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Model Setting: Discrete Variational Problems
(bond formulation)
L = lattice in Rd

ui = parameter describing the system, with i ∈ L

E({ui}) =
∑
(i,j)

Φij(ui, uj) energy

(Φij = bond interaction energy - pairwise for simplicity)
The sum runs over a given set of bonds (e.g., nearest
neighbours)

j
i

j
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(more in general we may have three-point interactions, etc.)
Model: ui ∈ Rd atomistic displacement
φij(ui, uj) = φ(|ui − uj |) interatomic pair potential



Discrete-to-Continuum Analysis
cf. Chambolle, B-Gelli, Blanc-Le Bris-Lions, Friesecke-Theil, Caffarelli-de la Llave, etc.

ε

ε −→ 0

• Scale the lattice: εL, with ε > 0 a small parameter
• (Possibly) localize the analysis on a bounded domain D ∩ εL
(equivalent to considering the original energy on a large
domain 1

εD)



• Scale the energy

Eε({ui}) =
∑
(i,j)

φεij(ui, uj)

(ui value at εi; the definition of φεij from φij depends on the
relevant energy scale for the analysis)
• define a discrete-to-continuum convergence uε → u of
functions defined on D ∩ εL to functions defined on D
(e.g., convergence of piecewise-constant interpolations on
Voronoi cells, or convergence of the empirical measures
µε =

∑
εduiδεi)

• Compute a limit continuum energy.



Γ-limit (zero-temperature limit)
In this context the limit continuum energy F is defined as the
Γ-limit of Eε with respect to the L1 convergence of
interpolations.
The formal definition is that for all u
• F (u) ≤ lim infεEε(uε) whenever uε → u (lower bound)
• there exists uε → u such that F (u) = limεEε(uε) (optimality)

Fundamental properties:
• if Eε is equicoercive (i.e., energy-bounded sequences are
precompact) and Eε → F then
minimum problems for Eε converge to minimum problems for F
(convergence of minimum values and minimizers)
• (stability) for a class of perturbations G the Γ-convergence of
Eε to F implies the Γ-convergence of Eε +G to F +G
(this allows e.g. to treat minimum problems with given boundary
conditions, integral constraints, etc.)

(...some extensions to positive temperature possible)



Discrete Variational Problems w/ Random Defects

Introduce i.i.d. random variable that model the presence of
random defects with probability p

Correspondingly, consider two types of energies
φs = strong bond interaction, φw = weak bond interaction
and define φij by

φij = φωij =

{
φw on defected bonds (w/ prob. p)
φs on non-defected bonds (w/ prob. 1− p)

(ω = realization of the random variable)



1st Model Case: Blake-Zisserman weak membrane
(computer vision/fracture mechanics)

Consider: L = Z2, only nearest-neighbour interactions,
parameter ui ∈ R

φs(ui, uj) = (ui − uj)2, φw(ui, uj) = min{(ui − uj)2, 1}
(truncated quadratic potential)

(this model can be derived from Lennard-Jones interactions)

Strong energy (if φij = φs for all ij): the discretization of the

Dirichlet energy
∫
D
|∇u|2 dx with domain H1(D)



Weak energy (φij = φs for all i, j): for all {ui} we can consider
the set of bonds such that |ui − uj | ≥ 1 and associate to it a
path in the dual lattice representing a discrete fracture site

We scale φw so that the energy on discrete fractures scales as
a surface energy: φεij = min{(ui − uj)2, ε}



νε S(u)
0
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The Γ-limit of Eε is an anisotropic continuum fracture energy

F (u) =
∫
D\S(u)

|∇u|2 dx+
∫
S(u)

(|ν1|+ |ν2|)dH1

defined on functions u ∈ SBV (D); i.e., functions with a
(sufficiently smooth) discontinuity set S(u) and (weakly)
differentiable outside that set.
Notation: ν = normal to S(u), Hk= k-dimensional surface
(Hausdorff) measure



Random weak-membrane percolation theorem
(B-Piatnitski ARMA 2008)

With fixed a realization ω let scaled energy densities with

φεij =

{
min{(ui − uj)2, ε} on defected bonds (w/ prob. p)
(ui − uj)2 on non-defected bonds (w/ prob. 1− p)

and Eωε the corresponding discrete energies. Then the Γ-limit is
deterministic, depends almost surely only on p and

• if p ≤ 1
2 then F (u) =

∫
D
|∇u|2 dx (negligible defects)

• if p > 1/2 then F (u) =
∫
D\S(u)

|∇u|2 dx+
∫
S(u)

ϕp(ν)dH1,

where ϕp(ν) is the asymptotic chemical distance on the weak
cluster in direction ν (e.g. Garet-Marchand ’04-’07)

ϕp(ν) = lim
T→+∞

1
T

length of the minimal path of weak bonds

joining 0 and Tν

Q.: Asymptotic behaviour of ϕp as p→ 1/2+ ?



Variational percolation issues

Subcritical regime: Poincaré inequality on the strong
cluster. Let p < 1/2. Then the “channel property” of the strong
cluster gives a.s. a uniform Poincaré inequality on the strong
cluster
⇒ compactness in Sobolev spaces
⇒ H1(S(u)) = 0

Supercritical regime: a Quantitative Percolation Lemma
(Kesten) Let p > 1/2. For a.e. realization ω and for T
sufficiently large “paths of bonds joining 0 and Tν with length
less than T (ϕp(ν)− η) must contain a percentage cη > 0 of
strong bonds”
⇒ may suppose that bonds with |ui − uj | > 1 lie in the weak
cluster
⇒ length of discontinities are estimated by chemical distance



2nd Model Case: Dilute Spin Systems
(statistical mechanics/ continuum mechanics for perforated domains)

Consider: L = Zd (d = 2, 3), nearest-neighbour interaction,
ui ∈ {−1,+1} (spin variable)

φs(ui, uj) = −uiuj (ferromagnetic interaction)

φw(ui, uj) = 0 (noninteracting spins)

Ferromagnetic Γ-limit: If φij = φs for all ij and φεij = εd−1φij
(up to additive constants) we have coerciveness with respect to
the strong convergence uε → u ∈ {±1}, and u can be identified
with the set of finite perimeter A = {u = 1}. Then the Γ-limit is
simply

F (A) =
∫
∂A

(|ν1|+ |ν2|)dH1

(F (A) =
∫
∂A(|ν1|+ |ν2|+ |ν3|)dH2 if d = 3) that is, a crystalline

perimeter energy with the Wulff shape a square (resp., a cube)



Dilute-spin variational percolation theorem
(B-Piatnitski J. Stat. Phys. 2012)

As above, introduce iid random variable such that

φij = φωij =

{
0 on defected bonds w/ prob. p
−uiuj on non-defected bonds w/ prob. 1− p

(ω realization of the random variable) and consider the energies

Eε(u) =
∑
(i,j)

εd−1φωij(ui, uj).

2D Result The Γ-limit is deterministic, depends almost surely
only on p and

• If p < 1/2 then F (A) =
∫
∂A
ψp(ν)dH1 and we have

compactness in L1 on the strong cluster
(ψp = first-passage percolation formula; cf. eg Grimmet-Kesten)

• if p ≥ 1/2 then F (A) = 0.



3D Result
The Γ-limit is deterministic and depends a.s. only on p.
Let p∗ (resp., p∗) be the percolation threshold below which
(resp., above which) the weak (resp., strong) cluster is not
connected.
• If p < p∗ then F (A) =

∫
∂A
ψp(ν)dH2 and we have

coerciveness in L1 on the strong cluster;
(surface tension ψp as in Wouts ’09, Cerf-Theret ’11)
• if p ≥ p∗ then F (A) = 0
• (partially) open problem if p∗ ≤ p < p∗ then

F (A) =
∫
∂A
ψp(ν)dH2 and ψp is positive, but coerciveness is

not known (even though ψp > 0)

Percolation coerciveness lemma.
(3d case) Let p < p∗. Then a.s. “if we have a connected set
composed of N bonds and containg 0 then it contains a fixed
percentage of strong bonds for N large ”
⇒ BV estimates of sets {u = 1} on the strong cluster



Conclusions

Variational percolation problems involve interaction between
variational techniques and probabilistic issues. We have
examined two model cases.
Many more interesting variational model involve random
quantities:
• random lattices (e.g., Poisson clouds)
• long-range interactions
• anti-ferromagnetic inclusions
• etc.

On one hand Percolation Theory provides relevant objects and
techniques for the a.s. description of limit variational problems
On the other hand variational questions introduce new types of
issues in the percolation context.



Thank you for your attention!


