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I ntroduction.

The topics covered by these lecture notes are the homogenization (or asymptotic
analysis) of periodic structures and the two-scale convergence method. These notes
correspond roughly to three two-hours courses for graduate students, and thus are a
mere introduction to the above subjects. The students are assumed to already have a
slight knowledge of homogenization, and of one of its basic techniques : two-scale
asymptotic expansions. However, this pre-requisite is by no means essential, since
these notes are self-contained. General references for the homogenization of periodic
structures are the books [5], [6], and [17] (cf. also the courses of A. Braides [8] and A.
Defranceschi [9]). Two-scale convergence is a quite recent method, introduced by G.
Nguetseng [16] and the author [2], which is especially well-suited for the problems
encountered in the above books.

Section 1 briefly introduces a model problem in periodic homogenization, and
recalls the usual method to solve it. Section 2 is devoted to the definition of a new
type of convergence, called two-scale convergence. In section 3, it is applied to the
homogenization of the model problem of section 1, and it is shown to be both efficient
and simple. Section 4 deals with a more involved application of this method : the
derivation of Darcy’s law for fluid flows in porous media. Finally, section 5 contains
a few technical results required in section 4, and concerning mainly an a priori esti-
mate for the pressure.

1. Asymptotic analysis of periodic structures.

The title of this section is taken from the well-known book of A. Bensoussan,
JL. Lions, and G. Papanicolaou [6]. It describes perfectly one of the main applica
tions of the homogenization theory. Indeed, in many fields of science and technology
one has to solve boundary value problems in periodic media. Quite often the size of
the period is small compared to the size of a sample of the medium, and, denoting by
€ their ratio, an asymptotic analysis, as € goes to zero, is called for. In other words,
starting from a microscopic description of a problem, we seek a macroscopic, or
effective, description. This process of making an asymptotic analysis and seeking an
averaged formulation is called homogenization. Here, we focus on the homogenization
of periodic structures, but we recall that homogenization is not restricted to that partic-
ular case and can be applied to any kind of disordered media (cf. the I'-convergence of
E. DeGiorgi [9], the G-convergence of S. Spagnolo [18], see also [23], or the H-
convergence of L. Tartar [19], [15]).

To fix ideas, we consider the well-known model problem in homogenization : a
linear second-order partial differential  equation with periodically oscillating
coefficients. Such an equation models, for example, the heat conduction in a periodic
composite medium. We call Q the material domain (a bounded open set in IRN), € the
period, and Y the rescaled unit cell (i.e. Y =[0;1]N). Denoting by f the source term
(a function of LQ)), and enforcing a Dirichlet boundary condition for the unknown
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U, this equation reads as

— div A(%)DuS =f inQ

u.=0 on 0Q (1)
where A(y) is a L*(Y)-matrix (the diffusion coefficients), Y-periodic in y, such that
there exists two positive constants 0 < a < 3 satisfying

N
alg]? < 3 AjxYEE < BIEI® forany E 0 RY. (1.2)
ij=1
Under assumption (1.2), it is well-known that equation (1.1) admits a unique solution
u, in HJ (Q) which satisfies the a priori estimate

luellni = CIIf llLq (1.3

where C is a positive constant which depends only on Q and o, and not on € and f .
In view of (1.3), the sequence of solutions u, is uniformly bounded in H}(Q) as €
goes to zero, and thus there exists a limit u such that, up to a subsequence, u, con-
verges weakly to u in H(}(Q). The homogenization of (1.1) amounts to find a "homo-
genized" equation which admits the limit u as its unique solution.

Let us briefly recall the classical method for the homogenization of the model
problem (1.1). In a first step, the well known two-scale asymptotic expansion method
is applied in order to find the precise form of the homogenized equation. The key of
that method is to postulate the following ansatz for u,

Ue() = Ug(x,2) + e ug(x, =) +E2up(x, ) + - (1.4)

where each term u, (x,y) is Y-periodic in y. The ansatz (1.4) is inserted in equation
(1.1), and a geometric series in € is obtained by application of the formal rule of
differentiation

0
[1)4

ou. ou
x Xy = e X -1 X
u,(x,s)] ™ (x,8)+s 3y (X’a)'

Then, identifying the coefficients of this series to zero leads to a cascade of equations.
The first one (corresponding to the €72 term) is

= div [A(y)Dyuo] =0 inY
Yy — Ug(x,y) Y-—periodic.

This implies that uy doesn’t depend on y, namely
Ug(x,y) = u(x).
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The second one (the £ term) is

= divy [A(y)[Dyul(x,y) + Dxu(x)]} =0 inY

y — uq(x,y) Y-periodic. (15)

From (1.5) we compute u4 in terms of the gradient of u :
wixy) = 3
=1 0%

where, for 1 <i < N, w; isthe unique solution of the so-called local or cell problem

)w (),

- divy AW, (y) +&]) = 0 inY
y - w(y) Y-periodic. (1.6)
Finally the third one (the €° term) is
- divy [A@)T, Uk y)| = £ () + dlivy AW,y x)

) + divy [A(y)[Dyul(x,y)+DXu(x)]} inyY a.7)

y - Uy(x,y) Y-—periodic.

Applying the Fredholm alternative to (1.7) (the average on Y of the right hand side
must be zero), and replacing uq by its expression (1.6) leads to the homogenized equa-
tion

{— div[A* Du(x)] =f inQ

u=0 on dQ (1.8)
where the entries of the matrix A* are given by
Aty = [ADITy W) * & 1L0w () ] dy. (1.9)

This method is very simple and powerful, but unfortunately is formal since there
is no reason, a priori, for the ansatz (1.4) to hold true. Thus, the two-scale asymptotic
expansion method is used only to guess the form of the homogenized equation (1.8),
and a second step is needed to prove the convergence of the sequence u, to u. To
this end, many methods are available (I' or G-convergence, maximum principle in the
scalar case, etc), but the more general and powerful one is the so-caled energy method
(introduced by L. Tartar [19], [15]). Its name is not really adequate, since its main
ingredient is a clever choice of test functions (thus it should have been named "test
function method" rather than "energy method", which does not pertain to any kind of
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energy...). More precisely, the goal of this method is to pass to the limit in the varia-
tional formulation of equation (1.1) :

J;A(%)Dus(x).@ (x)dx = !Ef (x)@(x) dx  for any @ OHZ(Q). (1.10)

For a given test function @ one cannot pass to the limit in (1.10), as € goes to zero,
since the left hand side involves the product of two weakly convergent sequences.
The main idea is thus to replace the fixed test function @ by a carefully chosen
sequence @, which permits to pass to the limit thanks to some "compensated compact-
ness’ phenomenon (see [21] for this notion). The right sequence of test functions is

_ N op , .. X
QL) = 0x) + E3 - =00 (D), (111)
i=1 0% €

where @ is a smooth function with compact support in Q, and W, is the solution of the
adjoint cell problem (i.e. equation (1.6) with 'A instead of A). Integrating by parts in
(1.10) and using the cell equation (1.6) alows us to pass to the limit and to obtain the
variational formulation of the homogenized problem (1.8). The convergence of the
homogenization process is thus rigorously proved.

Although the asymptotic expansion method leads to both the local and the homo-
genized problem, the energy method uses only the knowledge of the cell problem to
construct the test functions. The homogenized problem is then rederived indepen-
dently. Clearly the two methods don’t cooperate very much, and part of the homogen-
ization process is done twice. On the contrary, we are going to see that the two-scale
convergence is efficient because it is self-contained (i.e. it works in a single step).
Loosely speaking, it appears as a blend of the two above methods.

2. Two-scale convergence.

Let us begin this section by a few notations : Q is an open set of IRN (not neces-
sarily bounded), and Y = [0;1]N is the closed unit cube. We denote by C;°(Y) the
space of infinitely differentiable functions in IRN which are periodic of period Y, and
by C,(Y) the Banach space of continuous and Y-periodic functions. Eventually,
D [Q;C.°(Y)] denotes the space of infinitely smooth and compactly supported functions
in Q with values in the space C,°(Y).

Definition 2.1.

A sequence of functions u, in L%(Q) is said to two-scale converge to a limit ug(x,y)
belonging to L2(QxY) if, for any function (x,y) in D[Q;C;°(Y)], we have

lim !Eue(x)w(xf) = [ Uolxyxy) oy (2)

This new notion of "two-scale convergence" makes sense because of the next compact-
ness theorem (see [2] and [16]).
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Theorem 2.2.

From each bounded sequence u, in L%(Q) one can extract a subsequence, and there
exists a limit ug(x,y) O L2(QxY) such that this subsequence two-scale converges to
Uo-

Before proving Theorem 2.2, we give a few examples of two-scale convergences.
(*) Any sequence u, which converges strongly in L%(Q) to a limit u(x), two-scale
converges to the same limit u(x).

(**) For any smooth function a(x,y), being Y-periodic in y, the associated sequence
ag(x) = a(x,x/g) two-scale converges to a(x,y).

(***)For the same smooth and Y -periodic function a(x,y) the other sequence defined
by bg(x) = a(x,iz) has the same two-scale limit and weak-L? limit, namely
€

{a(x ,y) dy (this is a consequence of the difference of orders in the speed of

oscillations for b, and the test functions L|J(X,§)) Clearly the two-scale limit cap-
tures only the oscillations which are in resonance with those of the test functions
Bx 7).

To establish theorem 2.2, we need the following

Lemma 2.3.

Let B(Q,Y) denote the Banach space EZ[Q;C#_(Y)] if Q is unbounded, or any of the
Banach spaces LZQ;C,(Y)], LAY;C(Q)], C[Q;C4(Y)], if Q is bounded. Then, this
space B (Q,Y) has the following properties :

(i) B(Q,Y) is a separable Banach space (i.e. contains a dense countable family)
(i) B(Q,Y) is dense in L3(QxY)

(iii) for any Y(x,y) O B(Q,Y), the function qJ(x%) is measurable and satisfies
X
||L|J(X,;) L2 < Twxy) lle@y)

(iv) for any Y(x,y) O B(Q,Y), one has
: X\2 - 2
l'f?) W(x, E) dx J;J;LIJ(X )< dxdy .

In the case where Q is bounded and B(Q,Y) is defined as C[Q;C,(Y)], lenma
2.3 is easily proved since any function Y(x,y) in this space is continuous in both vari-
ables x and y. In the other cases the delicate point is (iv) which holds true as soon as
Y(x,y) is continuous in one of its arguments (as it is the case when  belongs to



Two-Scale Convergence 7

L2[Q;C.(Y)] or LAY;C(Q)]). A complete proof of lemma 2.3 may be found in [2].

Proof of theorem 2.2.
Let ug be a bounded sequence in L2(Q) : there exists a positive constant C such that

For any function Y(x,y) O B(Q,Y), we deduce from (iii) in lemma 2.3 that

| g{ug(x)tu(x,é) x| < ClW ) lliag < C Y sy - (22

Thus, for fixed €, the left hand side of (2.2) turns out to be a bounded linear form on
B(Q,Y). Let us denote by B' (Q,Y) the dual space of B(Q,Y). By virtue of the Riesz
representation theorem, there exists a unique function p, O B' (Q,Y) such that

<P > = !Eus(x)w(xf) dx (2:3)

where the brackets in the left hand side of (2.3) denotes the duality product between
B(Q,Y) and its dual. Furthermore, in view of (2.2), the sequence . is bounded in
B'(Q,Y). Since the space B(Q,Y) is separable (see (i) in lemma 2.3), from any
bounded sequence of its dual one can extract a subsequence which converges for the
weak * topology. Thus, there exists pg [ B' (Q,Y) such that, up to a subsequence, and
for any ¢ 00 B(Q,Y)

<P > 5 < Pl > (2.49)

By combining (2.3) and (2.4) we obtain, up to a subsequence, and for any
Y O0B(Q,Y)

lim §Eug(x)lp(x,l) dX = <ol >. (2.5)
€-0 €
By virtue of (iv) in lemma 2.3 we have
: X
l'n?)HLU(X,;) |||_2(Q) = [lwx.y) ||L2(Qxy) : (2.6)

Now, passing to the limit in the first two terms of (2.2) with the help of (2.5) and
(2.6), we deduce

| <HoW >| < CllWllzqxy) -

By density of B(Q,Y) in L%(QxY) (see (ii) in lemma 2.3), |, is identified with a func-
tion ug O L2(QxY), i.e.

< Ho¥ > = ££U0(X,Y)¢(X y) dxdy . (2.7)

Equalities (2.5) and (2.7) give the desired result.
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Remark that the choice of the space B(Q,Y) is purely technica and does not
affect the final result of theorem 2.2. Remark also that the test function (x,y) in
definition 2.1 of the two-scale convergence doesn’'t need to be very smooth since
theorem 2.2 is proved, for example, with Y(x,y) O LZ[Q;C.(Y)].

The next theorem shows that more information is contained in a two-scae limit
than in a weak-L? limit ; some of the oscillations of a sequence are contained in its
two-scale limit. When all of them are captured by the two-scale limit (condition (2.9)
below), one can even obtain a strong convergence (a corrector result in the vocabulary
of homogenization).

Theorem 2.4.

Let u, be a sequence of functions in L2(Q) which two-scale converges to a limit
Ug(x.y) O LAQxY).

(i) Then u, converges also to u(x) = £UO(X ) dy in L%(Q) weakly, and we have

li”(‘)”UgHLZ(Q) 2 |luollLzqeyy 2 U llizg) - (2.8)

(i) Assume further that ugy(x,y) is smooth (for example, belongs to L2[Q;C(Y)]),
and that

lm(‘)“Ug”LZ(Q) =||Uo|||_2(QxY)- (2.9)
Then, we have

. X
lim ||u.(X)-un(X,— 2 = 0. 2.10
1im [[ug(0)-ug(x,>) Il 50 (2.10)

Pr oof.

By taking test functions Y(x), which depends only on X, in the definition of two-scale
convergence, we immediately obtain that u. weakly converges to u(x) = £UO(X y) dy

in L%(Q). To obtain (2.8), we take a smooth and Y-periodic function y(x,y) and we
compute

[Lucl=0 DI B = [ug)? b = 2ucbbix. ;) o
+ iqu(x,%)Z dx > 0. (2.11)
Passing to the limit as € goes to zero yields

limfug(x)?dx = 2 !:uo(x,y)lp(x,y) dxdy - !wp(x,y)z dxdy .

€0
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Then, using a sequence of smooth functions which converges strongly to ug in
L2(QxY) leads to

2!:iqrrg)![ua(x)z dx = !ELUO(X y)? dxdy .

On the other hand, the Cauchy-Schwarz inequality in Y gives the other inequality in
(2.8). To obtain (2.10) we use assumption (2.9) when passing to the limit in the right
hand side of (2.11). Thisyields

ypg)yua(x)—w(xé)lz = [[lugtcy)- WL oy (212)

Now, if ug is smooth enough as to ensure that uo(x,é) is measurable and belongs to
L%(Q), we can replace Y by ug in (2.12) to obtain (2.10).

We have just seen that the smoothness assumption on ug in part (ii) of theorem
2.4 is needed only to achieve the measurability of uo(x%) (which otherwise is not
guaranteed for a function of L%(QxY)). However, one could wonder if al two-scale

limits automatically satisfy this property. Unfortunately, this is not true, and it can be
shown that any function in L%(QxY) is attained as a two-scale limit (see lemma 1.13

in[2]).
So far we have only considered bounded sequences in L%(Q). The next proposi-
tion investigates the case of a bounded sequence in HY(Q).

Proposition 2.5.

Let u, be a bounded sequence in H(Q). Then, there exist u(x) O HYQ) and
u,(x,y) O LQ;HA(Y)/IR] such that, up to a subsequence, u, two-scale converges to
u(x), and Du, two-scale converges to [, u (X)+0y uy(x.y).

Proof.

Since u, (resp. Ouy) is bounded in L%(Q) (resp. [LA(Q)]N), up to a subsequence, it
two-scale converges to a limit ug(x,y) O L2(QxY) (resp. Xo(x,y) O [LAQxY)N).
Thus for any W(x,y) O D[Q;C°(Y)IN, we have

[im !EDus(x).LIJ(x,l) dx = !E Xo(X,y).W(x,y) dxdy. (2.13)
€-0 €
Integrating by parts the left hand side of (2.13) gives
X _ . X . X
€ &Dus(x).w(x,z) dx = —éue(x)[dlvyLIJ(x,E) + adlelP(x,;)] dax .

Passing to the limit yields
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0 = —&: Ug(X,y)divy W(x,y) dxdy .

This implies that ug(x,y) does not depend on y. Thus there exists u(x) U LAQ),
such that ug =u. Next, in (2.13) we choose a function ¥ such that div, P(x,y) = 0.
Integrating by parts we obtain

lij]g J;ug(x)divXLIJ(x%) dx —!u; Xo(X,y).W(x,y) dxdy

J; £ u(x)div, W(x,y) dxdy. (2.14)

If W does not depend on vy, (2.14) proves that u(x) belongs to HY(Q). Furthermore,
we deduce from (2.14) that

!E[XO(XaY) - Ou(x)].W(x,y) dxdy = O

for any function W(x,y) O D[Q;C (V)N with divyP(x,y) =0. Recal that the
orthogonal of divergence-free functions are exactly the gradients (this well-known
result can be very easily proved in the present context by means of Fourier analysis in
Y). Thus, there exists a unique function u(x,y) in L?[Q;H.(Y)/IR] such that

Xo(x:y) = Du(x) + Oyus(xy) .

For more results about two-scale convergence (including generalizations to the LP
case, to the multi-scale case, or to the non-linear case) the reader is referred to [2].

3. Homogenization of a second order elliptic equation.
We go back to the model problem introduced in the first section :
=f inQ

— div A(E)Dus

u.=0 on dQ (31

where A(y) is a Y-periodic matrix satisfying the coercivity hypothesis (1.2). We
recall that equation (3.1) admits a unique solution u, in H3(Q) which satisfies the a
priori estimate

lugllyz = CIIf Lz (3.2)

where C is a positive constant which does not depend on e.

We now describe what we call the "two-scale convergence method" for homogen-
izing problem (3.1). In a first step, we deduce from the a priori estimate (3.2) the
precise form of the two-scale limit of the sequence u,. Applying proposition 2.5, we
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know that there exists two functions, u(x) O H3(Q) and u,(x,y) O LQ;H.A(Y)/IR],
such that, up to a subsequence, u, two-scale converges to u(x), and Cu, two-scale
converges to L, u(x) + Ly uq(X,y). In view of these limits, ug is expected to behave
as u(x) + euq(x,x/e).

Thus, in a second step, we multiply equation (3.1) by a test function similar to
the limit of u,, namely @Xx) + e@(x,x/€), where @x)ID(Q) and
@ (x,y) O D[Q;C.°(Y)]. Thisyields

gEA(%)DUE. [@ (x)+0gp 1(X,§)+SD)QP 1(X,§) dx = ![f (x)[(p(x)+£(pl(x,§)]dx. (3.3)

Regarding ‘A (x/)[[® (x) + L 1(x x/€)] as a test function for the two-scale conver-
gence (cf. definition 2.1), we pass to the two-scale limit in (3.3) for the sequence Uu.
(Although this test function is not necessarily very smooth, it belongs at least to
LAY;C(Q)] which is enough for the two-scale convergence theorem 2.2 to hold.)
Thus, the two-scale limit of (3.3) is

rEJ;A(Y)[DU(X) + Oyua(xy)1@ (x) + O 4(x.y)] dxdy = !Ef (x)e(x) dx. (3.4)

In a third step, we read off a variational formulation for (u,u;) in (3.4). By den-
sity, (3.4) holds true for any (@) in the Hilbert space Hg (Q)xL2[Q;HA(Y)/R].
Endowing this space with the norm || Ou (x) |||_2(Q) +[[Oyuy(x,y) ||,_z(QXY), we check
the conditions of the Lax-Milgram lemma for (3.4). Let us focus on the coercivity of
the bilinear form defined by the left hand side of (3.4)

&A(Y)[@ (x) + Ogp 1(x.y)1[@ (x) + O 4(x,y)] dxdy =2
a !w@ (x) + O 1(xy) [P dxdy = a g@ (x)[?dx +a !EEDW 1(x,y) | dxdy .

Thus, by application of the Lax-Milgram lemma, there exists a unique solution (u,u,)
of the variational formulation (3.4) in HJ(QxLQ;H.AY)/IR]. Consequently, the
entire sequences U, and Uu, converge to u(x) and Cu(x)+Cyuq(x,y). An easy
integration by parts shows that (3.4) is a variationa formulation associated to the fol-
lowing system of equations that we call the "two-scale homogenized problem”

-

= divy [A(y)[Du(x) + Dyul(x,y)]} = 0 in QxY

- div,

A

£A(y)[DU(X) + Dy ua(X.y)] dy] =f inQ
u(x) = 0 on aQ (3.9)
y — uq(X,y) Y-periodic.

It is easily seen that (3.5) is equivalent to the usual homogenized and cell equations
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(1.6)-(1.8) through the relation
N

uy) = ¥ 20w ().
=1 0%
At this point, the homogenization process could be considered as achieved since the
entire sequence of solutions u, converges to the solution of a well-posed limit prob-
lem, namely the two-scale homogenized problem (3.5). However, it is usually prefer-
able, from a physical or numerical point of view, to eliminate the microscopic variable
y (one doesn’'t want to solve the small scale structure).

Thus, in a fourth (and optional) step, we can eliminate from (3.5) the y variable
and the u; unknown. This is an easy algebra exercise (left to the reader) to derive
from (3.5) the usual homogenized and cell equations (1.6)-(1.8). Due to the simple
form of our model problem the two equations of (3.5) can be decoupled in a macros-
copic and microscopic equations, but we emphasize that it is not always possible, and
sometimes it leads to very complicate forms of the homogenized equation, including
integro-differential operators and non-explicit equations. Thus, the homogenized equa-
tion does not always belong to a class for which an existence and uniqueness theory is
easily available, on the contrary of the two-scale homogenized system, which is, in
most cases, of the same type as the original problem, but with twice more variables (x
and y) and unknowns (u and u4). The supplementary, microscopic, variable and unk-
nown play the role of "hidden" variables in the vocabulary of mechanics. Although
their presence doubles the size of the limit problem, it greatly simplifies its structure
(which could be useful for numerical purposes too), while eliminating them introduces
"strange" effects (like memory or non-local effects) in the usual homogenized problem.
In short, both formulations ("usua™ or two-scale) of the homogenized problem have
their pros and cons, and none should be eliminated without second thoughts. Particu-
larly striking examples of the above discussion may be found in [2], [3], [4].

Corrector results are easily obtained with the two-scale convergence method. By
application of theorem 2.4, we are going to prove that

Ueg(X) —u(x) — € ul(x%) ~ 0 in HYQ) strongly. (3.6)

This rigoroudly justifies the two first term in the usual asymptotic expansion (1.4) of
the solution u,. Let us first remark that, by standard regularlty results for the solutions

w; (y) of the cell problem (1.6), the term u(X,x/€) = ZW(X)W . (x/g) does actually
i=1

belong to L%Q) and can be seen as a test function for the two-scale convergence.
Bearing this in mind, we write

gA(é)[Dugx)—Du (0)-0,usx, )2 ok = [ Gugt) o
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+ £A(§)[Du(x)+myu1(x,§)]2 dx — 2£A(§)Du€(x).[Du(x)+Dyu1(x,§)] dx.

Using the coercivity condition for A, and passing to the two-scale limit yields

a liqrrg) || Oug(x)-0Ou (x)—Dyul(x%) |||_22(Q) < !Ef (x)u (x)dx

- &A (¥)[Du (x)+0, u(x )] 2dxdy. (3.7)

In view of (3.5), the right hand side of (3.7) is equal to zero, which gives the desired
result (3.6).

We conclude this short presentation of the two-scale convergence method by say-
ing that it is a very general method which can handle all possible difficulties in
periodic homogenization, as perforated domains, non-linear (monotone) equations,
memory or non-local effects, highly heterogeneous coefficients, etc.

4) Application to fluid flow in porous media.

In this section, two-scale convergence is applied to the homogenization of a more
complicated problem. We consider the steady Stokes equations in a porous medium
Q. with a Dirichlet boundary condition. We denote by u. and p. the velocity and
pressure of the fluid, and f the density of forces acting on the fluid (u; and f are
vector-valued functions, while p is scalar). We assume that the density of the fluid is
equal to 1, and we scale its viscosity to €2 (where ¢ is the period). The system of
equations is

Op, - € Au, = f inQ,
dvu, =0 in Qg (4.1)
u. =0 on 0Q;.

Remark that the scaling of the viscosity is perfectly legitimate since by linearity of the
equations one can aways replace u, by €°u,. We will see in Remark 4.2 below the
precise reason of this scaling, which simplifies the exposition. The originality of sys-
tem (4.1) compared to (3.1) is that the periodic oscillations are not in the coefficients
of the operator but in the geometry of the porous medium Q.. Roughly speaking, Q.
is a periodicaly perforated domain, i.e. it has many small holes of size €, which
represents solid obstacles that the fluid cannot penetrate.

Let us describe this domain Q. in more details. As usual, a periodic porous
medium is defined by a domain Q and an associated microstructure, or periodic cell
Y =[0;1)N, which is made of two complementary parts : the fluid part Y;, and the
solid part Yy (Y;OYs =Y and Y; nYg = ). More precisely, we assume that Q is a
smooth, bounded, connected set in IRN, and that Y, is a smooth and connected set
strictly included in Y (i.e. Yg does not touch the faces of Y). The microscale of a
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porous medium is a (small) positive number €. The domain Q is covered by a regular
mesh of size € : each cell Y;? is of the type [0:€]N, and is divided in a fluid part sti
and a solid part Y£, i.e. is similar to the unit cell Y rescaled to size €. The fluid part
Q, of a porous medium is defined by

NGE) NG
Q. = Q[]YS =Qf] Yf (4.2)
i=1 i=1

where the number of cells is N(g) =| Qe ™N[1+0(1)]. Throughout this section, we
assume that Q, is itself a smooth, connected set in IRN. This last assumption on Q,
and that on Yy are of no fundamental importance for the result, but it makes things
simpler in the proofs (see [1] for some generalizations).

To obtain an existence and uniqueness result for (4.1), the forcing term is
assumed to have the usual regularity : f (x) O L2(Q)N. Then, as well-known (see [22]
for details), the Stokes equations (4.1) admits a unique solution

u, DHGQIN . pe OLAQY/R (4.3)

The next step is to obtain a priori estimates of the solution (ug,p¢), which are
independent of €. These estimates will be used to extract weakly convergent subse-
quences ; but to do so, the sequence (u.,p,) needs to be defined in a fixed Sobolev
space, independent of €. Unfortunately, it is not the case in view of (4.3), and thus a
new difficulty arises, which is to extend the solution (u¢,p,) to the whole domain Q.
It is easy to extend the velocity by zero in Q\Q, (this is compatible with its Dirichlet
boundary condition on 0Q;) to obtain a function U,

e
. =0 inQ\Q

ug in Qg ”

(o
I

which belongs to Hg (Q)N. The definition of the proposed extension p. of the pres-
sure is slightly more complicated

L . |
Pe = pg INQ., and P, = Ve

J’ pe in each Y& (4.5)
|
but it turns out to be convenient to obtain an a priori estimate for the pressure.

Proposition 4.1.

The extensions i, and p, of the solution (u,,p,), defined in (4.4), (4.5) satisfy the a
priori estimates

and
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1Bell L zour = C. (4.7)
where the constant C does not depend on €.
Remark 4.2.

In view of the a priori estimates of Proposition 4.1, the scaling €2 of the viscosity in
the Stokes equations (4.1) can now be well understood. It is exactly chosen in order
for the velocity u, to have a bounded and non-zero limit. In other words, the very
small viscosity €2 balances exactly the friction on the solid parts of the porous medium
due to the no-dip (Dirichlet) boundary condition.

The proof of Proposition 4.1 is a little technical, and it does not use any argu-
ments from two-scale convergence. Thus, we prefer to postpone it until section 5, and
to proceed to the homogenization of system (4.1). According to the two-scale conver-
gence method described in section 3, we now look for the precise form of the two-
scale limit of the sequence of solutions (ug,pg).

Lemma 4.3.

There exists two-scale limits ug(x,y) 0 LAQ ; HAY)N] and p(x) O L%Q)/IR such
that, up to a subsequence, the sequences U, €[, and P, two-scale converge to uy,
Lyug, and p(x) respectively. Furthermore, u, satisfies

divyup(x,y) =0 in QxY, and divy[[ug(X,y) dy] =0 in Q

3 , (4.8)
Up(X,y) =0 in QxYg, and [fug(x,y) dy].n =0 on 0Q.

Pr oof.

Thanks to the bounds of Proposition 4.1, by application of Theorem 2.2, there exists
three functions ug(x,y), &o(X,y), and py(X.y) in LA(QxY) such that

lim éﬂg(x).w(x,f) = [T uolxy)blx.y) iy

< lif?) J;SDUS(X).E(X%) dx = J; &o(X,y).=(x,y) dxdy 4.9

lim [Be0ORx.) & = [ polx.y)alx.y) oy

for any @, =, and @ in D[Q;C.°(Y)IN. Integrating by parts and passing to the two-
scale limit in the second lines of (4.9) yields

lim Gs.divyE(x%) dx = - !g &o-=(X,y) dxdy = !g Ug.divy =(X,y) dxdy.

€0

Desintegrating by parts shows that §, = [y ug. On the other hand, multiplying the first
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equation in (4.1) by ed(x ,x/€) and integrating by parts, leads to
: o X _
llj]g J;psdlvylp(x,z) dx = 0. (4.10)

Combining the last line of (4.9) and (4.10) shows that py(X,y) does not depend ony.
Thus, there exists p(x) O L%Q)/IR such that py(x,y) =p(x). To obtain the
incompressibility conditions (4.8), the same type of arguments is used : multiply the
equation div u, = 0 by a test function Y(x,x/e), integrate by parts, and pass to the
two-scale limit.

The next step in the two-scale convergence method is to multiply system (4.1) by
a test function having the form of the two-scale limit u (as explicited in Lemma 4.3),
and to read off a variational formulation for the limit. This is the focus of the follow-
ing theorem.

Theorem 4.4.

The extension (l,p,) of the solution of (4.1) two-scale converges to the unique solu-
tion ((ug(x,y) , p(x) ) of the two-scale homogenized problem

-

Oypa(x.y) + Okp(X) = Byyug(xy) = F(x) in QxYy
divyup(x,y) =0 in QxY; and divy huo(x,y) dy} =0 inQ

< (4.11)
Ug(x,y) = 0 in QxYy and {J;uo(x,y) dy].n = 0 on 0Q

Yy — Ug, p; Y-periodic.

Proof.
We choose a test function @(x,y) O D[Q;C°(Y)IN with (x,y) =0 in QxY, (thus,
L|J(X,§) O [Ha(QIN). Furthermore, we assume that () satisfies the incompressibility

conditions (4.8), i.e. divy W(x,y) =0 and div,[[u(x,y) dy] = 0. Multiplying equation

(4.1) by L|J(X,§), and integrating by parts yields
- f[spe(x)divxlp(x%) dx + ;[ESDUS(X)'DW (x%) dx = c[sf (x).tp(x%) dx + Q4)2)

where O(g) stands for the the remaining terms of order €. In (4.12), the domain of
integration Q. can be replaced by Q since the test function is zero in Q\Q,. Thus, we
can use the two-scale convergences (4.9). When passing to the two-scale limit, the
first term in (4.12) contributes nothing because the two-scale limit of P, does not
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depend on y and  satisfies div, [[ug(X,y) dy] = 0. Finaly, (4.12) gives

J;J Oyup(x,y).0 (x,y) dxdy = J; f (X).P(x,y) dxdy. (4.13)

By density (4.13) holds for any function g in the Hilbert space V defined by
W(x,y) O LAQ;HAY)IN, such that
vV = <divyL|,|(x,y) =0 in QxY, and divX[LLp(x,y) dy] =0 in Q>. (4.14)

Y(x,y) =0 in QxY, and [!:lp(x,y) dy].n =0 on 0Q

It is not difficult to check that the hypothesis of the Lax-Milgram lemma holds for the
variational formulation (4.13) in the Hilbert space V, which, by consequence, admits a
unique solution ug in V. Furthermore, by Lemma 4.5 below, the orthogonal of V with
respect to the usual scalar product in L%(QxY) is made of gradients of the form
O, (x) + O,q5(x.y) with q(x) O LAQ)/IR and q;(x.y) O LAQ;LAY;)]. Thus, by
integration by parts, the variational formulation (4.13) is equivalent to the two-scale
homogenized system (4.11). (There is a subtle point here ; one must check that the
pressure p(x) arising as a Lagrange multiplier of the incompressibility constraint
divy [fug(x,y) dy] = O is the same as the two-scale limit of the pressure p. This can

easily be done by multiplying equation (4.1) by a test function ¢ which is divergence
free only in y, and identifying limits.) Since (4.11) admits a unique solution, then the
entire sequence ( Ugp, ) converges to its unique solution (ug(X,y), p(x)). This
completes the proof of Theorem 4.4.

Lemma 4.5.

The orthogonal V! of the Hilbert space V, defined in (4.14), has the following charac-
terization

vl = {v(x,y) = Og (x) + Og 4(x,y) with @ DHYQ), and @; OLHQ;LAY; ))}.

Pr oof.
Remark that V = V{nV, with

V, :{v(x,y) O LAQ;HAY)N) / divyv =0in QxY,v =0in vas}
v, :{v(x,y) O L2AQHAY)N) / divX[J’vdy] =0in Q, [Jde]'nX =0on OQ}
f f

It is a well-known result (see, e.g., [15], [16]) that
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vyl :{Dg) 1(%Y) 1 @ OLAQLA(Y; ))} and V,! :{DJP )/ o0 Hl(Q)}

Since V, and V, are two closed subspaces, it is equivalent to say (V,nV,)1 =V,
1 +yv,l orV,+V,=V, +V,. Indeed, we are going to prove that VV, + V. is equal
to Ly(fz;Hgf(Yf])N), hich' estalflishes that VvV, + qu isgclos%d, and thuslcomf)let&esq the
proof of this lemma.

Introducing the divergence-free solutions [w; (y)]1<j<y Of the local Stokes prob-
lem (4.17) defined below, for any given v(x,y) O L%(Q;H.A(Y;)N), we define a unique
solution g (x) in H(Q)/IR of the Neuman problem

divy
f

ADq(x)—J‘v(x,y)dy] =0 inQ

Alqg(x) —J’v(x,y)dy} .n =0 ondQ,

f
where the positive definite matrix A defined in (4.16) satisfies Ag = J w; (y) dy
f

((&)1<i <N being the orthonormal basis). Then, decomposing v as
N 0 N d
VOGY) = W) () + [Vxy) = Swi(y)5t()],
=l 0% i=1 0%
it is easily seen that the first term of this decomposition belongs to V,, while the
second one belongs to V.

We now arrive to the last and optional step of the two-scale convergence method
which amounts to eliminate, if possible, the microscopic variable y in the homogen-
ized system. This is the focus of the next theorem.

Theorem 4.6.

The extenson (Ogp,) of the solution of (4.1) converges, weakly in
[L2(Q)]NX[L2(Q)/IR], to the unique solution (u,p) of the homogenized problem

ux) = A[f (x)-Op(x)] in Q
divux)=0 in Q (4.15)
u(x).n = 0 on 9dQ

where the limit velocity u is the average of ug (U(x) = J’uo(x,y) dy), and A isa sym-
f

metric, positive definite, tensor defined by its entries
A= [Ow).0w; () dy (4.16)
f
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where, for 1<i < N, w; (y) denotes the unique solution in [H(Y;)]N of the local, or
unit cell, Stokes problem
in _AWi =g, diVWi =0 in Yf
w, =0 in dYs, g, w Y-periodic. (4.17)
Furthermore, the two-scale homogenized problem (4.11) is equivalent to (4.15)-(4.17)
through the relation

N

Ug(xy) = z{fi(x)—ﬂ(x) W ).

Pr oof.

The derivation of (4.15) from the two-scale homogenized problem (4.11) is an easy
algebra exercise (left to the reader). Let us point out that (4.15) is a well-posed prob-
lem since it is ssimply a second order éliptic equation for the pressure p (with Neu-
mann boundary condition). As is well-known, the local problem is also well-posed
with periodic boundary condition, and it is easily checked, by integration by parts, that

Aj = JDWi (y).bOw;(y) dy = JWi (y)-g dy,
f f
which implies that A is symmetric and positive definite.

Remark 4.7.

The two-scale homogenized problem is also called a two-pressure Stokes system. The
homogenized problem (4.15) is called Darcy’s law (i.e. the flow rate u is proportiona
to the balance of forces including the pressure). The matrix A is caled the permeabil-
ity tensor of the porous media (it depends only on the microstructure Y; ). The homo-
genization results of this section are a rigorous justification of the well-known physical
principle which says that Darcy’s law is the asymptotic behavior of Stokes equations
in porous media. Quite early, many papers have been devoted to this topic (see for
example [11], [12], [17]). The first rigorous proof (including the difficult estimate
(4.7) for the pressure) appeared in [20]. Further extensions are to be found in [1],
[13], and [14]. A good reference for physical aspects of this problem (as well as
mathematical ones) is the book [10]. Finaly, as in section 3 one can prove corrector
results (see [3]).

5) Estimate of the pressure in a porous medium.

This section is devoted to the proof of Proposition 4.1 which constructs extensions and
establishes uniform estimates for the velocity and pressure of a Stokes fluid in a
porous medium. This proof is rather technical and does not appeal to any notion of
two-scale convergence. Consequently, readers who are willing to accept this proof can
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safely skip this section, which is provided for the sake of completeness of these lecture
notes.

Basically, we reproduce the original proof of L. Tartar [20] which has been
further generalized in [1] and [13]. We begin by two technical lemmas on Poincare
inequality in Q, and a restriction operator from Hg(Q)N into HZ(Q)N preserving
divergence-free vectors.

Lemma 5.1.
There exists a constant C independent of €, such that, for any function v [ H(}(Qs),
one has

Proof.
For any function w(y) O H(Y;) such that w = 0 on dY;, the Poincaré inequality in
Y; states that

W llZ,) = ClIOW lIZy,) (52
where the constant C depends only on Y;. By a change of variable x = gy, we res-
cae (5.2) from Y; to Y§ . Thisyields that, for any function w(x) O Hl(Y]?i ) such that
w =0 on dYg, one has

||W||L22(Yfei) < C SZHDWHLZZ(Yﬁ)’ (5.3)

with the same constant C as in (5.2). Summing the inequalities (5.3) arising from all
the fluid cells Y£ , which cover the domain Q, gives the desired result (5.1).

Lemma 5.2.

There exists a linear continuous operator R, acting from H (QN into H & (Q)N such
that

RV = v inQ,., ifvOHZ@Q)N (5.4)
div (Rev) = 0 inQ,, ifdivv =0 inQ (5.5)
IR llxay * I 0RM) Iy < C IV Il * IV s (56)
for any v 0 H(Q)N (the constant C is independent of v and e).
Pr oof.

As in Lemma 5.1, we proceed by rescaling of a similar operator R acting from
HY(Y)N into H(Y;)N. For any function u O H(Y)N, there exists a unique solution,
denoted Ru, in H(Y; )N of the following Stokes problem
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i

Og -ARu = —Au in Y;

dv Ru = div u + 1|Jdivu in Y,
f S

) Y.
Ru =0 on dY;
Ru = u on 0oY.

-

Remark that since Y is strictly included in Y, the boundary of Y; is made of two dis-
joint parts, 0Yg and dY. Note also that the compatibility condition for (5.7) is
satisfied, namely one checks that the identity

J’div Ru = a*[ (Ru).n

(5.7)

is compatible with the right hand side of (5.7). Furthermore, standard estimates for
non-homogeneous Stokes system yields

where the constant C depends only on Y;. Thus, R is a linear continuous operator.
Now, rescaling R from Y to any cell Y;%, we obtain an operator R, acting from
Ha Q)N into H3 (Q)N defined in each cell Y& by

Ode —ARgu = —Au  in Y¢
dv R = divu+ ——[dvu in Y
) Y |Y;

Ru =0 onaYs (8)

RUu = u on dY;,
and, by summation over i, satisfying the rescaled estimate
IReU || 220 *+ €A O(RU) [| 2y < C [HU | 22 + €3] 0u |||_22(Q)]

Finally, the reader can easily check properties (5.4) and (5.5) for this operator R,.

We now have the main tools to complete the
Proof of Proposition 4.1.
We begin with the estimate of the velocity. Multiplying equation (4.1) by u, and
integrating by parts gives

82:[ |0ug |? = ([f.us. (5.9)

Using Poincare inequality (Lemma 5.1) in (5.9) leads to
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e[| 0ug || 220y < C ellf [l L2ql Oug I 2q,-
Thus
8||DUg|||_2(Q£) < C|If |||_2(Q),
and using again Poincare inequality

luglliz@y = CIIf L2

We turn to the case of the pressure. Let us explain briefly why things are more deli-
cate in this case. From equation (4.1), we easily obtain that [Ip is uniformly bounded
in H(Q)N. Then, a well-known theorem of functional analysis (see, e.g. Proposition
1.2, Chapter |1, [22]) states that p, belongs to Lz(Qs) with the following estimate

pe |l Laoyr S C(Q) 1 Ope i H QN (5.10)

Unfortunately, the above estimate is useless since the constant depends on the domain
Q, and thus may be not uniformly bounded when & goes to zero. Consequently,
another argument is required, which turns out to be an extension of the pressure to the
whole domain Q.

Since R, is a linear operator from Hg (Q)N into H3 (Q,)N, we can define a func-
tion F, O H Q)N by the following formula

<FeV > = <OPaRY >y foranyv OHG@QN.  (5.11)

Replacing Op, by f — €2Au, integrating by parts in (5.11), and using the estimates on
u. and R, shows that F, is uniformly (i.e. independently of €) bounded in H™X(Q)N.
By property (5.5), we see that <F.,v> = 0 if the function v satisfies div v = 0. Thus,
F ., being orthogonal to divergence-free functions, is the gradient of some function P
in L%(Q) (see, e.g. Proposition 1.1, Chapter I, [22]). By property (5.4), 0P, and Op,
coincide on H™(Q,)N, implying, by virtue of inequality (5.10), that P, and p, are
equal in Q. up to a constant. (This constant does not matter since a pressure is aways
defined up to a constant.) It remains to prove that P, is identica to the extension p,
introduced in (4.5), i.e. that

1
| YE

€

J’Eps in each Y¢.
fi

This is done in two steps. First, we introduce in definition (5.11) a smooth function
Ve, With compact support in one of the solid parts Y. For such a function, Rv, is
zero in Y¢, and thus

< DPs,V >H_1,H&(YSS) = O,

which implies that P, is constant in Yg. In a second step, we choose a test function
V¢, With compact support in the entire cell Y;&. Integrating by parts in (5.11) leads to
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IPE div v, = Jps div (Rgvy). (5.12)
Y f

Using definition (5.8) of div(R.v,) and the properties of P, (constant in Y, equal to
P in Y§£), (5.12) becomes

7

:

J’pe div vg + Pe(Ys)
g

™

. . 1 .
divv, = [pediv v+ div v
vy = peavv, mﬂ[{s }

-

which gives the desired value

- e
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