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1 Generation of C0-semigroups

1.1 C0-semigroups

Exponential of a bounded operator

Let (X, |·|) be a real or complex Banach space and denote by L(X) the Banach
algebra of all bounded linear operators Λ : X → X equipped with the norm

‖Λ‖ = sup
|x|61

|Λx|.

Let T > 0. For any A ∈ L(X) the Cauchy problem{
y′(t) = Ay(t) (t ∈ [0, T ])
y(0) = x ∈ X

(1.1.1)

can easily be solved by a well-known iteration method. Let us set

y0(t) = x , yn+1(t) = x+
∫ t

0
Ayn(s)ds (t ∈ [0, T ]),

where the above integral is understood in the Riemann sense. Then the solu-
tion of (1.1.1) is given by

y(t) = lim
n→∞

yn(t) = etAx =
∞∑
n=0

tn

n!
Anx,

where the series converges uniformly in L(X).
Motivated by applications to partial differential equations and other kinds

of functional equations, we will extend the theory to problems associated with
an unbounded linear operator A : D(A) ⊂ X → X.

C0-semigroups

Definition 1 A C0-semigroup of bounded linear operators on X is map S :
[0,∞)→ L(X) with the following properties:

(a) S(0) = I and S(t+ s) = S(t)S(s) for all t, s > 0, and

(b) for every x ∈ X the map t 7→ S(t)x is continuous from [0,∞) to X.

Equivalent notations for the semigroup S are S(·), {S(t)}t>0, and even the
simpler form S(t).
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Example 1 For any A ∈ L(X) the exponential S(t) = etA is a C0-semigroup
of bounded linear operators on X. Moreover,

(b′) the map S : [0,∞)→ L(X) is continuous.

Notice that (b′) is stronger than (b). Moreover, it is known (see, for instance,
[4, Theorem I.3.7]) that if S(·) satisfies (a) and (b′), then there exists A ∈ L(X)
such that S(t) = etA.

Example 2 For a fixed p > 1 let X = Lp(R) and define, ∀f ∈ X,(
S(t)f

)
(x) = f(x+ t) ∀x ∈ R , ∀t > 0. (1.1.2)

Then S is C0-semigroup which fails to satisfy (b′). Indeed, suppose S has
property (b′) and let τ > 0 be such that ‖S(t) − I‖ < 1/2 for all t ∈ [0, τ ].
Then by taking fn(x) = n1/pχ[0,1/n](x) for p < ∞ and n > 1/τ we have that
|fn| = 1 and

|S(τ)fn − fn| =
(∫

R
n|χ[0,1/n](x+ τ)− χ[0,1/n](x)|pdx

) 1
p = 21/p.

Observe that (1.1.2) makes sense for t < 0 as well. In this case we say that
S is a C0 group of bounded linear operators on X. On the other hand, if one
takes X = Lp(R+), then (1.1.2) makes sense only for t > 0.

1.2 The infinitesimal generator of a C0-semigroup

Let S be a C0-semigroup of bounded linear operators on X. We are interested
in studying the limit

lim
h↓0

S(h)x− x
h

(1.2.1)

as a function of x ∈ X.

Exercise 1 Show that if A ∈ L(X) then

lim
h↓0

ehAx− x
h

= Ax ∀x ∈ X.

Definition 2 The linear operator A : D(A) ⊂ X → X defined byD(A) =
{
x ∈ X : ∃ limh↓0

S(h)x−x
h

}
Ax = limh↓0

S(h)x−x
h ∀x ∈ D(A)

(1.2.2)

is called the infinitesimal generator of S.

Exercise 2 Check that (1.2.2) defines a linear operator.



4 CHAPTER 1. GENERATION OF C0-SEMIGROUPS

Proposition 1 D(A) is dense in X.

Proof. For any x ∈ X define

Mt,hx =
1
h

∫ t+h

t
S(s)x ds (t > 0 , h > 0). (1.2.3)

Then, by continuity, limh↓0Mt,hx = S(t)x. Moreover, for any t, h > 0,

S(h)− I
h

M0,tx =
1
ht

∫ t

0
(S(h+ s)− S(s))x ds

=
1
ht

{∫ t+h

h
S(s)x ds−

∫ t

0
S(s)x ds

}
=

1
ht

{∫ t+h

t
S(s)x ds−

∫ h

0
S(s)x ds

}
=

1
t

{
Mt,hx−M0,hx

}
.

Therefore

lim
h↓0

S(h)− I
h

M0,tx =
S(t)x− x

t
∀x ∈ X.

This yields M0,tx ∈ D(A). Since limt→0M0,tx = x, D(A) is dense in X. �

Lemma 1 For all x ∈ D(A) we have that S(t)x ∈ D(A) for every t > 0 and

AS(t)x = S(t)Ax. (1.2.4)

Proof. For all h > 0 we have that

S(h)− I
h

S(t)x = S(t)
S(h)− I

h
x→ S(t)Ax as h ↓ 0.

Therefore S(t)x ∈ D(A) and (1.2.4) holds true. �

Remark 1 Fix any T > 0 and observe that for all x ∈ X there exists a
constant NT,x > 0 such that |S(t)x| 6 NT,x for all t ∈ [0, T ]. Then the
Uniform Boundedness Principle ensures that, for some constant NT > 0,

‖S(t)‖ 6 NT ∀t ∈ [0, T ]. (1.2.5)

The following theorem provides a solution to problem (1.1.1) for x ∈ D(A).

Theorem 1 For all x ∈ D(A) we have that t 7→ S(t)x is differentiable for
every t > 0 and

d

dt
S(t)x = AS(t)x = S(t)Ax.
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Proof. Fix any t > 0. Then Lemma 1 ensures that

S(t+ h)x− S(t)x
h

=
S(h)− I

h
S(t)x→ AS(t)x as h ↓ 0.

Hence, S(t)x has the right derivative at t.
In order to complete the proof, let t > 0. Then for all 0 < h < t we have

that
S(t− h)x− S(t)x

−h
= S(t− h)

S(h)− I
h

x.

On the other hand, by (1.2.5),∣∣∣S(t− h)
S(h)− I

h
x− S(t)Ax

∣∣∣
6
∣∣∣S(t− h)

∣∣∣ · ∣∣∣S(h)− I
h

x− S(h)Ax
∣∣∣

6 Nt

∣∣∣S(h)− I
h

x− S(h)Ax
∣∣∣ −→ 0 as h ↓ 0.

Therefore
S(t− h)x− S(t)x

−h
−→ S(t)Ax = AS(t)x as h ↓ 0,

showing that the left and right derivatives coincide. �

Definition 3 An operator A : D(A) ⊂ X → X is said to be closed if its graph

Graph(A) =
{

(x, y) : x ∈ D(A) , y = Ax
}

is a closed subset of the product space X ×X.

Exercise 3 Prove that A : D(A) ⊂ X → X is closed if and only if for any
sequence {xn} ⊂ D(A){

xn → x

Axn → y
=⇒ x ∈ D(A) and Ax = y. (1.2.6)

Proposition 2 The infinitesimal generator of a C0-semigroup is a closed op-
erator.

Proof. Let A be the infinitesimal generator of S and let {xn} ⊂ D(A) be as
in (1.2.6). By Theorem 1 we have that, for all t > 0

S(t)xn − xn =
∫ t

0
S(s)Axndx.

Hence, taking the limit as n→∞ and dividing by t, we obtain

S(t)x− x
t

=
1
t

∫ t

0
S(s)ydx.

Passing to the limit as t ↓ 0, we conclude that Ax = y. �
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Example 3 Let us identify the generator A : D(A) ⊂ X → X of the left-
translation semigroup S on X = Lp(R) introduced in Example 2. We denote
by |f |p the norm of f in Lp(R) and by W 1,p(R) the Banach space of all locally
absolutely continuous functions f : R→ R such that

|f |1,p := |f |p + |f ′|p <∞. (1.2.7)

We will show that A equals the unbounded operator B : D(B) ⊂ X → X
defined by {

D(B) = W 1,p(R)
Bf(x) = f ′(x) (x ∈ R a.e.) ∀f ∈ D(B).

(1.2.8)

First, we claim that A is an extension of B (in formulas, B ⊂ A), that is

D(B) ⊂ D(A) & Af = Bf ∀f ∈ D(B).

Indeed, by Hölder’s inequality, we have that, for all f ∈W 1,p(R) and all t > 0,∫ +∞

−∞

∣∣∣f(x+ t)− f(x)
t

− f ′(x)
∣∣∣pdx

=
∫ +∞

−∞

1
t

∣∣∣ ∫ t

0

(
f ′(x+ s)− f ′(x)

)
ds
∣∣∣pdx

6
1
t

∫ +∞

−∞
dx

∫ t

0

∣∣f ′(x+ s)− f ′(x)
∣∣pds

=
1
t

∫ t

0
ds

∫ +∞

−∞

∣∣f ′(x+ s)− f ′(x)
∣∣pdx.

Now, owing to the translation continuity of the integral the last integral can
be made arbitrarily small by taking t > 0 small enough. So, B ⊂ A.

In order to conclude that A = B it suffices to prove that D(A) ⊂ D(B).
For this purpose, for any fixed f ∈ D(A) and any ε > 0 let fε = f ∗ ρε, where
{ρε}ε>0 is a C∞ approximate unity with support in [−ε, ε]. Then fε ∈ D(B)
and fε → f as ε→ 0. Since B is a closed operator, if we show that Bfε → Af
then f ∈ D(B) and A = B. To check that Bfε → Af observe that∫ +∞

−∞

∣∣f ′ε(x)−Af(x)
∣∣pdx

6 lim inf
t↓0

∫ +∞

−∞

∣∣∣fε(x+ t)− fε(x)
t

−Af(x)
∣∣∣pdx

= lim inf
t↓0

∫ +∞

−∞

∣∣∣ ∫ ε

−ε

[f(x− y + t)− f(x− y)
t

−Af(x)
]
ρε(y) dy

∣∣∣pdx
6 lim inf

t↓0

∫ +∞

−∞

∫ ε

−ε

∣∣∣f(x− y + t)− f(x− y)
t

−Af(x)
∣∣∣pρε(y) dy dx
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Now, since∫ +∞

−∞

∫ ε

−ε

∣∣∣f(x− y + t)− f(x− y)
t

−Af(x)
∣∣∣pρε(y) dy dx

6 2p−1
{∫ ε

−ε
ρε(y) dy

∫ +∞

−∞

∣∣∣f(x− y + t)− f(x− y)
t

−Af(x− y)
∣∣∣p dx

+
∫ ε

−ε
ρε(y) dy

∫ +∞

−∞

∣∣Af(x− y)−Af(x)
∣∣p dx},

the conclusion follows recalling the translation continuity of the integral and
the fact that ∫ +∞

−∞

∣∣∣f(x+ t)− f(x)
t

−Af(x)
∣∣∣p dx (t→ 0).

Exercise 4 Show that W 1,p(R) is a Banach space with the above norm and
that operator B : D(B) ⊂ X → X defined in (1.2.8) is closed.

1.3 Asymptotic properties of C0-semigroups

Let S be a C0-semigroup of bounded linear operators on X.

Definition 4 The number

ω0(S) = inf
t>0

log ‖S(t)‖
t

(1.3.1)

is called the type or growth bound of S.

Proposition 3 The growth bound of S satisfies

ω0(S) = lim
t→∞

log ‖S(t)‖
t

< +∞. (1.3.2)

Moreover, for any ε > 0 there exists Mε > 1 such that

‖S(t)‖ 6Mεe
(ω0(S)+ε)t ∀t > 0. (1.3.3)

Proof. The fact that ω0(S) < +∞ is a direct consequence of (1.3.1). In order
to prove (1.3.2) it suffices to show that

lim sup
t→∞

log ‖S(t)‖
t

6 ω0(S). (1.3.4)

For any ε > 0 let tε > 0 be such that

log ‖S(tε)‖
tε

< ω0(S) + ε. (1.3.5)
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Let us write any t > tε as t = n(t)tε + r(t) with n(t) ∈ N and r(t) ∈ [0, tε).
Then, by (1.2.5) and (1.3.5),

‖S(t)‖ 6 ‖S(tε)‖n(t)‖S(r(t))‖ 6 etεn(t)(ω0(S)+ε)Ntε 6 Ntεe
(ω0(S)+ε)t

which proves (1.3.3). Moreover, taking the logarithm of both sides of the
above inequality we get

log ‖S(t)‖
t

6 ω0(S) + ε+
Ntε

t

and (1.3.4) follows as t→∞. �

Example 4 It it immediate to realize that the left-translation semigroup of
Example 2 satisfies ‖S(t)‖ = 1 for all t > 0. So, ω0(S) = 0.

1.4 Spectral properties of generators

Resolvent set and spectrum

Let A : D(A) ⊂ X → X be a closed operator on a complex Banach space X.

Definition 5 The resolvent set of A, ρ(A), is the set of all λ ∈ C such that
λI −A : D(A)→ X is bijective and its complement σ(A) = C \ ρ(A) is called
the spectrum of A. For any λ ∈ ρ(A) the inverse R(λ,A) = (λI − A)−1 is
called the resolvent of A at λ.

Remark 2 Observe that, by the closed graph theorem, R(λ,A) is a bounded
linear operator on X. Also, the identity

AR(λ,A) = λR(λ,A)− I ∀λ ∈ ρ(A) (1.4.1)

is easy to check. Moreover, the following resolvent identity holds:

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A) ∀λ, µ ∈ ρ(A). (1.4.2)

Indeed, by (1.4.1) we have that

[λR(λ,A)−AR(λ,A)]R(µ,A) = R(µ,A)

and
R(λ,A)[µR(µ,A)−AR(µ,A)] = R(λ,A).

Since AR(λ,A) = R(λ,A)A on D(A), (1.4.2) follows.
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Proposition 4 Let A : D(A) ⊂ X → X be a closed operator. Then ρ(A) is
open in C and for any µ ∈ ρ(A) the resolvent R(λ,A) is given by the series

R(λ,A) =
∞∑
n=0

(µ− λ)nR(µ,A)n+1 (1.4.3)

for all λ ∈ C satisfying |µ− λ| < 1/‖R(µ,A)‖. Consequently, λ 7→ R(λ,A) is
analytic on ρ(A) and for all n ∈ N

dn

dλn
R(λ,A) = (−1)n n!R(λ,A)n+1. (1.4.4)

Proof. For all λ ∈ C we have that

λI −A = µI −A+ (λ− µ)I = [I − (µ− λ)R(µ,A)](µI −A).

This operator is bijective if and only if [I− (µ−λ)R(µ,A)] is invertible, which
is the case for |µ− λ| < 1/‖R(µ,A)‖. In this case

R(λ,A) = R(µ,A)[I − (µ− λ)R(µ,A)]−1 =
∞∑
n=0

(µ− λ)nR(µ,A)n+1.

The analyticity of R(λ,A) and (1.4.4) follow from (1.4.3). �

Example 5 On X = C([0, 1]) with the uniform norm consider the closed
operator A : D(A) ⊂ X → X defined by{

D(A) = C1([0, 1])
Af = f ′, ∀f ∈ D(A).

Then σ(A) = C because for any λ ∈ C the function fλ(x) = eλx satisfies

λfλ(x)− f ′λ(x) = 0 ∀x ∈ [0, 1].

On the other hand, for the closed operator A0 defined by{
D(A0) =

{
f ∈ C1([0, 1]) : f(0) = 0

}
A0f = f ′, ∀f ∈ D(A0),

we have that σ(A0) = ∅. Indeed, for any g ∈ X the problem{
λf(x)− f ′(x) = g(x) x ∈ [0, 1]
f(0) = 0

admits the unique solution

f(x) = −
∫ x

0
eλ(x−s)g(s) dx (x ∈ [0, 1])

which belongs to D(A0).



10 CHAPTER 1. GENERATION OF C0-SEMIGROUPS

Spectral properties of the infinitesimal generator

Let M > 0 and let ω ∈ R.

Definition 6 We denote by G(M,ω) the class of all C0-semigroups of bounded
linear operators on X such that

‖S(t)‖ 6Meωt ∀t > 0. (1.4.5)

When M = 1 and ω = 0 we say that S(t) is a contraction semigroup.

Proposition 5 (Integral representation) Let A : D(A) ⊂ X → X be the
infinitesimal generator of S ∈ G(M,ω). Then ρ(A) contains the half-plane

Πω =
{
λ ∈ C : <λ > ω

}
(1.4.6)

and

R(λ,A)x =
∫ ∞

0
e−λtS(t)x dt ∀x ∈ X , ∀λ ∈ Πω. (1.4.7)

Proof. We must prove that, given any λ ∈ Πω and x ∈ X, the equation

λu−Au = x (1.4.8)

has a unique solution given by (1.4.7).

Existence: observe that u :=
∫∞

0 e−λtS(t)x dt ∈ X because <λ > ω. More-
over, for all h > 0,

S(h)u− u
h

=
1
h

{∫ ∞
0

e−λtS(t+ h)x dt−
∫ ∞

0
e−λtS(t)x dt

}
=

1
h

{
eλh
∫ ∞
h

e−λtS(t)x dt−
∫ ∞

0
e−λtS(t)x dt

}
=

eλh − 1
h

u− eλh

h

∫ h

0
e−λtS(t)x dt.

So

lim
h↓0

S(h)u− u
h

= λu− x

which in turn yields that u ∈ D(A) and (1.4.8) holds true.

Uniqueness: let u ∈ D(A) be a solution of (1.4.8). Then∫ ∞
0

e−λtS(t)(λu−Au) dt = λ

∫ ∞
0

e−λtS(t)u dt−
∫ ∞

0
e−λt

d

dt
S(t)u dt = u

which implies that u is given by (1.4.7). �
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Definition 7 For any operator A : D(A) ⊂ X → X we define the spectral
bound of A as

s(A) = sup{<λ : λ ∈ σ(A) }.

Corollary 1 Let S be a C0-semigroup on X with infinitesimal generator A.
Then

−∞ 6 s(A) 6 ω0(S) < +∞.

Proposition 6 Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be
closed linear operators in X and suppose B ⊂ A, that is, D(B) ⊂ D(A) and
Ax = Bx for all x ∈ D(B). If ρ(A) ∩ ρ(B) 6= ∅, then A = B.

Proof. Let λ ∈ ρ(A) ∩ ρ(B), let x ∈ D(A), and set

y = λx−Ax and z = R(λ,B)y.

Then z ∈ D(B) and λz − Bz = λx− Ax. Since B ⊂ A, λz − Bz = λz − Az.
Thus, (λI −A)(x− z) = 0. So, x = z ∈ D(B) and A = B. �

Example 6 (Right-translation semigroup) On the real Banach space

X = {f ∈ BUC(R+) : f(0) = 0}

of all bounded uniformly continuous functions f : R+ → R with the uniform
norm, consider the right-translation semigroup

(
S(t)f

)
(x) =

{
f(x− t) x > t

0 x ∈ [0, t]
∀x, t > 0.

It is easy to check that S is a C0-semigroup on X with ‖S(t)‖ = 1 for all
t > 0. In order to characterize its infinitesimal generator A, let us consider
the operator B : D(B) ⊂ X → X defined by{

D(B) =
{
f ∈ X : f ′ ∈ X

}
Bf = −f ′, ∀f ∈ D(B).

We claim that:

(i) B ⊂ A

Proof. Let f ∈ D(B). Then, for all x, t > 0 we have

(
S(t)f

)
(x)− f(x)
t

=

−
f(x)
t = −f ′(xt), 0 6 x 6 t

f(x−t)−f(x)
−t = −f ′(xt) x > t
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with 0 6 x− xt 6 t. Therefore

sup
x>0

∣∣∣(S(t)f
)
(x)− f(x)
t

+ f ′(x)
∣∣∣ 6 sup

|x−y|6t
|f ′(x)− f ′(y)| → 0 as t ↓ 0

because f ′ is uniformly continuous. �

(ii) 1 ∈ ρ(B)

Proof. For any g ∈ X the unique solution f of the problem{
f ∈ D(B)
f(x) + f ′(x) = g(x) ∀x > 0

is given by

f(x) =
∫ x

0
es−xg(s) ds (x > 0). �

Since 1 ∈ ρ(A) by Proposition 5, Proposition 6 yields that A = B.

Proposition 7 (Laundau-Kolmogorov) Let A : D(A) ⊂ X → X be the
infinitesimal generator of a contraction semigroup S. Then

|Ax|2 6 4 |x| |A2x| ∀x ∈ D(A2), (1.4.9)

where {
D(A2) = {x ∈ D(A) : Ax ∈ D(A)}
A2x = A(Ax) , ∀x ∈ D(A2).

(1.4.10)

Proof. For any x ∈ D(A2) and all t > 0 we have that∫ t

0
(t− s)S(s)A2x ds =

[
(t− s)S(s)Ax

]s=t
s=0

+
∫ t

0
S(s)Axds

= −tAx+
[
S(s)x

]s=t
s=0

= −tAx+ S(t)x− x.

Therefore, for all t > 0,

|Ax| 6 1
t
|S(t)x− x|+ 1

t

∫ t

0
(t− s)|S(s)A2x|ds

6
2
t
|x|+ t

2
|A2x|. (1.4.11)

If A2x = 0, then the above inequality yields Ax = 0 by letting t → ∞. So,
(1.4.9) is true in this case. On the other hand, for A2x 6= 0 the function of t
on the right-hand side of (1.4.11) attains its minimum at

t0 =
2|x|1/2

|A2x|1/2
.

By taking t = t0 in (1.4.11) we obtain (1.4.9) once again. �



1.5. THE HILLE-YOSIDA GENERATION THEOREM 13

Example 7 Let us recall that the infinitesimal generator A : D(A) ⊂ X → X
of the left-translation semigroup S on X = Lp(R) introduced in Example 2 is
given by {

D(A) = W 1,p(R)
Af(x) = f ′(x) (x ∈ R a.e.) ∀f ∈ D(A).

Since
D(A2) = {f ∈W 1,p(R) : f ′ ∈W 1,p(R)} =: W 2,p(R),

by Proposition 7 we deduce the interpolation inequality

|f ′|p 6 2
√
|f |p |f ′′|p ∀f ∈W 2,p(R).

1.5 The Hille-Yosida generation theorem

Theorem 2 Let M > 0 and ω ∈ R. For a linear operator A : D(A) ⊂ X → X
the following conditions are equivalent:

(a) A is closed, D(A) is dense in X, and for every λ ∈ C with <λ > ω one
has that λ ∈ ρ(A) and

‖R(λ,A)k‖ 6 M

(<λ− ω)k
∀k > 1. (1.5.1)

(b) A is the infinitesimal generator of a C0-semigroup S ∈ G(M,ω).

Proof. (b)⇒ (a) The fact that A is closed and D(A) is dense in X has already
been proved, see propositions 1 and 2. In order to prove (1.5.1) observe that,
by using (1.4.7) to compute the k-th derivative of the resolvent of A, we obtain

dk

dλk
R(λ,A)x = (−1)k

∫ ∞
0

tke−λtS(t)x dt ∀x ∈ X , ∀λ ∈ Πω,

where Πω is defined in (1.4.6). Therefore,∥∥∥ dk
dλk

R(λ,A)
∥∥∥ 6M ∫ ∞

0
tke−(<λ−ω)t dt =

M k!
(<λ− ω)k+1

where the integral is easily computed by an induction argument. The conclu-
sion follows recalling (1.4.4).

(a)⇒ (b) The reasoning will be split into four steps.

Step 1: the Yosida approximation of A.
For all n > ω we define An ∈ L(X), called Yosida approximations of A, by

An = n2R(n,A)− n = nAR(n,A), (1.5.2)
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where the last identity follows from (1.4.1). We claim that

lim
n→∞

Anx = Ax ∀x ∈ X. (1.5.3)

Indeed, let us first take x ∈ D(A) and set Jn = nR(n,A). Then, we have that

Anx = AJnx = JnAx (1.5.4)

and
lim
n→∞

(Jnx− x) = lim
n→∞

R(n,A)Ax = 0 ∀x ∈ D(A)

in view of (1.5.1). In fact, observing that

‖Jn‖ 6
Mn

n− ω
(1.5.5)

we conclude that
lim
n→∞

Jnx = x ∀x ∈ X (1.5.6)

because D(A) is dense in X. This together with (1.5.4) yields (1.5.3).

Step 2: construction of an approximate semigroup.
For all n > ω we define

Sn(t) = etAn = e−nt
∞∑
k=0

n2ktkR(n,A)k

k!
, ∀t > 0.

Observe that, in view of (1.5.1),

‖Sn(t)‖ 6Me−nt
∞∑
k=0

n2ktk

k!(n− ω)k
= Me

nωt
n−ω 6Me2ωt (1.5.7)

for all t > 0 and n > ω.

Step 3: uniform convergence on compact sets.
For any x ∈ X, un(t) := Sn(t)x = etAnx satisfies{

(un − um)′(t) = An(un − um)(t) + (An −Am)um(t), ∀t > 0
(un − um)(0) = 0.

Therefore

(un − um)(t) =
∫ t

0
e(t−s)AnesAm(An −Am)x ds, ∀t > 0

which in turn yields, by (1.5.7),

|(un − um)(t)| 6M2 t e2ωt |(An −Am)x|.
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Thanks to (1.5.3), the above estimate implies that {un} is a Cauchy sequence
on all compact subsets of R+ for x ∈ D(A) and (1.5.7) guarantees that the
same is true for all x ∈ X. Consequently, the limit (uniform on all [0, T ] ⊂ R+)

S(t)x = lim
n→∞

Sn(t)x, ∀x ∈ X, (1.5.8)

defines a C0-semigroup of bounded linear operators on X. Moreover, passing
to the limit as n→∞ in (1.5.7) we conclude that S ∈ G(M,ω).

Step 4: identification of the infinitesimal generation.
First, we show that S(t)x is differentiable for all x ∈ D(A). Indeed,

|S′n(t)x− S(t)Ax| 6 |Sn(t)Anx− Sn(t)Ax|+ |Sn(t)Ax− S(t)Ax|

where, by (1.5.3) and (1.5.7),

|Sn(t)Anx− Sn(t)Ax| 6Me2ωt|Anx−Ax| → 0 (n→∞)

and
|Sn(t)Ax− S(t)Ax| → 0 (n→∞)

uniformly on all compact subsets of R+ by (1.5.8). Therefore

S′(t)x = S(t)Ax, ∀x ∈ D(A) , ∀t > 0. (1.5.9)

Now, let B : D(B) ⊂ X → X be the infinitesimal generator of S. Then A ⊂ B
in view of (1.5.9). Moreover, Πω ⊂ ρ(A) by assumption (a) and Πω ⊂ ρ(B)
by Proposition 5. So, on account of Proposition 6, A = B. �

Remark 3 The above proof shows that condition (a) in Theorem 2 can be
relaxed as follows

(a′) A is closed, D(A) is dense in X, (ω,∞) ⊂ ρ(A) and

‖R(n,A)k‖ 6 M

(n− ω)k
∀k > 1 , ∀n > ω.

Remark 4 When M = 1 the countably many bounds in condition (a) follow
from (1.5.1) for k = 1, that is,

‖R(λ,A)‖ 6 1
<λ− ω

∀k > 1 , ∀λ ∈ Πω.

Exercise 5 Given any S ∈ G(M, 0) with M > 1, define

|x|S = sup
t>0
|S(t)x| , ∀x ∈ X. (1.5.10)

Show that:
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1. | · |S is a norm on X,

2. |x| 6 |x|S 6M |x| for all x ∈ X, and

3. S is a contraction semigroup with respect to | · |S .

Remark 5 Let A : D(A) ⊂ X → X be a closed operator satisfying (1.5.1)
but suppose D(A) fails to be dense in X. In the Banach space Y := D(A) let
us define the operator B, called the part of A in Y , by{

D(B) =
{
x ∈ D(A) : Ax ∈ Y

}
Bx = Ax ∀x ∈ D(B).

Then R(λ,A)(Y ) ⊂ D(B) for all λ ∈ C such that <λ > ω. Moreover, owing
to (1.4.1) for all x ∈ D(A) we have that

lim
n→∞

nR(n,A)x = lim
n→∞

{
R(n,A)Ax+ x

}
= x. (1.5.11)

Since ‖nR(n,A)‖ is bounded, (1.5.11) holds true for all x ∈ Y . Hence, D(B) is
dense in Y . Consequently, B satisfies in Y all the assumptions of Theorem 2.

1.6 The homogeneous Cauchy problem

Proposition 8 Let S be a C0-semigroup of bounded linear operators on Xand
A : D(A) ⊂ X → X be its infinitesimal generator. Then for every x ∈ D(A)
the Cauchy problem {

y′(t) = Ay(t)
y(0) = x

(1.6.1)

has a unique solution y ∈ C1([0,∞);X) ∩ C([0,∞);D(A)) given by

y(t) = S(t)x ∀t > 0.

Proof. The fact that y(t) = S(t)x satisfies (1.6.1) has already been proved
(Theorem 1). Let us show that this is the unique solution of the problem. Let
z ∈ C1([0,∞);X) ∩ C([0,∞);D(A)) be a solution of (1.6.1), fix t > 0, and set

u(s) = S(t− s)z(s) , ∀s ∈ [0, t].

Then

u′(s) = −AS(t− s)z(s) + S(t− s)Az(s) = 0 , ∀s ∈ [0, t].

Therefore, z(t) = u(t) = u(0) = y(t). �
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Example 8 (Transport equation in Lp(R)) Let p > 1. Racalling the anal-
ysis of the left-translation semigroup on Lp(R) developed in examples 2 and 3,
by Proposition 8 we conclude that for each f ∈ W 1,p(R) the unique solution
of the problem {

∂u
∂t (t, x) = ∂u

∂x (t, x) (t, x) ∈ R+ × R
u(0, x) = f(x) x ∈ R

is given by u(t, x) = f(x+ t).

Example 9 (Heat equation in Lp(0, π)) Let p > 2. On X = Lp(0, π) con-
sider the operator defined by{

D(A) = W 2,p(0, π) ∩W 1,p
0 (0, π)

Af(x) = f ′′(x) x ∈ (0, π) a.e.
(1.6.2)

where
W 1,p

0 (0, π) =
{
f ∈W 1,p(0, π) : f(0) = 0 = f(π)

}
.

Since C∞c (0, π) ⊂ D(A), we have that D(A) is dense in X. Moreover, A can
be shown to be closed (see Exercise 6 below). We now show that A satisfies
condition (a′) of Remark 3 with M = 1 and ω = 0 so that Theorem 2 will
imply that A generates a C0-semigroup of contractions on X.

Step 1: σ(A) = {−n2 : n ∈ N}.
Fix any g ∈ X. We will show that, for all λ 6= n2(n > 1), the Sturm-Liouville
system {

λf(x)− f ′′(x) = g(x), 0 < x < π

f(0) = 0 = f(π)
(1.6.3)

admits a unique solution f ∈ D(A). Denoting by

g(x) =
∞∑
n=1

gn sin(nx) (x ∈ [0, π])

the Fourier series of g, we seek a candidate solution f of the form

f(x) =
∞∑
n=1

fn sin(nx) (x ∈ [0, π]).

In order to satisfy (1.6.3) one must have

(λ+ n2)fn = gn ∀n > 1.

So, for any λ 6= −n2, (1.6.3) has a unique solution given by

f(x) =
∞∑
n=1

gn
λ+ n2

sin(nx) (x ∈ [0, π]).
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From the above representation it follows that f ∈ H2(0, π)∩H1
0 (0, π). In fact,

returning to the equation in (1.6.3) one concludes that f ∈ D(A).

Step 2: resolvent estimate.
By multiplying both members of the equation in (1.6.3) by |f |p−2f and inte-
grating over (0, π) one obtains, for all λ > 0,

λ

∫ π

0
|f(x)|pdx+ (p− 1)

∫ p

0
|f(x)|p−2|f ′(x)|2dx =

∫ π

0
g(x)|f(x)|p−2f(x) dx

which yields

|f |p 6
1
λ
|g|p ∀λ > 0.

Step 3: conclusion.
By Proposition 8 we conclude that for each f ∈ W 2,p(0, π) ∩W 1,p

0 (0, π) the
unique solution of

∂u
∂t (t, x) = ∂2u

∂x2 (t, x) (t, x) ∈ R+ × (0, π)
u(t, 0) = 0 = u(t, π) t > 0
u(0, x) = f(x) x ∈ (0, π)

is given by u(t, x) = (S(t)f)(x).

Exercise 6 Prove that operator A defined in (1.6.2) is closed.

Example 10 (Heat equation in Lp(R)) Let f ∈ W 2,p(R) with p > 2. By
following the reasoning of Example 9, let us solve the Cauchy problem{

∂u
∂t (t, x) = ∂2u

∂x2 (t, x) (t, x) ∈ R+ × R
u(0, x) = f(x) x ∈ R.

The operator defined by{
D(A) = W 2,p(R)
Af(x) = f ′′(x) x ∈ R a.e.

is densely defined and closed. Let us begin by studying the problem{
f ∈ D(A)
λf − f ′′ = g ∈ X

(1.6.4)

in the special case p = 2. Taking the Fourier transform of both members of
the above equation we find

(λ+ ξ2)f̂(ξ) = ĝ(ξ) ∀ξ ∈ R.



1.6. THE HOMOGENEOUS CAUCHY PROBLEM 19

So, for any λ > 0 we have that the solution to problem (1.6.4) is given by

f(x) = (g ∗ φλ)(x) with φλ(x) =
e−
√
λ |x|

2
√
λ

,

that is,

f(x) =
1

2
√
λ

{∫ x

−∞
g(y)e−

√
λ (x−y)dy +

∫ ∞
x

g(y)e−
√
λ (y−x)dy

}
.

Moreover, the above representation formula holds true for any p > 2. We
have thus proved that (0,∞) ⊂ ρ(A). Finally, by multiplying both members
of the equation in (1.6.3) by |f |p−2f and integrating over R we obtain as in
Example 9

λ

∫ ∞
−∞
|f |pdx+ (p− 1)

∫ ∞
−∞
|f |p−2|f ′|2dx =

∫ ∞
−∞

g|f |p−2f dx

which yields

|f |p 6
1
λ
|g|p.

Therefore, A satisfies condition (a′) of Remark 3 and generates a C0-semigroup
of bounded linear operators on X which gives the solution of our problem.

Proposition 9 Let A : D(A) ⊂ X → X be a densely defined closed linear
operator satisfying, for some M,ω > 0, the following conditions:

(i) σ(A) ⊂
{
λ ∈ C : |<λ| 6 ω

}
(ii) for all k > 1

|<λ| > ω =⇒ ‖R(λ,A)k‖ 6 M

(|<λ| − ω)k
.

Then (1.6.1) has a unique solution y ∈ C1(R;X) ∩ C(R;D(A)).

Proof. Observe that both A and −A generate a C0-semigroup of bounded
linear operators on X. Denote by S± the semigroup generated by ±A and
set, for any x ∈ X,

y(t) =

{
S+(t)x (t > 0)

S−(−t)x (t < 0).

Then y ∈ C(R;X). Moreover, for x ∈ D(A), y ∈ C1(R;X) ∩ C(R;D(A)) and
satisfies (1.6.1). �
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Remark 6 In fact, the above assumptions are necessary and sufficient for A
to be the infinitesimal generator of a C0 group of bounded linear operators
on X (see, for instance, [4, Section I.3.11]). Moreover, like in Remark 3,
conditions (i) and (ii) can be weakened as follows:

(i) (−∞,−ω) ∪ (ω,∞) ⊂ ρ(A)

(ii) for all k > 1 and |n > ω

‖R(n,A)k‖ 6 M

(|n| − ω)k
.

1.7 Problems

1. Let X be a Banach space and let A : D(A) ⊂ X → X be the infinitesimal
generator of a C0-semigroup of bounded linear operators on X. Prove
that, for every n > 1,

D(An) :=
{
x ∈ D(An−1) : Ax ∈ D(A)}

is dense in X.

Solution. For n = 1 the conclusion follows from Proposition 1. Let the
conclusion be true for some n > 1 and fix any y ∈ X. Then, for any
ε > 0 there exists xε ∈ D(An) such that |xε − y| < ε. As shown in
the proof of Proposition 1, M0,tA

nxε ∈ D(A) for all t > 0, where M0,t

is defined in (1.2.3). Since M0,tA
nxε = AnM0,txε, we conclude that

M0,txε ∈ D(An+1). Moreover, there exists tε > 0 such that

|M0,txε − y| 6 |M0,tεxε − xε|+ |xε − y| < 2ε. �

2. For fixed T > 0 and p > 1 let X = Lp(0, T ) and

(
S(t)f

)
(x) =

{
f(x− t) x ∈ [t, T ]
0 x ∈ [0, t)

∀x ∈ [0, T ] , ∀t > 0.

Prove that S is a C0-semigroup of bounded linear operators on X which
satisfies ‖S(t)‖ 6 1 for all t > 0. Moreover, observe that S is nilpotent,
that is, we have S(t) ≡ 0, ∀t > T. Deduce that ω0(S) = −∞.

3. On X = {f ∈ C([0, π]) : f(0) = 0 = f(π)} with the uniform norm,
consider the linear operator A : D(A) ⊂ X → X defined by{

D(A) =
{
f ∈ C2([0, 1]) : f(0) = f(π) = 0 = f ′′(0) = f ′′(π)}

Af = f ′′, ∀f ∈ D(A).
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Apply Theorem 2 to show that A generates a C0-semigroup of contrac-
tions on X and derive the initial-boundary value problem which is solved
by such semigroup.

Solution. We only prove that ‖R(λ,A)‖ 6 1/λ for all λ > 0. Fix any
g ∈ X and let f = R(λ,A)g. Let x0 ∈ [0, π] be such that |f(x0)| = |f |∞.
If f(x0) > 0, then x0 ∈ (0, π) is a maximum point of f . So, f ′′(x0) 6 0
and we have that

λ|f |∞ = λf(x0) 6 λf(x0)− f ′′(x0) = g(x0) 6 |g|∞.

On the other hand, if f(x0) < 0, then x0 ∈ (0, π) once again and x0 is a
minimum point of f . Thus, f ′′(x0) > 0 and

λ|f |∞ = −λf(x0) 6 −λf(x0) + f ′′(x0) = −g(x0) 6 |g|∞.

In any case, we have that λ|f |∞ 6 |g|∞. �

4. Let S be C0-semigroup of bounded linear operators on X and let K ⊂ X
be compact. Prove that for every t0 > 0

lim
t→t0

sup
x∈K

∣∣S(t)x− S(t0)x
∣∣ = 0 . (1.7.1)

Solution. We may assume S ∈ G(M, 0) for some M >) without loss of
generality. Let t0 > 0 and fix any ε > 0. Since K is totally bounded,
there exist x1, . . . , xNε ∈ X such that

K ⊂
Nε⋃
n=1

B
(
xn,

ε

M

)
.

Moreover, there exists τ > 0 such that

|t− t0| < τ =⇒
∣∣S(t)xn − S(t0)xn

∣∣ < ε ∀n = 1, . . . , Nε.

Thus, for all |t−t0| < τ we have that, if x ∈ K is such that x ∈ B
(
xn,

ε
M

)
,

then∣∣S(t)x− S(t0)x
∣∣

6
∣∣S(t)x− S(t)xn

∣∣+
∣∣S(t)xn − S(t0)xn

∣∣+
∣∣S(t0)xn − S(t0)x

∣∣
6 2M |x− xn|+ ε < 3ε.

So, the limit of
∣∣S(t)x− S(t0)x

∣∣ as t→ t0 is uniform on K. �

5. Use the resolvent identity (1.4.2) to prove that R(λ,A) commutes with
R(µ,A) for all λ, µ ∈ ρ(A).
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Solution. For all λ, µ ∈ ρ(A) we have that

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A).

So,
R(µ,A)−R(λ,A) = (λ− µ)R(λ,A)R(µ,A)

but also
R(µ,A)−R(λ,A) = (λ− µ)R(µ,A)R(λ,A).

Therefore R(λ,A)R(µ,A) = R(µ,A)R(λ,A). �

6. Prove that if A : D(A) ⊂ X → X is a closed operator and B ∈ L(X),
then A+B : D(A) ⊂ X → X is also closed.

7. Prove that A : D(A) ⊂ X → X is closed if and only if for any sequence
{xn} ⊂ D(A){

xn → x

Axn ⇀ y
=⇒ x ∈ D(A) and Ax = y.

8. Let S ∈ G(M,ω) with ω > 0. Prove that ω0(S) < 0 if and only if

lim
t→+∞

‖S(t)‖ = 0. (1.7.2)

Solution. One only needs to show that (1.7.2) implies that ω0(S) < 0.
Let t0 > 0 be such that ‖S(t0)‖ < 1/e. For any t > 0 let n(t) ∈ N be
the unique integer such that

n(t)t0 6 t <
(
n(t) + 1

)
t0. (1.7.3)

Then

‖S(t)‖ =
∥∥S(n(t)t0

)
S
(
t− n(t)t0

)∥∥ 6 Meω(t−n(t))

en(t)
6

Meωt0

en(t)
.

Therefore, on account of (1.7.2), we conclude that

log ‖S(t)‖
t

6
log
(
Meωt0

)
t

− n(t)
t

6
log
(
Meωt0

)
t

−
( 1
t0
− 1
t

)
∀t > 0.

Taking the limit as t→ +∞ we conclude that ω0(S) < 0. �
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9. Let S be the heat semigroup constructed in Example 9. Prove that, for
any f ∈ Lp(0, π),

(S(t)f)(x) =
∫ π

0
K(t, x, y)f(y) dy , ∀t > 0, x ∈ (0, π) a.e.

where

K(t, x, y) =
2
π

∞∑
k=1

e−k
2t sin(kx) sin(ky).

2 Special classes of semigroups

2.1 Contraction semigroups

In this section we assume that X is an Hilbert space with scalar product 〈·, ·〉.

Definition 8 An operator A : D(A) ⊂ X → X is said to be dissipative if

< 〈Ax, x〉 6 0 ∀x ∈ D(A). (2.1.1)

Remark 7 Observe that, if A is dissipative, then for every λ > 0

|(λI −A)x|2 = λ2|x|2 − 2<〈Ax, x〉+ |Ax|2 > λ2|x|2 ∀x ∈ D(A).

Hence
|(λI −A)x| > λ|x| ∀x ∈ D(A) and λ > 0. (2.1.2)

Consequently, λI − A is injective for all λ > 0. So, if (λ0I − A)X = X for
some λ0 > 0, then (2.1.2) implies that λ0 ∈ ρ(A) and ‖R(λ0, A)‖ 6 1/λ0.
Moreover, since R(λ0, A) is closed, λ0I −A is closed and therefore A is closed
as well.

Proposition 10 For a dissipative operator A : D(A) ⊂ X → X the following
properties are equivalent:

(a) (λ0I −A)X = X for some λ0 > 0, and

(b) (λI −A)X = X for all λ > 0.

Proof. The only implication that require a proof is (a) ⇒ (b). By Remark 7
the set

Λ =
{
λ ∈ (0,∞) : (λI −A)X = X

}
is contained in ρ(A) which is open in C. This implies that Λ is also open. Let
us show that Λ is closed: let Λ 3 λn → λ > 0 and fix any y ∈ X. There exists
an xn ∈ D(A) such that

λnxn −Axn = y. (2.1.3)
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From (2.1.2) it follows that |xn| 6 |y|/λn 6 C for some C > 0. Again by
(2.1.2),

λm|xn − xm| 6 |λm(xn − xm)−A(xn − xm)|
6 |λm − λn| |xn|+ |λnxn −Axn − (λmxm −Axm)|
6 C|λm − λn|.

Therefore {xn} is a Cauchy sequence. Let xn → x. Then Axn → λx − y by
(2.1.3). Since A is closed by Remark 7, x ∈ D(A) and λx − Ax = y. This
show that λI − A is surjective and implies that λ ∈ Λ. Thus Λ is both open
and closed in (0,∞). Moreover, Λ 6= ∅ because λ0 ∈ Λ. So, Λ = (0,∞). �

Proposition 11 Let A : D(A) ⊂ X → X be dissipative with (I − A)X = X.
Then D(A) is dense in X.

Proof. Let z ∈ X be such that 〈z, x〉 = 0 for all x ∈ D(A). We will show that
z = 0 or, equivalently since (I −A) is surjective, that

0 = 〈z, x−Ax〉 = 〈z,Ax〉 ∀x ∈ D(A).

Let x ∈ D(A). Then by Proposition 10 there exists a sequence {xn} ⊂ D(A)
such that

nx = nxn −Axn ∀n > 1. (2.1.4)

Since Axn = n(xn − x) ∈ D(A), we have that xn ∈ D(A2) and

Ax = Axn −
1
n
A2xn or Axn =

(
I − 1

n
A
)−1

Ax.

Since ‖(I − 1
n A)−1‖ 6 1 by (2.1.2), the above identity yields |Axn| 6 |Ax|.

So, by (2.1.4) we obtain

|xn − x| 6
1
n
|Axn| 6

1
n
|Ax|.

Therefore, xn → x. Moreover, since {Axn} is bounded, there is a subsequence
Axnk such that Axnk ⇀ y. Since A is closed by Remark 7 we deduce that
y = Ax (see Problems 1.7). Now, recall that 〈z, x〉 = 0 for all x ∈ D(A) to
deduce that

〈z,Axnk〉 = nk〈z, xnk − x〉 = 0 ∀k > 1.

Letting k →∞ in the above identity we conclude that 〈z,Ax〉 = 0. �

Proposition 12 For an operator A : D(A) ⊂ X → X the following properties
are equivalent:

(a) A is the infinitesimal generator of a contraction semigroup on X;
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(b) A is dissipative and (λ0I −A)X = X for some λ0 > 0.

(c) A is dissipative and (λI −A)X = X for all λ > 0.

Proof. In view of Proposition 10, the only implications that require a proof
are (a)⇒ (b) and (c)⇒ (a).

(a)⇒ (b) Let A be the infinitesimal generator of a contraction semigroup S.
Then (0,∞) ⊂ ρ(A) by Theorem 2 and A is dissipative because

< 〈Ax, x〉 = lim
t↓0
<
〈S(t)x− x

t
, x
〉
6 0 ∀x ∈ D(A).

(c)⇒ (a) Assume (c). Then D(A) is dense in X by Proposition 11. More-
over, by Remark 7, A is closed, (0,∞) ⊂ ρ(A), and ‖R(λ,A)‖ 6 1/λ for all
λ > 0. The conclusion follows by Theorem 2. �

The above results can be completed by looking at A∗, the adjoint of A, the
definition of which we recall below. Given A : D(A) ⊂ X → X, with D(A)
dense in X, let D(A∗) denote the subspace of X consisting of all y ∈ X for
which there exists a constant Cy > 0 such that

|〈Ax, y〉| 6 Cy|x| ∀x ∈ D(A). (2.1.5)

Observe that, since D(A) is dense in X, (2.1.5) yields that x 7→ 〈Ax, y〉 can
be extended to a unique bounded linear functional φy ∈ X∗. Denoting by
j : X∗ → X the Riesz isomorphism, we define

A∗y = j(φy) ∀y ∈ D(A∗). (2.1.6)

Then the following adjoint identity holds true

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ D(A), ∀y ∈ D(A∗). (2.1.7)

Exercise 7 Check that D(A∗) is a subspace of X, that A∗ : D(A∗) ⊂ X → X
is a linear operator, and that A∗ is closed.
Solution. We only prove that A∗ is closed. Let {yn} ⊂ D(A∗) and y, z ∈ X
be such that {

yn → y

A∗yn → z
(n→∞)

Then {A∗yn} is bounded, say |A∗yn| 6 C. So, recalling (2.1.7),

|〈Ax, yn〉| = |〈x,A∗yn〉| 6 C|x| ∀x ∈ D(A)

yields
|〈Ax, y〉| 6 C|x| ∀x ∈ D(A)
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implying that y ∈ D(A∗). Moreover

〈Ax, y〉 = lim
n→∞

〈Ax, yn〉 = 〈x, z〉 ∀x ∈ D(A).

Thus, 〈x,A∗y − z〉 = 0 for all x ∈ D(A). Since D(A) is dense, A∗y = z. �

Remark 8 If A ∈ L(X), then A∗ is also bounded and we have that A∗∗ = A.

Theorem 3 (Lumer-Phillips) Let A : D(A) ⊂ X → X be a densely defined
closed linear operator. If A and A∗ are dissipative, then A is the infinitesimal
generator of a contraction semigroup on X.

Proof. In view of Proposition 12 it suffices to show that (0,∞) ⊂ ρ(A).

Step 1: λI −A and λI −A∗ are injective for every λ > 0.
This follows from Remark 7.

Step 2: (λI −A)(D(A)) is dense in X for every λ > 0.
Let y ∈ X be such that

〈λx−Ax, y〉 = 0 ∀x ∈ D(A).

Then 〈Ax, y〉 = λ〈x, y〉 implies that y ∈ D(A∗) and

〈x, λy −A∗y〉 = 0 ∀x ∈ X.

So, λy −A∗y = 0 which, by Step 1, yields y = 0.

Step 3: λI −A is surjective for every λ > 0.
Fix any y ∈ X. By Step 1, there exists {xn} ⊂ D(A) such that

λxn −Axn =: yn → y as n→∞.

By (2.1.2) we deduce that, for all n,m > 1,

|xn − xm| 6
1
λ
|yn − ym|

which yields that {xn} is a Cauchy sequence in X. Therefore, there exists
x ∈ X such that {

xn → x

Axn = λxn − yn → λx− y
(n→∞)

Since A is closed, x ∈ D(A) and λx−Ax = y. �

Remark 9 The notion of dissipative operators can be given in Banach spaces
and Theorem 3 remains valid in such settings. However, Proposition 11 is true
only if X is reflexive (see, for instance, [6, Section 1.4]).



2.1. CONTRACTION SEMIGROUPS 27

Example 11 (Wave equation in L2(0, π)) Let us setH1
0 (0, π) = W 1,2

0 (0, π)
and H2(0, π) = W 2,2(0, π). For any given f ∈ H2(0, π) ∩ H1

0 (0, π) and
g ∈ H1

0 (0, π) we want to solve the problem
∂2u
∂t2

(t, x) = ∂2u
∂x2 (t, x) (t, x) ∈ R× (0, π)

u(t, 0) = 0 = u(t, π) t ∈ R
u(0, x) = f(x) , ∂u

∂t (0, x) = g(x) x ∈ (0, π).

(2.1.8)

Let X be the Hilbert space H1
0 (0, π)× L2(0, π) with the scalar product〈( u

v

)
,
( ū
v̄

)〉
=
∫ π

0

[
u′(s)ū′(s) + v(s)v̄(s)

]
ds.

Denoting by A : D(A) ⊂ L2(0, π) → L2(0, π) the second derivative with
homogeneous Dirichlet boundary conditions studied in Example 9, define A :
D(A) ⊂ X → X by

D(A) =
(
H2(0, π) ∩H1

0 (0, π)
)
×H1

0 (0, π)

A
( u

v

)
=
( 0 1
A 0

)( u

v

)
=
( v

Au

) (2.1.9)

The fact that A is closed and D(A) is dense can be easily checked. We claim
that R \ {0} ⊂ ρ(A) and

R(λ,A) =
( λ 1
A λ

)
R(λ2, A) ∀λ 6= 0. (2.1.10)

Indeed, for any (f, g) ∈ X the resolvent equation

(λI −A)
( u
v

)
=
( f
g

)
is equivalent to the system {

λu− v = f

λv −Au = g.

Hence, v = λu− f and, by solving the equation

λ2u−Au = g + λf,

we find {
u = λR(λ2, A)f +R(λ2, A)g
v =

[
λ2R(λ2, A)− 1

]
f + λR(λ2, A)g.

Since λ2R(λ2, A)−1 = AR(λ2, A) by (1.4.1), the above identities yield (2.1.10).
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Now, integrating by parts we obtain〈
A
( u
v

)
,
( u
v

)〉
=
∫ π

0

[
u′(s)v′(s) + u(s)v′′(s)

]
ds = 0, ∀

( u
v

)
∈ D(A).

Therefore A is dissipative and so it generates a contraction semigroup etA on
X by Proposition 12. In fact, etA is a C0 group thanks to Proposition 9 and
Remark 6. Consequently, problem (2.1.8) has a unique solution

u ∈ C2(R;L2(0, π)) ∩ C1(R;H1
0 (0, π)) ∩ C(R;H2(0, π) ∩H1

0 (0, π))

which is given by the first component of etA(f, g).

Definition 9 A densely defined closed linear operator A : D(A) ⊂ X → X is
said to be symmetric if A ⊂ A∗, that is,

D(A) ⊂ D(A∗) and Ax = A∗x ∀x ∈ D(A).

A is said to be self-adjoint if A = A∗.

Clearly, a symmetric operator A is self-adjoint if and only if D(A) = D(A∗).
This is always the case when A is the infinitesimal generator of a C0-semigroup
of bounded linear operators on X, as our next result guarantees.

Proposition 13 Let A : D(A) ⊂ X → X be a densely defined closed linear
operator such that ρ(A) ∩ R 6= ∅. If A is symmetric, then A is self-adjoint.

Proof. We will prove that D(A∗) ⊂ D(A) in two steps. Let λ ∈ ρ(A) ∩ R.

Step 1: R(λ,A) = R(λ,A)∗.
Since R(λ,A) ∈ L(X) it suffices to show that

〈R(λ,A)x, y〉 = 〈x,R(λ,A)y〉 ∀x, y ∈ X.

Fix any x, y ∈ X and set

u = R(λ,A)x and v = R(λ,A)y

so that
λu−Au = x and λv −Av = y.

Since A is symmetric, we have that

〈R(λ,A)x, y〉 = 〈u, y〉 = 〈u, λv −Av〉 = 〈λu−Au, v〉 = 〈x,R(λ,A)y〉.

Step 2: D(A∗) ⊂ D(A).
Let u ∈ D(A∗) and set x = λu−A∗u. Observe that, for all v ∈ D(A),

〈x, v〉 = 〈λu−A∗u, v〉 = 〈u, λv −Av〉.
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Now, take any y ∈ X and let v = R(λ,A)y. Then the above identity yields

〈x,R(λ,A)y〉 = 〈u, y〉 ∀y ∈ X.

This identity and Step 1 imply that u = R(λ,A)∗x = R(λ,A)x ∈ D(A). �

The following property of self-adjoint operators is very useful.

Corollary 2 (Stone) Let A : D(A) ⊂ X → X be a densely defined closed
linear operator. If A is self-adjoint, then B := iA is the infinitesimal generator
of a C0 unitary group on X.

Proof. Since A is self-adjoint, we have that

〈Ax, x〉 = 〈x,A∗x〉 = 〈x,Ax〉 = 〈Ax, x〉 ∀x ∈ D(A).

Thus, 〈Ax, x〉 is real and

<〈Bx, x〉 = <〈iAx, x〉 = 0 ∀x ∈ D(B),

which implies that B and B∗ = −B are dissipative. So, B and −B generate
contraction semigroups on X. Therefore B generates a C0 unitary group. �

Exercise 8 On X = L2(0, π; C) let A : D(A) ⊂ X → X be the operator{
D(A) = H2(0, π; C) ∩H1

0 (0, π; C)
Af(x) = f ′′(x) x ∈ (0, π) a.e.

(2.1.11)

Show that A is self-adjoint and dissipative.
Solution. We begin by observing that

〈Af, f〉 =
∫ π

0
f ′′(x)f(x)dx = −

∫ π

0
|f ′(x)|2dx ∀f ∈ D(A).

Therefore A is dissipative.
Moreover, A is symmetric. Indeed, that for all g ∈ D(A) we have

〈Af, g〉 =
∫ π

0
f ′′(x)g(x)dx =

∫ π

0
f(x)g′′(x)dx ∀f ∈ D(A). (2.1.12)

Therefore |〈Af, g〉| 6 |g′′|2|f |2 for all f ∈ D(A), which yields g ∈ D(A∗).
Then (2.1.7), together with (2.1.12), implies that A∗g = g′′ for all g ∈ D(A).

Thus, in order to prove that A is self-adjoint it suffices to check that 1 ∈
ρ(A). In fact, we will show that—as in Example 9— σ(A) = {−n2 : n ∈ N}.
Fix any g ∈ X and consider the Sturm-Liouville system{

λf(x)− f ′′(x) = g(x), 0 < x < π

f(0) = 0 = f(π).
(2.1.13)
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Let us consider the odd extension of g to [−π, π] and denote by

g(x) =
∑
n∈Z∗

ĝ(n)einx (x ∈ [0, π])

the Fourier series of such a function. We seek a solution f of the form

f(x) =
∑
n∈Z∗

f̂(n)einx (x ∈ [0, π]).

In order to satisfy (2.1.13) one must have

(λ+ n2)f̂(n) = ĝ(n) ∀n ∈ Z∗.

So, for any λ ∈ C \ {−n2 : n > 1}, (2.1.13) has a unique solution. �

Example 12 (Schrödinger equation) By Corollary 2 and Exercise 8 we
have that, for any f ∈ H2(0, π) ∩H1

0 (0, π), there exists a unique solution

u ∈ C1(R;L2(0, π)) ∩ C(R;H2(0, π) ∩H1
0 (0, π))

of the problem 
∂u
∂t (t, x) = i ∂

2u
∂x2 (t, x) (t, x) ∈ R× (0, π)

u(t, 0) = 0 = u(t, π) t ∈ R
u(0, x) = f(x) x ∈ (0, π).

2.2 Analytic semigroups

We recall that, for any ω ∈ R, we have denoted by Πω the complex half-plane
in (1.4.6). Moreover, for any θ ∈ (0, π] we define

Σω,θ =
{
λ ∈ C \ {ω} :

∣∣ arg(λ− ω)
∣∣ < θ

}
. (2.2.1)

Let ω ∈ R and θ0 ∈ (π/2, π].

Definition 10 A densely defined closed linear operator A : D(A) ⊂ X → X
on a Banach space X is called sectorial of base point ω ∈ R and angle θ0 if:

(a) Σω,θ0 ⊂ ρ(A), and

(b) there exists a nondecreasing function M : (0, θ0)→ (0,+∞) such that

‖R(λ,A)‖ 6 M(θ)
|λ− ω|

∀θ ∈ (0, θ0), ∀λ ∈ Σω,θ. (2.2.2)
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Let A : D(A) ⊂ X → X be a sectorial operator of base point ω and angle θ0

on a Banach space X. For any ε > 0 and θ ∈ (π/2, θ0), let

γε,θ = γ+
ε,θ ∪ γ

−
ε,θ ∪ γ

0
ε,θ (2.2.3)

where
γ±ε,θ =

{
z ∈ C : z = ω + re±iθ , r > ε

}
and

γ0
ε,θ =

{
z ∈ C : z = ω + εeiη , |η| 6 θ

}
.

−4. −2. 2. 4. 6. 8.

−4.

−2.

2.

4.

6.

0

Σω,θ0

ω

γ+
ε,θ

γ−ε,θ

γ0
ε,θ

b

c

d

e

a

Proposition 14 (Dunford integral) Let ε > 0 and θ ∈ (π/2, θ0) be fixed.
Then for each t > 0

S(t) =


1

2πi

∫
γε,θ

eλtR(λ,A) dλ t > 0

I t = 0

(2.2.4)

is a bounded linear operator on X.

Proof. Since γ0
ε,θ, γ

±
ε,θ ⊂ Σω,θ, by (2.2.2) we deduce that for any t > 0

‖eλtR(λ,A)‖ 6 et(ω+r cos θ) M(θ)
r

∀λ = ω + re±iθ ∈ γ±ε,θ
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and

‖eλtR(λ,A)‖ 6 et(ω+ε cos η) M(θ)
ε

∀λ = ω + εeiη ∈ γ0
ε,θ.

Because cos θ < 0, the above inequalities ensure the convergence of the integral
in (2.2.4). The the completeness of L(X) yields S(t) ∈ L(X). �

Exercise 9 Use Cauchy’s theorem for holomorphic functions to show that,
for any 0 < ε1 < ε2 and θ1, θ2 ∈ (π/2, θ0), we have∫

γε1,θ1

eλtR(λ,A) dλ =
∫
γε2,θ2

eλtR(λ,A) dλ ∀t > 0.

Solution. It suffices to observe that, owing to Cauchy’s theorem,∫
γε1,θ1

eλtR(λ,A) dλ−
∫
γε2,θ1

eλtR(λ,A) dλ =
∫
γ1

eλtR(λ,A) dλ = 0.

−30. −20. −10. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

−50.

−40.

−30.

−20.

−10.

10.

20.

30.

0

ε1

ε2

γ1

Similarly,∫
γε2,θ1

eλtR(λ,A) dλ−
∫
γε2,θ2

eλtR(λ,A) dλ =
∫
γ+
2 ∪γ

−
2

eλtR(λ,A) dλ = 0
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−30. −20. −10. 10. 20. 30. 40. 50. 60. 70. 80. 90.

−30.

−20.

−10.

10.

20.

30.

40.

0

ε2

γ1

γ+
2

γ−2

γε2,θ1

γε2,θ2

again by Cauchy’s theorem and a simple asymptotic argument. �

Theorem 4 Let A : D(A) ⊂ X → X be a sectorial operator of base point ω
and angle θ0 on a Banach space X. Fix any 0 < ε < 1 and θ ∈ (π/2, θ0)1,
and define S : R+ → L(X) as in (2.2.4). Then the following properties hold
true.

(a) S ∈ C1(R∗+;L(X)) and S′(t) = AS(t) for all t > 0.

(b) There exist constants M,N > 0 such that

‖S(t)‖ 6Meωt ∀t > 0 (2.2.5)

and

‖(A− ωI)S(t)‖ 6 N

t
eωt ∀t > 0. (2.2.6)

(c) S is a C0-semigroup and A is its infinitesimal generator.

Proof. Without loss of generality we can restrict the analysis to the case of ω =
0. Indeed, the general case can be treated replacing A by Aω := A−ωI which
is easily seen to be sectorial of base point 0. Since R(µ,Aω) = R(µ+ω,A), one

1For instance, one can take ε = 1
2

and θ = π
4

+ θ0
2

.
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recovers S, the semigroup generated by A, from the semigroup Sω generated
by Aω via the formula S(t) = eωtSω(t).

Step 1: proof of (a).
The fact that S ∈ C1(R∗+;L(X)) follows by differentiating under the integral
sign: by (2.2.2) we deduce that for any λ ∈ γ±ε,θ

∥∥∥ ∂
∂t
eλtR(λ,A)

∥∥∥ = ‖λeλtR(λ,A)‖ 6 et<λM(θ) = et|λ| cos θM(θ)

which guarantees the convergence of the integral 1
2πi

∫
γε,θ

∂
∂t e

λtR(λ,A) dλ, in
the space L(X), because cos θ < 0. Moreover, recalling the identity λR(λ,A) =
I +AR(λ,A), we obtain

S′(t) =
1

2πi

∫
γε,θ

λeλtR(λ,A) dλ (2.2.7)

=
I

2πi

∫
γε,θ

eλt dλ+
1

2πi

∫
γε,θ

AeλtR(λ,A) dλ = AS(t)

for all t > 0 because

∫
γε,θ

eλt dλ = lim
R→∞

∫
γRε,θ

eλt dλ = 0
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−6. −4. −2. 2. 4. 6.

−2.

2.
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6.

0

γRε,θ

|λ| = R

c

a

d

e

Step 2: proof of (b).
The change of variable λt = ξ transforms the integral in (2.2.4) into

S(t) =
1

2πi

∫
γεt,θ

eξR
(ξ
t
, A
) dξ
t

=
1

2πi

∫
γε,θ

eξR
(ξ
t
, A
) dξ
t
,

where we have used Exercise 9. Therefore,

S(t) =
1

2πi

{ ∫ ∞
ε

ere
iθ
R
(reiθ

t
, A
) eiθ
t
dr

−
∫ ∞
ε

ere
−iθ

R
(re−iθ

t
, A
) e−iθ

t
dr

+
∫ θ

−θ
eεe

iη
R
(εeiη

t
, A
)
iε eiη

dη

t

}
Now, appealing to (2.2.2) we have that

‖S(t)‖ 6 M(θ)
2π

{
2
∫ ∞
ε

er cos θ

r
dr +

∫ θ

−θ
eε cos η dη

}
=: M.
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By the same change of variable in (2.2.7), a computation similar to the one
above leads to

‖S′(t)‖ 6 M(θ)
2πt

{
2
∫ ∞
ε

er cos θ dr + ε

∫ θ

−θ
eε cos η dη

}
.

Here we can also use the fact that the above inequality holds true for all ε > 0.
So, passing to the limit as ε ↓ 0 we obtain

‖S′(t)‖ 6 M(θ)
πt| cos θ|

=:
N

t
.

Step 3: S is strongly continuous.
In view of (2.2.5) it suffices to show that S(t)x→ x as t ↓ 0 for all x ∈ D(A).
So, fix x ∈ D(A) and let y = x− Ax. Then x = R(1, A)y and, recalling that
0 < ε < 12, for all t > 0 the resolvent identity (1.4.2) yields

S(t)x = S(t)R(1, A)y =
1

2πi

∫
γε,θ

eλtR(λ,A)R(1, A)y dλ

=
1

2πi

∫
γε,θ

eλt

1− λ
R(λ,A)y dλ− 1

2πi

∫
γε,θ

eλt

1− λ
R(1, A)y dλ

=
1

2πi

∫
γε,θ

eλt

1− λ
R(λ,A)y dλ

because, by Cauchy’s theorem,

∫
γε,θ

eλt

1− λ
dλ = lim

R→∞

∫
γRε,θ

eλt

1− λ
dλ = 0.

Therefore, by Cauchy’s integral formula

lim
t↓0

S(t)x =
1

2πi

∫
γε,θ

R(λ,A)y
1− λ

dλ

= lim
R→∞

1
2πi

∫
eγRε,θ

R(λ,A)y
1− λ

dλ = R(1, A)y = x.

2Without the restriction ε ∈ (0, 1), here one should take ε0 > ε and define y = ε0x−Ax.
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γ̃Rε,θ
|λ| = R

c d

a

e

Step 4: S(t+ s) = S(t)S(s).
Fix any θ′ ∈ (π/2, θ). Then for all t, s > 0 we have that

S(t)S(s) =
( 1

2πi

)2
∫
γε,θ

eλtR(λ,A) dλ ·
∫
γ2ε,θ′

eµsR(µ,A) dµ.

So, by the resolvent identity (1.4.2) we obtain

S(t)S(s) =
( 1

2πi

)2
∫
γε,θ

∫
γ2ε,θ′

eλt+µs
R(λ,A)−R(µ,A)

µ− λ
dλdµ

=
( 1

2πi

)2
∫
γε,θ

eλtR(λ,A) dλ
∫
γ2ε,θ′

eµs

µ− λ
dµ

−
( 1

2πi

)2
∫
γ2ε,θ′

eµsR(µ,A) dµ
∫
γε,θ

eλt

µ− λ
dλ = S(t+ s)

because for each λ ∈ γε,θ and µ ∈ γ2ε,θ′ we have that

1
2πi

∫
γ2ε,θ′

eµs

µ− λ
dµ = eλs and

1
2πi

∫
γε,θ

eλt

µ− λ
dλ = 0.
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0

γε,θ
γ2ε,θ′

Step 5: A is the infinitesimal generator of S.
Let B : D(B) ⊂ X → X be the infinitesimal generator of S. Then A ⊂ B
in view of (a). Moreover, Π0 ⊂ ρ(A) by assumption and Π0 ⊂ ρ(B) by
Proposition 5. So, on account of Proposition 6, A = B. �

Exercise 10 Let A : D(A) ⊂ X → X be a sectorial operator which generates
a C0-group. Show that A ∈ L(X).

Theorem 5 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup S ∈ G(M,ω). Then the following properties are equivalent.

(a) There exists θ0 ∈ (π/2, π] such that A is sectorial of base point ω and
angle θ0.

(b) S ∈ C1(R∗+;L(X)) and there exists N > 0 such that

‖(A− ωI)S(t)‖ 6 N

t
eωt ∀t > 0. (2.2.8)

(c) There exists θ ∈ (0, π/2) such S has an analytic extension to Σω,θ and
z 7→ e−ωzS(z) is bounded on Σω,θ′ for all 0, θ′ < θ.
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Proof. First, we observe Theorem 4 ensures that (a) ⇒ (b). In the proof of
the remaining statements we note that one can assume ω = 0, as we did in
the proof of Theorem 4, without loss of generality.

(b)⇒ (c) We claim that S ∈ C∞(R∗+;L(X)) and

{
S(t)X ⊂ D(An)

S(n)(t) = AnS(t) =
(
AS
(
t
n

))n
=
(
S′
(
t
n

))n ∀n > 1 , ∀t > 0.

(2.2.9)
Indeed, (2.2.9) holds true for n = 1. Assuming it holds for some n > 1 we
have that

S
( t

n+ 1

)
AnS

( nt

n+ 1

)
X ⊂ D(A).

This shows that S(t)X ⊂ D(An+1) and(
S′
( t

n+ 1
))n+1

=
(
AS
( t

n+ 1
))n+1

= An+1S(t) = S(n+1)(t).

Next, by (2.2.8) and (2.2.9) we deduce that

‖S(n)(t)‖ 6 nnNn

tn
∀n > 1 , ∀t > 0.

Therefore, for every t > 0,

∞∑
n=0

|z − t|n

n!
‖S(n)(t)‖ 6

∞∑
n=0

|z − t|n

n!
nnNn

tn
<∞ (2.2.10)

for all complex numbers z in the disc

C
(
t,

t

Ne

)
:=
{
z ∈ C : |z − t| < t

Ne

}
.

Consequently, the series
∑∞

n=0
(z−t)n
n! S(n)(t) defines an analytic function Ft on

C(t, t
Ne). Taking θ = arctan( 1

Ne), we conclude that there is a unique analytic
function F on

Σ0,θ ⊂
⋃
t>0

C
(
t,

t

Ne

)
which coincides with Ft on any C(t, t

Ne) and therefore with S on R∗+.
Finally, in order to show that S(z) = F (z) is bounded on every subsector

of Σ0,θ, fix any 0 < q < 1 and set θ′ = arctan( q
Ne). Then, by (2.2.10), for all

z ∈ Σ0,θ′ we have that

‖S(z)‖ 6
∞∑
n=0

|=z|n

n!
‖S(n)(<z)‖ 6

∞∑
n=0

|=z|n

(<z)n
nnNn

n!
6
∞∑
n=0

nn

n!en
qn <∞.
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(c)⇒ (a) We show that, since S(z) is analytic on a sector of the form Σ0,θ,
where 0 < θ < π/2, the integral representation formula (1.4.7) for R(λ,A)—
which holds for <λ > 0—can be extended to the sector Σ0,π+θ

2
. Observe that

any λ in such a sector can be written in the form

λ = |λ|eiα with |α| < π + θ

2
. (2.2.11)

Let us consider the case of α > 0 first. Define

R(λ,A) =
∫
γ+

e−λzS(z) dz (2.2.12)

where
γ+ =

{
z ∈ C : z = re−i

3
4
θ , r > 0

}
.

−4. −3. −2. −1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

−3.

−2.

−1.

1.

2.

3.

4.

5.

6.

0

Σ0,θ

Σ0,π+θ
2

λ = |λ|eiα

γ+ = re−i
3
4
θ

a

b

c

d

k

I

i

We now show that the integral in (2.2.12) converges to the resolvent of A and
(2.2.2) holds. Indeed, denoting by M an upper bound for ‖S(z)‖ on γ+, since

R(λ,A) =
∫ +∞

0
e−λre

−i 34 θS
(
re−i

3
4
θ
)
e−i

3
4
θ dr

we have that

‖R(λ,A)‖ 6M
∫ +∞

0
e−r<(|λ|ei(α−

3
4 θ
)
dr = M

∫ +∞

0
e−r|λ| cos(α− 3

4
θ) dr ,
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where
cos
(
α− 3

4
θ
)
> min

{
cos
(3

4
θ
)
, sin

(θ
4

)}
=: Kθ > 0

because
−3

4
θ < α− 3

4
θ <

π

2
− θ

4
.

Therefore, the integral in (2.2.12) converges and

‖R(λ,A)‖ 6 M

Kθ|λ|

for all λ of the form (2.2.11) with α > 0. On the other hand, for α < 0 one
can repeat the above argument replacing γ+ by

γ− :=
{
z ∈ C : z = rei

3
4
θ , r > 0

}
.

Finally, to prove that the integral in (2.2.12) gives the resolvent of A it
suffices to observe that, for all λ of the form (2.2.11) with α > 0, we have

(λI −A)R(λ,A) =
∫
γ+

e−λz
(
λS(z)−AS(z)

)
dz

=
∫
γ+

e−λz
(
λS(z)− S′(z)

)
dz = I .

This shows that Σ0,π+θ
2
⊂ ρ(A) and completes the proof. �

Definition 11 A C0-semigroup is called analytic if verifies any of the condi-
tions of Theorem 5.

The following proposition provides a useful sufficient condition for an op-
erator to be sectorial.

Proposition 15 Let A : D(A) ⊂ X → X be a densely defined closed linear
operator such that, for some ω ∈ R and M > 0, Πω ⊂ ρ(A) and

‖R(λ,A)‖ 6 M

|λ− ω|
∀λ ∈ Πω . (2.2.13)

Then A is the infinitesimal generator of an analytic semigroup.

Proof. As is by now well known, we can develop the reasoning assuming that
ω = −1, which in turn implies that ρ(A) contains the imaginary axis. Since
iβ ∈ ρ(A) for all β ∈ R, by Proposition 4 we conclude that

C
(
iβ,

1
‖R(iβ,A)‖

)
⊂ ρ(A) ∀β 6= 0.



42 CHAPTER 2. SPECIAL CLASSES OF SEMIGROUPS

So, owing to (2.2.13), C(iβ, |β|/M) ⊂ ρ(A) for all β ∈ R \ {0}. Therefore

Σ0,θ ⊂
⋃
β 6=0

C(iβ, |β|/M) ∪Π−1 ⊂ ρ(A)

with
θ =

π

2
+ arctan

( 1
M

)
.

0

iβ
|β|/M

Σ0,π
2

+arctan 1
M

Now, fix any 0 < q < 1 and let θ′ = π
2 + arctan( q

M ). Then(1.4.3) yields

R(λ,A) =
∞∑
n=0

(−1)n(<λ)nR(i=λ,A)n+1 ∀λ ∈ Σ0,θ \Π0.

Hence

‖R(λ,A)‖ 6
∞∑
n=0

|<λ|n
( M

|=λ|

)n+1
6

M

|=λ|

∞∑
n=0

qn =
M

1− q
1
|=λ|

. (2.2.14)

Moreover, for all λ ∈ Σ0,θ \Π0 we have

|λ|2 = (<λ)2 + (=λ)2 6
[( q
M

)2
+ 1
]
(=λ)2,

which, combined with (2.2.14), yields

‖R(λ,A)‖ 6
√
q2 +M2

(1− q)|λ|
∀λ ∈ Σ0,θ \Π0. �
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Exercise 11 Let A : D(A) ⊂ X → X be a self-adjoint dissipative operator
on an Hilbert space (X, 〈·, ·〉). Then A is the infinitesimal generator of a C0-
semigroup of contractions on X, S, by Theorem 3. Prove that S is analytic.

Solution. Fix any λ ∈ Π0 and y ∈ X. Then x = R(λ,A)y satisfies λx−Ax = y
and, taking the scalar product with x we obtain

<λ|x|2 6 <λ|x|2 − 〈Ax, x〉 = <〈x, y〉
=λ|x|2 = =〈x, y〉

because 〈Ax, x〉 6 0. Thus, since <λ > 0 for all λ ∈ Π0 we have that[
(<λ)2 + (=λ)2

]
|x|4 6 (<〈x, y〉)2 + (=〈x, y〉)2 = |〈x, y〉|2 6 |y|2|x|2

which yields ‖R(λ,A)‖ 6 1/|λ|. The conclusion follows by Proposition 15. �

As a first consequence of analyticity, we now give a result due to Trig-
giani [8] on the asymptotic behavior of S(t).

Proposition 16 (Triggiani) Let A : D(A) ⊂ X → X be the infinitesimal
generator of an analytic semigroup S. Then s(A) = ω0(S).

Proof. Proceeding by contradiction, let us suppose that

s(A) 6 −2ε < 0 = ω0(S). (2.2.15)

Since A is sectorial and ω0 = 0,

Σ−ε,θ ⊂ ρ(A) for some θ ∈
(π

2
, π
]
.

0

−2ε
Σ−ε,θ

γ+
η

γ−η

Fix any η ∈ (π2 , θ) and let

γ±η =
{
z ∈ C : z = −ε+ re±iη , r > 0

}
.
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Then for all t > 0

S(t) =
1

2πi

{∫
γ−η

eλtR(λ,A) dλ+
∫
γ+
η

eλtR(λ,A) dλ
}
.

Therefore

‖S(t)‖ 6 M(η)
2π

∫ +∞

0
e(r cos η−ε)t

{ 1
|reiη − ε|

+
1

|re−iη − ε|

}
dr.

Since
|re±iη − ε|2 = r2 + ε2 − 2rε cos η > 2rε(1− cos η),

we conclude that

‖S(t)‖ 6 M(η)
π

e−εt
∫ +∞

0

ert cos η√
2rε(1− cos η)

dr

=
M(η)

π
√

2ε(1− cos η)
e−εt√
t

∫ +∞

0

es cos η

√
s

ds ∀t > 0,

which contradicts ω0(S) = 0. �

Example 13 We return to the heat equation studied in Example 9 and Ex-
ercise 8 to show that the associated semigroup is analytic.

Let us consider the case p = 2 first. Then operator A in (2.1.11) is self-
adjoint and dissipative. Therefore the corresponding semigroup is analytic
thanks to Exercise 11.

Next, for p > 2 let X = Lp(0, π; C) and consider the operator defined by{
D(A) = W 2,p(0, π; C) ∩W 1,p

0 (0, π; C)
Af(x) = f ′′(x) x ∈ (0, π) a.e.

(2.2.16)

Proceeding as in Exercise 8 one can show that σ(A) = {−n2 : n > 1}. Let
<λ > 0. For any fixed g ∈ X consider the Sturm-Liouville system{

λf(x)− f ′′(x) = g(x), 0 < x < π

u(0) = 0 = u(π).
(2.2.17)

By multiplying both members of the equation in (2.2.17) by f |f |p−2 and in-
tegrating by parts over (0, π) one obtains

λ

∫ π

0
|f(x)|p dx+

p

2

∫ π

0
|f ′(x)|2|f(x)|p−2 dx

+
p− 2

2

∫ π

0
|f(x)|p−4(f)2(f ′(x))2 dx =

∫ π

0
g(x)f(x)|f(x)|p−2 dx



2.2. ANALYTIC SEMIGROUPS 45

which in turn yields

<λ
∫ π

0
|f(x)|p dx+

p

2

∫ π

0
|f ′(x)|2|f(x)|p−2 dx

+
p− 2

2
<
∫ π

0
|f(x)|p−4(f)2(f ′(x))2 dx 6 |g|p |f |p−1

p (2.2.18)

and

=λ
∫ π

0
|f(x)|p dx+

p− 2
2
=
∫ π

0
|f(x)|p−4(f)2(f ′(x))2 dx

= =
∫ π

0
g(x)f(x)|f(x)|p−2 dx. (2.2.19)

Since

<
∫ π

0
|f(x)|p−4(f)2(f ′(x))2 dx > −

∫ π

0
|f(x)|p−2|f ′(x)|2 dx ,

from (2.2.18) if follows that

<λ
∫ π

0
|f(x)|p dx+

∫ π

0
|f ′(x)|2|f(x)|p−2 dx 6 |g|p |f |p−1

p .

Hence, recalling that <λ > 0,

<λ|f |p 6 |g|p (2.2.20)

and ∫ π

0
|f ′(x)|2|f(x)|p−2 dx 6 |g|p |f |p−1

p . (2.2.21)

Similarly, since∣∣∣= ∫ π

0
|f(x)|p−4(f)2(f ′(x))2 dx

∣∣∣ 6 ∫ π

0
|f ′(x)|2|f(x)|p−2 dx ,

by (2.2.19) and (2.2.21) we deduce that

|=λ|
∫ π

0
|f(x)|p dx 6 p

2
|g|p |f |p−1

p .

or
|=λ| |f |p 6

p

2
|g|p . (2.2.22)

Finally, by combining (2.2.20) and (2.2.22) we obtain

|f |p 6
√

4 + p2

2|λ|
|g|p ∀<λ > 0 (2.2.23)

which ensures that the corresponding semigroup is analytic even for p > 2.
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2.3 Compact semigroups

We recall that an operator Λ ∈ L(X) is called compact if it maps bounded
sets into relatively compact sets. Equivalently, Λ is compact if, denoting by
B1 the unit ball of X, one has that Λ(B1) is compact in X.

Typical examples of compact operators are operators of finite rank, that
is, such that dim Λ(X) < ∞. Observe that the identity map I : X → X is
compact if and only if dimX <∞.

The family of all compact operators on X is a closed subspace of L(X)
(see for instance [3]), here denoted by K(X).

Exercise 12 Let A : D(A) ⊂ X → X be a closed operator. Prove that the
following properties are equivalent:

(a) R(λ,A) ∈ K(X) for all λ ∈ ρ(A);

(b) R(λ0, A) ∈ K(X) for some λ0 ∈ ρ(A).

Solution. Observe that, by the resolvent identity (1.4.2) on has that

R(λ,A) =
[
(λ0 − λ)R(λ,A) + I

]
R(λ0, A) . �

Let now S be a C0-semigroup of bounded linear operators on X.

Definition 12 S is called compact if S(t) ∈ K(X) for all t > 0 and eventually
compact if there exists t0 > 0 such that S(t0) ∈ K(X).

Lemma 2 If S(t0) ∈ K(X) for some t0 > 0 then

(a) S(t) ∈ K(X) for all t > t0;

(b) S ∈ C
(
[t0,∞);L(X)

)
.

Proof. Property (a) is an easy consequence of the semigroup property

S(t) = S(t− t0)S(t0)

since the product of a bounded operator with a compact one is compact.
As for (b), since S(t0)(B1) is compact in X, recalling (1.7.1) we have that

‖S(t+ h)− S(t)‖ = sup
x∈B1

|S(t+ h)x− S(t)x|

= sup
x∈B1

∣∣(S(t+ h− t0)x− S(t− t0)
)
S(t0)x

∣∣→ 0 (t→ t0)

for all t > t0. �

Theorem 6 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup S ∈ G(M,ω). Then the following properties are equivalent:
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(a) S is compact;

(b) S ∈ C
(
R∗+;L(X)

)
and R(λ,A) ∈ K(X) for some (hence for all) λ ∈

ρ(A).

Proof. (a)⇒ (b) Since S ∈ C
(
R∗+;L(X)

)
by Lemma 2, recalling the integral

representation formula (1.4.6) we have that

R(λ,A) = lim
ε↓0

∫ ∞
ε

e−λtS(t) dt ∀λ ∈ Πω, (2.3.1)

where the integral
∫∞
ε e−λtS(t) dt converges in L(X) and the limit exists be-

cause S is bounded near zero. Moreover, for every ε > 0 the operator

Rε(λ,A) :=
∫ ∞
ε

e−λtS(t) dt (λ ∈ Πω)

is compact because K(X) is closed. Since

∥∥R(λ,A)−Rελ,A)
∥∥ 6 ∥∥∥∫ ε

0
e−λtS(t) dt

∥∥∥ 6Mε→ 0 as ε ↓ 0,

we conclude that R(λ,A) ∈ K(X), again by the fact that K(X) is closed.

(b)⇒ (a) Since S ∈ C
(
R∗+;L(X)

)
, we have that (2.3.1) holds in the uniform

operator topology and, for any fixed s > 0,

λR(λ,A)S(s)− S(s) =
∫ ∞

0
λe−λt

(
S(t+ s)− S(s)

)
dt ∀λ ∈ Πω.

Therefore, taking λ > ω, for all δ > 0 we have that∥∥λR(λ,A)S(s)− S(s)
∥∥

6
∫ δ

0
λe−λt

∥∥S(t+ s)− S(s)
∥∥dt+

∫ ∞
δ

λe−λt
∥∥S(t+ s)− S(s)

∥∥dt
Now, ∫ δ

0
λe−λt

∥∥S(t+ s)− S(s)
∥∥dt 6 sup

06t6δ

∥∥S(t+ s)− S(s)
∥∥.

On the other hand,∫ ∞
δ

λe−λt
∥∥S(t+ s)− S(s)

∥∥dt 6M ∫ ∞
δ

λe−λt
(
eω(t+s) + eωs

)
dt

6Meωs
( λe(ω−λ)δ

λ− ω
+ e−λδ

)
→ 0 as λ ↑ ∞.
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Thus,

lim sup
λ↑∞

∥∥λR(λ,A)S(s)− S(s)
∥∥ 6 sup

06t6δ

∥∥S(t+ s)− S(s)
∥∥

which in turn implies that λR(λ,A)S(s) → S(s) as λ ↑ ∞ because δ is arbi-
trary. Since λR(λ,A)S(s) is compact for all λ > ω, so is S(s) for all s > 0
because K(X) is closed. �

Corollary 3 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup of bounded linear operators on X denoted by S. If

(a) S ∈ C
(
[t0,∞);X

)
for some t0 > 0, and

(b) R(λ,A) ∈ K(X) for some (hence for all) λ ∈ ρ(A),

then S(t) ∈ K(X) for all t > t0.

Example 14 Let us consider the heat semigroup of Example 13 in the case
of p = 2. In view of Theorem 6, in order to prove that such a semigroup
is compact, it suffices to show that R(λ,A) ∈ K(X) for some λ ∈ ρ(A).
Now, taking λ = 1 from (2.2.19) and (2.2.20) it follows that |f ′|2 6 |g|2. In
other words, R(1, A) maps the unit ball of L2(0, π; C) into the unit ball of
H1

0 (0, π; C). Since the immersion H1
0 (0, π; C) ⊂ C0,1/2([0, π]; C) is continuous,

by Ascoli’s theorem we conclude that R(1, A) is compact. Therefore the heat
semigroup on (0, π) is compact.

2.4 Problems

1. Consider the heat equation in Lp(R) with p > 2 that we studied in
Example 10. Prove that the associated semigroup is analytic but not
compact.

3 Perturbation of semigroups

3.1 Perturbation by bounded operators

In this chapter we shall stress the connection between a C0-semigroup, S(t),
and its infinitesimal generator A by adopting the equivalent notation

S(t) = etA ∀t > 0.
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Theorem 7 Let A : D(A) ⊂ X → X be the infinitesimal generator of a C0-
semigroup of bounded linear operators on X such that ‖etA‖ 6 Meωt and let
B ∈ L(X). Then A+ B : D(A) ⊂ X → X is the infinitesimal generator of a
C0-semigroup of bounded linear operators on X satisfying

‖et(A+B)‖ 6Me(ω+M‖B‖)t ∀t > 0. (3.1.1)

Proof. Step 1: the special case ω = 0 and M = 1.
In view of Proposition 5 we have that ρ(A) ⊃ R∗+ and

λI − (A+B) =
[
I −BR(λ,A)

]
(λI −A) ∀λ > 0. (3.1.2)

Therefore

λ ∈ ρ(A+B) ⇐⇒
[
I −BR(λ,A)

]−1 ∈ L(X) .

Now, for all λ ∈ Π‖B‖ we have that ‖BR(λ,A)‖ < 1. So λ ∈ ρ(A+B) and

R(λ,A+B) = R(λ,A)
∞∑
n=0

(
BR(λ,A)

)n
. (3.1.3)

Moreover

‖R(λ,A+B)‖ 6 1
<λ

∞∑
n=0

(‖B‖
<λ

)n
=

1
<λ− ‖B‖

. (3.1.4)

Then, since A + B : D(A) ⊂ X → X is closed, by Theorem 2 we conclude
that A+B is the infinitesimal generator of a C0-semigroup of bounded linear
operators on X satisfying

‖et(A+B)‖ 6 e‖B‖t ∀t > 0.

Step 2: the general case.
Let us consider Aω = A − ωI. The corresponding semigroup etAω = e−ωtetA

belongs to G(M, 0). Now, denote by ||| · ||| the equivalent norm defined in
(1.5.10) for which etAω turns out to be a contraction semigroup and observe
that

|||Bx||| 6M ‖B‖ |x| 6M ‖B‖ |||x||| ∀x ∈ X.

By Step 1, Aω + B generates a C0-semigroup of bounded linear operators on
X satisfying

|||et(Aω+B)||| 6 e|||B|||t 6 eM‖B‖t ∀t > 0.

Therefore, for all x ∈ X,

|et(Aω+B)x| 6 |||et(Aω+B)x||| 6 eM‖B‖t|||x||| 6MeM‖B‖t|x| ∀t > 0.

Since et(Aω+B) = e−ωtet(A+B), the conclusion follows. �
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Lemma 3 Let A : D(A) ⊂ X → X be the infinitesimal generator of a C0-
semigroup on X and let B ∈ L(X). Then et(A+B) is a solution of the Volterra
integral equation

V (t)x = etAx+
∫ t

0
e(t−s)ABV (s)x ds ∀x ∈ X. (3.1.5)

Proof. For any x ∈ D(A) and t > 0 the function H : [0, t]→ X defined by

H(t) = e(t−s)Aes(A+B)x

is continuously differentiable and satisfies for all 0 < s < t

H ′(s) = −Ae(t−s)Aes(A+B)x+ e(t−s)A(A+B)es(A+B)x

= e(t−s)ABes(A+B)x.

By integrating the above relation over [0, t] we obtain

et(A+B)x = etAx+
∫ t

0
e(t−s)ABes(A+B)x ds ∀x ∈ D(A).

Since all the operators in the above equation are continuos, the identity holds
for all x ∈ X and the conclusion follows. �

For any T > 0 we denote by B
(
0, T ;L(X)

)
the Banach space of all maps

Λ : [0, T ]→ L(X) such that

sup
t∈[0,T ]

‖Λ(t)‖ <∞.

Proposition 17 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup on X such that ‖etA‖ 6 Meωt and let B ∈ L(X). Then there
exists a unique family {V (t)}t>0 such that

(a) V (t) ∈ L(X) for all t > 0,

(b) t 7→ V (t)x is continuous on R+ for all x ∈ X, and

(c) (3.1.5) is satisfied for all t > 0.

Moreover

V (t) =
∞∑
n=0

Vn(t) ∀t > 0 (3.1.6)

where {Vn(t)}t>0 is defined by

V0(t) = etA and Vn+1(t)x =
∫ t

0
e(t−s)ABVn(s)x ds ∀x ∈ X. (3.1.7)

Furthermore, the series in (3.1.6) converges in B
(
0, T ;L(X)

)
for all T > 0.
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Proof. Define {Vn(t)}t>0 by (3.1.7). Then t 7→ Vn(t)x is continuous on R+ for
all x ∈ X. Moreover, proceeding by induction one can easily prove that

‖Vn(t)‖ 6Meωt
Mn‖B‖ntn

n!
∀t > 0 , ∀n > 0

which in turn shows that the series in (3.1.6) converges in L∞
(
0, T ;L(X)

)
for all T > 0. So, t 7→ V (t)x is continuous on R+ and satisfies (3.1.5). This
shows the existence part of the conclusion. As for uniqueness, let {U(t)}t>0

be another family of operators satisfying (a), (b), and (c). Then for all x ∈ X

∥∥(V (t)− U(t)
)
x
∥∥ 6M‖B‖∫ t

0
eω(t−s)∥∥(V (s)− U(s)

)
x
∥∥ ds ∀t > 0.

Now, Gronwall’s lemma ensures that U ≡ V . �

Corollary 4 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup on X such that ‖etA‖ 6Meωt and let B ∈ L(X). Then

‖et(A+B) − etA‖ 6Meωt(eM‖B‖t − 1).

Proof. By Proposition 17 and Theorem 7 we obtain

∣∣et(A+B)x− etAx
∣∣ 6 ∫ t

0
‖e(t−s)A‖ ‖B‖ ‖es(A+B)‖ |x| ds

6
∫ t

0
Meω(t−s) ‖B‖Me(ω+M‖B‖)s |x| ds

= Meωt
(
eM‖B‖t − 1

)
|x|

The conclusion follows. �

Theorem 8 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
compact C0-semigroup of bounded linear operators on X and let B ∈ L(X).
Then A + B : D(A) ⊂ X → X is the infinitesimal generator of a compact
C0-semigroup of bounded linear operators on X.

Proof. By Theorem 6 we have that etA is continuous in the uniform operator
topology for t > 0 and R(λ,A) is compact for all λ ∈ ρ(A). Moreover, for all
λ > ω we have that ‖R(λ,A)‖ 6 M/(λ − ω) and so, for λ > ω + M‖B‖ + 1,
the series

R(λ,A+B) = R(λ,A)
∞∑
n=0

(
BR(λ,A)

)n (3.1.8)

converges in L(X). Since each term on the right-hand side is compact, so is
R(λ,A+B) for all λ ∈ ρ(A+B). Thus, appealing to Theorem 6 once again,
it suffices to show that et(A+B) is continuous in the uniform operator topology
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for t > 0. Since et(A+B) is given by the series in (3.1.6), this continuity prop-
erty follows from the fact that, being etA continuous in the uniform operator
topology for t > 0, so is each Vn in (3.1.7) and also their sum because the
series converges in B

(
0, T ;L(X)

)
for all T > 0. �

Example 15 Let us apply Theorem 7 to solve the wave equation with lower
order terms

∂2u
∂t2

= ∂2u
∂x2 + a(x) ∂u∂t + b(x) ∂u∂x + c(x)u (t, x) ∈ R× (0, π)

u(t, 0) = 0 = u(t, π) t ∈ R
u(0, x) = u0(x) , ∂u

∂t (0, x) = u1(x) x ∈ (0, π).

(3.1.9)

In Example 11, we have shown that the operator A defined in (2.1.9) is the
infinitesimal generator of a unitary group on X = H1

0 (0, π)× L2(0, π). Let

B
( u
v

)
=
( 0 0
B1 B2

)( u
v

)
=
( 0
B1u+B2v

)
∀
( u
v

)
∈ X ,

where {
B1u = b(x)u′ + c(x)u ∀u ∈ H1

0 (0, π)
B2v = a(x)v ∀v ∈ L2(0, π).

Assuming
a, b, c ∈ L∞(0, π),

one obtains that ∥∥∥B( u
v

)∥∥∥ 6M∥∥∥( u
v

)∥∥∥ ∀
( u
v

)
∈ X

with
M =

√
|a|2∞ + |b|2∞ + |c|2∞.

Therefore A + B is the infinitesimal generator of a C0-group on X which
provides the solution of (3.1.9). Moreover, by (3.1.1) we conclude that

‖et(A+B)‖ 6 eM |t| ∀t ∈ R.

3.2 Perturbation of sectorial operators

Theorem 9 Let A : D(A) ⊂ X → X be the infinitesimal generator of an
analytic semigroup and let B : D(B) ⊂ X → X be a closed linear operator
satisfying

(a) D(B) ⊃ D(A), and

(b) ∃ a, b > 0 such that |Bx| 6 a|Ax|+ b|x| for all x ∈ D(A).
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There exists α > 0 such that if 0 6 a 6 α then A+B : D(A) ⊂ X → X is the
infinitesimal generator of an analytic semigroup.

Proof. Step 1: the case ω = 0.
Owing to Theorem 5 we have that there is an angle θ0 ∈ (π2 , π] such that
Σ0,θ0 ⊂ ρ(A) and

‖R(λ,A)‖ 6 Mθ

|λ|
∀θ ∈ (0, θ0), ∀λ ∈ Σ0,θ.

Fix any θ ∈ (π/2, θ0) and let λ ∈ Σ0,θ. Then for every x ∈ X

|BR(λ,A)x| 6 a|AR(λ,A)x|+ b|R(λ,A)x|

6 a(Mθ + 1)|x|+ bMθ

|λ|
|x|.

Hence, fixing any ε > 0 and choosing

α =
1

2(Mθ + 1)
and |λ| > 2(bMθ + ε) ,

we have that

‖BR(λ,A)‖ 6 1
2

+
bMθ

2(bMθ + ε)
=

2bMθ + ε

2(bMθ + ε)
< 1 . (3.2.1)

Therefore I−BR(λ,A) is invertible and, recalling (3.1.2), by (3.2.1) we obtain

‖R(λ,A+B)‖ 6
∥∥[I −BR(λ,A)

]−1∥∥ ‖R(λ,A)‖ 6 2(bMθ + ε)Mθ

ε|λ|

for all λ ∈ Π2(bMθ+ε). By Proposition 15 we conclude that A + B is the
infinitesimal generator of an analytic semigroup.

Step 2: the general case.
Consider Aω = A − ωI with the associated semigroup etAω = e−ωtetA which
belongs to G(M, 0). Assumption (b) implies that

|Bx| 6 a|Aωx|+ (aω + b)|x| ∀x ∈ D(A).

By Step 1, Aω +B = A+B − ωI is the infinitesimal generator of an analytic
semigroup and the same is true for A+B. �

Corollary 5 Let A : D(A) ⊂ X → X be the infinitesimal generator of an
analytic semigroup and let B ∈ L(X). Then A + B : D(A) ⊂ X → X is the
infinitesimal generator of an analytic semigroup.
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Example 16 Consider the problem
∂u
∂t = ∂2u

∂x2 + b(x)∂u∂x + c(x)u (t, x) ∈ R+ × (0, π)
u(t, 0) = 0 = u(t, π) t > 0
u(0, x) = u0(x) x ∈ (0, π)

(3.2.2)

with u0 ∈ X = L2(0, π; C). Denote by A the operator in (2.2.16) (with p = 2)
and define B : D(B) ⊂ X → X by{

D(B) = H1
0 (0, π; C)

Bf(x) = b(x)f ′(x) + c(x)f(x) x ∈ (0, π) a.e.

As shown in Example 13, A is the infinitesimal generator of an analytic semi-
grooup on X. Assume now

b ∈ L∞(0, π; C) and c ∈ L2(0, π; C).

Then, in view of (3.5.2) and (3.5.3), we have that for all f ∈ D(A)

|Bf | 6 |b|∞|f ′|2 + |c|2|f |∞ 6
(
|b|∞ +

√
π

2
|c|2
)
|f ′|2

6
(
|b|∞ +

√
π

2
|c|2
)√
|f ′′|2|f |2.

So, by the elementary inequality

xy 6
ε

2
x2 +

1
2ε
y2, (3.2.3)

which holds for all x, y ∈ R and all ε > 0, we conclude that

|Bf | 6 ε|Af |+ bε|f | ∀ ∈ D(A)

for some constant bε > 0.

Therefore, by Theorem 9, A+B generates an analytic semigroup which gives
the unique solution of (3.2.2).

3.3 Perturbation of dissipative operators

Let X be an Hilbert space with scalar product 〈·, ·〉. We recall that a dissipa-
tive operator A : D(A) ⊂ X → X is called m-dissipative if I −A is surjective.

Theorem 10 Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be linear
operators satisfying

(a) D(B) ⊃ D(A), and
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(b) ∃ a ∈ [0, 1), ∃ b > 0 such that |Bx| 6 a|Ax|+ b|x| for all x ∈ D(A).

If, in addition,

(c) A+ tB is dissipative for all 0 6 t 6 1, and

(d) ∃ t0 ∈ [0, 1] such that A+ t0B is m-dissipative,

then A+ tB is m-dissipative for all 0 6 t 6 1.

Proof. It suffices to show that there exists δ > 0 such that, if A + t0B is
m-dissipative for some t0 ∈ [0, 1], then A+ tB is m-dissipative for all t ∈ [0, 1]
satisfying |t0 − t| 6 δ.

Assume that A+ t0B is m-dissipative for some t0 ∈ [0, 1]. Then

R(t0) :=
[
I − (A+ t0B)

]−1 satisfies ‖R(t0)‖ 6 1.

We now proceed to show that BR(t0) is bounded. Owing to assumption
(b), for all x ∈ D(A) we have that

|Bx| 6 a
(
|(A+ t0B)x|+ t0|Bx|

)
+ b|x|

6 a|(A+ t0B)x|+ a|Bx|+ b|x|

and so

|Bx| 6 a

1− a
|(A+ t0B)x|+ b

1− a
|x| ∀x ∈ D(A). (3.3.1)

Since R(t0)(X) ⊂ D(A) and (A+ t0B)R(t0) = R(t0)− I, by (3.3.1) we get

|BR(t0)x| 6 a

1− a
|R(t0)x− x|+ b

1− a
|R(t0)x| 6 2a+ b

1− a
|x| (3.3.2)

for all x ∈ X, which shows that BR(t0) is bounded.
Now, since

I − (A+ tB) = I − (A+ t0B) + (t0 − t)B
=

[
I + (t0 − t)BR(t0)

] [
I − (A+ t0B)

]
and I − (A + t0B), we deduce that I − (A + tB) is invertible if and only if
I + (t0− t)BR(t0) is invertible. In view of (3.3.2), this is definitely the case if

‖(t0 − t)BR(t0)‖ 6 |t0 − t|
2a+ b

1− a
< 1.

So, the proof is completed choosing δ = 1−a
2a+b+1 . �

Corollary 6 Let A : D(A) ⊂ X → X be the infinitesimal generator of a C0-
semigroup of contractions on X and let B : D(B) ⊂ X → X be a dissipative
operator satisfying
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(a) D(B) ⊃ D(A), and

(b) ∃ a ∈ [0, 1), ∃ b > 0 such that |Bx| 6 a|Ax|+ b|x| for all x ∈ D(A).

Then A+B : D(A) ⊂ X → X is the infinitesimal generator of a C0-semigroup
of contractions on X.

Example 17 The Schrödinger equation with potential V : (0, π)→ C
∂u
∂t (t, x) = i ∂

2u
∂x2 + V (x)u (t, x) ∈ R× (0, π)

u(t, 0) = 0 = u(t, π) t ∈ R
u(0, x) = u0(x) x ∈ (0, π)

can be studied using Theorem 7. We know that A defined in (2.1.11) is self-
adjoint and dissipative, so that iA generates a unitary group on L2(0, π; C)
by Stone’s theorem. Therefore, if V ∈ L∞(0, π; C), then setting

Bf(x) = V (x)f(x) ∀f ∈ X,

from Theorem 7 if follows that iA + B is the infinitesimal generator of a
C0-group on X satisfying

‖et(iA+B)‖ 6 e|V |∞|t| ∀t ∈ R.

We can say more about this problem by using Corollary 6. Indeed, since

<〈Bf, f〉 =
∫ π

0
V (x)|f(x)|2dx ∀f ∈ X,

we conclude that if <V (x) 6 0 for a.e. x ∈ (0, π), then

‖et(iA+B)‖ 6 1 ∀t > 0.

3.4 Stability under compact perturbations

A useful stability result due to Gibson [5] ensures that, perturbing the gener-
ator of an exponentially stable semigroup by a compact operator, one obtains
an exponentially stable semigroup again, provided the perturbed semigroup
is strongly stable. The original proof given in [5] used approximation by finite
dimensional subspaces and a contradiction argument. The topic was then in-
vestigated by several authors including Triggiani [7]. Following [1], we now
give a completely different proof of Gibson’s theorem based on a simple direct
argument, extending the analysis to Banach spaces, and relaxing the original
compactness assumptions.
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Theorem 11 Let X be a reflexive Banach space and let A : D(A) ⊂ X → X
be the infinitesimal generator of a C0−semigroup, etA, satisfying

‖etA‖ 6M0e
−ω0t ∀t ≥ 0 (3.4.1)

for some constants M0, ω0 > 0. Let B ∈ L(X) be such that

lim
t→+∞

et(A+B)x = 0 ∀x ∈ X , and (3.4.2)

BetA is compact ∀t > 0 . (3.4.3)

Then, for some constants MB, ωB > 0,

‖et(A+B)‖ 6MBe
−ωBt ∀t ≥ 0 .

Proof. To begin with, observe that, as in Remark 1, by the Banach-Steinhaus
Theorem we deduce from (3.4.2) that, for some constant M1 > 0,

‖et(A+B)‖ 6M1 ∀t ≥ 0. (3.4.4)

Now, appealing to a well-known characterization of exponential stability
for strongly continuous semigroups (see Problems 1.7), we conclude that

lim
t→+∞

‖et(A+B)‖ = 0 (3.4.5)

suffices to obtain the desired conclusion. In order to prove (3.4.5), define

Λtx =
∫ t

0
e(t−s)(A+B)BesAx ds, ∀x ∈ X , ∀t ≥ 0 .

By Lemma 3 applied to Ã := A+B and B̃ := −B we have that

et(A+B)x = etAx+ Λtx , ∀x ∈ X , ∀t ≥ 0 . (3.4.6)

In view of (3.4.6) and (3.4.1) we have that, for every t ≥ 0,

‖et(A+B)‖ = sup
|x|61

|et(A+B)x|

6 sup
|x|61

|etAx|+ sup
|x|61

|Λtx| 6M0e
−ω0t + sup

|x|61
|Λtx|

(3.4.7)

Next, let tn be any sequence of positive numbers such that tn → +∞ as
n→∞ and choose vectors xn, with |xn| 6 1, such that

sup
|x|61

|Λtnx| < |Λtnxn|+
1
n
. (3.4.8)

Now, extract a weakly convergent subsequence—still labeled xn—to some limit
x̄ ∈ X. We claim that

Λtn(xn − x̄)→ 0 strongly as n→∞ . (3.4.9)
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Indeed, consider the sequence of vector-valued functions

φn(s) := BesA(xn − x̄) s ≥ 0 .

Owing to assumption (3.4.1), for all n ∈ N we have

|φn(s)| 6 2M0‖B‖e−ω0s ∀s ≥ 0 .

Moreover, on account of (3.4.3), φn(s) strongly converges to 0, as n→∞, for
all s > 0. Therefore, invoking Lebesgue’s dominated convergence theorem for
vector-valued functions, we conclude that φn → 0 in L1(0,∞;X) as n → ∞.
Consequently, thanks to (3.4.4),

|Λtn(xn − x̄)| 6M1

∫ ∞
0
|φn(s)| ds → 0 as n→∞ ,

which proves (3.4.9).
Finally, combining (3.4.7), (3.4.8) and (3.4.9) we obtain

‖etn(A+B)‖

6M0e
−ω0tn +

1
n

+ |Λtn(xn − x̄)|+ |Λtn x̄| → 0 as n→∞ , (3.4.10)

where, according to (3.4.6), the fact that

Λtn x̄ = etn(A+B)x̄− etnAx̄ → 0 as n→∞

follows from assumptions (3.4.1) and (3.4.2). Since {tn} is an arbitrary se-
quence going to ∞, (3.4.10) yields (3.4.5) and completes the proof. �

Example 18 Consider the heat equation with potential V on (0, π)
∂u
∂t = ∂2u

∂x2 + V (x)u (t, x) ∈ R+ × (0, π)
u(t, 0) = 0 = u(t, π) t > 0
u(0, x) = u0(x) x ∈ (0, π)

(3.4.11)

with u0 ∈ X = L2(0, π) and V ∈ C([0, π]).
Denote by A the operator in (2.2.16) (p = 2) and define

Bf(x) = V (x)f(x) a.e. x ∈ (0, π), ∀f ∈ X.

Then B ∈ L(X) and
‖B‖ = |V |∞. (3.4.12)

Moreover, as shown in Example 13, A is the infinitesimal generator of an
analytic semigroup on X and σ(A) = {−n2 : n > 1}. Let us prove that

‖etA‖ 6 e−t ∀t > 0. (3.4.13)
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Indeed, for any u0 ∈ X \ {0} the function v(t, x) := etAu0(x) satisfies

1
2
d

dt

∫ π

0
v2(t, x)dx = −

∫ π

0

(∂v
∂x

(t, x)
)2
dx 6 −

∫ π

0
v2(t, x)dx (t > 0)

thanks to Poincaré’s inequality (3.5.1). Thus, d
dt log |etAu0|2 6 −2 and

|etAu0| 6 e−t|u0| ∀t > 0.

Now, appealing to Theorem 7, by (3.4.12) we conclude that

‖et(A+B)‖ 6 e(|V |∞−1)t ∀t > 0 (3.4.14)

so that et(A+B) remains exponentially stable if |V |∞ < 1.
Let us prove that the same holds true under the weaker assumption

M := max
[0,π]

V < 1. (3.4.15)

Fix any u0 ∈ X and let u(t, x) = et(A+B)u0(x). Proceeding as above we obtain

1
2
d

dt

∫ π

0
u2(t, x)dx =

∫ π

0

{
V (x)u2(t, x)−

(∂v
∂x

(t, x)
)2}

dx

6 (M − 1)
∫ π

0
u2(t, x) dx

thanks to Poincaré’s inequality. So,

|etAu0| 6 e(M−1)t|u0| ∀t > 0 (3.4.16)

which yields exponential stability since M < 1.
Finally, observe that, for V ≡ 1, (3.4.11) fails to be even strongly stable

because it admits the stationary solution u(t, x) = sinx.

Example 19 Continuing the analysis of the previous example we now want
to prove the exponential decay at∞ of the solution of (3.4.11) when V satisfies
the conditions{

(a) V (x) 6 1 ∀x ∈ [0, π]
(b) ∃(α, β) ⊂ [0, π] : V (x) < 1 ∀x ∈ (α, β).

(3.4.17)

which are weaker than (3.4.15).
Recalling that etA is compact for t > 0 (see Example 14) and appealing to

Theorem 11, we conclude that et(A+B) is exponentially stable if it is strongly
stable. Let us show the last assertion by La Salle’s invariance argument. Fix
any u0 ∈ X and let u(t, x) = et(A+B)u0(x). Then, for all t > 0,

1
2
d

dt

∫ π

0
u2(t, x)dx =

∫ π

0

{
V (x)u2(t, x)−

(∂u
∂x

(t, x)
)2}

dx 6 0 (3.4.18)
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thanks to Poincaré’s inequality and assumption (3.4.17)-(a). The above in-
equality proves that E(t) := |etAu0|2 is nondcreasing and so

E(t) ↓ E∞ as t→ +∞. (3.4.19)

Take any sequence tn > 0 such that tn ↑ +∞ (for instance, tn = n). Since
E(t) 6 E(0), there exists a subsequence, still labeled tn, such that

un := etn(A+B)u0 ⇀ u∞ (n→∞)

and, since et(A+B) is compact for t > 0,

lim
n→∞

et(A+B)un = et(A+B)u∞ ∀t > 0.

So, in view of (3.4.19),

|et(A+B)u∞| = lim
n→∞

|et(A+B)un| = lim
n→∞

|e(tn+t)(A+B)u0|

= lim
t→+∞

|et(A+B)u0| =
√
E∞ ,

which implies that |et(A+B)u∞|2 = E∞ fr all t > 0. By differentiating such an
identity we have that U(t, x) = et(A+B)u∞(x) satisfies

0 =
1
2
d

dt

∫ π

0
U2(t, x)dx =

∫ π

0

{
V (x)U2(t, x)−

(∂U
∂x

(t, x)
)2}

dx

6
∫ π

0

{
U2(t, x)−

(∂U
∂x

(t, x)
)2}

dx 6 0 .

In other terms, the above are all equalities and U(t, ·) is a function realizing
the identity in Poincaré’s inequality. Therefore,

U(t, x) = c(t) sinx

and, since U solves the equation in (3.4.11),

c′(t) sinx = −c(t) sinx+ c(t)V (x) sinx.

Consequently, either V is constant, say V (x) = M for all x ∈ [0, π], or c ≡ 0.
In the former case, we must have M < 1 by (3.4.17)-(b). Then (3.4.16)
implies that et(A+B) is exponentially stable. In the latter, we get that et(A+B)

is strongly stable, hence exponentially stable by Theorem 11.

3.5 Problems

1. In the situation considered in Theorem 9, suppose that ‖etA‖ 6 Meωt.
Show that

‖et(A+B)‖ 6M(b)e(ω+Λ(b))t
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where Λ(b) > 0 satisfies
lim
b↓0

Λ(b) = 0.

Solution. By Theorem 9 we have that SB(t) := et(A+B) is analytic
provided that 0 6 a 6 α. Then ω0(SB) = s(A + B) by Proposition 16.
Moreover, the proof of Theorem 9 shows that

s(A+B) 6 ω + 2bMθ.

The conclusion follows from (1.3.3). �

2. Prove that for every f ∈ H1
0 (0, π) the following inequalities hold:

• Poincaré inequality
|f |2 6 |f ′|2. (3.5.1)

• Sobolev inequality

|f |∞ 6
√
π

2
|f ′|2. (3.5.2)

Moreover, show that both inequalities are sharp (i.e., for each in-
equality find a function f ∈ H1

0 (0, π) for which equality holds).

3. Prove that for every f ∈ H2(0, π) ∩ H1
0 (0, π) the following Gagliardo-

Nirenberg inequality holds:

|f ′|2 6
√
|f ′′|2|f |2. (3.5.3)

4. Let X = Lp(R+) with p > 1. Prove that the left-translation semigroup(
S(t)f

)
(x) = f(x+ t) x ∈ R+ a.e.

is strogly stable on X but not exponentially stable.

4 The inhomogeneous Cauchy problem

4.1 The Bochner integral

Let X be a separable Banach space and let f : J → X be a Borel function
on some interval J = (α, β) ⊂ R. Observe that, since the norm is continuous,
t 7→ |f(t)| is also a Borel function.

Definition 13 A vector-valued Borel function f : J → X is called Bochner
integrable if ∫

J
|f(t)| dt <∞.
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We summarize here the main properties of the Bochner integral.

• The function f : J → X is called simple if it can be represented as

f(t) =
m∑
k=1

xk · χJk(t) (4.1.1)

for some choice of elements xk ∈ X and disjoint (Lebesgue) measurable
subsets Jk ⊂ J such that J = ∪mk=1Jk, where we have denoted by χJk
the characteristic functions of the set Jk.

• The Bochner integral of a simple function f : J → X is defined as∫
J
f(t) dt =

m∑
k=1

xk · |Jk|

where |Jk| denotes the Lebesgue measure of Jk. One can show that
the above definition is independent of the representation of f in (4.1.1).
Moreover, for any simple function f : J → X we have that∣∣∣ ∫

J
f(t) dt

∣∣∣ 6 ∫
J
|f(t)| dt. (4.1.2)

• If f : J → X is Bochner integrable, then there exists a sequence {fn} of
simple functions such that

∀t ∈ J |fn(t)− f(t)| ↓ 0 as n→∞. (4.1.3)

Proof. Let {ej}j∈N a dense countable subset of X. Define

γn(t) = min{|f(t)− ej | : 1 6 j 6 n}
jn(t) = min{j 6 n : γn(t) = |f(t)− ej |}.

Then
fn(t) := ejn(t) (n > 1 , t ∈ J)

is a Borel simple function and {fn} satisfies (4.1.3). �

• Observe that, in view of (4.1.3),

lim
n→∞

∫
J
|fn(t)− f(t)| dt = 0.

This together with (4.1.2) implies that {
∫
J fn(t) dt} is a Cauchy sequence

in X. Therefore we can define∫
J
f(t) dt = lim

n→∞

∫
J
fn(t) dt

where {fn} is any sequence of simple functions satisfying (4.1.3).
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• Estimate (4.1.2) holds true for any Bochner integrable function f .

• For any sequence gn : J → X of Bochner integrable functions

lim
n→∞

∫
J
|gn(t)− f(t)| dt = 0 =⇒ lim

n→∞

∫
J
gn(t) dt =

∫
J
f(t) dt.

• Lebesgue’s dominated convergence theorem holds true:

for any sequence fn : J → X of Bochner integrable functions, if{
(a) fn(t)→ f(t) a.e. as n→∞
(b) |fn(t)| 6 φ(t) a.e. with φ ∈ L1(J),

then {
(a) f is Bochner integrable
(b) limn→∞

∫
J |fn(t)− f(t)| dt = 0.

• Let A : D(A) ⊂ X → X be a closed operator. If F : J → X is a Bochner
integrable function such that{

(a) f(t) ∈ D(A) (t ∈ J a.e.)
(b) t 7→ Af(t) is Bochner integrable,

then ∫
J
f(t) dt ∈ D(A) and A

(∫
J
f(t) dt

)
=
∫
J
Af(t) dt. (4.1.4)

Let now p > 1 and −∞ 6 α < β 6 +∞.

Definition 14 We denote by Lp(α, β;X) the space of all (equivalence classes
of) functions f : (α, β) → X which are Bochner integrable on each J ⊂⊂
(α, β) and such that

‖f‖p :=
(∫ β

α
|f(t)|pdt

) 1
p
<∞.

Here are some useful properties of Lp(α, β;X).

•
(
Lp(α, β;X), ‖ · ‖p

)
is a Banach space.

• If
(
X, 〈·, ·〉

)
is an Hilbert space, then L2(α, β;X) is an Hilbert space as

well with the scalar product

〈f, g〉2 =
∫ β

α
〈f(t), g(t)〉dt ∀f, g ∈ L2(α, β;X).
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Definition 15 We denote by W 1,p(α, β;X) the (Sobolev) space of all f ∈
Lp(α, β;X) which possess a continuous representative satisfying

f(t) = f(t0) +
∫ t

t0

g(s) ds ∀t ∈ (α, β)

for some t0 ∈ (α, β) and g ∈ Lp(α, β;X).

Some useful properties of W 1,p(α, β;X) are listed below.

• Every f ∈ W 1,p(α, β;X) is differentiable a.e. in [α, β] and f ′(t) = g(t)
for a.e. t ∈ [α, β].

• W 1,p(α, β;X) is a Banach space with the norm

‖f‖1,p = ‖f‖p + ‖f ′‖p ∀f ∈W 1,p(α, β;X).

• For any p > 1, we have that

W 1,p(α, β;X) ⊂ C0,1− 1
p ([α, β];X)

with continuous embedding. Indeed,

|f(t)− f(s)| 6 |t− s|1−
1
p ‖f ′‖p ∀f ∈W 1,p(α, β;X)

by Hölder’s inequality. Consequently, W 1,p(α, β;X) ⊂ C([α, β];X) is
compact by Ascoli’s theorem. Observe that we also have that

W 1,1(α, β;X) ⊂ C([α, β];X) (4.1.5)

but the embedding fails to be compact.

4.2 Solution of the Cauchy problem

Let X be a separable Banach space and let A : D(A) ⊂ X → X be the
infinitesimal generator of a C0-semigroup of bounded linear operators on X,
denoted indifferently by S(t) or etA, which satisfies

‖S(t)‖ 6Meωt ∀t > 0 (4.2.1)

for some M > 0 and ω ∈ R.
We observe that D(A) is a Banach space with the graph norm

‖x‖D(A) = |x|+ |Ax| ∀x ∈ D(A).

For any fixed T > 0, consider the initial value problem{
u′(t) = Au(t) + f(t), t ∈ (0, T )
u(0) = x

(4.2.2)

where x ∈ X and f ∈ Lp(0, T ;X) for a given p > 1. For the above problem
we will give two notions of solutions following [2]. Then we will study the
existence, uniqueness, regularity, and asymptotic behavior of solutions.
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Notions of solution

Definition 16 Let p > 1 and let f ∈ Lp(0, T ;X).

• We say that u ∈ W 1,p(0, T ;X) ∩ Lp(0, T ;D(A)) is a strict solution of
problem (4.2.2) if u(0) = x and

u′(t) = Au(t) + f(t) for a.e. t ∈ (0, T ).

• We say that u ∈ Lp(0, T ;X) is a strong solution of problem (4.2.2) if
there exists a sequence vn ∈W 1,p(0, T ;X) ∩ Lp(0, T ;D(A)) such that{

vn → u and v′n −Avn → f in Lp(0, T ;X)
vn(0)→ x in X

(n→∞) (4.2.3)

Definition 17 Let f ∈ C([0, T ];X).

• We say that u ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) is a strict solution of
problem (4.2.2) if u(0) = x and

u′(t) = Au(t) + f(t) ∀t ∈ (0, T ).

• We say that u ∈ C([0, T ];X) is a strong solution of problem (4.2.2) if
there exists a sequence vn ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) such that{

vn → u and v′n −Avn → f in C([0, T ];X)
vn(0)→ x in X

(n→∞) (4.2.4)

Existence and uniqueness of solutions

Theorem 12 Let x ∈ X and let f ∈ Lp(0, T ;X) (resp. f ∈ C([0, T ];X)).
Then problem (4.2.2) has a unique strong solution given by

u(t) = S(t)x+
∫ t

0
S(t− s)f(s) ds (t ∈ [0, T ]). (4.2.5)

Proof. Step 1: existence.
Let S ∈ G(M,ω) and observe that, since∣∣∣ ∫ t

0
S(t− s)f(s) ds

∣∣∣p 6Mp
(∫ t

0
ep
′ω(t−s) ds

)p−1
∫ t

0
|f(s)|p ds (t ∈ [0, T ]),

the function u given by (4.2.5) is bounded and therefore belongs to Lp(0, T ;X).
Define 

vn(t) = nR(n,A)u(t)
fn(t) = nR(n,A)f(t)
xn = nR(n,A)x

∀n ∈ N , n > ω.
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By applying nR(n,A) to all the terms in (4.2.5) we obtain

vn(t) = S(t)xn +
∫ t

0
S(t− s)fn(s) ds (t ∈ [0, T ]). (4.2.6)

Since xn ∈ D(A) and fn ∈ Lp(0, T ;D(A)) (resp. fn ∈ C([0, T ];X)), vn is dif-
ferentiable for a.e. t and we have that v′n − Avn = fn. Moreover, Lebesgue’s
dominated convergence theorem and the properties of the Yosida approxima-
tion used in Step 1 of the proof of Theorem 2 yield{

vn → u and v′n −Avn → f in Lp(0, T ;X) (resp. C([0, T ];X))
vn(0)→ x in X.

So, u is a strong solution of (4.2.2).

Step 1: uniqueness.
Let u be a strong solution of (4.2.2) and let {vn} be a sequence satisfying
(4.2.3) (resp. (4.2.4)). We set fn = v′n −Avn and xn = vn(0). Then

d

ds

(
S(t− s)vn(s)

)
= S(t− s)fn(s) (s ∈ [0, t]).

By integrating over [0, t] we deduce that vn satisfies (4.2.6). Passing to the
limit as n→∞ we conclude that u is given by (4.2.5). �

The following result provides a useful approximation of strong solutions.

Proposition 18 Let {xn} ⊂ X and {fn} ⊂ Lp(0, T ;X) (p > 1) be such that

xn
X−→ x and fn

Lp(0,T ;X)−→ f (n→∞).

Let {
u′n(t) = Anun(t) + fn(t), t ∈ (0, T )
un(0) = xn

where An = n2R(n,A)− n , n > ω, is the Yosida approximation of A. Then

un
Lp(0,T ;X)−→ u (n→∞)

where u is the strong solution of (4.2.2).

Proof. Since An ∈ L(X) we have that

un(t) = etAnxn +
∫ t

0
e(t−s)Anfn(s) ds (t ∈ [0, T ]).

Thus, recalling (1.5.7) and (1.5.8) from the proof of the Hille-Yosida theorem,
we obtain

|etAnxn − etAx| 6Me2ωt|xn − x|+ |etAnx− etAx|
n→∞−→ 0
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uniformly on [0, T ]. Moreover,∣∣∣ ∫ t

0

(
e(t−s)Anfn(s)− e(t−s)Af(s)

)
ds
∣∣∣p

6 2p−1Mp

∫ t

0
e2ωp(t−s)|fn(s)− f(s)|pds C([0,T ];X)−→ 0,

+ 2p−1

∫ t

0
|e(t−s)Anf(s)− e(t−s)Af(s)|pds

where, by Lebesgue’s dominated convergence theorem,

lim
n→∞

∫ T

0
dt

∫ t

0
|e(t−s)Anf(s)− e(t−s)Af(s)|pds = 0.

The conclusion follows. �

Regularity of solutions

Our first result guarantees that the strong solution of (4.2.2) is strict when f
has better “space regularity”.

Theorem 13 Let x ∈ D(A) and let f ∈ Lp(0, T ;D(A)) for some p > 1. Then
the strong solution u of problem (4.2.2) is strict in Lp(0, T ;X).

Proof. Let u be the strong solution of problem (4.2.2) and let un be the
solution of {

u′n(t) = Anun(t) + f(t), t ∈ (0, T )
un(0) = x

(4.2.7)

where An = n2R(n,A)− n , n > ω, is the Yosida approximation of A. Then

vn(t) := Anun(t) (t ∈ [0, T ])

satisfies {
v′n(t) = Anvn(t) +Anf(t), t ∈ (0, T )
vn(0) = Anx

where
Anx

X−→ Ax and Anf
Lp(0,T ;X)−→ Af (n→∞).

So, Proposition 18 ensures that vn converges in Lp(0, T ;X) to the strong
solution of {

v′(t) = Av(t) +Af(t), t ∈ (0, T )
v(0) = Ax

which, by Theorem 12 is given by

v(t) = etAAx+
∫ t

0
e(t−s)AAf(s) ds = Au(t) (t ∈ [0, T ] a.e.)
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This shows that u ∈ Lp(0, T ;D(A)). Moreover

u′n = Anun + f = vn + f
Lp(0,T ;X)−→ v + f (n→∞).

Therefore, u ∈W 1,p(0, T ;X) and u′ = v + f = Au+ f . �

Corollary 7 Let x ∈ X and let f ∈ Lp(0, T ;X). Then the strong solution u
of problem (4.2.2) belongs to C([0, T ];X). Moreover, we have that

un
C([0,T ];X)−→ u (n→∞),

where un is the strict solution of the problem{
u′n(t) = Aun(t) + fn(t), t ∈ (0, T )
un(0) = xn

(4.2.8)

with fn(t) = nR(n,A)f(t) and xn = nR(n,A)x for all n > ω.

Proof. By (1.5.6) we have that D(A) 3 xn
X−→ u as n → ∞. Moreover,

fn ∈ Lp(0, T ;D(A)) and

lim
n→∞

fn(t) = f(t), and |fn(t)| 6 Mn

n− ω
|f(t)| a.e. in [0, T ].

So, fn
Lp(0,T ;X)−→ f by Lebesgue’s theorem. Then Theorem 13 ensures that

(4.2.8) has a unique strict solution un which, in particular, belongs to C([0, T ];X).
Now, the representation formula (4.2.5) implies that, for all t ∈ [0, T ],

|un(t)− u(t)| =
∣∣∣etA(xn − x) +

∫ t

0
e(t−s)A[fn(s)− f(s)] ds

∣∣∣
6 Meωt|xn − x|+M

∫ t

0
eω(t−s)|fn(s)− f(s)| ds

6 CT
(
|xn − x|+ ‖fn − f‖p

)
for some constant CT > 0. The conclusion follows. �

We will now show a similar result for f with better “time regularity”. We
begin by studying the case of x = 0.

Lemma 4 Let f ∈W 1,p(0, T ;X) for some p > 1. Then

uf (t) :=
∫ t

0
e(t−s)Af(s)ds (t ∈ [0, T ])

belongs to W 1,p(0, T ;X) ∩ Lp(0, T ;D(A)) and

u′f (t) = Auf (t) + f(t) = etAf(0) +
∫ t

0
e(t−s)Af ′(s)ds (t ∈ [0, T ] a.e.)
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Proof. Since

uf (t) =
∫ t

0
esAf(t− s)ds (t ∈ [0, T ])

by differentiating under the integral sign we have that uf ∈W 1,p(0, T ;X) and

u′f (t) = etAf(0) +
∫ t

0
e(t−s)Af ′(s)ds (t ∈ [0, T ] a.e.). (4.2.9)

Therefore, we also have

u′f (t) = lim
h↓0

1
h

{∫ t+h

0
e(t+h−s)Af(s) ds−

∫ t

0
e(t−s)Af(s) ds

}
= lim

h↓0

{ehA − I
h

∫ t

0
e(t−s)Af(s) ds+

1
h

∫ t+h

t
e(t+h−s)Af(s) ds

}
= lim

h↓0

ehA − I
h

∫ t

0
e(t−s)Af(s) ds+ f(t).

This shows that uf (t) ∈ D(A) and Auf (t) = u′f (t) − f(x). Consequently,
uf ∈ Lp(0, T ;D(A)) and the conclusion follows recalling (4.2.9). �

Theorem 14 Let x ∈ D(A) and let f ∈W 1,p(0, T ;X) for some p > 1. Then
the strong solution u of problem (4.2.2) is strict in Lp(0, T ;X).

Proof. Let u be the strong solution of problem (4.2.2) and let un be the
solution of (4.2.7). Then un ∈ C1([0, T ];X) and vn := u′n satisfies

vn ∈W 1,p(0, T ;X)
v′n(t) = Anvn(t) + f ′(t), t ∈ (0, T ) a.e.
vn(0) = Anx+ f(0).

(4.2.10)

So, Proposition 18 ensures that vn converges in Lp(0, T ;X) to the strong
solution of {

v′(t) = Av(t) + f ′(t), t ∈ (0, T )
v(0) = Ax+ f(0),

Therefore, u ∈W 1,p(0, T ;X) and Lemma 4 yields

u′(t) = v(t) = etA
(
Ax+ f(0)

)
+
∫ t

0
e(t−s)Af ′(s) ds

= Au(t) + f(t) t ∈ (0, T ) a.e.

The conclusion follows. �

Remark 10 In general, the strong solution of (4.2.2) fails to be strict for
f ∈ C([0, T ];D(A)). To see an example, let y /∈ D(A) and take f(t) = etAy
and x = 0. Then

u(t) = tetAy ∀t > 0

which fails to be differentiable.
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4.3 Maximal regularity results

For special classes of generators the strong solution of (4.2.2) in Lp(0, T ;X)
enjoys additional regularity properties. We investigate below the case of p =
2 when (X, 〈·, ·〉) is a separable Hilbert space, beginning by analyzing the
problem for x = 0. As in in Lemma 4, we denote by uf the strong solution of{

u′(t) = Au(t) + f(t), t ∈ (0, T )
u(0) = 0

(4.3.1)

which is given by the function

uf (t) :=
∫ t

0
e(t−s)Af(s)ds (t ∈ [0, T ]). (4.3.2)

Theorem 15 Let A : D(A) ⊂ X → X be a self-adjoint dissipative operator
on a real Hilbert space X and let f ∈ L2(0, T ;X). Then uf is the strict
solution of (4.3.1) and

‖Auf‖2 6 ‖f‖2. (4.3.3)

Proof. Consider, as in the proof of Corollary 7, fn(t) := nR(n,A)f(t) for all
n > ω. We have that fn ∈ Lp(0, T ;D(A)) and

fn
L2(0,T ;X)−→ f (n→∞). (4.3.4)

Then un := ufn ∈W 1,2(0, T ;X) ∩ L2(0, T ;D(A)) satisfies

u′n = Aun + fn a.e. in [0, T ]. (4.3.5)

Therefore
1
2
d

dt
〈Aun, un〉 = 〈u′n, Aun〉 = |Aun|2 + 〈fn, Aun〉

and

|Aun|2 −
1
2
d

dt
〈Aun, un〉 = −〈fn, Aun〉 6

1
2

(
|fn|2 + |Aun|2

)
.

Hence, integrating on [0, T ], since A is dissipative we get∫ T

0
|Aun|2 dt 6

∫ T

0
|Aun|2 dt− 〈Aun(T ), un(T )〉 6

∫ T

0
|fn|2 dt. (4.3.6)

Now, applying the above inequality to the difference un − um we obtain

‖A(un − um)‖2 6 ‖fn − fm‖2 ∀m,n > ω,

which implies that {un} is a Cauchy sequence in W 1,2(0, T ;X)∩L2(0, T ;D(A))
in view of (4.3.4). By Corollary 7, un converges to u in C([0, T ];X) and so,
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recalling (4.3.5), we conclude that u is the strict solution of (4.3.1). Finally,
(4.3.3) follows from (4.3.6) passing to the limit as n→∞. �

Consequently, when A is self-adjoint and dissipative, u′f and Auf have the
same regularity in the space L2(0, T ;X) as the right-hand side f—a property
which is called maximal regularity. Since we know that etA is analytic in this
case (see Exercise 11), it is natural to ask whether such maximal regularity
holds true, more generally, when A is the infinitesimal generator of an analytic
semigroup. In order to show that this is indeed the case ne need to recall some
properties of the Fourier transform on L2(R;X).

Fix an orthonormal basis {ek}k>1 of H and represent g ∈ L2(R;X) as

g(t) =
∞∑
k=1

gk(t)ek (t ∈ R a.e.),

where gk(t) = 〈g(t), ek〉. Then we have that ‖g‖22 =
∑∞

k=1 |gk|2. Denoting by

ĝk(τ) =
∫ +∞

−∞
gk(t)e−iτtdt (t ∈ R a.e.)

the Fourier transform of gk, we have that∫ +∞

−∞
|gk(t)|2dt =

1
2π

∫ +∞

−∞
|ĝk(τ)|2dτ (k > 1).

Then we can define F : L2(R;X)→ L2(R;X) by

F [g](τ) = ĝ(τ) =
∞∑
k=1

ĝk(τ)ek (τ ∈ R a.e.)

We will use the following properties of the Fourier transform on L2(R;X).

• Plancherel identity: for every g ∈ L2(R;X) we have that∫ +∞

−∞
|g(t)|2dt =

1
2π

∫ +∞

−∞
|ĝ(τ)|2dτ (k > 1). (4.3.7)

• Derivation formula: for every g ∈W 1,2(0, T ;X) we have that

F [g′](τ) = iτ ĝ(τ) (τ ∈ R a.e.) (4.3.8)

• Action of a closed operator: for any closed operator A : D(A) ⊂ X → X
and any g ∈ L2(R;D(A)) we have that F [g] ∈ L2(R;D(A)) and

AF [g](τ) = F [Ag](τ) (τ ∈ R a.e.) (4.3.9)
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Theorem 16 Let A : D(A) ⊂ X → X be the infinitesimal generator of an
analytic semigroup with negative growth bound and let f ∈ L2(0, T ;X). Then
uf is the strict solution of (4.3.1) and

‖Auf‖2 6 (M + 1)‖f‖2 (4.3.10)

where M > 0 is the constant in (4.2.1).

Proof. Let us assume first that f ∈ L2(0, T ;D(A)). Then uf is the strict
solution of (4.3.1). Define

F (t) =

{
f(t), t ∈ [0, T ]

0, t ∈ R \ [0, T ]

and

U(t) =


0, t > 0

uf (t) t ∈ [0, T ]

e(t−T )Auf (T ) t > T.

Then f ∈ L2(R;D(A)), U ∈ W 1,2(R;X) ∩ L2(R;D(A)) because etA has a
negative growth bound, and

U ′(t) = AU(t) + F (t) (t ∈ R a.e.)

So, we can take the Fourier transform of both terms of the above identity to
obtain, in view of (4.3.8) and (4.3.9),

iτ Û(τ) = AÛ(τ) + F̂ (τ) (τ ∈ R a.e.)

So, Û(τ) = R(iτ, A)F̂ (τ) and, since AR(iτ, A) = iτR(iτ, A)− I, the resolvent
estimate yields

|AÛ(τ)| = |iτR(iτ, A)F̂ (τ)− F̂ (τ)| 6 (M + 1)|F̂ (τ)| (t ∈ R a.e.)

Therefore∫ T

0
|Auf |2dt 6

∫ +∞

−∞
|AU |2dt =

1
2π

∫ +∞

−∞
|AÛ |2dτ

6
(M + 1)2

2π

∫ +∞

−∞
|F̂ |2dτ = (M + 1)2

∫ T

0
|f |2dt.

Finally, in order to remove the extra assumption f ∈ L2(0, T ;D(A)), let
fn(t) := nR(n,A)f(t) for all n > 0. Then

un := ufn ∈W 1,2(0, T ;X) ∩ L2(0, T ;D(A))
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and the above inequality yields

‖A(un − um)‖2 6 (M + 1)‖fn − fm‖2

and
‖u′n − u′m‖2 6 (M + 2)‖fn − fm‖2

for all n,m > 1. Thus

{un} is a Cauchy sequence in W 1,2(0, T ;X) ∩ L2(0, T ;D(A)).

Since {un} converges to u we conclude that u is the strict solution of (4.3.1).
Estimate (4.3.10) follows from the analogous inequality for un. �

In order to obtain similar regularity results for(4.2.2), let us set

[D(A), X]1/2 =
{
x ∈ X :

∫ ∞
0
|AetAx|2dt <∞

}
. (4.3.11)

It is easy to see that [D(A), X]1/2 is a subspace of X containing D(A). The
following risult is a direct consequence of Theorem 16 and definition (4.3.11).

Corollary 8 Let A : D(A) ⊂ X → X be the infinitesimal generator of an
analytic semigroup with negative growth bound. If

x ∈ [D(A), X]1/2 and f ∈ L2(0, T ;X)

then the strong solution u of (4.2.2) is strict.

Example 20 On X = L2(0, π) let A : D(A) ⊂ X → X be the operator
(studied in Exercise 8){

D(A) = H2(0, π) ∩H1
0 (0, π)

Af(x) = f ′′(x) x ∈ (0, π) a.e.

We know that A is self-adjoint and dissipative. Moreover, A is the infinitesimal
generator of and analytic semigroup of negative type (Example 13). We now
show that

[D(A), X]1/2 = H1
0 (0, π). (4.3.12)

Let us fix f ∈ H1
0 (0, π) and consider its the Fourier series

f(x) =
∞∑
n=1

fn sin(nx) (x ∈ [0, π]).

By Parseval’s identity we have

∞∑
n=1

n2|fn|2 =
2
π

∫ π

0
|f ′(x)|2dx.
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Moreover

AetAf(x) = −
∞∑
n=1

n2e−n
2tfn sin(nx) (x ∈ [0, π]).

Therefore∫ ∞
0
|AetAf |2dt =

π

2

∞∑
n=1

∫ ∞
0

n4|fn|2e−2n2t dt

=
π

4

∞∑
n=1

n2|fn|2 =
1
2

∫ π

0
|f ′(x)|2dx <∞.

This identity implies H1
0 (0, π) ⊂ [D(A), X]1/2 as well as the converse inclusion.

We can use (4.3.12) to the problem
∂u
∂t = ∂2u

∂x2 + f(t, x) (t, x) ∈ (0, T )× (0, π) a.e.
u(t, 0) = 0 = u(t, π) t ∈ (0, T )
u(0, x) = u0(x) x ∈ (0, π).

(4.3.13)

Since
L2
(
0, T ;L2(0, π)

)
= L2

(
(0, T )× (0, π)

)
,

by Corollary 8 we conclude that for all

f ∈ L2
(
(0, T )× (0, π)

)
and u0 ∈ H1

0 (0, π)

problem (4.3.13) has a unique strict solution u such that

∂u

∂t
,
∂2u

∂x2
∈ L2

(
(0, T )× (0, π)

)
.

4.4 Problems

1. Let A : D(A) ⊂ X → X be the infinitesimal generator of a C0-semigroup
of bounded linear operators on X of negative type. Prove that

|x|D(A) = |Ax| ∀x ∈ D(A)

is a norm on D(A), equivalent to the graph norm.

2. Give an example to show that (4.1.5) is not a compact embedding.

3. Generalize Corollary 8 removing the assumption ω0(etA) < 0.

5 Notation

• R = (−∞,∞) stands for the real line, R+ for [0,∞), and R∗+ for (0,∞)
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• N∗ = N \ {0} = {1, 2, . . . } and Z∗ = Z \ {0} = {±1,±2, . . . }

• For any λ ∈ C, <λ and =λ denote the real and imaginary parts of λ,
respectively

• | · | stands for the norm of a Banach space X, as well as for the absolute
value of a real number or the modulus of a complex number

• L(X) is the Banach space of all bounded linear operators Λ : X → X
equipped with the norm ‖Λ‖ = sup|x|61 |Λx|

• K(X) is the closed subspace of L(X) of all compact operators Λ : X → X

• ω0(S) denotes the growth bound of a C0-semigroup of bounded linear
operators on X (Definition 4)

• s(A) denotes the spectral bound of a closed operator A : D(A) ⊂ X → X
(Definition 7)

• Πω =
{
λ ∈ C : <λ > ω

}
for any ω ∈ R

• Σω,θ =
{
λ ∈ C \ {ω} :

∣∣ arg(λ− ω)
∣∣ < θ

}
for any ω ∈ R and θ ∈ (0, π]

• C(z0, r) =
{
z ∈ C : |z − z0| < r

}
for any z0 ∈ C and r > 0
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