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Stanley’s work on unimodality

Francesco Brenti

Abstract. This paper surveys Stanley’s work on unimodality, and its impact.
It also poses some open problems that arise naturally from his work in this
area.

1. Introduction

In this article I (try to) survey Stanley’s work on unimodality, with particular
emphasis on the results reprinted in the present volume, and its impact. Stanley’s
work on unimodality bears the hallmark of most of his mathematical work, namely
that of applying ideas, results, and techniques from other areas of mathematics
(mainly algebra and geometry, but not only) to the solution of combinatorial (in this
case, unimodality) problems. Another hallmark of Stanley’s work on unimodality is
the extreme generality of his results, which is particularly striking when compared
with the great majority of the results obtained in this area.

I have been asked specifically to comment on the two papers [50] and [52],
reprinted in this volume. Since [52] is a survey paper, commenting on it means to
comment also on the great majority of Stanley’s work on unimodality.

I do not recall the basic definitions since they appear on the first page of
[52], but I add two more here. A sequence of real numbers {ai}i=0,...,n is said to be
ultra log-concave if {ai/

(

n
i

)

}i=0,...,n is log-concave. A symmetric unimodal sequence
{ai}i=0,...,n is said to be strictly unimodal if a1 < a2 < · · · < a⌊n

2
⌋ = a⌈n

2
⌉ > · · · >

an−2 > an−1.

2. Unimodality and Lie Superalgebras

In [50] Stanley uses the theory of Lie superalgebras to prove the unimodality of
some sequences. In §2 of [50] Stanley recalls precisely how the representation theory
of sℓ2(C) is used to show that certain sequences are unimodal. Essentially, the
result here (Thm. 2.1) states that given any representation φ of sℓ2(C) its character
(which may be regarded as a Laurent polynomial in one variable q) has the property
that the sequence of coefficients of the even (respectively, odd) powers of q are both
(integer) unimodal sequences, symmetric about 0. In fact, even though Stanley does
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not state this explicitly, the reasoning given in §2 shows that Thm. 2.1 is actually
an if and only if. In §3 Stanley uses Thm. 2.1 to prove the result (Thm. 3.2) that
given any symmetric unimodal polynomial f(q) ∈ N[q] the Pólya composition of
the generalized cycle index of Sm with respect to any character χ of Sm with f(q) is
again symmetric and unimodal (the Pólya composition of a multivariate polynomial
C(x1, x2, . . .) with a univariate polynomial f(q) is C(f(q), f(q2), f(q3), . . .)). This
result includes as a special case the well known and celebrated result (Thm. 3.1)
that the principal specialization of any Schur function is a symmetric unimodal
polynomial.

Stanley then obtains analogues of these results for the orthosymplectic Lie
superalgebra osp (1, 2) [37]. More precisely, the result (Cor. 4.3) states that
a Laurent polynomial in N[q, q−1] is unimodal and symmetric about 0 if and
only if it is the character (which may be viewed as a Laurent polynomial in q)
of some representation of osp (1, 2) (to be more precise, the “only if” part of
this statement is not stated in Cor. 4.3, but follows from the proof of Stan-
ley). As applications of this result he shows (Thm. 6.1) that the “principal
specialization” sλ(1, q

2, . . . , q2n/q, q3, . . . , q2n−1) of any super-Schur function is a
symmetric unimodal polynomial, and that (Thm. 7.1) given any symmetric uni-
modal polynomial f(q) ∈ N[q] with an even symmetry, and any character χ of
Sm, C(f(q), f(−q2), f(q3), f(−q4), . . .)) is again symmetric and unimodal, where
C(x1, . . . , xm) is the generalized cycle index of Sm with respect to the character
χ. In the last section Stanley obtains a characterization of Peck posets of even
rank in terms of the representation theory of osp (1, 2) (Thm. 8.3), which is the
“superanalogue” of a result of Proctor and himself (Thm. 8.1).

Interesting applications of Lie algebras and superalgebras to unimodality have
been obtained by Hughes and Van der Jeugt in [24] and by Reiner and Stanton in
[42]. An analogous result for log-concave sequences has been obtained by Wagner
in [59].

3. Log-concave and unimodal sequences in algebra, combinatorics, and

geometry

In the paper “Log concave and unimodal sequences in algebra, combinatorics,
and geometry” [52] Stanley surveys the state of the art in the field of unimodality.
This is the first survey ever written on this topic and has definitely been enormously
influential both for the open problems that it posed, and for pointing out the many
different techniques that could be used to prove the unimodality of sequences.
This survey showed to the mathematical community that unimodal sequences are
ubiquitous in mathematics and that to prove that a sequence is unimodal is very
often an extremely difficult task. These two facts are now considered well known
truths, but this was not so in 1986, when unimodality was considered a “weird”
property to look at and study (I remember an eminent mathematician telling me,
when I was a graduate student, that unimodality is nice but “then, what do you
do with it?”). It must be mentioned that many of the techniques surveyed in
[52] were introduced and pioneered by Stanley himself, particularly the use of Lie
superalgebras, commutative algebra, and algebraic geometry.

In §2 of [52] Stanley collects unimodality results that are proved in an induc-
tive or combinatorial way (i.e., by establishing appropriate injections), as well as
some operations on sequences that preserve the property of being log-concave or
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unimodal. Many results using these techniques have been obtained, too numerous
to be cited here, since [52]. As a sample, we mention an inductive proof of the uni-
modality of the principal specialization of any Schur function ([23], see also [16])
and injective proofs of unimodality and log-concavity of the Eulerian polynomials
[22]. Also, other linear and bilinear transformations preserving log-concavity or
real-rootedness have been studied, e.g., in [14], [58], [11], and [33].

In §3 Stanley describes the method of polynomials with only real zeros, which
is based on the fact, Thm. 2, that if a real polynomial has only real roots then
its sequence of coefficients is ultra log-concave (hence log-concave and unimodal).
Stanley describes two general ways of proving that a polynomial (or sequence of
polynomials) has only real roots, namely Sturm sequences and characteristic poly-
nomials of real symmetric matrices (Prop. 4), giving some combinatorial applica-
tions to matching polynomials (Ex. 1) and spanning trees (Prop. 6) of graphs. In
this section Stanley also gives a sufficient condition on the roots of a polynomial
for its coefficients to be log-concave (Prop. 7). A stronger result has later been
obtained in [15, Thm. 1.3].

In this section Stanley also states the first three conjectures mentioned in [52].
The first one is Conj. 1 on p. 506. Let P = ([n],�) be a finite labeled partially
ordered set (or poset, for short). Assume that P is naturally labeled (i.e., i � j
implies i < j for all i, j ∈ [n]). For each j ∈ N let ej(P ) (resp., ēj(P ))be the number
of surjective order preserving (resp., strictly order preserving) maps f : P 7→ [j]
(where [j] := {1, . . . , j} has the natural ordering). A permutation σ ∈ Sn is a linear
extension of P if i � j implies σ−1(i) ≤ σ−1(j) for all i, j ∈ [n]. Let L(P ) be the set

of all linear extensions of P and EP (q) :=
∑|P |

j=0 ej(P )q
j , ĒP (q) :=

∑|P |
j=0 ēj(P )q

j ,

and W (P ) :=
∑

u∈L(P ) q
d(u)+1, where d(u) denotes the number of descents of u.

There is a simple relationship between these three polynomials ([52, p. 505]) which
implies that one of them has only real roots if and only if all of them do. Then Conj.
1 states that the polynomial EP (q) (equiv., ĒP (q), WP (q)) has only real zeros. In
particular, the conjecture implies that all these polynomials are log-concave and
unimodal.

The second conjecture stated in [52] is Conj. 2 on p. 507. Let G = (V,E) be a
simple finite graph on vertex set V and edge set E (i.e., G has no loops nor multiple
edges). For i ∈ N let bi be the number of spanning forests of G having i edges. So
b0 = 1, and bi = 0 if i > V − c where c is the number of connected components

of G. Then Conj. 2 states that the sequence (b0, . . . , br), where r
def
= |V | − c, is

ultra log-concave. Hence, in particular, log-concave and unimodal, both statements
being open at the time of [52].

The third conjecture stated in §3 is Conj. 3 on p. 508. This collects some
of the most famous open problems in unimodality. Namely the conjectures that if
χG(x) =

∑p

j=0(−1)p−iaix
i is the chromatic polynomial of a graph G on p vertices

then the sequence (a0, . . . , ap) is log-concave, and hence unimodal, and that ifM is
a matroid of rank n and Wi is the number of flats of rank i in M , for i = 0, . . . , n,
then the sequence (W0, . . . ,Wn) is log-concave, and hence unimodal.

This section of [52] stimulated a lot of research activity, particularly on the
once classical topic of polynomials with only real roots, among combinatorialists,
which has led to spectacular successes, including the solution of problems posed
by analysts more then a century ago ([8], [9]). Probably the most powerful results
obtained in this direction are the Chudnovsky-Seymour Theorem ([19], see also
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[13]) and the Borcea-Brändén Theorem which characterizes all the linear operators
on R[x1, . . . , xn] that send stable polynomials to stable polynomials and includes
a characterization of all the linear operators on R[x] that send polynomials with
only real roots to polynomials with only real roots ([8], see also [13]). The concept
of stability is the right generalization of the property of “having only real roots”
to multivariate polynomials and we refer the reader to [13], [41] or [60] for fur-
ther information about it. For combinatorial applications to characterize all linear
operators ϕ : R[x] → R[x] such that ϕ(f) has nonnegative coefficients and only
real roots if f ∈ R[x] does would be more useful. This more difficult problem is
open. Some of the most common linear transformations arising in combinatorics
have been studied from this point of view in [14].

At the time of [52] only these four concepts were considered, namely “only real
roots”, “ultra log-concavity”, “log-concavity” and “unimodality”, each one being
stronger then the following one for positive sequences. Now there are two infinite
chains of concepts each one implied by the previous one, between “only real roots”
and “log-concavity”. One of them is obtained through the theory of total positivity
(more precisely, Pólya frequency sequences of order k), and one is obtained through
the concept of k-log-concavity. We refer the reader to, e.g., [14, §§2.2 and 2.5], [28,
Chap. 8] and [34] for further information about these concepts.

Regarding the conjectures, Conj. 1 was disproved by Stembridge in 2007 [56].
Probably the most general positive result known about Conj. 1 was obtained by
Reiner and Welker in 2005 [43] where they show that the polynomial WP (q) is
(symmetric and) unimodal if the poset P is graded. Apart from its generality, the
result is interesting also for its method of proof, which itself shows the legacy and
influence of Stanley’s work in unimodality and more generally in combinatorics,
which uses geometry, namely a unimodular triangulation of a convex polytope as-
sociated to the poset P . This result was then further generalized by Athanasiadis
in [2] in the context of convex polytopes. A simpler proof of a stronger result was
shortly after obtained by Bränden in [10] (see also [12]) where he shows that the
polynomial WP (q) has a nonnegative γ-vector (a property which immediately im-
plies symmetry and unimodality) if P is graded (we refer the reader to [13] for the
theory of γ-vectors, that is one of the most important developments in the theory
of unimodality in the last 10 years). There are many interesting consequences of
Conj. 1 that are still open. In particular, it is open whetherWP (q) (and hence E(q)
and Ē(q)) has only real zeros if P is graded, and whether WP (q), E(q), or Ē(q)
are always log-concave (it is known [14, Thm. 2.5.8 and p. 3] that log-concavity of
WP (q), implies that of E(q) and Ē(q)).

The first conjecture in Conj. 3, and hence the second, were recently proved by
Huh in [25]. More precisely, Huh proves that if χM (x) =

∑n

i=0(−1)n−ibix
i is the

characteristic polynomial of a matroid M of rank n representable over a field of
characteristic zero then the sequence (b0, . . . , bn) is log-concave and unimodal. The
conjectures then follow by applying Huh’s result to graphic matroids. The proof of
Huh’s result uses deep results from algebraic geometry and includes a characteriza-
tion of log-concave sequences in terms of homology classes of the cartesian product
of two projective spaces (see [25, Thm. 21]) and mixed volumes, both tools that
Stanley discusses in [52] in one of the sections following Conj. 3. Huh’s result was
then extended by Huh and Katz in [26] to all representable matroids. The more
general conjecture (mentioned in Conj. 3 of [52]) that the characteristic polynomial
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of any finite matroid M (not necessarily representable over a field) has the stated
log-concavity and unimodality properties is open. The third and fourth conjectures
made in Conj. 3 (dealing with the enumeration of flats by rank in a finite matroid)
are still open. Probably the most general result on these conjectures is still the one
obtained by Seymour in [45] where he shows that W 2

2 ≥ W1W3 for matroids such
that any line has at most 4 points. Other partial results have been obtained by
Kung [31].

Conjecture 2 is still open. However, it had been remarked by Brylawsky in
[17], that Conj. 3 implies the log-concavity statement of Conj. 2 (this fact was
independently rediscovered by Lenz in [32]). Hence, by Huh’s result the sequence
(b0, . . . , br) is log-concave, and hence unimodal.

In §4, “Analytic techniques”, Stanley describes the method of using complex
analytic techniques (such as contour integrals) on the generating function of a
combinatorial sequence to prove unimodality of the sequence, and mentions some
applications of this method to the number of partitions into a given number of parts
(and distinct parts) and to some apparently “simple” products.

In §5 (p. 510) Stanley describes the Aleksandrov-Fenchel inequalities arising in
the theory of mixed volumes, which produce a log-concave sequence starting from
any two convex subsets K and L of Euclidean space (Thm. 4 on p. 511), which
interpolates between the volumes of K and L. He then describes some applications
of this result to order preserving bijections from finite posets to chains and to
sequences arising from commutative algebra. This section also contains the fourth
conjecture posed in [52], namely Conj. 4 on p. 512. Let R be a standard graded
algebra over a field K (so R is a commutative ring such that K ⊆ R and there are
K-subspaces R0, R1, . . . of R such that R = R0 ⊕ R1 ⊕ · · · as a K-vector space,
R0 = K, RiRj ⊆ Ri+j for all i, j and R is finitely generated as a K-algebra by
elements of R1). It is then well known (see, e.g., [3, Thm. 11.1], or [49, Thm. 8])
that one has that

∑

m≥0

H(R,m)xm =

∑s

i=0 hix
i

(1− x)d

as formal power series in Z[[x]] where d is the Krull dimension of R, andH(R,m)
def
=

dimK(Rm) is the Hilbert function of R. The first part of Conj. 4 states that, if R
is a Cohen-Macaulay integral domain, then (h0, . . . , hs) is log-concave (and hence
unimodal). The second part states that if A is a regular local ring with residue field
K and I is an ideal of A such that A/I is Cohen-Macaulay then the sequence of

Betti numbers (β0, . . . , βn−d) of A/I as an A-module (so βi
def
= dimKTor

A
i (A/I,K))

is log-concave, where n = dim(A) and d = dim (A/I).
No new combinatorial applications of the Aleksandrov-Fenchel inequalities seem

to have appeared since the publication of [52], except that they are used in the re-
markable proof of Conj. 3 on p. 508 by Huh, which I have already described. On
the other hand, looking at the unimodality of sequences arising from commuta-
tive algebra is now a large area of research (see, e.g., [36], and the references cited
there). Regarding the conjectures, both statements in the first part of Conj. 4, have
been disproved by Niesi and Robbiano in [39] (see Examples 2.3 and 2.4). How-
ever, Stanley already mentioned in [52] that maybe one should take the stronger
hypothesis that R is a Gorenstein (rather than Cohen-Macaulay) domain. In this
case it is known (see [46, Thm. 4.4]) that the sequence (h0, . . . , hs) is symmetric.
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This weaker conjecture, namely, that if R is a Gorenstein standard graded domain
then (h0, . . . , hs) is log-concave, is still open even for the unimodality statement.
The unimodality statement is known to be true if s ≤ 5 ([54, Prop. 3.4]), if h1 ≤ 3
or if h1 = 4 and h4 ≤ 33 ([46, Thm. 4.2], [35]), and for the semigroup algebras of
certain integer convex polytopes ([2, Cor. 4.2]). The second part of Conj. 4 has
been disproved by Boij in 1999 [7] even for the unimodality statement.

In the sixth section (p. 513) Stanley discusses the use of linear algebra for prov-
ing the unimodality of (usually symmetric) combinatorial sequences. The basic idea
is that of finding, rather than an injection between the sets counted by two num-
bers in the sequence, an injective linear transformation between the vector spaces
formally spanned by the two sets. Stanley calls this the “Linear Algebra Paradigm”
(or “LAP”) and also gives two slight variations of it. Stanley then illustrates the
LAP by giving (modulo details) a linear algebra proof of the unimodality of the
number of submultisets of a multisetM enumerated by size (Prop. 8, p. 514). The
naturality and simplicity of the relevant linear transformations well illustrate the
power of the method. Stanley then enriches the LAP by adding an action of a group
G on each of the vector spaces involved, and observing that, if the relevant linear
transformations are G-equivariant, then they restrict to the G-invariant subspaces,
thus giving rise to another symmetric unimodal sequence (the sequence of dimen-
sions of the G-invariant subspaces) (Prop. 9, p. 515). Also, in this case, it follows
from Schur’s Lemma that, for any irreducible representation ρ of G, the multiplici-
ties of ρ in each one of the vector spaces involved also form a symmetric unimodal
sequence (p. 517, not stated explicitly as a result). Stanley then remarks that if
G acts by permutation representations on each one of the vector spaces then by
Burnside’s Lemma the dimension of each invariant subspace is just the number of
orbits of G on the basis of the vector space, thus making more explicit and concrete
the permutation representation special case of the “G-equivariant LAP”. Stanley
then gives some combinatorial applications of these techniques to the unimodality
of the sequence counting non-isomorphic n-vertex graphs by number of edges (Prop.
10, p. 516), of the q-binomial coefficients (Thm. 11, p. 516), i.e., of the sequence
counting the order ideals of the direct product of two chains by size, and of the
principal specialization of the Schur functions sλ(1, q, q

2, . . . , qℓ−1) (Thm. 13, p.
518). From that he deduces the unimodality of the sequence enumerating the order
ideals of the direct product of three chains by size (Cor. 3, p. 519). This leads him
naturally to the fifth conjecture stated in [52] namely Conj. 5 on p. 519, which
states that the lattice of order ideals of a product of chains is rank unimodal.

Stanley then concludes the section by producing, for any subgroup G of a
symmetric group, and any character of G, a transformation, on polynomials of one
variable, that preserves the property of being symmetric and unimodal, a result
that follows from a result that I have already described in the previous section (see
[50, Cor. 3.3]).

Conjecture 5 is still open even in the case of four chains, or of chains of size 2
(i.e., for the lattice of order ideals of a Boolean algebra) and no new partial results
on it seem to be known. As just described, the conjecture is known to be true for
the product of at most three chains. Note that since an order ideal in a Boolean
algebra is just an abstract simplicial complex, Conj. 5 in the case of chains of size
2 implies that for any n ∈ P, the polynomial

∑

∆ x
f(∆) is unimodal where the sum

is over all abstract simplicial complexes ∆ whose vertex set is contained in [n] and



STANLEY’S WORK ON UNIMODALITY 7

where f(∆) :=
∑n

i=0 fi−1(∆) and (f−1(∆), . . . , fn−1(∆)) is the f -vector of ∆ (so

fi−1(∆)
def
= |{A ∈ ∆ : |A| = i}|).

In the next section “Representations of sℓ2(C)” (p. 520) Stanley surveys the
use of the Lie algebra sℓ2(C) to prove unimodality of a sequence. The first result
in this section (Thm. 15, p. 521) is Thm. 2.1 of [50] which I have already
commented in the previous section. The second result (Thm. 16, p. 522) is
devoted to an interesting application of Thm. 15. This is obtained by noting
that any finite-dimensional complex semisimple Lie algebra G contains a principal
three-dimensional subalgebra which is isomorphic to sℓ2(C). Hence any irreducible
representation of G restricts to a representation of sℓ2(C) and hence gives rise to two
symmetric unimodal sequences (one of which is always trivial, as it turns out). The
computation of the other unimodal sequence (i.e., of the corresponding character of
sℓ2(C)) had been carried out by Dynkin in [21] and an exposition of this result was
given by Stanley in [47]. The description can be given in terms of root systems.
Let Φ be a root system of rank n, {α1, . . . , αn} be a set of simple roots for Φ and
Φ+ be the set of positive roots (we refer the reader to, e.g., [27, §§1.2-1.3] for the
theory of root systems). One defines a polynomial PΦ(x1, . . . , xn) by

PΦ(x1, . . . , xn) :=
∏

β∈Φ+

(1 − xc11 · · ·xcnn )

where β =
∑n

i=1 ciαi (note that there is an obvious misprint in the definition of
PΦ(x1, . . . , xn) on p. 522 of [52]). The result obtained (Thm. 16, p.522) is then
that the quotient

PΦ(q
m1 , . . . , qmn)

PΦ(q, . . . , q)

is a symmetric unimodal polynomial with nonnegative integer coefficients for any
m1, . . . ,mn ∈ P and any root system Φ. Specializing this to the root systems of
types A, C, and B then yields the symmetry and unimodality of the principal
specialization of any Schur function (already proved by Stanley in the previous
section in Thm. 13, p. 518), of a “simple” product already considered in §4, p.
509, and of a curious q-analogue of the Catalan numbers. The section concludes
by briefly explaining how the ideas and techniques illustrated in this section can
be generalized to Lie superalgebras. This is a very brief survey of [50] on which I
have already commented in the previous section.

The eight section “The Hard Lefschetz Theorem” on p. 524, is about a partic-
ularly powerful application of the representation theory of sℓ2(C). More precisely,
if X is an irreducible complex projective V -variety (that is, the singularities of X
all look like Cn modulo the action of a finite subgroup of GLn(C)), then there
is an action ψ of sℓ2(C) on the singular cohomology ring of X over C, H∗(X),
so that the character of ψ is, essentially, the Poincarè polynomial of H∗(X). So
one obtains (Thm. 18, p. 525) that under these hypotheses the two sequences
(β0(X), β2(X), . . . , β2n(X)) and (β1(X), β3(X), . . . , β2n−1(X)) are symmetric and
unimodal, where βi(X) is the i-th Betti number of X (so βi(X) := dim(Hi(X)),
where H∗(X) = H0(X) ⊕ · · · ⊕H2n(X)) and n := dimC(X). The result can also
be deduced from the Hard Lefschetz Theorem for X . By taking X to be the gener-
alized flag manifold G/P where G is any complex connected semisimple Lie group
and P is any parabolic subgroup, Stanley then deduces (Thm. 19, p. 525) the
symmetry and unimodality of the polynomial enumerating any quotient W J of any
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Weyl group W by length (we refer the reader to, e.g., [6], for the theory of Weyl
groups). It turns out that these polynomials have a very nice product formula,
namely

∑

w∈WJ

qℓ(w) =

∏m

i=1(1 + q + q2 + . . .+ qei)
∏h

i=1(1 + q + q2 + . . .+ qfi)

where e1, . . . , em and f1, . . . , fh are the exponents ofW andWJ , respectively. If W
is the symmetric group Sn and |J | = n−2 then this result reduces to the symmetry
and unimodality of the q-binomial coefficients, already shown by Stanley in Thm.
11, p. 516. Stanley also deduces Thm. 10 on p. 515 as a special case of Thm. 19. It
is natural to wonder for which complex projective V -varieties X the two sequences
(β0(X), β2(X), . . . , β2n(X)) and (β1(X), β3(X), . . . , β2n−1(X)) are log-concave, or
strictly unimodal. This would be interesting even in the special case of Thm. 19.
In this case, strict unimodality has been shown to hold for W = Sn, |J | = n − 2
and n ≥ 16 by Pak and Panova in [40]. Another interesting problem is that of
enumerating any quotient W J of any Weyl group W by descents (see, e.g., [6, p.
17]). In the case J = ∅ these polynomials have recently been shown to have always
real roots (see, e.g., [13]).

Certainly the most famous application of Thm. 18 is the proof of the Gen-
eralized Lower Bound Conjecture (or GLBC) for simplicial polytopes obtained by
Stanley in [48] and which he surveys next. Essentially, Thm. 18 can be applied be-
cause if P is a d-dimensional simplicial (i.e., all the faces of P are simplices) convex
polytope (note that a simplicial polytope is in particular a simplicial complex, so
has a well defined h-vector, see (3.1) below), then one can associate to P a complex
projective (toric) V -varietyX(P ) (a construction and result due to Demazure) such
that the even Betti numbers of X(P ) coincide with the h-vector of P (a result of
Danilov and Jurciewicz [20, Thm. 10.8], the odd Betti numbers all vanish). So one
obtains (Thm. 20, p. 526) that the h-vector of a simplicial polytope is symmetric
and unimodal. It is not clear at this point why this statement should be called
a “generalized lower bound” but it is, as briefly explained by Stanley on p. 526.
Stanley follows Thm. 20 by posing a conjecture that generalizes it, and then by a
generalization of Thm. 18.

The conjecture is Conj. 6 on p. 527. Let ∆ be an abstract simplicial complex
of dimension n− 1 and (f−1(∆), . . . , fn−1(∆)) be its f -vector. Define the h-vector

of ∆ by h(∆)
def
= (h0(∆), . . . , hn(∆)) where

(3.1)

n
∑

i=0

hi(∆)xn−i def
=

n
∑

i=0

fi−1(∆)(x − 1)n−i.

Then Conj. 6 states that if the geometric realization of ∆ is a sphere then the se-
quence (h0(∆), . . . , hn(∆)) is unimodal. It is known that the sequence is symmetric
(see, e.g., [55, Thm. 3.16.9] or [53, Prop. 4.4]). A generalization of Conj. 6 has
been proposed by Nevo in [38, Conj. 1.5].

The generalization of Thm. 18 on p. 525 comes about by considering, for
any complex irreducible projective variety X , the (middle perversity) intersec-
tion homology of X . This is a graded vector space IH∗(X) = IH0(X) ⊕ · · · ⊕
IH2n(X) that reduces to the ordinary singular cohomology of X if X is smooth
(we refer the reader to, e.g., [30] for the theory of intersection homology). Then

one has ([4, Thm. 5.4.10]) that the sequences (β̃0(X), β̃2(X), . . . , β̃2n(X)) and
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(β̃1(X), β̃3(X), . . . , β̃2n−1(X)) are always symmetric and unimodal, where β̃i(X) :=
dimIHi(X) (Thm. 21, p. 517). This leads Stanley to a generalization of Thm.
20. It is clear how to define the f -vector of any convex polytope P . However,
simple examples show that the corresponding h-vector defined by (3.1) is in general
not even symmetric. If P has vertices all of whose coordinates are rational (i.e.,
if P is rational) then one can still define the toric variety X(P ) (it is known that
a simplicial polytope is always combinatorially equivalent to a rational polytope)
except that, if P is not simplicial, X(P ) is in general not a V -variety. This leads
Stanley to define the h-vector h(P ) = (h0(P ), . . . , hn(P )) of a rational polytope

P by hi(P ) := β̃2i(X(P )) (this is nowadays usually called the toric (or general-

ized) h-vector of P , it is known that β̃2i−1(X(P )) = 0 for all i). Thus one has the
result (not stated as a theorem in [52], but in [51, Cor. 3.2]) that the sequence
(h0(P ), . . . , hn(P )) is symmetric and unimodal for any rational polytope P .

Stanley concludes the section by considering the case of a complex projective
V -variety X of dimension n on which a finite group G acts. In this case there
is an action of G on Hi(X) and one obtains two symmetric unimodal sequences
(β0(ρ,X), β2(ρ,X), . . . , β2n(ρ,X)) and (β1(ρ,X), β3(ρ,X), . . . , β2n−1(ρ,X)) for each
irreducible character ρ of G, where βi(ρ,X) is the multiplicity of ρ in the represen-
tation of G on Hi(X). Stanley then concludes the section with some combinatorial
applications of this technique to h-vectors of centrally symmetric simplicial poly-
topes (Thm. 22 on p. 528) and to certain polynomials that refine the symmetry and
unimodality of the Eulerian polynomials (Props. 12 and 14) and of the polynomials
enumerating the derangements of Sn by excedances (Prop.13).

The ideas and results in this section have had an impact on many areas of
mathematics (including geometric combinatorics, commutative algebra, and alge-
braic geometry) which is hard to overestimate. Thm. 20 is without doubt one
of the most spectacular results ever proved in the area of unimodality. While us-
ing techniques from other areas of mathematics to solve combinatorial problems is
now considered standard, this was revolutionary at the time, and is standard now
exactly because of Stanley’s work and successes. The generalization of Thm. 18
stated on p. 528 also led to further developments. As stated in [52, p. 528], several
mathematicians (including Khovanskii, Bernstein, and MacPherson) had computed

β̃i(X(P )) from the combinatorics of P . The result is a fairly complicated recursion
relation that takes place on the subintervals of the face lattice of P . It turns out
that this recursion can be formally carried out over any Eulerian poset P (the face
lattice of a convex polytope is an Eulerian poset). Thus Stanley defines in [51] the
toric h-vector of any Eulerian poset P in this way (see, [55, §3.16] for this defini-
tion). While this toric h-vector is in general not unimodal (or even nonnegative),
it is always symmetric (see [55, Thm. 3.16.9] or [51, Thm. 2.4]) and Stanley con-
jectured in 1987 [51, Conj. 4.2] (so, one year after [52]) in particular that if P is a
Gorenstein∗ Eulerian lattice then h(P ) is unimodal. This conjecture is still open.
Also, the toric h-vector is defined in particular for any convex polytope and it is
a natural question to wonder (as Stanley does in [51, p. 197]) whether the toric
h-vector of any polytope (not necessarily equivalent to a rational one) is unimodal.
This question has led to the development of combinatorial intersection homology
(see, e.g., [30], and the references cited there) which in turn led to its positive so-
lution in 2004 by Karu in [29]. More precisely, Karu shows that the toric h-vector
of any polytope is (symmetric and) unimodal. Thm. 22 was generalized in 1995
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by Adin in [1]. Many extensions and analogues of Props. 12, 13, and 14 have been
obtained see, e.g., [18], [57], and the references cited there. Conjecture 6 is still
open and no new results about it have been obtained. The most general positive
result on it is probably the result by Stanley described, namely Thm. 20.

Stanley concludes the survey by noting that the f -vector of a convex polytope
is not always unimodal, as had previously been conjectured, to caution the reader
against easy optimism. Even though the results obtained in unimodality since the
publication of [52] are much more on the positive side than on the negative one,
negative results do continue to be found and published. As a sample we mention
here that the sequence enumerating the independent sets of a bipartite graph by
size is not in general unimodal [5] and that the square of a unimodal polynomial
can have arbitrarily many modes [44].
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