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Abstract

We prove a duality result for the parabolic Kazhdan-Lusztig R-polynomials

of a finite Coxeter system. This duality is similar to, but different from, the

one obtained in [9]. As a consequence of our duality we obtain an identity

between the parabolic Kazhdan-Lusztig and inverse Kazhdan-Lusztig poly-

nomials of a finite Coxeter system. We also obtain applications to certain

modules defined by Deodhar and derive a result that gives evidence in favor of

Marietti’s combinatorial invariance conjecture for parabolic Kazhdan-Lusztig

polynomials.

1 Introduction

In [13] Kazhdan and Lusztig defined, for any Coxeter group W , a family of poly-

nomials, indexed by pairs of elements of W , which are now known as the Kazhdan-

Lusztig polynomials of W . These polynomials play an important role in several

areas, including representation theory and the geometry of Schubert varieties (see,

e.g., [1], [12], and the references cited there). Kazhdan-Lusztig polynomials can be

computed using another family of polynomials, usually called the R-polynomials

of W . The R-polynomials also encode deep information about the structure con-

stants of the Hecke algebra of W (see, e.g., [12, §7.4]), the geometry of intersections

in flag varieties ([6]), the enumeration of reduced decompositions in W , and the
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Bruhat graph of W (see, e.g., [1, Theorems 5.3.4 and 5.3.7], or [6] and [11]). In

addition to these, there are also purely combinatorial reasons to be interested in

the Kazhdan-Lusztig and R-polynomials. In fact, in [15] and independently in [10],

it was conjectured that if W1 and W2 are two Coxeter groups and if u1, v1 ∈ W1,

u2, v2 ∈ W2 are such that [u1, v1] and [u2, v2] are isomorphic as posets (where [u, v]

denotes the interval determined by u and v in the Bruhat order of W , i.e., the set

of all elements z ∈ W such that u ≤ z ≤ v) then Pu1,v1(q) = Pu2,v2(q) (where Pu,v(q)

denotes the Kazhdan-Lusztig polynomial of u and v). This conjecture is known as

the Combinatorial Invariance Conjecture (see, e.g., [1], [16], and the references cited

there) and is equivalent to the same statement with Ru1,v1(q) and Ru2,v2(q) in place

of Pu1,v1(q) and Pu2,v2(q) (where Ru,v(q) denotes the R-polynomial of u and v).

In 1987 Deodhar [7] introduced parabolic analogues P J,x
u,v (q) and RJ,x

u,v(q) of these

polynomials. These parabolic polynomials are indexed by pairs of elements u, v in

a parabolic quotient W J of W , determined by some subset J of the canonical gen-

erating set S of W , and by a parameter x ∈ {−1, q}, and reduce to the ordinary

ones if J = ∅. The natural analogue of the Combinatorial Invariance Conjecture

(where [u, v] is replaced by [u, v]∩W J) has recently been shown to be false (see [5]),

but a parabolic generalization of it has recently been proposed by Marietti in [16].

More precisely, Marietti conjectures that if W1 and W2 are two Coxeter groups, J1

and J2 are two subsets of their generating sets S1 and S2, and if u1, v1 ∈ (W1)
J1 ,

u2, v2 ∈ (W2)
J2 are such that there is a poset isomorphism φ : [u1, v1] 7→ [u2, v2]

such that φ([u1, v1] ∩ (W1)
J1) = [u2, v2] ∩ (W2)

J2 then P J1,x
u1,v1

(q) = P J2,x
u2,v2

(q) (equiva-

lently, RJ1,x
u1,v1

(q) = RJ2,x
u2,v2

(q)). Clearly, this conjecture reduces to the Combinatorial

Invariance Conjecture if J1 = J2 = ∅.

The purpose of this note is to prove a new duality for the parabolic R-polynomials

of a finite Coxeter group. This duality is similar to, but different from, the one

obtained by Douglass in [9]. More precisely, if (W,S) is a finite Coxeter system and

we denote by w0(J) the element of maximal length in WJ , where J ⊆ S, then we

prove that RJ,x
u,v = Rw0Jw0, x

w0w0(J)v,w0w0(J)u
for all u, v ∈ W J and all x ∈ {−1, q}, where

w0 = w0(S). As an application of this we obtain a corresponding duality between

the parabolic Kazhdan-Lusztig and inverse parabolic Kazhdan-Lusztig polynomials

QJ,x
u,v (see §2 for definitions), namely that P J,x

u,v = Qw0Jw0, q−1−x
w0w0(J)v,w0w0(J)u

for all u, v ∈ W J

and all x ∈ {−1, q}. As an application of this identity, and the one by Douglass,

we obtain that P J, x
u, v = Pw0 Jw0, x

w0uw0, w0v w0
for all u, v, x as above, which gives evidence in

2



favor of Marietti’s conjecture on the combinatorial invariance of parabolic Kazhdan-

Lusztig polynomials. We also obtain applications of our duality to certain modules

defined by Deodhar in [7].

The organization of this note is as follows. In the next section we recall some

notation, definitions, and results, that are used in the sequel. In section 3 we

prove our duality result. As a consequence of it we obtain an identity between the

parabolic Kazhdan-Lusztig polynomials and the inverse parabolic Kazhdan-Lusztig

polynomials of any finite Coxeter group. In section 4 we derive applications of our

main result to certain modules defined by Deodhar and we obtain a result that

gives evidence in favor of Marietti’s conjecture on the combinatorial invariance of

parabolic Kazhdan-Lusztig polynomials ([16, Conj. 1.3]).

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in the

sequel.

We let P := {1, 2, . . .} be the set of positive integers and N := P ∪ {0}. For all

m, n ∈ Z, m ≤ n we let [m,n] := {m, m + 1, . . . , n} and [n] := [1, n]. Given a set

I we denote by |I| its cardinality.

We follow [17, Chap.3] for notation and terminology concerning posets. In partic-

ular, if P is a locally finite poset then we denote by I(P ;Z[q]) the incidence algebra

of P with coefficients in Z[q], by δ its identity, so δ is the Kronecker delta, and we

let Int(P ) := {(u, v) ∈ P 2 : u ≤ v}. The following result is the analogue of a well

known result (see, e.g., [17, Prop. 3.6.2]), and its verification is omitted.

Proposition 2.1 Let P be a locally finite poset, and f ∈ I(P ; Z[q]). Then f has a

two-sided inverse if and only if fu,u ∈ {1,−1} for all u ∈ P .

We then denote by f−1 the two-sided inverse of f . We refer the reader to [17, §3.6]

for further information about incidence algebras.

Suppose now that P is graded, with 0̂, and let ρ be its rank function. We let

Ĩ(P ;Z[q]) := {f ∈ I(P ;Z[q]) : deg(fu,v) ≤ ρ(v) − ρ(u) for all (u, v) ∈ Int(P )}. It

is easy to see that Ĩ(P ; Z[q]) is a subalgebra of I(P ; Z[q]). Given f ∈ Ĩ(P ; Z[q])

we let

fu,v(q) := qρ(v)−ρ(u) fu,v(q
−1)
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for all (u, v) ∈ Int(P ). It is clear that f ∈ Ĩ(P ;Z[q]) and that, if f is invertible,

(f)−1 = (f−1). If f ∈ I(P ; Z[q]) then we let f̃u,v(q) := (−1)ρ(v)−ρ(u) fu,v(q) for all

(u, v) ∈ Int(P ). Note that if f, g ∈ I(P ;Z[q]) then (f̃ g) = f̃ g̃ and so (f̃)−1 = (f̃−1)

if f is invertible, while if f ∈ Ĩ(P ;Z[q]) then ˜̄f = ¯̃f .

We follow [1] and [12] for general Coxeter groups notation and terminology (see

also [2]). In particular, given a Coxeter system (W,S) and u ∈ W we denote by

`(u) the length of u in W , with respect to S, and we let `(u, v) := `(v)− `(u) for all

u, v ∈ W . We let

DR(u) := {s ∈ S| `(us) < `(u)}

be the set of (right) descents of u and we denote by e the identity of W . Given

J ⊆ S we let WJ be the parabolic subgroup generated by J and

W J := {u ∈ W | `(su) > `(u) for all s ∈ J}. (1)

Note that W ∅ = W . It is well known (see, e.g., [1, Proposition 2.4.4]) that if w ∈ W
then there exist unique elements wJ ∈ W J and wJ ∈ WJ such that w = wJ w

J and

that, furthermore `(w) = `(wJ)+ `(wJ). If WJ is finite, then we denote by w0(J) its

longest element and we let, for brevity, w0 := w0(S). We always assume that W J is

partially ordered by Bruhat order (see, e.g., [1, §2.1]). Given u, v ∈ W J , u ≤ v, we

let

[u, v]J := {w ∈ W J |u ≤ w ≤ v},

and [u, v] := [u, v]∅.

The next two results are due to Deodhar, and we refer the reader to [7, §§2-3]

for their proofs.

Theorem 2.2 Let (W,S) be a Coxeter system, and J ⊆ S. Then, for each x ∈
{−1, q}, there is a unique family of polynomials {RJ,x

u,v}u,v∈WJ ⊆ Z[q] such that, for

all u, v ∈ W J :

i) RJ,x
u,v(q) = 0 if u 6≤ v;

ii) RJ,x
u,u(q) = 1;

iii) if u < v and s ∈ DR(v) then

RJ,x
u,v(q) =


RJ,x
us,vs(q), if us < u,

(q − 1)RJ,x
u,vs(q) + qRJ,x

us,vs(q), if u < us ∈ W J ,

(q − 1− x)RJ,x
u,vs(q), if u < us 6∈ W J .
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Theorem 2.3 Let (W,S) be a Coxeter system, and J ⊆ S. Then, for each x ∈
{−1, q}, there is a unique family of polynomials {P J,x

u,v (q)}u,v∈WJ ⊆ Z[q], such that,

for all u, v ∈ W J :

i) P J,x
u,v (q) = 0 if u 6≤ v;

ii) P J,x
u,u (q) = 1;

iii) deg(P J,x
u,v (q)) < 1

2
`(u, v) if u < v;

iv)

q`(u,v) P J,x
u,v (q−1) =

∑
z∈[u,v]J

RJ,x
u,z(q)P

J,x
z,v (q)

if u ≤ v.

The polynomials RJ,x
u,v(q) and P J,x

u,v (q), whose existence is guaranteed by the two

previous theorems, are called the parabolic R-polynomials and parabolic Kazhdan-

Lusztig polynomials (respectively) of W J of type x. It follows immediately from

Theorems 2.2 and 2.3 and from well known facts (see, e.g., [12, §7.5] and [12, §§7.9-

11]) that R∅,−1u,v (= R∅,qu,v) and P ∅,−1u,v (= P ∅,qu,v ) are the (ordinary) R-polynomials and

Kazhdan-Lusztig polynomials of W which we denote simply by Ru,v and Pu,v, as

customary.

The parabolic and ordinary Kazhdan-Lusztig and R-polynomials have the fol-

lowing properties. Let (W,S) be a Coxeter system, J ⊆ S, and x ∈ {−1, q}. Then

1.

q`(u,v)RJ,q
u, v(q

−1) = (−1)`(u,v)RJ,−1
u, v (q) (2)

for all u, v ∈ W J .

2.

Ru, v = Ru−1, v−1 (3)

for all u, v ∈ W .

3. If (W,S) is a finite Coxeter system then

Ru, v = Rw0v,w0u (4)

for all u, v ∈ W .
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4.

RJ,x
u,v =

∑
w∈WJ

(−x)`(w)Rwu,v, (5)

P J,q
u,v =

∑
w∈WJ

(−1)`(w)Pwu,v,

and, if WJ is finite,

P J,−1
u,v = Pw0(J)u,w0(J)v,

for all u, v ∈ W J .

Proofs of these properties can be found in [8, Cor. 2.2], [1, Chap.5, Ex. 10] (see

also [12, Prop. 7.6]) and [7] (see Propositions 2.12 and 3.4, and Remark 3.8).

Given J ⊆ S and x ∈ {−1, q} we define, following [4], a family of polynomials

{QJ,x
u,v}u,v∈WJ ⊆ Z[q] by ∑

z∈[u,v]J
(−1)`(u,z)P J,x

u,z Q
J,x
z,v = δu,v (6)

for all u, v ∈ W J , u ≤ v. We also let QJ,x
u,v := 0 if u 6≤ v. Following [4] we call the

polynomials {QJ,x
u,v}u,v∈WJ the inverse parabolic Kazhdan-Lusztig polynomials of W J

of type x. It follows immediately from this definition that Q∅,−1u,v (= Q∅,qu,v) are the

inverse Kazhdan-Lusztig polynomials of W as defined in [14, p. 190].

The next result is probably known. However, for lack of an adequate reference,

and for completeness, we prove it here.

Proposition 2.4 Let (W,S) be a Coxeter system, J ⊆ S, and x ∈ {−1, q}. Then,

for all u, v ∈ W J :

i) QJ,x
u,u(q) = 1;

ii) deg(QJ,x
u,v(q)) <

1
2
`(u, v) if u < v;

iii)

q`(u,v)QJ,x
u,v(q

−1) =
∑

z∈[u,v]J
QJ,x
u,z(q)R

J, q−1−x
z,v (q)

if u ≤ v.

Proof. The first two statements follow easily from the definition (6). For the

third one let I := I(W J ;Z[q]) be the incidence algebra of W J with coefficients in
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Z[q]. The families of polynomials RJ,x
u,v, P

J,x
u,v , and QJ,x

u,v naturally define elements in

I that will be denoted by RJ,x, PJ,x, and QJ,x, respectively. Thus, RJ,x
u,v := RJ,x

u,v for

(u, v) ∈ Int(W J), and similarly for PJ,xu,v and QJ,xu,v. Then by our definition (6), (2),

and Theorem 2.3, we have that

P̃J,xQJ,x = δ, (7)

RJ,x = R̃J, q−1−x, (8)

and

RJ,xPJ,x = PJ,x.

Therefore (PJ,x)−1 = (Q̃J,x). Hence

RJ,x = PJ,x (PJ,x)−1 = PJ,x (Q̃J,x)

so

R̃J,q−1−x = RJ,x = PJ,x (Q̃J,x).

Therefore

Q̃J,x R̃J,q−1−x = (Q̃J,x)PJ,x(Q̃J,x) = (Q̃J,x)

and iii) follows. 2

3 Main result

In this section we prove the main result of this note. Namely we prove a duality for-

mula for the parabolic Kazhdan-Lusztig R-polynomials of a finite Coxeter group. As

a consequence of it we obtain a relation between the parabolic and inverse parabolic

Kazhdan-Lusztig polynomials of any finite Coxeter group.

Note first that, by well known results (see, e.g., [1, Proposition 2.3.2], w0Jw0 ⊆ S

if J ⊆ S . The following result is probably known, so we omit its proof.

Lemma 3.1 Let (W,S) be a finite Coxeter system and J ⊆ S. Then Ww0Jw0 =

w0WJ w0, w0(w0 Jw0) = w0w0(J)w0, and Ww0Jw0 = w0w0(J)W J .

The next result is the crucial technical fact needed in the proof of our duality

result.
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Lemma 3.2 Let (W,S) be a finite Coxeter system and J ⊆ S. Then

Rw0(J)u,ww0(J)v = Rw0(J)w−1w0(J)u, v

for all u, v ∈ W J and w ∈ WJ .

Proof. Note that w0(J)u = ww0(J)w0(J)w−1w0(J)u, and that `(ww0(J)) = `(w0(J))−
`(w) and `(w0(J)w−1w0(J)) = `(w). Let si1 · · · sih (h = `(w)) and sj1 · · · sjm−h

(m =

`(w0(J))) be reduced expressions for w0(J)w−1w0(J) and ww0(J), respectively.

Then sj1 · · · sjm−h
si1 · · · sih is a reduced expression for w0(J). Hence, since u, v ∈ W J

and sj1 , . . . , sjm−h
, si1 , . . . , sih ∈ J , `(sji · · · sjm−h

si1 · · · sihu) = `(u)+h+(m−h)−i+1

and `(sji · · · sjm−h
v) = `(v) + m− h− i + 1 for all i = 1, . . . ,m− h + 1. Hence, by

Theorem 2.2 and (3)

Rw0(J)u,ww0(J)v = Rsj1 ···sjm−h
si1 ···sihu,sj1 ···sjm−h

v

= Rsi1 ···sihu, v,

as desired. 2

We can now prove our first main result.

Theorem 3.3 Let (W,S) be a finite Coxeter system and J ⊆ S. Then

RJ,x
u,v = Rw0Jw0, x

w0w0(J)v,w0w0(J)u

for all u, v ∈ W J and all x ∈ {−1, q}.

Proof. We have from (5), (4), and Lemmas 3.1 and 3.2, that

Rw0Jw0,x
w0w0(J)v, w0w0(J)u

=
∑

w∈w0WJw0

(−x)`(w)Rww0w0(J)v, w0w0(J)u

=
∑
w∈WJ

(−x)`(w)Rw0ww0(J)v, w0w0(J)u

=
∑
w∈WJ

(−x)`(w)Rw0(J)u,ww0(J)v

=
∑
w∈WJ

(−x)`(w)Rw0(J)w−1w0(J)u,v

=
∑
w∈WJ

(−x)`(w0(J)w−1w0(J))Rw0(J)w−1w0(J)u,v

=
∑
z∈WJ

(−x)`(z)Rzu,v

= RJ,x
u,v,
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again by (5), as desired. 2

The next result can be deduced from Theorem 3.3, (5), and some well known

properties of the R-polynomials, and we omit its proof.

Lemma 3.4 Let (W,S) be a finite Coxeter system, J ⊆ S and u, v ∈ W J , u ≤
v. Then the map x 7→ w0w0(J)x is a poset anti-isomorphism between [u, v]J and

[w0w0(J)v, w0w0(J)u]w0 Jw0.

We can now prove our second main result.

Corollary 3.5 Let (W,S) be a finite Coxeter system, J ⊆ S, and x ∈ {−1, q}.
Then

P J, x
u, v = Qw0 Jw0, q−1−x

w0 w0(J)v, w0 w0(J)u

for all u, v ∈ W J , u ≤ v.

Proof. We proceed by induction on `(u, v), the result being clear if u = v. So

assume that `(u, v) ≥ 1. Then we have, by Theorems 2.3 and 3.3, our induction

hypothesis, Lemma 3.4 and Proposition 2.4, that

q`(u,v) P J,x
u,v (q−1)− P J,x

u,v (q) =
∑

z∈(u,v]J
RJ,x
u,z(q)P

J,x
z,v (q)

=
∑

z∈(u,v]J
RJ̃ ,x
w0 w0(J)z, w0 w0(J)u

(q)QJ̃ ,q−1−x
w0 w0(J)v, w0 w0(J)z

(q)

=
∑

w∈[w0 w0(J)v, w0 w0(J)u)J̃

RJ̃ ,x
w,w0 w0(J)u

(q)QJ̃ ,q−1−x
w0 w0(J)v,w

(q)

= q`(w0 w0(J)v, w0 w0(J)u)QJ̃ ,q−1−x
w0 w0(J)v, w0 w0(J)u

(q−1)

−QJ̃ ,q−1−x
w0 w0(J)v,w0 w0(J)u

(q),

where J̃ := w0 Jw0, and the result follows from Theorem 2.3 and Proposition 2.4

since `(w0w0(J)v, w0w0(J)u) = `(u, v). 2

4 Applications

In this section we derive some applications of our main result to certain modules de-

fined by Deodhar and to Marietti’s combinatorial invariance conjecture for parabolic

Kazhdan-Lusztig’s polynomials.
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Let (W,S) be a Coxeter system and J ⊆ S. Following Deodhar [7] we let MJ

be the free Z[q1/2, q−1/2]-module having {mJ
u}u∈WJ as a basis. Let x ∈ {−1, q}. We

denote by ¯ the involution on MJ defined in [7, §2] so

mJ
v = q−`(v)

∑
u∈WJ

εu εv R
J,x
u,vm

J
u

for all v ∈ W J .

For u ∈ W J let

m̃J
u := q`(u)

∑
v∈WJ

εv εuR
J,x
u,vm

J
v .

Extend ∼ to all of MJ by linear extension and by letting q̃1/2 := q−1/2. Note that

∼ is an involution of MJ , as it is easy to check.

Suppose now that (W,S) is finite. Let ψJ : MJ →Mw0Jw0 be defined by

ψJ(mJ
u) := mw0Jw0

w0w0(J)u
(9)

for all u ∈ W J , and Z[q1/2, q−1/2]-linearity.

Corollary 4.1 Let (W,S) be a finite Coxeter system, x ∈ {−1, q}, and J ⊆ S.

Then

ψ̃J(mJ
v ) = q`(w0w0(J)) ψJ(mJ

v )

for all v ∈ W J .

Proof. We have that

ψ̃J(mJ
v ) = ˜mw0Jw0

w0w0(J) v
= q`(w0w0(J)v)

∑
y∈Ww0Jw0

εw0w0(J)v εy R
w0Jw0

w0w0(J)v,y
mw0Jw0
y .

On the other hand, by (9)

q`(w0w0(J)) ψJ(mJ
v ) = q`(w0 w0(J))ψJ

(
q−`(v)

∑
u∈WJ

εuεvR
J
u,vm

J
u

)
= q`(w0 w0(J))−`(v)

∑
u∈WJ

εuεvR
J
u,vm

w0Jw0

w0w0(J)u

= q`(w0w0(J)v)
∑

y∈Ww0Jw0

εw0(J)w0yεvR
J
w0(J)w0y,v

mw0Jw0
y .

so the result follows from Theorem 3.3. 2

Another consequence of Theorem 3.3 is the following curious identity.
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Corollary 4.2 Let (W,S) be a finite Coxeter system, J ⊆ S, u, v ∈ W J and s ∈ S
be such that v < vs 6∈ W J , u < us ∈ W J . Then

RJ,x
u,v(q) = (q − 1− x)RJ,x

us,v(q).

Proof. Since u < us ∈ W J we have that w0w0(J)u > w0w0(J)us. Also, by Lemma

3.1, w0w0(J)vs 6∈ Ww0Jw0 and so w0w0(J)v < w0w0(J)vs. Therefore, by Theorems

2.2 and 3.3 we have that

RJ,x
u,v = Rw0Jw0,x

w0w0(J)v,w0w0(J)u
= (q − 1− x)Rw0Jw0,x

w0w0(J)v,w0w0(J)us

= (q − 1− x)RJ,x
us,v,

as claimed. 2

As an application of Corollary 3.5, and a result of Douglass ([9, Theorem 4.6]),

we obtain the following consequence.

Corollary 4.3 Let (W,S) be a finite Coxeter system, J ⊆ S, and x ∈ {−1, q}.
Then

P J, x
u, v = Pw0 Jw0, x

w0uw0, w0v w0

for all u, v ∈ W J , u ≤ v.

Proof. From our definition (6) and Theorem 4.6 of [9] we have that

QJ, x
u, v = P J, q−1−x

w0(J)v w0, w0(J)uw0
.

Since w0(J)W Jw0 = W J this may be rewritten as

P J, x
u, v = QJ, q−1−x

w0(J)v w0, w0(J)uw0
.

But by Corollary 3.5 (applied to w0 Jw0 ⊆ S and to w0uw0, w0vw0 ∈ Ww0 Jw0) we

have that

P J̃ , x
w0uw0, w0vw0

= QJ, q−1−x
w0 w0(J̃)w0vw0, w0 w0(J̃)w0uw0

,

where J̃ := w0 Jw0, and the result follows from Lemma 3.1. 2

For J = ∅ the previous corollary reduces to Corollary 4.3 of [3]. Corollary 4.3

gives evidence in favor of Marietti’s combinatorial invariance conjecture for parabolic

Kazhdan-Lusztig polynomials [16, Conj. 1.3]. As noted by the referee, alternate

proofs of Corollary 4.3 are possible.

Acknowledgment: The author would like to thank the referee for a very careful

reading of the manuscript, and useful comments.
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