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Abstract

We prove a duality result for the parabolic Kazhdan-Lusztig R-polynomials
of a finite Coxeter system. This duality is similar to, but different from, the
one obtained in [9]. As a consequence of our duality we obtain an identity
between the parabolic Kazhdan-Lusztig and inverse Kazhdan-Lusztig poly-
nomials of a finite Coxeter system. We also obtain applications to certain
modules defined by Deodhar and derive a result that gives evidence in favor of
Marietti’s combinatorial invariance conjecture for parabolic Kazhdan-Lusztig

polynomials.

1 Introduction

In [13] Kazhdan and Lusztig defined, for any Coxeter group W, a family of poly-
nomials, indexed by pairs of elements of W, which are now known as the Kazhdan-
Lusztig polynomials of W. These polynomials play an important role in several
areas, including representation theory and the geometry of Schubert varieties (see,
e.g., [1], [12], and the references cited there). Kazhdan-Lusztig polynomials can be
computed using another family of polynomials, usually called the R-polynomials
of W. The R-polynomials also encode deep information about the structure con-
stants of the Hecke algebra of W (see, e.g., [12, §7.4]), the geometry of intersections

in flag varieties ([6]), the enumeration of reduced decompositions in W, and the
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Bruhat graph of W (see, e.g., [1, Theorems 5.3.4 and 5.3.7], or [6] and [11]). In
addition to these, there are also purely combinatorial reasons to be interested in
the Kazhdan-Lusztig and R-polynomials. In fact, in [15] and independently in [10],
it was conjectured that if W; and W5 are two Coxeter groups and if uy,v; € Wy,
ug, vy € Wy are such that [uy,v1] and [ug, v9] are isomorphic as posets (where [u, v]
denotes the interval determined by u and v in the Bruhat order of W, i.e., the set
of all elements z € W such that « < z < w) then P,, ., (q) = Puy.,(q) (where P, ,(q)
denotes the Kazhdan-Lusztig polynomial of u and v). This conjecture is known as
the Combinatorial Invariance Conjecture (see, e.g., [1], [16], and the references cited
there) and is equivalent to the same statement with R, ,, (¢) and Ry, .,(q) in place

of Py, v (¢) and P, ,,(q) (where R, ,(q) denotes the R-polynomial of u and v).
In 1987 Deodhar [7] introduced parabolic analogues P;¥(q) and R;%(q) of these

polynomials. These parabolic polynomials are indexed by pairs of elements u, v in
a parabolic quotient W of W, determined by some subset J of the canonical gen-
erating set S of W, and by a parameter x € {—1,¢}, and reduce to the ordinary
ones if J = (). The natural analogue of the Combinatorial Invariance Conjecture
(where [u, v] is replaced by [u, v] W) has recently been shown to be false (see [5]),
but a parabolic generalization of it has recently been proposed by Marietti in [16].
More precisely, Marietti conjectures that if W; and W5 are two Coxeter groups, J;
and Jy are two subsets of their generating sets S; and Sy, and if uy,v; € (Wl)‘]l,
uy, vy € (Wy)72 are such that there is a poset isomorphism ¢ : [uy, v1] — [ug, o]
such that ¢([uy, v] N (W1)7) = [ug, va] N (Wa)” then P17 (q) = P2 (q) (equiva-

lently, R/* (q) = R2? (q)). Clearly, this conjecture reduces to the Combinatorial
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Invariance Conjecture if J; = Jo = ().

The purpose of this note is to prove a new duality for the parabolic R-polynomials
of a finite Coxeter group. This duality is similar to, but different from, the one
obtained by Douglass in [9]. More precisely, if (I, S5) is a finite Coxeter system and
we denote by wy(J) the element of maximal length in W, where J C S, then we
prove that R}% = Rzgfj{’jfuwowou)u for all u,v € W7 and all € {—1,q}, where
wy = wp(S). As an application of this we obtain a corresponding duality between
the parabolic Kazhdan-Lusztig and inverse parabolic Kazhdan-Lusztig polynomials

7t (see §2 for definitions), namely that P;)7 = Qigﬁ&;’;igjo( gy for all u,v € W7

and all z € {—1,q}. As an application of this identity, and the one by Douglass,

: Jx __ wo Jwo, T : : : :
we obtain that P; 7 = Pyo i " - for all u, v,z as above, which gives evidence in
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favor of Marietti’s conjecture on the combinatorial invariance of parabolic Kazhdan-
Lusztig polynomials. We also obtain applications of our duality to certain modules
defined by Deodhar in [7].

The organization of this note is as follows. In the next section we recall some
notation, definitions, and results, that are used in the sequel. In section 3 we
prove our duality result. As a consequence of it we obtain an identity between the
parabolic Kazhdan-Lusztig polynomials and the inverse parabolic Kazhdan-Lusztig
polynomials of any finite Coxeter group. In section 4 we derive applications of our
main result to certain modules defined by Deodhar and we obtain a result that
gives evidence in favor of Marietti’s conjecture on the combinatorial invariance of

parabolic Kazhdan-Lusztig polynomials ([16, Conj. 1.3]).

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in the

sequel.
We let P := {1, 2,...} be the set of positive integers and N := P U {0}. For all
m,n € Z, m <n welet [m,n] :={m, m+1,..., n} and [n] :=[1, n]. Given a set

I we denote by |I| its cardinality.

We follow [17, Chap.3] for notation and terminology concerning posets. In partic-
ular, if P is a locally finite poset then we denote by I(P;Z[q]) the incidence algebra
of P with coefficients in Z[g|, by ¢ its identity, so ¢ is the Kronecker delta, and we
let Int(P) := {(u,v) € P?:u < v}. The following result is the analogue of a well

known result (see, e.g., [17, Prop. 3.6.2]), and its verification is omitted.

Proposition 2.1 Let P be a locally finite poset, and f € I(P; Z[q|). Then f has a
two-sided inverse if and only if fy, € {1,—1} for allu € P.

We then denote by f~! the two-sided inverse of f. We refer the reader to [17, §3.6]
for further information about incidence algebras.

Suppose now that P is graded, with 0, and let p be its rank function. We let
I(P,Zlg) = {f € I(P,Zla)) = deg(fu) < plv) — plu) for all (u,v) € Tnt(P)}. Tt
is easy to see that I(P; Z[q]) is a subalgebra of I(P; Z[q]). Given f € I(P; Z[q])

we let

Fuo(@) =7 £, (")

3



for all (u,v) € Int(P). It is clear that f € I(P;Z[q]) and that, if f is invertible,
(f)y™ = (f). If f € I(P; Z[g]) then we let fu,(q) := (=1)7")=r) f, (q) for all
(u,v) € Int(P). Note that if f, g € I(P;Z[q]) then (fg) = fgandso (f)' = (FI)
if f is invertible, while if f € I(P;Z[q]) then f f.

We follow [1] and [12] for general Coxeter groups notation and terminology (see
also [2]). In particular, given a Coxeter system (W,S) and u € W we denote by
((u) the length of w in W, with respect to S, and we let {(u, v) := ¢(v) — {(u) for all
u,v € W. We let

Dgr(u) :={s € S| l(us) < l(u)}

be the set of (right) descents of u and we denote by e the identity of W. Given
J C S we let W; be the parabolic subgroup generated by J and

Ti={u € W|l(su) > l(u) for all s € J}. (1)

Note that W% = W. It is well known (see, e.g., [1, Proposition 2.4.4]) that if w € W
then there exist unique elements w’ € WY and w; € W such that w = wyw’ and
that, furthermore £(w) = f(wy) + £(w”). If W is finite, then we denote by wq(J) its
longest element and we let, for brevity, wg := wo(S). We always assume that W is
partially ordered by Bruhat order (see, e.g., [1, §2.1]). Given u,v € W7, u < v, we
let
[u,v]” == {w e W'|u <w < v},

and [u, v] := [u,v]’.

The next two results are due to Deodhar, and we refer the reader to [7, §5§2-3]

for their proofs.

Theorem 2.2 Let (W, S) be a Coxeter system, and J C S. Then, for each x €
{—1,q}, there is a unique family of polynomials {R}%}, vews € Zlq] such that, for
all u,v € W7

i) R/(q) =0 if u g v;
i) R (q) =1;

iii) if u < v and s € Dg(v) then

R’;L’SI’US( ) /I/f ,U’S < u7
Riv(q) =19 (¢ DRI (q) + qRy2, (@), if u<us€ W,
(¢—1—2z)R}%.(q), ifu<usgW’.
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Theorem 2.3 Let (W, S) be a Coxeter system, and J C S. Then, for each x €
{—1,q}, there is a unique family of polynomials { P} (q)}uvews C Zlg], such that,
for all u,v € W:

i) Ply(q) =0ifufv;

i) Pl(q)=1;

iii) deg(Pqiﬁ(q)) < %E(u, v) if u < w;
iv)

f(uv) PJ:(: Z R PJx )

z€[u,v]’

if u <w.

The polynomials R;%(¢) and P;"¥(q), whose existence is guaranteed by the two
previous theorems, are called the parabolic R-polynomials and parabolic Kazhdan-
Lusztig polynomials (respectively) of W7 of type z. It follows immediately from
Theorems 2.2 and 2.3 and from well known facts (see, e.g., [12, §7.5] and [12, §§7.9-
11]) that R%;! (= R%9) and Pl (= PP4) are the (ordinary) R-polynomials and
Kazhdan-Lusztig polynomials of W which we denote simply by R,, and P,,, as
customary.

The parabolic and ordinary Kazhdan-Lusztig and R-polynomials have the fol-
lowing properties. Let (W, S) be a Coxeter system, J C S, and z € {—1,¢}. Then

PRI = (C) I RE ) 2

for all u,v € W,

Ru,v = Rufl,vfl (3)

for all u,v € W.

3. If (W,S) is a finite Coxeter system then
Ru,v = Rwov,wou (4)

for all u,v € W.



Ry =" (=)™ Ry, (5)
weW y

qujjg = Z (_1)Z(w)Pwu,va
weW s

and, if W is finite,

J—1 __
Pu,v - Pwo(J)u,wo(J)w

for all w,v € W,

Proofs of these properties can be found in [8, Cor. 2.2], [1, Chap.5, Ex. 10] (see
also [12, Prop. 7.6]) and [7] (see Propositions 2.12 and 3.4, and Remark 3.8).
Given J C S and z € {—1, ¢} we define, following [4], a family of polynomials

{Ql}vews C Zlg] by

Y NIRTQL =6, (6)
z€[u,v]’
for all u,v € W7, u < v. We also let Q% := 0 if u £ v. Following [4] we call the
polynomials {Qifj}we wo the inverse parabolic Kazhdan-Lusztig polynomials of W7
of type z. It follows immediately from this definition that Q?;;l (= Qg%) are the
inverse Kazhdan-Lusztig polynomials of W as defined in [14, p. 190].
The next result is probably known. However, for lack of an adequate reference,

and for completeness, we prove it here.

Proposition 2.4 Let (W,S) be a Cozeter system, J C S, and x € {—1,q}. Then,
for all u,v € W

i) Qi(q) =1;
i) deg(Qye(q)) < 3 l(u,v) if u <v;
iif)
(IR = Y Quila) RETT (o)
z€[u,v]’

ifu <w.

Proof. The first two statements follow easily from the definition (6). For the
third one let I := I(W7;Z|q]) be the incidence algebra of W with coefficients in
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Z[q]. The families of polynomials R;%, P;, and Q% naturally define elements in
I that will be denoted by R”*, P/* and Q7*, respectively. Thus, Rj% := R;}% for
(u,v) € Int(W”), and similarly for P;¥ and Q. Then by our definition (6), (2),

and Theorem 2.3, we have that

z]SJ@ QJ,x — 5’ <7)
RIe = RIaIme (8)
and
RJ,x PJ,a: — ’]D_J,m

Therefore (P7*)~1 = (éj;) Hence

RIT = Ple (Ple)~t = Ple Q7))

SO

ﬁJ,q—l—oc — Rz — Pl (QJ@)‘

Therefore

éJ,x féJ,q—l—m — (éJ,x) PJ,&?(@J7$) — (é‘]@)

and iii) follows. O

3 Main result

In this section we prove the main result of this note. Namely we prove a duality for-
mula for the parabolic Kazhdan-Lusztig R-polynomials of a finite Coxeter group. As
a consequence of it we obtain a relation between the parabolic and inverse parabolic
Kazhdan-Lusztig polynomials of any finite Coxeter group.

Note first that, by well known results (see, e.g., [1, Proposition 2.3.2], wgJwy C S
if J C S . The following result is probably known, so we omit its proof.

Lemma 3.1 Let (W, S) be a finite Coxeter system and J C S. Then Wyyjw, =

wo Wy wy, wo(wo Jwy) = wo wo(J)wp, and Wolwo = wow(J)W.

The next result is the crucial technical fact needed in the proof of our duality

result.



Lemma 3.2 Let (W,S) be a finite Coxeter system and J C S. Then

Rwo(J)u, wwo(J)v = }%wo(J)UJ*luJo(J)u7 v

for all u,v € W7 and w € Wj.

Proof. Note that wo(J)u = wwy(J)we(J)w we(J)u, and that £(wwe(J)) = £(we(J))—
{(w) and £(wo(J)w we(J)) = €(w). Let s, -+ s5, (h=L0(w)) and sj, -~ -s;,_, (m =
l(wo(J))) be reduced expressions for wo(J)w wy(J) and wwy(J), respectively.
Then sj, -+ sj,_, iy Si,, is a reduced expression for wy(.J). Hence, since u,v € W+
and S, ..., 8, s Siys---s8i, € US4, 85,_, Siy - Si,w) = L(u)+h+(m—h)—i+1
and ((sj, ---sj,_,v) =l(v)+m—h—i+1forali=1,...,m—h+ 1 Hence, by
Theorem 2.2 and (3)

Rwo(J)u,wwo(J)v - Rsh"'sjm_hSil"'sihuvsjl“'sim_h”

Sil -~~sihu, vy

as desired. O

We can now prove our first main result.
Theorem 3.3 Let (W, S) be a finite Cozxeter system and J C S. Then

J,x _ wono,x
Ru,v - Rwowo(J)v,wowo(J)u

for all u,v € WY and all z € {1, q}.

Proof. We have from (5), (4), and Lemmas 3.1 and 3.2, that

wo Jwo ,T _ _ ) (w)
Rwowo(J)v,wowo(J)u - § : ( $> RWWOU’O(J)U:WO’U’O(J)U
wewo W ywo

= Z (_"L‘)Z(w) Rwowwo(J)v,wowo(J)u

weW s

— Z (_l,)f(w) ng(])u,wwo(J)v

weWy

= Z (_x)f(w) Rwo(J)wflwo(J)u,v

weW

— Z (_x)f(wo(J)w—lwo(J)) Rwo(J)w—lwo(J)u,v

weW
= Y (-0)© R,
zeEWy

— RJ,x

u,v?



again by (5), as desired. O
The next result can be deduced from Theorem 3.3, (5), and some well known

properties of the R-polynomials, and we omit its proof.

Lemma 3.4 Let (W,S) be a finite Cozeter system, J C S and u,v € W/, u <

v. Then the map x — wowo(J)z is a poset anti-isomorphism between [u,v]’ and

[wo wo (J)v, wo wo(J )u]®we vo.

We can now prove our second main result.

Corollary 3.5 Let (W,S) be a finite Coxeter system, J C S, and x € {—1,q}.

Then

PJ7 T Q’wo on,qflfx
 wg wo(J)v, wo wo(J)u

for all u,v € W7, u < v.

Proof. We proceed by induction on ¢(u,v), the result being clear if u = v. So
assume that ¢(u,v) > 1. Then we have, by Theorems 2.3 and 3.3, our induction

hypothesis, Lemma 3.4 and Proposition 2.4, that

¢ PG = PR = ) RIE(q) PlEg)
2€(u,w]’
_ J T j,q—l—az
- Z Rwo wo(J)z, wo wo(J)u (q) Qwo wo (J)v, wo wo(J)z(Q)
z€(u,w]/
j,:p j, —1—x
= Z Rw,wo wO(J)u(q) Qwoqwo(J)v,w(q)

we[wo wo (J)v, wo wo (J)u)’

£(wo wo (J)v, wo wo (J)u) Qj’q_l(_f; () U
wo wWo v, W wo u

= dq
Jq 1—x
_Qwowo J)vwowo(J)u( )

where J = wo Jwy, and the result follows from Theorem 2.3 and Proposition 2.4
since £(wo wo(J)v, wo wo(J)u) = €(u,v). O

4 Applications

In this section we derive some applications of our main result to certain modules de-
fined by Deodhar and to Marietti’s combinatorial invariance conjecture for parabolic

Kazhdan-Lusztig’s polynomials.



Let (W,S) be a Coxeter system and J C S. Following Deodhar [7] we let M’
be the free Z[q'/?, ¢=*/?]-module having {m.},ciys as a basis. Let z € {—1,¢}. We
denote by ~ the involution on M7 defined in [7, §2] so

—L(v Jax o J
m = ¢~ E EuEy Ryym

ucWwJ

for all v € W,
For u € W7 let

mJ = ¢! Z 5v5uR”

veWJ

Extend ~ to all of MY by linear extension and by letting (;1\/5 .= ¢~'/2. Note that
~ is an involution of M, as it is easy to check.
Suppose now that (W, S) is finite. Let ¢y : M7 — Mwo/w be defined by

by(my) = myiee, 9)
for all w € W7, and Z[q'/?, g~ '/?]-linearity.

Corollary 4.1 Let (W,S) be a finite Coxeter system, v € {—1,q}, and J C S.
Then

—~—

%(mi) — qé(wowo(J)) %(m_;,])

for allv e W7.

Proof. We have that

—~—
e~

J\ — . woJwo _ A(wowo(J)v) E woJwo woJwo
wJ(mv) - mwowo(J)v =4 Ewowo (J)v RU}O’LUO(J) vy my ’

yGW“’O Jwq

On the other hand, by (9)

qf(’wowo(J)) wJ(”T;)]) _ qé(wowo(J))¢J <q—€(v) Z 5u5vR1{,vmi>

ueWw

_ qf(wo wo(J))—£(v) Z €u5qu{,v ng;{::(oJ)“

ueWwJ

L(wowo (J)v J wo S
_ q( owo(J)v) Z 8wO(J)w0y€vao(J)woy7U myo >

yewwo Jwq

so the result follows from Theorem 3.3. O

Another consequence of Theorem 3.3 is the following curious identity.

10



Corollary 4.2 Let (W, S) be a finite Coxeter system, J C S, u,v € W/ and s € S
be such that v <vs € W7, u < us € W’. Then

RI(q) = (¢— 1 —2) BRI, (q).

Proof. Since u < us € W7 we have that wowo(J)u > wowe(J)us. Also, by Lemma
3.1, wowo(J)vs & W00 and so wowo(J)v < wowg(J)vs. Therefore, by Theorems

2.2 and 3.3 we have that

Jr o _ wo Jwo,T _ o - woJwo,T
Ru,v o Rwowo(J)v,wowo(J)u_ <q 1 x)Rwowo(J)v,wgwo(J)us

= (¢—1-2)R;

uUS,v?

as claimed. O
As an application of Corollary 3.5, and a result of Douglass ([9, Theorem 4.6]),

we obtain the following consequence.

Corollary 4.3 Let (W,S) be a finite Coxeter system, J C S, and x € {—1,q}.
Then

PJ,z _ wo Jwo, T
u, v T T wouwo,Wwov Wo

for all u,v € W7, u <.

Proof. From our definition (6) and Theorem 4.6 of [9] we have that

Jyx _ plg—l-z
u, v~ wo(J)vwo, wo(J)uwo”

Since wo(J)W 7wy = W this may be rewritten as

Jox J,qg—1—x
Pu,v - Q

wo (J)v wo, wo(J)uwo*

But by Corollary 3.5 (applied to wy Jwy C S and to wouwy, wovwy € WwoIw0) we

have that

J,x _ Qf»qfljl“ ~
WoUWQ, WVWo wo wo (J)wovwo, wo wo (J)wouwp’

where J := wo Jwy, and the result follows from Lemma 3.1. O

For J = () the previous corollary reduces to Corollary 4.3 of [3]. Corollary 4.3
gives evidence in favor of Marietti’s combinatorial invariance conjecture for parabolic
Kazhdan-Lusztig polynomials [16, Conj. 1.3]. As noted by the referee, alternate
proofs of Corollary 4.3 are possible.
Acknowledgment: The author would like to thank the referee for a very careful

reading of the manuscript, and useful comments.
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