A twisted duality for parabolic Kazhdan-Lusztig R-polynomials ¹

Francesco Brenti Dipartimento di Matematica Universitá di Roma "Tor Vergata" Via della Ricerca Scientifica, 1 00133 Roma, Italy *brenti@mat.uniroma2.it*

Abstract

We prove a duality result for the parabolic Kazhdan-Lusztig R-polynomials of a finite Coxeter system. This duality is similar to, but different from, the one obtained in [9]. As a consequence of our duality we obtain an identity between the parabolic Kazhdan-Lusztig and inverse Kazhdan-Lusztig polynomials of a finite Coxeter system. We also obtain applications to certain modules defined by Deodhar and derive a result that gives evidence in favor of Marietti's combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials.

1 Introduction

In [13] Kazhdan and Lusztig defined, for any Coxeter group W, a family of polynomials, indexed by pairs of elements of W, which are now known as the Kazhdan-Lusztig polynomials of W. These polynomials play an important role in several areas, including representation theory and the geometry of Schubert varieties (see, e.g., [1], [12], and the references cited there). Kazhdan-Lusztig polynomials can be computed using another family of polynomials, usually called the R-polynomials of W. The R-polynomials also encode deep information about the structure constants of the Hecke algebra of W (see, e.g., [12, §7.4]), the geometry of intersections in flag varieties ([6]), the enumeration of reduced decompositions in W, and the

¹2010 Mathematics Subject Classification: Primary 20F55; Secondary 05E15, 05A15.

Bruhat graph of W (see, e.g., [1, Theorems 5.3.4 and 5.3.7], or [6] and [11]). In addition to these, there are also purely combinatorial reasons to be interested in the Kazhdan-Lusztig and R-polynomials. In fact, in [15] and independently in [10], it was conjectured that if W_1 and W_2 are two Coxeter groups and if $u_1, v_1 \in W_1$, $u_2, v_2 \in W_2$ are such that $[u_1, v_1]$ and $[u_2, v_2]$ are isomorphic as posets (where [u, v]denotes the interval determined by u and v in the Bruhat order of W, i.e., the set of all elements $z \in W$ such that $u \leq z \leq v$) then $P_{u_1,v_1}(q) = P_{u_2,v_2}(q)$ (where $P_{u,v}(q)$ denotes the Kazhdan-Lusztig polynomial of u and v). This conjecture is known as the *Combinatorial Invariance Conjecture* (see, e.g., [1], [16], and the references cited there) and is equivalent to the same statement with $R_{u_1,v_1}(q)$ and $R_{u_2,v_2}(q)$ in place of $P_{u_1,v_1}(q)$ and $P_{u_2,v_2}(q)$ (where $R_{u,v}(q)$ denotes the R-polynomial of u and v).

In 1987 Deodhar [7] introduced parabolic analogues $P_{u,v}^{J,x}(q)$ and $R_{u,v}^{J,x}(q)$ of these polynomials. These parabolic polynomials are indexed by pairs of elements u, v in a parabolic quotient W^J of W, determined by some subset J of the canonical generating set S of W, and by a parameter $x \in \{-1, q\}$, and reduce to the ordinary ones if $J = \emptyset$. The natural analogue of the Combinatorial Invariance Conjecture (where [u, v] is replaced by $[u, v] \cap W^J$) has recently been shown to be false (see [5]), but a parabolic generalization of it has recently been proposed by Marietti in [16]. More precisely, Marietti conjectures that if W_1 and W_2 are two Coxeter groups, J_1 and J_2 are two subsets of their generating sets S_1 and S_2 , and if $u_1, v_1 \in (W_1)^{J_1}$, $u_2, v_2 \in (W_2)^{J_2}$ are such that there is a poset isomorphism $\phi : [u_1, v_1] \mapsto [u_2, v_2]$ such that $\phi([u_1, v_1] \cap (W_1)^{J_1}) = [u_2, v_2] \cap (W_2)^{J_2}$ then $P_{u_1, v_1}^{J_1, x}(q) = P_{u_2, v_2}^{J_2, x}(q)$ (equivalently, $R_{u_1, v_1}^{J_1, x}(q) = R_{u_2, v_2}^{J_2, x}(q)$). Clearly, this conjecture reduces to the Combinatorial Invariance Conjecture if $J_1 = J_2 = \emptyset$.

The purpose of this note is to prove a new duality for the parabolic *R*-polynomials of a finite Coxeter group. This duality is similar to, but different from, the one obtained by Douglass in [9]. More precisely, if (W, S) is a finite Coxeter system and we denote by $w_0(J)$ the element of maximal length in W_J , where $J \subseteq S$, then we prove that $R_{u,v}^{J,x} = R_{w_0w_0(J)v,w_0w_0(J)u}^{w_0,x}$ for all $u, v \in W^J$ and all $x \in \{-1,q\}$, where $w_0 = w_0(S)$. As an application of this we obtain a corresponding duality between the parabolic Kazhdan-Lusztig and inverse parabolic Kazhdan-Lusztig polynomials $Q_{u,v}^{J,x}$ (see §2 for definitions), namely that $P_{u,v}^{J,x} = Q_{w_0w_0(J)v,w_0w_0(J)u}^{w_0,q-1-x}$ for all $u, v \in W^J$ and all $x \in \{-1,q\}$. As an application of this identity, and the one by Douglass, we obtain that $P_{u,v}^{J,x} = P_{w_0uw_0,w_0vw_0}^{w_0,w_0}$ for all u, v, x as above, which gives evidence in favor of Marietti's conjecture on the combinatorial invariance of parabolic Kazhdan-Lusztig polynomials. We also obtain applications of our duality to certain modules defined by Deodhar in [7].

The organization of this note is as follows. In the next section we recall some notation, definitions, and results, that are used in the sequel. In section 3 we prove our duality result. As a consequence of it we obtain an identity between the parabolic Kazhdan-Lusztig polynomials and the inverse parabolic Kazhdan-Lusztig polynomials of any finite Coxeter group. In section 4 we derive applications of our main result to certain modules defined by Deodhar and we obtain a result that gives evidence in favor of Marietti's conjecture on the combinatorial invariance of parabolic Kazhdan-Lusztig polynomials ([16, Conj. 1.3]).

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in the sequel.

We let $\mathbb{P} := \{1, 2, ...\}$ be the set of positive integers and $\mathbb{N} := \mathbb{P} \cup \{0\}$. For all $m, n \in \mathbb{Z}, m \leq n$ we let $[m, n] := \{m, m + 1, ..., n\}$ and [n] := [1, n]. Given a set I we denote by |I| its cardinality.

We follow [17, Chap.3] for notation and terminology concerning posets. In particular, if P is a locally finite poset then we denote by $I(P; \mathbb{Z}[q])$ the incidence algebra of P with coefficients in $\mathbb{Z}[q]$, by δ its identity, so δ is the Kronecker delta, and we let $Int(P) := \{(u, v) \in P^2 : u \leq v\}$. The following result is the analogue of a well known result (see, e.g., [17, Prop. 3.6.2]), and its verification is omitted.

Proposition 2.1 Let P be a locally finite poset, and $f \in I(P; \mathbb{Z}[q])$. Then f has a two-sided inverse if and only if $f_{u,u} \in \{1, -1\}$ for all $u \in P$.

We then denote by f^{-1} the two-sided inverse of f. We refer the reader to [17, §3.6] for further information about incidence algebras.

Suppose now that P is graded, with $\hat{0}$, and let ρ be its rank function. We let $\tilde{I}(P; \mathbb{Z}[q]) := \{f \in I(P; \mathbb{Z}[q]) : deg(f_{u,v}) \leq \rho(v) - \rho(u) \text{ for all } (u,v) \in Int(P)\}$. It is easy to see that $\tilde{I}(P; \mathbb{Z}[q])$ is a subalgebra of $I(P; \mathbb{Z}[q])$. Given $f \in \tilde{I}(P; \mathbb{Z}[q])$ we let

$$\overline{f}_{u,v}(q) := q^{\rho(v) - \rho(u)} f_{u,v}(q^{-1})$$

for all $(u,v) \in Int(P)$. It is clear that $\overline{f} \in \tilde{I}(P;\mathbb{Z}[q])$ and that, if f is invertible, $(\overline{f})^{-1} = \overline{(f^{-1})}$. If $f \in I(P; \mathbb{Z}[q])$ then we let $\tilde{f}_{u,v}(q) := (-1)^{\rho(v)-\rho(u)} f_{u,v}(q)$ for all $(u,v) \in Int(P)$. Note that if $f,g \in I(P;\mathbb{Z}[q])$ then $(\widetilde{fg}) = \tilde{f}\tilde{g}$ and so $(\tilde{f})^{-1} = (\widetilde{f^{-1}})$ if f is invertible, while if $f \in \tilde{I}(P;\mathbb{Z}[q])$ then $\tilde{f} = \overline{\tilde{f}}$.

We follow [1] and [12] for general Coxeter groups notation and terminology (see also [2]). In particular, given a Coxeter system (W, S) and $u \in W$ we denote by $\ell(u)$ the length of u in W, with respect to S, and we let $\ell(u, v) := \ell(v) - \ell(u)$ for all $u, v \in W$. We let

$$D_R(u) := \{ s \in S | \ell(us) < \ell(u) \}$$

be the set of (right) descents of u and we denote by e the identity of W. Given $J \subseteq S$ we let W_J be the parabolic subgroup generated by J and

$$W^J := \{ u \in W | \, \ell(su) > \ell(u) \text{ for all } s \in J \}.$$

$$\tag{1}$$

Note that $W^{\emptyset} = W$. It is well known (see, e.g., [1, Proposition 2.4.4]) that if $w \in W$ then there exist unique elements $w^J \in W^J$ and $w_J \in W_J$ such that $w = w_J w^J$ and that, furthermore $\ell(w) = \ell(w_J) + \ell(w^J)$. If W_J is finite, then we denote by $w_0(J)$ its longest element and we let, for brevity, $w_0 := w_0(S)$. We always assume that W^J is partially ordered by *Bruhat order* (see, e.g., [1, §2.1]). Given $u, v \in W^J$, $u \leq v$, we let

$$[u, v]^J := \{ w \in W^J | u \le w \le v \},\$$

and $[u, v] := [u, v]^{\emptyset}$.

The next two results are due to Deodhar, and we refer the reader to $[7, \S\S2-3]$ for their proofs.

Theorem 2.2 Let (W, S) be a Coxeter system, and $J \subseteq S$. Then, for each $x \in \{-1, q\}$, there is a unique family of polynomials $\{R_{u,v}^{J,x}\}_{u,v\in W^J} \subseteq \mathbb{Z}[q]$ such that, for all $u, v \in W^J$:

- i) $R_{u,v}^{J,x}(q) = 0$ if $u \leq v$;
- **ii)** $R_{u,u}^{J,x}(q) = 1;$
- iii) if u < v and $s \in D_R(v)$ then

$$R_{u,v}^{J,x}(q) = \begin{cases} R_{us,vs}^{J,x}(q), & \text{if } us < u, \\ (q-1)R_{u,vs}^{J,x}(q) + qR_{us,vs}^{J,x}(q), & \text{if } u < us \in W^J, \\ (q-1-x)R_{u,vs}^{J,x}(q), & \text{if } u < us \notin W^J, \end{cases}$$

Theorem 2.3 Let (W, S) be a Coxeter system, and $J \subseteq S$. Then, for each $x \in \{-1, q\}$, there is a unique family of polynomials $\{P_{u,v}^{J,x}(q)\}_{u,v\in W^J} \subseteq \mathbb{Z}[q]$, such that, for all $u, v \in W^J$:

- i) $P_{u,v}^{J,x}(q) = 0$ if $u \leq v$;
- **ii)** $P_{u,u}^{J,x}(q) = 1;$
- iii) $deg(P_{u,v}^{J,x}(q)) < \frac{1}{2} \ell(u,v) \text{ if } u < v;$

iv)

$$q^{\ell(u,v)} P^{J,x}_{u,v}(q^{-1}) = \sum_{z \in [u,v]^J} R^{J,x}_{u,z}(q) P^{J,x}_{z,v}(q)$$

if $u \leq v$.

The polynomials $R_{u,v}^{J,x}(q)$ and $P_{u,v}^{J,x}(q)$, whose existence is guaranteed by the two previous theorems, are called the *parabolic R-polynomials* and *parabolic Kazhdan-Lusztig polynomials* (respectively) of W^J of type x. It follows immediately from Theorems 2.2 and 2.3 and from well known facts (see, e.g., [12, §7.5] and [12, §§7.9-11]) that $R_{u,v}^{\emptyset,-1}$ (= $R_{u,v}^{\emptyset,q}$) and $P_{u,v}^{\emptyset,-1}$ (= $P_{u,v}^{\emptyset,q}$) are the (ordinary) *R-polynomials* and *Kazhdan-Lusztig polynomials* of W which we denote simply by $R_{u,v}$ and $P_{u,v}$, as customary.

The parabolic and ordinary Kazhdan-Lusztig and *R*-polynomials have the following properties. Let (W, S) be a Coxeter system, $J \subseteq S$, and $x \in \{-1, q\}$. Then

1.

$$q^{\ell(u,v)}R^{J,q}_{u,v}(q^{-1}) = (-1)^{\ell(u,v)}R^{J,-1}_{u,v}(q)$$
⁽²⁾

for all $u, v \in W^J$.

2.

$$R_{u,v} = R_{u^{-1},v^{-1}} \tag{3}$$

for all $u, v \in W$.

3. If (W, S) is a finite Coxeter system then

$$R_{u,v} = R_{w_0v,w_0u} \tag{4}$$

for all $u, v \in W$.

4.

$$R_{u,v}^{J,x} = \sum_{w \in W_J} (-x)^{\ell(w)} R_{wu,v},$$

$$P_{u,v}^{J,q} = \sum_{w \in W_J} (-1)^{\ell(w)} P_{wu,v},$$
(5)

and, if W_J is finite,

$$P_{u,v}^{J,-1} = P_{w_0(J)u,w_0(J)v},$$

for all $u, v \in W^J$.

Proofs of these properties can be found in [8, Cor. 2.2], [1, Chap.5, Ex. 10] (see also [12, Prop. 7.6]) and [7] (see Propositions 2.12 and 3.4, and Remark 3.8).

Given $J \subseteq S$ and $x \in \{-1, q\}$ we define, following [4], a family of polynomials $\{Q_{u,v}^{J,x}\}_{u,v \in W^J} \subseteq \mathbb{Z}[q]$ by

$$\sum_{z \in [u,v]^J} (-1)^{\ell(u,z)} P_{u,z}^{J,x} Q_{z,v}^{J,x} = \delta_{u,v}$$
(6)

for all $u, v \in W^J$, $u \leq v$. We also let $Q_{u,v}^{J,x} := 0$ if $u \not\leq v$. Following [4] we call the polynomials $\{Q_{u,v}^{J,x}\}_{u,v\in W^J}$ the *inverse parabolic Kazhdan-Lusztig polynomials* of W^J of type x. It follows immediately from this definition that $Q_{u,v}^{\emptyset,-1}$ (= $Q_{u,v}^{\emptyset,q}$) are the *inverse Kazhdan-Lusztig polynomials* of W as defined in [14, p. 190].

The next result is probably known. However, for lack of an adequate reference, and for completeness, we prove it here.

Proposition 2.4 Let (W, S) be a Coxeter system, $J \subseteq S$, and $x \in \{-1, q\}$. Then, for all $u, v \in W^J$:

i) $Q_{u,u}^{J,x}(q) = 1;$

ii)
$$deg(Q_{u,v}^{J,x}(q)) < \frac{1}{2}\ell(u,v)$$
 if $u < v$;

iii)

$$q^{\ell(u,v)} Q_{u,v}^{J,x}(q^{-1}) = \sum_{z \in [u,v]^J} Q_{u,z}^{J,x}(q) R_{z,v}^{J,q-1-x}(q)$$

if $u \leq v$.

Proof. The first two statements follow easily from the definition (6). For the third one let $I := I(W^J; \mathbb{Z}[q])$ be the incidence algebra of W^J with coefficients in

 $\mathbb{Z}[q]$. The families of polynomials $R_{u,v}^{J,x}$, $P_{u,v}^{J,x}$, and $Q_{u,v}^{J,x}$ naturally define elements in I that will be denoted by $\mathcal{R}^{J,x}$, $\mathcal{P}^{J,x}$, and $\mathcal{Q}^{J,x}$, respectively. Thus, $\mathcal{R}_{u,v}^{J,x} := R_{u,v}^{J,x}$ for $(u,v) \in Int(W^J)$, and similarly for $\mathcal{P}_{u,v}^{J,x}$ and $\mathcal{Q}_{u,v}^{J,x}$. Then by our definition (6), (2), and Theorem 2.3, we have that

$$\widetilde{\mathcal{P}}^{J,x} \mathcal{Q}^{J,x} = \delta, \tag{7}$$

$$\overline{\mathcal{R}^{J,x}} = \widetilde{\mathcal{R}}^{J,q-1-x}, \tag{8}$$

and

$$\mathcal{R}^{J,x} \, \mathcal{P}^{J,x} = \overline{\mathcal{P}^{J,x}}$$

Therefore $(\mathcal{P}^{J,x})^{-1} = (\widetilde{\mathcal{Q}^{J,x}})$. Hence

$$\mathcal{R}^{J,x} = \overline{\mathcal{P}^{J,x}} \, (\mathcal{P}^{J,x})^{-1} = \overline{\mathcal{P}^{J,x}} \, (\widetilde{\mathcal{Q}^{J,x}})$$

 \mathbf{SO}

$$\widetilde{\mathcal{R}}^{J,q-1-x} = \overline{\mathcal{R}^{J,x}} = \mathcal{P}^{J,x} \overline{(\widetilde{\mathcal{Q}}^{J,x})}.$$

Therefore

$$\widetilde{\mathcal{Q}}^{J,x}\,\widetilde{\mathcal{R}}^{J,q-1-x} = (\widetilde{\mathcal{Q}}^{J,x})\,\mathcal{P}^{J,x}\overline{(\widetilde{\mathcal{Q}}^{J,x})} = \overline{(\widetilde{\mathcal{Q}}^{J,x})}$$

and iii) follows. \Box

3 Main result

In this section we prove the main result of this note. Namely we prove a duality formula for the parabolic Kazhdan-Lusztig *R*-polynomials of a finite Coxeter group. As a consequence of it we obtain a relation between the parabolic and inverse parabolic Kazhdan-Lusztig polynomials of any finite Coxeter group.

Note first that, by well known results (see, e.g., [1, Proposition 2.3.2], $w_0 J w_0 \subseteq S$ if $J \subseteq S$. The following result is probably known, so we omit its proof.

Lemma 3.1 Let (W, S) be a finite Coxeter system and $J \subseteq S$. Then $W_{w_0Jw_0} = w_0 W_J w_0$, $w_0(w_0 J w_0) = w_0 w_0(J) w_0$, and $W^{w_0Jw_0} = w_0 w_0(J) W^J$.

The next result is the crucial technical fact needed in the proof of our duality result.

Lemma 3.2 Let (W, S) be a finite Coxeter system and $J \subseteq S$. Then

$$R_{w_0(J)u, w w_0(J)v} = R_{w_0(J)w^{-1}w_0(J)u, v}$$

for all $u, v \in W^J$ and $w \in W_J$.

Proof. Note that $w_0(J)u = ww_0(J)w_0(J)w^{-1}w_0(J)u$, and that $\ell(ww_0(J)) = \ell(w_0(J)) - \ell(w)$ and $\ell(w_0(J)w^{-1}w_0(J)) = \ell(w)$. Let $s_{i_1} \cdots s_{i_h}$ $(h = \ell(w))$ and $s_{j_1} \cdots s_{j_{m-h}}$ $(m = \ell(w_0(J)))$ be reduced expressions for $w_0(J)w^{-1}w_0(J)$ and $ww_0(J)$, respectively. Then $s_{j_1} \cdots s_{j_{m-h}} s_{i_1} \cdots s_{i_h}$ is a reduced expression for $w_0(J)$. Hence, since $u, v \in W^J$ and $s_{j_1}, \ldots, s_{j_{m-h}}, s_{i_1}, \ldots, s_{i_h} \in J$, $\ell(s_{j_i} \cdots s_{j_{m-h}} s_{i_1} \cdots s_{i_h} u) = \ell(u) + h + (m-h) - i + 1$ and $\ell(s_{j_i} \cdots s_{j_{m-h}} v) = \ell(v) + m - h - i + 1$ for all $i = 1, \ldots, m - h + 1$. Hence, by Theorem 2.2 and (3)

$$\begin{aligned} R_{w_0(J)u,ww_0(J)v} &= R_{s_{j_1}\cdots s_{j_{m-h}}s_{i_1}\cdots s_{i_h}u,s_{j_1}\cdots s_{j_{m-h}}v} \\ &= R_{s_{i_1}\cdots s_{i_h}u,v}, \end{aligned}$$

as desired. \Box

We can now prove our first main result.

Theorem 3.3 Let (W, S) be a finite Coxeter system and $J \subseteq S$. Then

$$R_{u,v}^{J,x} = R_{w_0w_0(J)v,w_0w_0(J)u}^{w_0Jw_0,x}$$

for all $u, v \in W^J$ and all $x \in \{-1, q\}$.

Proof. We have from (5), (4), and Lemmas 3.1 and 3.2, that

$$\begin{aligned} R_{w_0w_0(J)v, w_0w_0(J)u}^{w_0Jw_0, w_0} &= \sum_{w \in w_0W_Jw_0} (-x)^{\ell(w)} R_{ww_0w_0(J)v, w_0w_0(J)u} \\ &= \sum_{w \in W_J} (-x)^{\ell(w)} R_{w_0w_0(J)v, w_0w_0(J)u} \\ &= \sum_{w \in W_J} (-x)^{\ell(w)} R_{w_0(J)u, ww_0(J)v} \\ &= \sum_{w \in W_J} (-x)^{\ell(w)} R_{w_0(J)w^{-1}w_0(J)u, v} \\ &= \sum_{w \in W_J} (-x)^{\ell(w_0(J)w^{-1}w_0(J))} R_{w_0(J)w^{-1}w_0(J)u, v} \\ &= \sum_{z \in W_J} (-x)^{\ell(z)} R_{zu, v} \\ &= R_{u, v}^{J, x}, \end{aligned}$$

again by (5), as desired. \Box

The next result can be deduced from Theorem 3.3, (5), and some well known properties of the *R*-polynomials, and we omit its proof.

Lemma 3.4 Let (W, S) be a finite Coxeter system, $J \subseteq S$ and $u, v \in W^J$, $u \leq v$. Then the map $x \mapsto w_0 w_0(J)x$ is a poset anti-isomorphism between $[u, v]^J$ and $[w_0 w_0(J)v, w_0 w_0(J)u]^{w_0 J w_0}$.

We can now prove our second main result.

Corollary 3.5 Let (W, S) be a finite Coxeter system, $J \subseteq S$, and $x \in \{-1, q\}$. Then

$$P_{u,v}^{J,x} = Q_{w_0 w_0(J)v, w_0 w_0(J)u}^{w_0 J, w_0, q-1-x}$$

for all $u, v \in W^J$, $u \leq v$.

Proof. We proceed by induction on $\ell(u, v)$, the result being clear if u = v. So assume that $\ell(u, v) \ge 1$. Then we have, by Theorems 2.3 and 3.3, our induction hypothesis, Lemma 3.4 and Proposition 2.4, that

$$\begin{split} q^{\ell(u,v)} P_{u,v}^{J,x}(q^{-1}) - P_{u,v}^{J,x}(q) &= \sum_{z \in (u,v]^J} R_{u,z}^{J,x}(q) P_{z,v}^{J,x}(q) \\ &= \sum_{z \in (u,v]^J} R_{w_0 w_0(J)z, w_0 w_0(J)u}^{\tilde{J},q-1-x}(q) Q_{w_0 w_0(J)v, w_0 w_0(J)z}^{\tilde{J},q-1-x}(q) \\ &= \sum_{w \in [w_0 w_0(J)v, w_0 w_0(J)u)^{\tilde{J}}} R_{w,w_0 w_0(J)u}^{\tilde{J},q-1-x}(q) Q_{w_0 w_0(J)v,w}^{\tilde{J},q-1-x}(q) \\ &= q^{\ell(w_0 w_0(J)v, w_0 w_0(J)u)} Q_{w_0 w_0(J)v, w_0 w_0(J)u}^{\tilde{J},q-1-x}(q^{-1}) \\ &- Q_{w_0 w_0(J)v, w_0 w_0(J)u}^{\tilde{J},q-1-x}(q), \end{split}$$

where $\tilde{J} := w_0 J w_0$, and the result follows from Theorem 2.3 and Proposition 2.4 since $\ell(w_0 w_0(J)v, w_0 w_0(J)u) = \ell(u, v)$. \Box

4 Applications

In this section we derive some applications of our main result to certain modules defined by Deodhar and to Marietti's combinatorial invariance conjecture for parabolic Kazhdan-Lusztig's polynomials. Let (W, S) be a Coxeter system and $J \subseteq S$. Following Deodhar [7] we let M^J be the free $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ -module having $\{m_u^J\}_{u\in W^J}$ as a basis. Let $x \in \{-1, q\}$. We denote by $\bar{}$ the involution on M^J defined in [7, §2] so

$$\overline{m_v^J} = q^{-\ell(v)} \sum_{u \in W^J} \varepsilon_u \, \varepsilon_v \, R_{u,v}^{J,x} \, m_u^J$$

for all $v \in W^J$.

For $u \in W^J$ let

$$\widetilde{m_u^J} := q^{\ell(u)} \sum_{v \in W^J} \varepsilon_v \, \varepsilon_u \, R_{u,v}^{J,x} \, m_v^J.$$

Extend ~ to all of M^J by linear extension and by letting $\widetilde{q^{1/2}} := q^{-1/2}$. Note that ~ is an involution of M^J , as it is easy to check.

Suppose now that (W, S) is finite. Let $\psi_J : M^J \to M^{w_0 J w_0}$ be defined by

$$\psi_J(m_u^J) := m_{w_0 w_0(J) \, u}^{w_0 J w_0} \tag{9}$$

for all $u \in W^J$, and $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ -linearity.

Corollary 4.1 Let (W, S) be a finite Coxeter system, $x \in \{-1, q\}$, and $J \subseteq S$. Then

$$\widetilde{\psi_J(m_v^J)} = q^{\ell(w_0 w_0(J))} \ \psi_J(\overline{m_v^J})$$

for all $v \in W^J$.

Proof. We have that

$$\widetilde{\psi_J(m_v^J)} = \widetilde{m_{w_0w_0(J)v}^{w_0Jw_0}} = q^{\ell(w_0w_0(J)v)} \sum_{y \in W^{w_0Jw_0}} \varepsilon_{w_0w_0(J)v} \varepsilon_y R_{w_0w_0(J)v,y}^{w_0Jw_0} m_y^{w_0Jw_0}.$$

On the other hand, by (9)

$$q^{\ell(w_{0}w_{0}(J))} \psi_{J}(\overline{m_{v}^{J}}) = q^{\ell(w_{0}w_{0}(J))}\psi_{J}\left(q^{-\ell(v)}\sum_{u\in W^{J}}\varepsilon_{u}\varepsilon_{v}R_{u,v}^{J}m_{u}^{J}\right)$$

$$= q^{\ell(w_{0}w_{0}(J))-\ell(v)}\sum_{u\in W^{J}}\varepsilon_{u}\varepsilon_{v}R_{u,v}^{J}m_{w_{0}w_{0}(J)u}^{w_{0}Jw_{0}}$$

$$= q^{\ell(w_{0}w_{0}(J)v)}\sum_{y\in W^{w_{0}Jw_{0}}}\varepsilon_{w_{0}(J)w_{0}y}\varepsilon_{v}R_{w_{0}(J)w_{0}y,v}^{J}m_{y}^{w_{0}Jw_{0}}$$

so the result follows from Theorem 3.3. \square

Another consequence of Theorem 3.3 is the following curious identity.

Corollary 4.2 Let (W, S) be a finite Coxeter system, $J \subseteq S$, $u, v \in W^J$ and $s \in S$ be such that $v < vs \notin W^J$, $u < us \in W^J$. Then

$$R_{u,v}^{J,x}(q) = (q - 1 - x) R_{us,v}^{J,x}(q).$$

Proof. Since $u < us \in W^J$ we have that $w_0w_0(J)u > w_0w_0(J)us$. Also, by Lemma 3.1, $w_0w_0(J)vs \notin W^{w_0Jw_0}$ and so $w_0w_0(J)v < w_0w_0(J)vs$. Therefore, by Theorems 2.2 and 3.3 we have that

$$\begin{aligned} R^{J,x}_{u,v} &= R^{w_0Jw_0,x}_{w_0w_0(J)v,w_0w_0(J)u} = (q-1-x)R^{w_0Jw_0,x}_{w_0w_0(J)v,w_0w_0(J)us} \\ &= (q-1-x)R^{J,x}_{us,v}, \end{aligned}$$

as claimed. \Box

As an application of Corollary 3.5, and a result of Douglass ([9, Theorem 4.6]), we obtain the following consequence.

Corollary 4.3 Let (W, S) be a finite Coxeter system, $J \subseteq S$, and $x \in \{-1, q\}$. Then

$$P_{u,v}^{J,x} = P_{w_0 u w_0, w_0 v w_0}^{w_0 J w_0, x}$$

for all $u, v \in W^J$, $u \leq v$.

Proof. From our definition (6) and Theorem 4.6 of [9] we have that

$$Q_{u,v}^{J,x} = P_{w_0(J)v\,w_0,\,w_0(J)u\,w_0}^{J,x}.$$

Since $w_0(J)W^Jw_0 = W^J$ this may be rewritten as

$$P_{u,v}^{J,x} = Q_{w_0(J)v\,w_0,w_0(J)u\,w_0}^{J,\,q-1-x}$$

But by Corollary 3.5 (applied to $w_0 J w_0 \subseteq S$ and to $w_0 u w_0$, $w_0 v w_0 \in W^{w_0 J w_0}$) we have that

$$P_{w_0uw_0,w_0vw_0}^{\tilde{J},x} = Q_{w_0w_0(\tilde{J})w_0vw_0,w_0w_0(\tilde{J})w_0uw_0}^{J,q-1-x}$$

where $\tilde{J} := w_0 J w_0$, and the result follows from Lemma 3.1. \Box

For $J = \emptyset$ the previous corollary reduces to Corollary 4.3 of [3]. Corollary 4.3 gives evidence in favor of Marietti's combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials [16, Conj. 1.3]. As noted by the referee, alternate proofs of Corollary 4.3 are possible.

Acknowledgment: The author would like to thank the referee for a very careful reading of the manuscript, and useful comments.

References

- A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, Springer-Verlag, New York, 2005.
- [2] N. Bourbaki, Groupes et algébres de Lie, Ch. 4-6, Éléments de Mathématique, Fasc. XXXIV, Hermann, Paris, 1968; Masson, Paris, 1981.
- [3] F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials, Invent. Math., 118 (1994), 371-394.
- [4] F. Brenti, Twisted incidence algebras and Kazhdan-Lusztig-Stanley functions, Advances in Math., 148 (1999), 44-74.
- [5] F. Brenti, P. Mongelli, P. Sentinelli, Parabolic Kazhdan-Lusztig polynomials for quasi-minuscule quotients, Advances in Applied Math., 78 (2016), 27-55.
- [6] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., 79 (1985), 499-511.
- [7] V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111 (1987), 483-506.
- [8] V. Deodhar, Duality in parabolic setup for questions in Kazhdan–Lusztig theory, J. Algebra, 142 (1991), 201-209.
- [9] J. Douglass, An inversion formula for relative Kazhdan-Lusztig polynomials, Comm. Algebra, 18 (1990), 371-387.
- [10] M. Dyer, Hecke algebras and reflections in Coxeter groups, Ph. D. Thesis, University of Sydney, 1987.
- [11] M. Dyer, Hecke algebras and shellings of Bruhat intervals, Compos. Math., 89 (1993), 91-115.
- [12] J. E. Humphreys, *Reflection Groups and Coxeter Groups*, Cambridge Studies in Advanced Mathematics, no.29, Cambridge Univ. Press, Cambridge, 1990.
- [13] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184

- [14] D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator, Proc. Sympos. Pure Math. 34, Amer. Math. Soc., Providence, RI, 1980, pp. 185-203.
- [15] G. Lusztig, private communication, 1980.
- M. Marietti, Special matchings and parabolic Kazhdan-Lusztig polynomials, Trans. Amer. Math. Soc., 368 (2016), 5247-5269.
- [17] R. P. Stanley *Enumerative Combinatorics*, vol. I, 2nd ed., Cambridge Studies in Advanced Mathematics, no. 49, Cambridge Univ. Press, Cambridge (2012).