds in condition (a) follow
from (1.8.2) for k = 1, that is,

1
RA—w

IR(A, A < Vk>1, VA€ lL,.

Example 10 (Second order parabolic equations in L?(2)) Let Q C R"
be a bounded domain with boundary of class C2. Define

D(A) = H2(Q) N HY(Q)
Au=37"_ Dj(ai;Dj)u+ 30 biDiu+cu Vu € D(A).

where
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(H1) a;; € C1(Q) satisfies a;; = aj; for all i, =1,...,n and

> aij(2)g6 = 01 VEER", zeQ
ij=1
(H2) b, € L>*(Q2) for alli =1,...,n and ¢ € L*(Q).

In order to apply the Hille-Yosida theorem to show that A is the infinitesimal
generator of a Co-semigroup S(t) on L?(£2), one can check that the following
assumptions are satisfied.

1. D(A) is dense in L?(Q).
[This is a known property of Sobolev spaces.|

2. A is a closed operator.
Proof. Let u, € D(A) be such that

k— k—
wp —3 uw and  Aup —3 f.

Then, for all h, k > 1 we have that vy := uj — uy satisfies
{szzl Dj(aijDj)vnk + > iy biDivpg + copg =: fre  in Q
vpe =0 on 0.
So, elliptic regularity insures that
lvnkll2e < C (I fakllo + llvnklloo)

for some constant C' > 0. The above inequality implies that {uy} is a
Cauchy sequence in D(A) and this yields f = Au. O

3. Jw € R such that p(A) D]w, ool
[This follows from elliptic theory.]

4. [[RINA)|| < 52 forall k> 1 and A > w.
[This follows from elliptic theory.]

Then, for any ug € H*(2) N Hj(), the function u(t,z) = (S(t)uo)(z) is the
unique solution of the initial-boundary value problem

% = szzl Dj(a;jDj)u+ Y7 b;Diu+cu in ]0,00[xQ

u=20 on |0, co[x 00
u(0,2) = up(z) x €.

in the class

CH([0,00); L)) NC([0, 00); HA(®) 1 HY(®)).
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Exercise 9 Let S(t) be the Co-semigroup on L?(2) associated with the initial-
boundary value problem

%—?:Au in ]0, 0o[xQ
u=0 on |0, co[x 0N (1.8.16)
u(0,2) = up(r) x €

Show that wg(S) < 0.

Solution. We know from Example 10 that the infinitesimal generator of S(t)
is the operator A defined by

D(A) = H*(Q) N HL ()
Au = Au Vu € D(A).

For ug € D(A), let u(t,z) = (S(t)uo) (). Then u satisfies (1.8.16). So

d /1 2 o 1 2
dt<2/9|u(t’x)‘ i) _—2/Q|Du(t,x)| v Yt>0.

Moreover, by Poincaré’s inequality we have that

2 2
/Q u(t, z)[dz < () /Q |Du(t, z)2dz.

Therefore,
d 9 2
5 4] Q)

which ensures, by Gronwall’s lemma, that

Ju(t)?

lu(t)] < eV Djug| Vvt > 0.

By a density argument, one concludes that the above inequality holds true for
any x € L?(9), so that w,(S) < —1/¢(Q). O
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1.9 Additional exercises for Chapter 1

Exercise 10 Let X be a Banach space and let A : D(A) C X — X be the
infinitesimal generator of a Cyp-semigroup of bounded linear operators on X.
Prove that, for every n > 1,

D(A") :={z € D(A"') : Az € D(A)}

is dense in X.

Solution. For n = 1 the conclusion follows from Theorem 3. Let the conclusion
be true for some n > 1 and fix any y € X. Then, for any € > 0 there exists
xe € D(A™) such that |z, — y| < . Moreover,

A <t/0 S(s)xsds> _t/o S(s)A"x. ds

Since

t
1/ S(s)zzds € D(A) vVt >0
0

we conclude that
1 t
75/ S(s)zeds € D(A™T) vt > 0.
0

Moreover, there exists t. > 0 such that

1 [*
— S(s)xsds—y‘ <

te
S(s)xeds — xe| + |z — y| < 2e. O
te Jo

1
te Jo
Exercise 11 Given a uniformly bounded Cy-semigroup, ||S(t)|| < M, define

|z|s = sup |S(t)z|, Vxe X. (1.9.1)
=0

Show that:
1. |+ ]g is a norm on X,
2. |z| < |z|s < M|z| for all z € X, and

3. S is a contraction semigroup with respect to | - |g.

Exercise 12 Let S be Cy-semigroup of bounded linear operators on X and
let K C X be compact. Prove that for every ¢y > 0

tlg?o jg}}g |S(t)x — S(to)z| = 0. (1.9.2)
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Solution. We may assume S € G(M,0) for some M >) without loss of gener-
ality. Let g > 0 and fix any € > 0. Since K is totally bounded, there exist
Z1,...,2N. € X such that

Ne

KclJ B(xn,%).

n=1

Moreover, there exists 7 > 0 such that
|t —to] <7 = }S(t)xn—S(to)xn‘<5 Vn=1,...,N..

Thus, for all [t — tg| < 7 we have that, if x € K is such that x € B(xn, ﬁ),
then

|S(t)x — S(to)z|
|S(t)x — S(t)n| + [S(E)zn — S(to)zn| + |S(to)zn — S(to)z|

<
< 2M|z —zp| + € < 3e.

So, the limit of |S(t)z — S(to)x| as t — to is uniform on K. O

Exercise 13 Prove that if A : D(A) C X — X is a closed operator and
B e L(X), then A+ B: D(A) C X — X is also closed.

Exercise 14 Let A: D(A) C X — X be a closed operator satisfying (1.8.2)

but suppose D(A) fails to be dense in X. In the Banach space Y := D(A),
define the operator B, called the part of A in'Y, by

D(B)={zeD(A) : AzeY}
Bxr = Ax Vx € D(B).

Prove that B is the infinitesimal generator of a Cy-semigroupon Y.

Solution. R(A\, A)(Y) C D(B) for all A € C such that ® A > w. Indeed, owing
to (1.5.1) for all z € D(A) we have that

lim nR(n, A)z = ILm {R(n,A)Az + 2} = z. (1.9.3)

n—0o0

Since ||[nR(n, A)|| is bounded, (1.9.3) holds true for all x € Y. Hence, D(B) is
dense in Y. Consequently, B satisfies in Y all the assumptions of Theorem 6.
O

Exercise 15 For any fixed p > 1, let X = LP(R) and define, Vf € X,
(S()f)(z) = f(z+t) VzeR,Vt>0. (1.9.4)

Prove that S is Cp-semigroup which fails to be uniformly continuous.
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(Observe that (1.9.4) makes sense for ¢ < 0 as well. On the other hand, if one
takes X = LP(R;), then (1.9.4) makes sense only for ¢ > 0.)

Solution. Suppose S is uniformly continuous and let 7 > 0 be such that
|S(t) — I|| < 1/2 for all t € [0,7]. Then by taking f,(x) = nl/px[oyl/n](x) for
p < oo and n > 1/7 we have that |f,| =1 and

1
IS(T) fr — ful = </RTL|X[0,1/n](UC +7)— X[o,1/n]($)|pd$)p =2!/p,

Exercise 16 Denoting by |f|, the norm of f in LP(R) and by W P(R) the
Banach space of all locally absolutely continuous functions f : R — R such
that

[flip = [flp + 1f]p < o0, (1.9.5)

show that the infinitesimal generator of the left-translation semigroup S(t)
on LP(R) defined in (1.9.4) is given by

{D(A) =W (R) (1.9.6)

Af(x) = f'(x) (re€eRae) VfeDA).

Exercise 17 Let p > 2. On X = LP(0, ) consider the operator defined by

{D(A) = W2P(0,7) N W, P (0, ) (1.9.7)

Af(z) = f"(x) xz € (0,m) ae.
where
WoP(0,m) = {f e W'P(0,m) : f(0)=0=f(m)}.

Since C°(0,7) C D(A), we have that D(A) is dense in X. Show that A
is closed and satisfies condition (a’) of Remark 3 with M = 1 and w = 0.
Theorem 6 will imply that A generates a Cy-semigroup of contractions on X.

Solution. Step 1: o(A) = {-n? : n € N}.
Fix any g € X. We will show that, for all X # n?(n > 1), the Sturm-Liouville
system

{Af(x) — (@) =g(z), O<z<m (1.9.8)

f(0)=0=f(n)
admits a unique solution f € D(A). Denoting by

9(@) = gasin(nz) (v € [0,7))
n=1

the Fourier series of g, we seek a candidate solution f of the form
oo
fl@)=>_ fasin(nz)  (z€[0,7]).
n=1
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In order to satisfy (1.9.8) one must have
A+ 13 f0 = gn Vn > 1.

So, for any A # —n?, (1.9.8) has a unique solution given by

F@)=3" 5 i"nz sin(nz)  (x € [0,7)).
n=1

From the above representation it follows that f € H?(0,7)NHE(0, 7). In fact,
returning to the equation in (1.9.8) one concludes that f € D(A).

Step 2: resolvent estimate.
By multiplying both members of the equation in (1.9.8) by |f[P~2f and inte-
grating over (0, 7) one obtains, for all A > 0,

§ Pdx — g 2) P2 () 2dx = ﬂac 2)|P2f(x) dx
A/O (@) Pdz + (p 1)/01”( P2 () Pd /Og< @) P2 () d

which yields
1
o< Slds  ¥A>0,

Step 3: conclusion.
By Proposition 4 we conclude that for each f € W?2P(0,7) N Wol’p(O, m) the
unique solution of

% (t,x) = g 5 (t,x) (t,z) € Ry x (0,m)
u(t,0) =0=u(t,m) t>0
u(0,z) = f(z) xz € (0,m)
is given by u(t,z) = (S(¢)f)(z). O

Exercise 18 Let S(t) be the Cp-semigroup generated by operator A in (1.9.7).
Prove that, for any f € LP(0,7),

—/ K(t,z,y)f(y)dy, Yt>=0, xz€ (0,7) a.e
0

where

>Hw

Z tsin(kz) sin(ky).

k=1

K(t,z,y) =

Exercise 19 Let f € W2P(R) with p > 2. Solve the Cauchy problem

{?;;(t,x) Pu(t,x) (t,z) € Ry xR
(0,2) = f(z) z€R.
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Solution. The operator defined by
D(A) = W2P(R)
Af(z) = f"(x) zeRae.

is densely defined and closed. Let us begin by studying the problem

{f € D(4) (1.9.9)
AM—-f'=geX

in the special case p = 2. Taking the Fourier transform of both members of
the above equation we find

A+E)f(©) =9() VEeR.
So, for any A > 0 we have that the solution to problem (1.9.9) is given by

e—VAlz|
2V

f(x) = (g+ox)(x) with ¢x(z) =

that is,

T

fla) = 2\15{/_mg(y)e‘ﬁ(m‘y)dyﬂt/:Og(y)e‘ﬁ(y‘m)dy}-

Moreover, the above representation formula holds true for any p > 2. We
have thus proved that (0,00) C p(A). Finally, by multiplying both members
of the equation in (1.9.8) by |f|P~2f and integrating over R we obtain as in
Exercise 17

A / Pde + (p— 1) / A2 Pde = / glfIPf da
which yields
1
7l < 5 loly

Therefore, A satisfies condition (a’) of Remark 3 and generates a Cy-semigroup
of bounded linear operators on X which gives the solution of our problem. [J

Exercise 20 On X = {f € C([0,7]) : f(0) =0 = f(m)} with the uniform
norm, consider the linear operator A : D(A) C X — X defined by

D(A) = {fec?([0,1]) = f(0) = f(m) =0= f"(0) = f"(m)}
Af = ", Vf e D(A).

Show that A generates a Cyp-semigroup of contractions on X and derive the
initial-boundary value problem which is solved by such semigroup.
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Solution. We only prove that ||R(A\, A)|| < 1/A for all A > 0. Fix any g € X
and let f = R(\, A)g. Let zg € [0, 7] be such that | f(z0)| = | fleo. If f(z0) >0,
then 2o € (0,7) is a maximum point of f. So, f”(z¢) < 0 and we have that

Alfloo = Af(z0) < Af(@o) — " (w0) = g(@0) < |gloo-

On the other hand, if f(z¢) < 0, then zy € (0,7) once again and zg is a
minimum point of f. Thus, f”(z¢) > 0 and

A floo = =Af(z0) < =Af(z0) + f"(20) = —g(20) < |gloo-

In any case, we have that A|f|s < |¢]oo- O

Exercise 21 Let A : D(A) C X — X be the infinitesimal generator of a
uniformly bounded semigroup ||S(¢)|| < M. Prove the Laundau-Kolmogorov
inequality:

|Az|? < AM? |z| |A%z| Vz € D(A?), (1.9.10)

where

(1.9.11)

D(A?) ={z € D(A) : Ax € D(A)}
A’z = A(Az), Vax € D(A?).

Solution. Assume M = 1. For any = € D(A?) and all t > 0 we have

/Ot(t—s)S(s)Azxds — (- 5)S( /s ) A ds

= —tA:n—{—[S( v ] 0——tA:L‘+5’( ) — x.

s=

Therefore, for all t > 0,

1 I
|Az| < n |S(t)x — x| + n / (t — 5)|S(s)A%x|ds
0
2
t

<

t
o[+ 5 |A2x|. (1.9.12)

If A%z = 0, then the above inequality yields Az = 0 by letting t — oco. So,
(1.9.10) is true in this case. On the other hand, for A%z # 0 the function of ¢
on the right-hand side of (1.9.12) attains its minimum at

2|x|1/2

|A2z|1/2"

By taking ¢t = tg in (1.9.12) we obtain (1.9.10) once again. O

0=

Exercise 22 Use the Landau-Kolmogorov inequality to deduce the interpo-

lation inequality
Fle <2\/Iflplf"ly Vf e WP(R).
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2 Special classes of semigroups

2.1 Dissipative operators

Let H be a Hilbert space with scalar product (-, ).

Definition 9 We say that an operator A : D(A) C H — H is dissipative if
R (Az,z) <0 Vo € D(A). (2.1.1)

Example 11 In H = L?(R;C) consider the operator

{D(A) — H'(R4;C)
Af(x) = f'(x) r € Ry ae.

Then

s f=( [ r@f@an) = [ L@ de = -0 <o

So, A is dissipative.
Proposition 8 An operator A: D(A) C H — H s dissipative if and only if
(AT — A)z| = Az Ve € D(A) and VA > 0. (2.1.2)
Proof. Let A be dissipative. Then for every A > 0
(N — A)z|* = N|z|* — 2AR(Az, z) + |Az]* > \?|z|? Vo € D(A).
Conversely, suppose A satisfies (2.1.2). Then for every A > 0 and = € D(A)
Nz|? = 2AR(Az, z) + |Az)? = |(A] — A)x|> = N2z

So, 2AR(Ax, z) < |Az|?* which in turn yields (2.1.1) as A — oc. O

The above characterization can be used to extend the notion of dissipative
operators to a Banach space X.

Definition 10 We say that an operator A : D(A) C X — X is dissipative if
(AT — A)z| = ANz Ve € D(A) and YA >0. (2.1.3)
Remark 5 It follows from (2.1.3) that, if A is dissipative then
A —A:D(A) > X
is one-to-one for all A > 0.
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Proposition 9 Let A: D(A) C X — X be dissipative. If
dXo >0  such that (Ml —A)D(A) = X, (2.1.4)
then the following properties hold:
(a) do € p(A) and [[R(Xo, A)|| <1/,
(b) A is closed,

(¢c) A\ — A)D(A) = X and |R(\, A)|| < 1/ for all A > 0.

We observe that point (a) follows from Remark 5 and inequality (2.1.3). As
for point (b), we note that, since R(\g, A) is closed, Aol — A is also closed,
and therefore A is closed.

Proof of (c). By point (a) the set
A={X€l0,00[: (A - A)D(A) =X}

is contained in p(A) which is open in C. This implies that A is also open. Let
us show that A is closed: let A © A\, =& A > 0 and fix any y € X. There exists
xn € D(A) such that

Ay — Azy = 1. (2.1.5)

From (2.1.2) it follows that |z,| < |y|/A, < C for some C' > 0. Again by
(2.1.2),

A (zn, — ) — AT — )|
Am — A\l |2n| + [Anzn — Azp — (A — Azpy)|
O — Aal.

)\m‘xn _:L'm|

INCININ

Therefore {x,} is a Cauchy sequence. Let x,, — x. Then Az, — Az —y by
(2.1.5). Since A is closed by point (b), = € D(A) and \x — Ax = y. This
show that A\I — A is surjective and implies that A € A. Thus, A is both open
and closed in (0, 00). Moreover, A # @& because \g € A. So, A = (0,00). The
inequality ||R(A, A)|| < 1/A is a consequence of dissipativity. O

Definition 11 A dissipative operator A : D(A) C X — X s called maximal
dissipative if (2.1.4) holds true.

Theorem 7 Let X be a reflexive Banach space. If A: D(A) C X — X is a
mazximal dissipative operator, then D(A) is dense in X.

We give the proof assuming that X is a Hilbert space. The case of a reflexive
Banach space is treated in exercises 24 to 27.
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Proof. Let z € X be such that (z,z) =0 for all x € D(A). We will show that
z=0, or
(z,y) =0 Vy € X.

Since (I — A) is surjective, the above is equivalent to
0= (z,x — Azx) Vo € D(A).
Finally, what we need to prove is that
(z,2)y =0 Vexe D(A) = (z,Az)=0  Vze D(A). (2.1.6)

Let © € D(A). Since nI — A is onto, there exists a sequence {x,} C D(A)
such that
nr = nx, — Az, Vn > 1. (2.1.7)

Since Az, = n(z, — ) € D(A), we have that x,, € D(A?) and
1 1 -1
Ax = Az, — = A%z, or Az, = (I - = A) Azx.
n n

Since ||(I — L A)~!|| < 1 by (2.1.2), the above identity yields [Az,| < |Az|.
So, by (2.1.7) we obtain

1
|z, — x| < = |Az|.
n

Therefore, x,, — x. Moreover, since { Az, } is bounded, there is a subsequence
Az, such that Ax,, — y. Since A is closed, we have that y = Az. Therefore,

(z, Az) = leg(z,Amnk> = klggo ng (2, Tn, — )

and (2.1.6) follows from the vanishing of the rightmost term above. O

Example 12 We now show that the above density may be fail in a general
Banach space. On X = C([0,1]) with the uniform norm consider the linear
operator A : D(A) C X — X defined by

{D(A) = {uec'(0,1]) : u(0) =0}
Au(z) = —u/(z) Va € [0, 1].

Then, for all A > 0 and f € X we have that the equation Au — Au = f has
the unique solution u € D(A) given by

uw) = [ Ay (e o)
Thereforre, A\I — A is onto. Moreover,
Alu(z)] < /0 AP | flloo dy = (1= € )| flloo < At — Ao,

So, A is dissipative. On the other hand, D(A) is not dense in X because all
functions in D(A) vanish at = 0.
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Theorem 8 (Lumer-Phillips 1) Let A : D(A) € X — X be a densely
defined linear operator. Then the following properties are equivalent:

(a) A is the infinitesimal generator of a Co-semigroup of contractions,

(b) A is maximal dissipative.

‘Proof of (a) = (b)‘ In view of Theorem 5, we have that |0,00[C p(A). So,
(M — A)D(A) = X for all A > 0. Moreover, by the Hille-Yosida theorem for
all A > 0 and y € X we have that A\|R(\, A)y| < |y| or, setting x = R(\, A)y,

Az < |(M — A)z| Va € D(A).

So, A is maximal dissipative. O

’ Proof of (b) = (a) ‘ We have that:

(i) D(A) is dense by hypothesis,
(ii) A is closed by Proposition 9-(b),
(iii) ]0,00[C p(A) and ||R(A, A)|| < 1/ for all A > 0 by Proposition 9-(c).
The conclusion follows by the Hille-Yosida theorem. O
Example 13 (Wave equation in L?(Q2)) Let Q C R" be a bounded do-

main with boundary of class C2. For any given f € H2(Q) N H}(Q) and
g € H}(Q), consider the problem

%(t,x) = Au in ]0, 00[x
u=20 on |0, co[x 0N (2.1.8)

u(0,z) = f(z), %(O,x) =g(x) z€Q

Let H be the Hilbert space H}(Q2) x L*(Q) with the scalar product

(1 (5))= [ 0ot D3t + oo

Define A: D(A) C H — H by

IS

D(A) = (H*(Q) N H(Q)) x Hy(Q)
u 1 u v (2.1.9)
A(0)=(a ))=(4)

We will show that A is the infinitesimal generator of a Cp-semigroup of con-
tractions on H by checking that A is maximal dissipative.
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Let ( Z ) € D(A). Then, integrating by parts we obtain

v v

<A( “ ), ( “ )> = /Q (Du(z) - Dv(z) 4+ v(z)Au(z))dz = 0.  (2.1.10)

So, A is dissipative.
Now, consider the resolvent equation

(Z)ED(A)
(2.1.11)
(I—A)(Z)z(j;)eH

which is equivalent to the system

u€ H?*(Q)NHHQ), ve HH Q)
u—v=fecH) (2.1.12)
v—Au=ge L*Q).

Using elliptic theory one can show that the boundary value problem
u € H?(Q) N HLQ),
u—Au=f+gecL*Q)

has a unique solution. Then, taking v =u — f € H}(Q) we obtain the unique
solution of problem (2.1.12). So, A is maximal dissipative and therefore A is
the infinitesimal generator of a Cp-semigroup of contractions, S(t), thanks to
Theorem 8.

For any f € H?(Q) N HL(Q), g € H(Q), let u(t)(t € Ry) be the first

component of
s(o)( g )

Then w is the unique solution of problem (2.1.8) in the space

C*(Ry; L*(Q)) NCH(Ry; Hi(Q)) NC(Ry; HA(Q) N Hg (Q)).

2.2 Strongly continuous groups

Definition 12 A Cy-group of bounded linear operators on X is is a map G :
R — L(X) with the following properties:

(a) G(0) =1 and G(t + s) = G(t)G(s) for allt,s € R,
(b) forallz € X
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lim G(t)r = =. (2.2.1)

t—0

Definition 13 The infinitesimal generatorof a Co-group of bounded linear
operators on X, G(t), is the map A: D(A) C X — X defined by

D(A) = {z € X : Ilimy,y W=}

Az = lim,_,o S0r=e Va € D(A)

Theorem 9 Let M > 1 andw > 0. For a linear operator A: D(A) C X — X
the following properties are equivalent:

(a) A is the infinitesimal generator of a Cy-group, G(t), such that

IG@®)| < Me*!! vt eR. (2.2.2)

(b) A and —A are the infinitesimal generators of Co-semigroups, Sy (t) and
S_(t)) respectively, satisfying

1S£(t)|| < Me*t vt =0. (2.2.3)

(¢) A is closed, D(A) is dense in X, and

p(A) D {AeC : RN >w} (2.2.4)
M

vk > LYRA > w (2.2.5)

Remark 6 Let A and S (t) be as in point (b) above. We claim that
(1) S4(t)S—(s) = S_(s)S4(t) for all s,t >0,
(ii) Sy(t)~t=S_(¢) for all t > 0.

Indeed, S (t) and S_(t) commute because

Si(t) = lim eFtAn

n—o0

A A

where e!" and e~**™ commute since A4,, and A,, do so. Hence, (i) holds true.

Consequently,
S() = S+ (OS-(1)  (t>0)

is also a Cp-semigroup and, for all x € D(A) = D(—A), we have that

S(t)r —x
t

S_(t)xr —=x n Si(t)r —=x o,

" —Az + Az = 0.

= 54(t)

So, % S(t)x = 0 for all ¢ > 0. Hence, S(t)z = x for all t > 0 and x € D(A).
By density, S(t)z = z for all # € X, which yields S (t)~! = S_(¢).
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‘Proof of (a) = (b) ‘ Define, for all t > 0,

S.(t)=G(t) and S_(t)=G(-t).

Then it can be checked that S4(t) is Co-semigroup satisfying (2.2.3). More-
over, observing that

S_(t)xr —=x _ G(—t)r —x _ _G(_t)G(t)x - :L"
t t t
it is easy to show that +A is the infinitesimal generator of Sy (t). O

‘ Proof of (b) = (c) ‘ By the Hille-Yosida theorem we conclude that A is closed,
D(A) is dense in X, and

p(A) DI, ={AeC : RA>w}
M

IR < gy o

Yk > 1, V) € I0,.

Since

M+ A= —(=AT - A, (2.2.6)
we have that —p(A) = p(—A4) D I1,,, or

p(A) D —II, ={ e C : RA< —w},

and

M

IR(X, A)F|| = [IR(=A, —A)*|| < CRA—w)F

Vk>1,VYAe -1, O

‘Pmof of (¢) = (a) ‘ Recalling (2.2.6), by the Hille-Yosida theorem it follows

that +A is the infinitesimal generator of a Cy-semigroup, Si(t), satisfying
(2.2.3). For all z € X define

Gty = Si(Hz (=0
S_(—t)x (<0

Then, it follows that (2.2.1) and (2.2.2) hold true, and A is the infinitesimal
generator of G(t). Let us check that G(t + s) = G(t)G(s) for all t > 0 and all
s < 0 such that ¢t + s > 0. We have that

Gt)G(s) = S4(1)S_(—s) = S (t+8)S4(—5)S (—s) ' =Gt +5). O

Corollary 3 Let A: D(A) C X — X be a densely defined linear operator. If
both A and —A are maximal dissipative, the A is the infinitesimal generator of
a Co-group, G(t), which satisfies ||G(t)|| =1 for all t € R.
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Proof. By the Lumer-Phillips theorem, A and —A are infinitesimal generators
of Cp-semigroups of contractions, S;(t) and S_(t) respectively. Therefore,
Theorem 9 ensures that A is the infinitesimal generator of a Cy-group, G(t).
Moreover, 1 = ||S1(t)S—(¢)]| < [|S+@)|[|S=(®)|| < 1. Hence, ||G(t)]| =1. O

Example 14 (Wave equation continued) We return to the wave equa-
tion that was studied in Example 13. We proved that operator A, defined in
(2.1.9), is maximal dissipative. We claim that —A is maximal dissipative as
well. Indeed, equation (2.1.10) implies that —A is dissipative. Moreover, the
resolvent equation for —A takes the form

uwe H*(Q)NHLNQ), ve HND)
u+v=feHi)
v+ Au=g € L*(Q),

which can be uniquely solved arguing exactly as we did for system (2.1.12).

Then, by Corollary 3, A is the infinitesimal generator of a Cp-group, G(t),
which satisfies |G(¢)|| = 1 for all t € R. So, for any f € H2(Q)N H(Q), g €
H} (), the first component u(t) (t € Ry) of

am( 1)
is the unique solution of problem (2.1.8) in the space

C*(R; L*(Q)) N CH(R; Hy(Q2)) N C(R; H*(Q) N H(R)).

2.3 The adjoint of a linear operator

In this section, we consider the special case when (X s (- )) is a Hilbert space.
We denote by jx : X* — X the Riesz isomorphism, which associates with any
¢ € X* the unique element jx(¢) € X such that

o(z) = (z,jx(¢)) Vo e X.
Let A: D(A) C X — X be a densely defined linear operator.
Remark 7 The set
D(A*) = {y €EX[3C>0:2eDA) = |(Ar,y)| < cm} (2.3.1)

is a subspace of X and, for any y € D(A*), the linear map x — (Ax,y) can
be uniquely extended to a bounded linear functional ¢, € X*.
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Definition 14 The adjoint of A is the map A* : D(A*) C X — X defined by
Ay =jx(dy)  Vye D(AY)
where D(A*) and ¢, are defined in Remark 7.

Proposition 10 Let A: D(A) C X — X be a densely defined linear operator.
Then A* : D(A*) C X — X is a closed linear operator satisfying the identity

(Az,y) = (x, A*y)  Va € D(A),Vy € D(A"). (2.3.2)

Proof. We only prove that A* is closed, leaving the remaining item for the
reader to check. Let {y,} C D(A*) and y, z € X be such that

_>
{yn Y (n — 00)
Ay, — 2

Then {A*y,} is bounded, say |A*y,| < C. So, recalling (2.3.2), we have that
[(Az, yn)| = [(z, A%yn)| < Clz| Vo € D(A)

This yields
(Az,9)| < Cla| Vo€ D(4)

which in turn implies that y € D(A*). Moreover

(Az,y) = lim (Az,y,) = (x, 2) Vo € D(A).

n—oo

Thus, (r, A*y — z) =0 for all z € D(A). Since D(A) is dense, A"y =2. O

Theorem 10 (Lumer-Phillips 2) Let A : D(A) € X — X be a densely
defined closed linear operator. If A and A* are dissipative, then A is the
infinitesimal generator of a contraction semigroup on X.

Proof. In view of Theorem 8 it suffices to show that ]0,00[C p(A). For this
purpose, since AI — A is one-to-one for any A > 0, one just has to check that

(AT — A)D(A) =X  VA>0.

Step 1: (A — A)D(A) is dense in X for every A > 0.
Let y € X be such that

(A — Az,y) =0 Vo € D(A).
The identity (Az,y) = A(z,y) yields y € D(A*) and the fact that
<£L', )‘y - A*y> = 07

38



first for all x € D(A) and then, by density, for all z € X. So, A\y — A*y = 0.
Since, being dissipative, AI — A* is also one-to-one, we conclude that y = 0.

Step 2: M — A is onto for every A > 0.
Fix any y € X. By Step 1, there exists {x,,} C D(A) such that

Ay — Az, =1y, >y as n — oo.

By (2.1.2) we deduce that, for all n,m > 1,

1
|-’En - -Tm| < X |yn - ym‘

which insures that {z,} is a Cauchy sequence in X. Therefore, there exists
x € X such that

Ty — T
(n — 00)
Axp = AXp —Yn = AT —y

Since A is closed, z € D(A) and A\x — Az = y. O

Definition 15 A densely defined linear operator A : D(A) € X — X s
called:

(a) symmetric if A C A*, that is,
D(A) C D(A*) and Ax = A"z Va € D(A).
(b) self-adjoint if A = A*.

Remark 8 Observe that a symmetric operator A is self-adjoint if and only if
D(A) C D(A*). Moreover, in view of Proposition 10, any self-adjoint operator
is closed.

Corollary 4 (Lumer-Phillips 3) Let A : D(A) € X — X be a densely
defined closed linear operator. If A is self-adjoint and dissipative, then A is
the infinitesimal generator of a contraction semigroup on X.

Example 15 In X = L?(0,1;C), consider the linear operator

{D(A) = H;(0,1;C)
Au(z) = iu/(2) z € [0,1] a.e.

Then, A is densely defined and symmetric. Indeed, for all u,v € D(A),

1
(Auv) = i /O o (2)0(@) dx (2.3.3)

1
= [zu(:ﬂ)v(:v)]zzé —i/o u(z)v'(z) de = (u, Av).
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On the other hand, A fails to be self-adjoint because, as we show next,
D(A%) 2 H'(0,1;C),
so that D(A) € D(A*). Indeed, integrating by parts as in (2.3.3), for all
v € HY(0,1;C) and u € HE(0,1;C) we have that
1 [
‘(Au,v)’ = ’ —i/ w(z)v (x) dx| < |ul2|v|2. O
0

Proposition 11 Let A: D(A) C X — X be a densely defined closed linear
operator such that p(A) NR # @. If A is symmetric, then A is self-adjoint.

Proof. We prove that D(A*) C D(A) in two steps. Fix any A € p(A) NR.

Step 1: | R(\, A) = R(\, A)*|
Since R(\, A) € L(X), in view of Exercise 23 it suffices to show that

(RN, A)z,y) = (x, R(\, A)y) Va,y € X.
Fix any z,y € X and set
u= R\ Az and v=R\A)y
so that u,v € D(A) and
A —Au=2x and v — Av=y.
Since A is symmetric, we have that

(RN, A)z,y) = (u,y) = (u, Ao — Avy = (Au — Au,v) = (z, R(\, A)y).

Step 2: | D(A*) C D(A)|
Let u € D(A*) and set © = Au — A*u. Observe that, for all v € D(A),

(x,v) = (Au — A%u,v) = (u, \v — Av).
Now, take any y € X and let v = R(A, A)y. Then the above identity yields
(, R\, A)y) = (u,y) Yy eX.

So, by Step 1 we conclude that u = R(\, A)*z = R(\, A)x € D(A). O

Example 16 Let Q C R" be a bounded domain with boundary of class C?.
Define

{D(A) = H?>N H(9;C) (2.3.4)

Au(z) = Au(z) = V(z)u(z) =€ Qa.e.
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where we assume V € L>(€). Let us check that A is self-adjoint in L?(£2; C).
Indeed, integration by parts insures that A is symmetric. So, by Proposi-
tion 11, it suffices to check that p(A) NR # @&. We claim that, for A € R large
enough, for any h € L?(2; C) the problem

(2.3.5)

w e H?>N H(;C)
A+V)w—Aw=h ze

has a unique solution. Equivalently, by setting f = Rh, g = Sh € L*(Q)
and v = Rw, v = Sw, we have to prove solvability for the boundary value
problems

u € H?> N HE(Q) ve H2NHHQ)
n
A+ Vu—Au=f z€Q A+Vv—Av=g z€l.

The latter is a well-established fact in elliptic theory.

The following property of self-adjoint operators is very useful. We recall
that an operator U € £(X) is unitary if UU* = U*U = I.

Theorem 11 (Stone) Let X be a complex Hilbert space. For any densely
defined linear operator A : D(A) C X — X the following properties are
equivalent:

(a) A is self-adjoint,

(b) iA is the infinitesimal generator of a Co-group of unitary operators.

‘ Proof of (a) = (b) ‘ Since A is self-adjoint, A is closed and we have that

(Az,x) = (x, A*z) = (z, Az) = (Ax, x) Va € D(A).
Thus, (Az,x) is real so that
R(iAz,z) =0 Vx € D(A).
The above identity implies that +iA is dissipative. Since
(1Az,y) = i(z, Ay) = (x, —iAy) Vz,y € D(A),
we have that (iA)* = —iA. So, by Theorem 10 we deduce that +iA is the in-

finitesimal generator of a Cp-semigroup of contractions. Then, by Theorem 9,
iA generates a Cy group G(t). Such a group is unitary because

L= [lGOG=D) = IGOE@)" < 1. m
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‘Proof of (b) = (a)‘ Let A be the infinitesimal generator of a Cy-group of
unitary operators on X, say G(t). Then, for all z € D(A), we have that

Ap = g C®T—z . G-z . Gl z-z
t—0 t t—0 t t—0 t
O GW IV
= _%g% (T)$——(2A)$—2A$.

Thus, x € D(A*) and Az = A*z. By running the above computation back-
wards, we conclude that D(A*) C D(A). Therefore, A is self-adjoint. O

Example 17 (Schrédinger equation in a bounded domain) Let us con-
sider the initial-boundary value problem

Lou(t,2) = Au(t,z) — V(z)u(t,z) (t,z) ERxQ
u(t, r) = teR, z €00 (2.3.6)
u(0,z) = uo(x) reN

where 2 C R™ is a bounded domain with boundary of class C? and V € L*°(Q).
In Example 16, we have already checked that the operator A, defined in (2.3.4),
is self-adjoint on L?(Q;C). Therefore, by Theorem 11 we conclude that, for
any ug € H? N H}(2; C), problem (2.3.6) has a unique solution

u e CHR; L*(Q;C)) NC(R; H* N Hy(2;C)). O
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2.4 Additional exercises for Chapter 2

Exercise 23 Prove that, if A € £(X), then A* is also bounded.

Exercise 24 We recall that the duality set of a point x € X is defined as
®(z)={pe X" : (x,0) = [z]” = [|¢]]*}. (2.4.1)

Observe that the Hahn-Banach theorem ensures ®(x) # @.
We also recall that, for all z € X,

Ozl ={pe X* : |[x+h|—|z| > (h,¢), Vz,h € X}. (2.4.2)
Prove that
(z) =xdlz| ={v € X* : ¢ =|z|p, ¢ € I|x|}.

Exercise 25 Prove that, for any operator A : D(A) C X — X the following
properties are equivalent:

(a) A is dissipative,
(b) for all x € D(A) there exists ¢ € ®(x) such that R (Ax, ¢) < 0.

Exercise 26 Let A : D(A) C X — X be the infinitesimal generator of a
Co-semigroup of contractions. Prove that, for all z € D(A),

R (Azx,¢) <0 Vo € O(x).

Exercise 27 Mimic the proof of Theorem 7 in the case of a Hilbert space to
treat the general case of a reflexive Banach space.
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3 The inhomogeneous Cauchy problem

In this chapter, we assume that (X (e >) is a separable Hilbert space and
denote by {e;};en a complete orthonormal system in X.
We study the Cauchy problem

{u’(t) = Au(t) + f(1) (3.0.1)

where f € L?(0,7;X) and A : D(A) C X — X is the infinitesimal generator
of a Cyp-semigroup on X, S(t), which satisfies the growth condition (1.8.3). For
the extension of this theory to a general Banach space, we refer the reader to
the classic monograph by Pazy [3] or the more recent text [2].

3.1 Notions of solution

Definition 16 Let x € X and f € L*>(0,T; X).

(I) We say that u € H'(0,T;X) N L*(0,T; D(A)) is a strict solution of
(3.0.1) if u(0) = = and

u'(t) = Au(t) + f(t) (t €10,T] a.e.)

(II) We say that u € C([O,T];X) is a strong solution of (3.0.1) if there
exists a sequence u, € H*(0,T; X) N L?(0,T; D(A)) such that

Up = U in C([0,T]; X)
ul, — Au, — f in L2(0,T;X)  (n— o0) (3.1.1)
un(0) = x in X

3.2 Well posedness in L?(0,T; H)

Theorem 12 (Existence and uniqueness of strong solutions) For any
x € X and f € L?(0,T; X) there exists a unique strong solution u of (3.0.1),
which is given by the variation-of-constants formula

u(t) = S(t)z + /D S(t = s)f(s) ds (3.2.1)

Moreover, u, := nR(n, A)u satisfies

(

un € HY(0,T; X) N L2(0,T; D(A)) and u, "= u in C([0,T]; X).
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Observe that u in (3.2.1) is well defined in view of Proposition 17.
Proof. Step 1: existence. Let u be given by (3.2.1) and define

fn(t) =nR(n, A)f(t) VneN, n>w

where w > 0 is such that (1.8.3) holds true. Then

U () t)zn + / S(t—s)fu(s)ds (t€]0,T7). (3.2.2)

Since x, € D(A) and f, € L%*(0,T;D(A)), by propositions 16 and 17 we
conclude that

Au, = fr

/ J—

un € HY0,T; X) N L2(0,T: D(A)) and { '™
Un(0) = xp.
Moreover, invoking Lemma 1 we conclude that x, — = as n — oo while

(n—00)

ful) " f(0) and )] <

0] (ae. tel0,T])

Therefore, f, (njf) fin L?(0,T; X).
Finally,we have that

n—>oo)

sup_un(t) — u(t)] < Me™ (Jzn — x| + /OT\fn(S)— f(s)lds) "= 0.

te€[0,7)

So, u is a strong solution of (3.0.1).

Step 1: uniqueness.
Let v be a strong solution of (3.0.1) and let {v,} be a sequence satisfying
(3.1.1). Setting f,, = v}, — Av,, for any fixed ¢ €]0,T] we have that

d

I (S(t = s)vn(s)) = S(t— s)fu(s) (a.e. s € [0,]).

By integrating over [0, t] we deduce that v, satisfies (3.2.2). Then, passing to
the limit as n — oo we conclude that v is given by (3.2.1). O

The following result provides a useful approximation of strong solutions.
Proposition 12 Let {z,} C X and {f,} C L?(0,T; X) be such that

(OT X)

Ty 52 and In f (n— o0).
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Let u,, satisfy

{u;@)zzAﬂun@)+-ﬁxﬂ, te(0,T) (3.2.3)

un(0) = x,

where A, = n?R(n, A) —n (n > w) is the Yosida approzimation of A. Then
{un}n is bounded in C([0,T]; X) and

(n—00)

un(t) " — " u(t) Vte|[0,T],
where u is the strong solution of (3.0.1).

Proof. Since A, € L(X) we have that

t
%@ZJM%+/é”m%mMs@epﬂ)
0
Thus, recalling (1.8.8) and (1.8.12), we obtain
letAng, — S(t)x| < Me*!x, — x| + [e4ra — S(t)x] =30

uniformly on [0,7]. Moreover,

[ (gt = 86— 915050
M/ -9 £ () — £(5)|ds

OT]X) 0

/|et 5) "f S(t—s)f(s)|ds.

By Lebesgue’s dominated convergence theorem, for any ¢ € [0, 7] we have that

lim/|et DAn f(s) — S(t — s)f(s)|ds = 0.

n—oo

The conclusion follows. O

3.3 Regularity

Our first result guarantees that the strong solution of (3.0.1) is strict when f
has better “space regularity”.

Theorem 13 Let + € D(A) and let f € L*(0,T; D(A)). Then the strong
solution u of problem (3.0.1) is strict.
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Proof. Let u be the strong solution of problem (3.0.1) and let u, be the
solution of (3.2.3) with f, = f. Then

v (t) := Apun(t)  (t €10,T])

satisfies
U%(t) = Anvn(t) + Anf(t)’ te (OvT)
vn(0) = Apx

where

(

n—oo

Apx "2%) Az and Anf(—>)Af in L2(0,T; X).

So, Proposition 12 ensures that v, is bounded in C([O, T); X ) and converges
point-wise to the strong solution of

V'(t) = Av(t) + Af(t), te€(0,T)
v(0) = Az

which is given by
o(t) = S(1) Az + /0 S(t— $)Af(s)ds = Au(t) (¢ € [0,T] ae.)

Moreover, owing to Proposition 16 we have that v = Awu. This shows that
u € C([0,T]; D(A)). Furthermore,

2 ..
u;:Anun—i-f:vn—i—fL(%’X)Au—&—f (n — o0)

because v, is bounded in C([O,T l; X ) and converges point-wise. Therefore,
u € HY0,T; X) and u/(t) = Au(t) + f(t) for a.e. t € [0, T]. O

We will now show a similar result if f has better “time regularity”. In this
case, one can prove that strong solutions are classical in the following sense.
Let 2 € D(A) and let f € C([0,T]; X).

Definition 17 We say that u € C*([0,T]; X) N C([0, T]; D(A)) is a classical
solution of (3.0.1) if u(0) =z and

u'(t) = Au(t) + f(t) vt € [0,T).

Theorem 14 Let x € D(A) and let f € H'(0,T; X). Then the strong solu-
tion w of problem (3.0.1) is classical.

We begin by studying the case of z = 0.
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Lemma 2 For any f € H'(0,T; X) define

FA(t):/ S(t—s)f(s)ds (te[0,T]). (3.3.1)

Then Fy € C'([0,T]; X) NC([0,T); D(A)) and

Fl(t) = AFA(t) + f(£) = S /St—s (s)ds (e [0,T)).

Proof. Since F4 can be rewritten as

/S f(t—s)ds (te€][0,TY),

by differentiating the integral we conclude that
¢
Fl(t) = S(#)£(0) + / S(t—s)f'(s)ds  Vte[0,T].
0

In view of Proposition 17, this implies that F4 € C! ([0, TY; X).
Moreover, returning to (3.3.1), for all ¢ € [0,7] we also have that

Pt = 1}3101;L{/Ot+h5(t+h—s)f(s)ds—/OtS(t—s)f(s)ds}

_ hm /s ds+}1l/t+h5(t+h—s)f(s)ds}.
t

Since
t+h

l}g{)lﬁ t S(t+h—s)f(s)ds = f(t),
the above identity implies that F4(t) € D(A) and
Falt) = o)) — f(t) Ve [0,T)

Consequently, F's € C([O7 TY; D(A)) and the proof is complete. O
Proof of Theorem 14. Let u be the strong solution of problem (3.0.1). Then
u(t) = S(t)x + Fa(t) vVt € (0,77,
where F4 is defined in (3.3.1). The conclusion follows from Theorem 3 and

Lemma 2. O

Example 18 In general, the strong solution of (3.0.1) fails to be classical, or
even strict, assuming just f € C([0,7]; X). Indeed, let y € X \ D(A) and take
f(t) = S(t)y. Then the strong solution of (3.0.1) with = = 0 is given by

u(t) = tS(t)y Vt>0
which fails to be differentiable for ¢ > 0.
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3.4 Maximal regularity for dissipative operators

For special classes of generators the strong solution of (3.0.1) enjoys additional
regularity properties, as we show in this section.

Theorem 15 Let A: D(A) C X — X be a densely defined self-adjoint dissi-
pative operator and let f € L?(0,T;X). Define

t
Fu(t) = / S(t—s)f(s)ds (te€]0,T7).
Then F4 is the strict solution of the Cauchy problem

{u’(t) = Au(t) + f(t) (3.4.1)
u(0) = 0.

Moreover, t — (AFA(t), Fa(t)) is absolutely continuous on [0,T],
T AR, FA0) = MA@, APAD)  (ac 1€ 0.T)), (342

and
[AFAll2 < [[f|2- (3.4.3)

Lemma 3 Let A: D(A) C X — X be a densely defined self-adjoint dissipa-
tive operator and let v € HY(0,T; X) N L?(0,T; D(A)) be such that v(0) = 0.
Then t — (Av(t),v(t)) is absolutely continuous on [0,T] and

%(Av(t),v(t» —oR (1), Av(t))  (ace. t€ [0,T]). (3.4.4)

Proof. Define vy, (t) = (Ayv(t),v(t)) (t € [0,T]), where A,, = nAR(n, A) is the
Yosida approximation of A. Then v, is absolutely continuous on [0, 7] and

— (Apo(t),v(t)) = 2R (V'(t), Apo(t)) (a.e. t €[0,77)

or
t

(Apv(t),v(t)) = 2R ; (V'(s), Ayv(s))ds vt € [0, 7). (3.4.5)

Now, since for a.e. t € [0, 7]

Aww(t) = nR(n, A)Av(t) "2 Av(t)
[Anu(t)] < [Av(D)],

we can pass to the limit as n — oo in (3.4.5) to obtain
t
(Av(t), (1)) = 2R / W (s), Av(s))ds Vi€ [0,T].
0
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So, t — (Aw(t),v(t)) is absolutely continuous on [0, 7] and satisfies (3.4.4). O

Proof of Theorem 15. Define
fat) =nR(n, A)f(t) and F,(t) =nR(n,A)Fa(t) Vit € [0,T]

and observe that
FAt) = [ St=9)p(o)ds (te0.1)

Owing to Theorem 13, we have that F,, € H'(0,T; X)NL?(0,T; D(A)) satisfies
F,(0) =0 and

Fy(t) = AF,(t) + fo(t)  (ae. t €[0,T7). (3.4.6)

Moreover, by (3.4.2) we have that
t
2/ R(F) (s), AF,(s))ds = (AF,(t), F,(t)) <0  Vte[0,T]
0

because A is dissipative. Therefore, by multiplying each member of (3.4.6) by
2AF,(t), taking real parts, and integrating over [0,7"] we obtain

T T
2
2/0 AR, ()2dt < —2/0 R (fu(t), AF, (£))dt

T
2 A 2 .
< [ (1508 + 14RO i
Hence T T -
AF,(t)]2dt < L (H)Pdt < 2dt.
A!F@Mt<ALﬂﬂt<Almﬂt

Thus, {F,}, is bounded in H'(0,T; X)NL%(0,T; D(A)). Therefore, there ex-
ists a subsequence {F), }; and a function F,, such that

(n—=00)
k

F, Fy in HY0,T;X)NL*0,T; D(A)).

Recalling that F),, (njf) F in C([O, T];X) by Theorem 12, we conclude that
F e HY0,T; X) N L?0,T; D(A)).

Now, fix any g € L%(0,T; X). Then, taking the product of each member
of (3.4.6) with g we have that

T T
[ g a = [ ano + p0.00)a
0 0

So, in the limit as n — oo,

/T<F’(t) —AF(t) — f(t),g(t))dt =0 Vg € L*(0,T; X)
0
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which in turn yields F'(t) = AF(t) + f(t) for a.e. t € [0,T]. O

Since the strong solution of (3.0.1) is given by (3.2.1), by Theorem 15 we
obtain the following.

Corollary 5 Let A: D(A) C X — X be a densely defined self-adjoint dissi-
pative operator and let x € D(A). Then, for any f € L*(0,T;X) the strong
solution of (3.0.1) is strict.

Remark 9 The above result ca be refined by introducing an intermediate
subspace between X and D(A), namely the interpolation space [X, D(A)]; /2,
which is such that ¢ — S(t)z belongs to H'(0,T; X) N L?(0,T; D(A)) for any
r € [X, D(A)]1/2- The reader is referred to [1] for such an extension.
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4 Appendix A: Riemann integral on C([a,b]; X)

We recall the construction of the Riemann integral for a continuous function
f:]a,b] = X, where X is a Banach space and —0o < a < b < 0.
Let us consider the family of partitions of [a, b]

H(a,b):{ﬂz{ti}?zo : n}l,a:t0<t1<---<tn:b}
and define

diam(m) = max (t; — t;—1) (m € I(a,b)).

1<i<n

For any 7 € II(a,b), ™ = {t;}}'_,, we set
Y(m) = {o: (S1,---,8n) @ 8 € [tic1,t), 1 <i < n:b}.

Finally, for any © € II(a,b), 7 = {t;}]-, and 0 € X(7),0 = (s1,...,5n), We
define

ST(F) =Y f(si)(ts — tia).
i=1
Theorem 16 The limit

b
lim  S7(f) ::/f(t)dt

diam(m)0
exists uniformly for o € ().

Lemma 4 For any ¢ > 0 there exists 6 > 0 such that for all 7,7 € Il(a,b)
with m C 7" we have that

diam(m) <6 = ‘Sfr(f) —S;:/(f)‘ <e
for all o € () and o’ € X(x').

Proof. Since f is uniformly continuous, for any € > 0 there exists § > 0 such
that for all ¢, s € [a, b]

€
b—a’

t—s|<d = |f(t)— f(s)| < (4.0.1)

Let
m={ti}l"y, o=(51,...,5n)
' ={t}", o' =(s],...,5)

be such that 7 C 7’ and diam(7) < 0. Then there exist positive integers
O=jo<pn<:-<jn=m
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such that t;i =t; for all = 0,...,n. For any such 1%, it holds that

Ji
bi—tis = t;i o t;i—l = Z (t; o tg—i)'

Jj=Jji—1+1
Then
ST(f) = Sg(f) = D flsa)tr —tim) = > F($HE — t5-1)
i=1 j=1
n Ji
= > D (flsi) = ()t = ty)

i=1 j=ji_1+1

Since for all ¢ = 1,...,n we have that

siy 85 € [tic,ti] Vi1 +1< 7 <Jji,
from (4.0.1) it follows that
n Ji

1S7(f) = Sg (N < D D flsa) = Fs)](E; = t51)

i=1 j=ji_1+1

The proof is complete. U

Proof of Theorem 16. For any given € > 0 let § be as in Lemma 4. Let
m,m" € I(a,b) be such that diam(r) < ¢ and diam(n’) < 6. Finally, let
o € X(n) and ¢’ € X(n’). Define 7" = 7 U7’ and fix any ¢” € X(n”). Then

1S2(f) = SZ ()] < |ST(f) = ST (f)| + |59 (f) — S (f)] < 2.

This completes the proof since ¢ is arbitrary. U
Proposition 13 For any f,g € C([a,b]; X) and X € C we have that
b b b
/ (f() + g(t))dt = / f@t)dt + / g(t)dt
b b
/ Af(1)dt = )\/ oL

[0l < [
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Moreover, for any A € L(X) we have that

A(/abf(t)dt) - /:Af(t)dt.

Furthermore, if A : D(A) C X — X is a closed operator and f € C([a,b]; D(A)),

then
A(/abf(t)dt> - /abAf(t)dt.
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5 Appendix B: Lebesgue integral on L?*(a,b; H)

Let (H, (-, >) be a separable Hilbert space and let {e;};jeny be a complete
orthonormal system in H.

5.1 The Hilbert space L*(a,b; H)

Definition 18 A function f : [a,b] — H is said to be Borel (resp. Lebesgue)
measurable if so is the scalar function t — (f(t),x) for every x € H.

Remark 10 Let f : [a,b] — H.

1. Since, for any x € H,

<f(t),1‘> :Z<f(t),€j> <w7€j> (tE [a7b])7

o0
j=1

we conclude that f is Borel (resp. Lebesgue) measurable if and only if
so is the scalar function t — (f(t),e;) for every j € N.

2. Since

FOP =3 [(f@),e)]? (t€a,b)),
j=1

we have that, if f is Borel (resp. Lebesgue) measurable, then so is the
scalar function t — || f(¢)]].

Definition 19 We denote by L?(a,b; H) the space of all Lebesgue measurable
functions f : [a,b] — H such that

b 1
I91ei= ([ Ir0Par)* < oc.
where two functions f and g are identified if f(t) = g(t) for a.e. t € [a,b].

Proposition 14 L2(a,b; H) is a Hilbert space with the hermitian product

b
(o= [ (7®9)dt  (f.g€ L2(abi ).
Proof. We only prove completeness. O

Remark 11 For any f € L?(a,b; H) we have that

o0 b A 2 . 00 b . , N
;’/ <f(t),e]>dt] < (b );/ [(f(t), e5) "t <
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Therefore
o b
Soe; [(0.edre

Jj=1

Definition 20 For any f € L?(a,b; H) we define

b o b
| twde="e; [t
a =1

a

Proposition 15 For any f € L?(a,b; H) the following properties hold true.

(a) For any v € H we have that
b b
(o [ sttt} = [ (o s(opa

() [ ] < [

(¢) For any A € L(H) we have that

A(/abf(t)dt> :/abAf(t)dt.

Proposition 16 Let A: D(A) C H — H be a closed linear operator. Then
for any f € L*(a,b; D(A)) we have that

/bf(t)dteD(A) and A(/bf(t)dt):/bAf(t)dt.

a

Proposition 17 Let A: D(A) C H — H be the infinitesimal generator of a
Co-semigroup on H, S(t), which satisfies the growth condition (1.8.3). Then,
for any f € L*(a,b; H),

(a) for anyt € [a,b] the function s — S(t — s)f(s) belongs to L*(a,t; H), and

(b) the function

Fa)= [ St-9))ds (e lab)
belongs to C([a,b]; H).
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Proof. In order to check measurability for s — S(t — s)f(s) it suffices to
observe that, for all x € H and a.e. s € [0, 1],

(S(t = s)f(s),2) = (f(s),S(t = s)"x) = Z<f(8)’ ej) (S(t —s)*z, ej).

Jj=1

Since s — (S(t — s)*x,e;) is continuous and s — (f(s), e;) is measurable for
all j € N, the measurability of s — S(t — s) f(s) follows. Moreover, by (1.8.3)
we have that

S(t - $)f(s)] < M“D|f(s) (s € [a,1] a),

which completes the proof of (a).
In order to prove point (b), fix t €]a,b[ and let ¢, — t. Fix ¢ €]0,¢ — af
and let ng € N be such that ¢, >t — § for all n > ng. Then we have that

|FA(tn) - FA(t)‘

t—o
< / |[S(tn — 5)£(5) — S(t — 5)] f(s)| ds

+/H }S(tn—S)f(S)\der/ ) |S(t — 5)f(s)| ds.

To complete the proof it suffices to observe that

t—6
lim |[S(tn — ) f(s) = S(t —s)] f(s)|ds =0

n—0o0 a

by the dominated convergence theorem, while the remaining terms on the
right-hand side of the above inequality are small with ¢. O

5.2 The Sobolev space H'(a,b; H)

Definition 21 We define H'(a,b; H) to be the subspace of L*(a,b; H) which
consists of all (equivalence classes of ) functions u € L*(a,b; H) such that

u(t) — ua) = / f(s)ds  teal ae. (5.2.1)
for some f € L*(a,b; H).

Remark 12 The proof of the following facts is left to the reader.

1. The function f in (5.2.1) is uniquely determined up to sets of measure
zero. We call such a function the weak derivative of u and set u' = f.

o7



2. H'(a,b; H) is a Hilbert space with the scalar product
b
(ulo)s = [ [®).0(6) + (W00 @O)] dt (w, € Ha,bH).

3. All the elements of H'(a,b; H) have an absolutely continuous represen-
tative.
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