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Motivations

Study of interactions between many nodes of a network system.

Such systems may have different nature and field of application:
• design of reticular structure
• complex chemical interactions
• traffic flows
• biological systems
• atomistic modelling
• numerical schemes
• computer vision models
etc.



An international interaction

Connected results by different research groups:

• (Italy/Norway) Alicandro, Braides, Gelli, Piatnitski, Solci, etc.
• (France) Le Bris, Lions, Truskinovsky, Blanc, Legoll, etc.
• (Germany/UK) Cicalese, Friesecke, Theil, Ball, etc.
• (US/China) E, Ortiz, Lew, Ming, etc.

+ interaction with related research (Presutti, Mielke, S. Müller,
Kotecky, Luckhaus, Stefanelli, . . .)



Examples: design of lattice structures

(K. Cheung, MIT)



study of optimality properties of viruses

(Twarock et al.)



control of traffic flow on networks

(Daganzo)



Common features

• Underlying lattice reference L
This hypothesis can be a geometric design constraint (as in the
design of networks), or justified by physical assumptions (as for
crystalline solids), etc.

• Variational setting
We suppose that the systems are driven by an energy
Simplest energy: pair interactions
u = {ui} parameter defined on the nodes i of the lattice L

E(u) =
∑
i,j∈L

φij(ui, uj)

Often: ui ∈ Rm and φij(ui, uj) = φij(ui − uj)



Discrete-to-continuum analysis

Objective: description of the behaviour of large systems
driven by E with a continuum theory characterized by some
continuum energy Econt

• Introduction of a scale parameter ε→ 0
• Definition of a scaled energy Eε(uε) =

∑
ij φ

ε
ij(u

ε
i − uεj)

• Definition of a continuous limit parameter u
(and of a discrete-to-continuum convergence uε → u)
• Definition of an effective continuous energy Econt.

The requirement for such energy is that: “solutions to prob-
lems related to Eε are close to solutions related to Econt”

Major issues: choice of the energy scalings defining φεij , and
of the definiton of the convergence uε → u



A multi-scale problem
The type of limit theory depends on the driving “energy level”

Example L = Zn; identify each uε with (a suitable interpolation of)
Uε(i) = uε(i/ε) defined on εZn

(statistical scaling) if uε → u⇔ Uε → u weakly in L1 thenP
ij ε

nφij(u
ε
i − uε

j) ∼
R

Ω
fstat(u) dx

(bulk scaling) if uε → u⇔ Uε → u weakly in W 1,1 thenP
ij ε

nφij

`uε
i−uε

j

ε

´
∼
R

Ω
fbulk(∇u) dx

(surface scaling) if uε → u⇔ Uε → u strong in L1 and ui ∈ K finite, thenP
ij ε

n−1φij(u
ε
i − uε

j) ∼
R

∂{u=k} fsurf(u
+ − u−) dHn−1

(vortex scaling /n = 2) if uε → µ⇔ Jac(Uε)→ µ in the flat norm, thenP
ij

εn

| log ε|φij

`uε
i−uε

j

ε

´
∼
P

x fvortex(k(x)), if µ =
P
x

k(x)δx

(etc.)

In general we have a superposition of all such descriptions



Main points of the talk

1) Variational Methods developed in the last 30 years can be
adapted to cover some problems in the passage discrete-to-
continuum;

2) The discrete nature of the problems brings additional
effects and provide simpler models and answers;

3) New types of problems can be addressed that differ to the
usual continuum ones.



1. Application of

Continuum Variational Methods

to Lattice Problems



A paradigmatic analysis

I will illustrate a simplified situation that nevertheless allows
to exemplify the general methods:

• a finite number of parameters: ui ∈ K and K finite
• pair interactions φij = φij(ui − uj)
• surface scaling φεij ∼ εn−1 (n = space dimension)

For the sake of illustration, mainly
• #K = 2 so that we may assume ui ∈ {+1,−1} (spin variable)
• L = Z2 (square lattice) or L = T (triangular lattice)

Pictorial representation:

u
i
= -1

u
i
= +1



Up to additive/multiplicative constants

φij(ui, uj) ∼ σij(ui − uj)2

We may have two types of interactions

ferromagnetic antiferromagnetic
σij > 0 σij < 0

uniform ground states microstructure

ordered disordered



We focus on Ferromagnetic interactions at the surface
scaling

Eε(u) =
∑
ij

εn−1σεij(ui − uj)2

with σεij ≥ 0

Here we depict a next-to-nearest neighbour system.
The coloured segments highlight the ‘active’ interactions (ui 6= uj),
the different colours possible anisotropy and the dependence of σεij
on ij



Passage from discrete to continuum - heuristics

As we ‘zoom out’, the energy tends to concentrate on an
interface.
Convergence: L1 convergence of the interpolates of uεi on εZn



Passage from discrete to continuum - heuristics

The ‘discrete interface’ can be approximately described as a
continuous one, smooth enough as to have a normal ν well defined
We expect to have a continuum surface tension which approximately
describes the behaviour of Eε.



Static analysis

For the behaviour of minimum problems the limit energy is
described by the Γ-limit of Eε (De Giorgi):

Γ-convergence Eε → Econt

m
∀uε → u we have Eε(uε) ≥ Econt(u) + o(1) (ansatz-free lower bound)
∃uε → u such that Eε(uε)≤Econt(u) + o(1) (constructive upper bound)

m
for all Gε continuously converging to Gcont such that Eε +Gε are
equicoercive

min{Eε +Gε} → min{Econt +Gcont}

(convergence of minimum values and minimizers)



Continuum surface energies

We expect

Econt(u) =
∫
∂{u=1}

g(x, ν)dHn−1

g = surface tension, ν = normal to the interface ∂{u = 1}
Such a Econt can be seen as a perimeter functional for the set
A = {u = 1}

Rigorous treatments of variational theories for such energies
require Geometric Measure Theory tools (Caccioppoli, Federer, De
Giorgi).

A theory studying the Γ-convergence of such continuum
energies has been developed as energies on (partitions of)
sets of finite perimeter (Ambrosio-B)



The Wulff problem (a good way to picture convergence)

If g = g(ν) (homogeneous limit) then we deduce the convergence of
problems with volume constraint (Cε → C)

min{Eε(u) : εn#{i : ui = 1} = Cε}

→ min
{∫

∂{u=1}
g(ν)dHn−1 : |{u = 1}| = C

}
(Wulff problem)

A minimizer of the latter (normalized e.g. to unit energy) is called a
Wulff shape.

−→

(for NNN interactions the Wulff shape is an octagon)

Conversely, the knowledge of the Wulff shape determines g and
characterizes the Γ-convergence of Eε.



Some Wulff shapes
It is instructive then to look at the Wulff shape related to some easy
discrete systems (and how it reflects the lattice structure). . .

Square NN (nearest-neighbour) interactions −→ square

−→

Triangular NN interactions −→ hexagon

−→

Inhomogeneous square NN interactions −→ (irregular) polygon

−→



Compactness and continuum description

Basic question: existence of a limit surface energy?

Theorem (B-Piatnitsky 2013, Alicandro-Gelli 2014)
Suppose σεij ≥ 0 satisfy:
(i) (decay) |σεij | ≤ C|i− j|−r with r > n+ 1;
(ii) (coerciveness of NN interactions) σεij ≥ σ0 > 0 if |i− j| = 1

(iii) (negligible long-range tail) lim
T→+∞

∑
|i−j|>T

σεij = 0

Then (up to subsequences) there exists g with g > 0 on Sn−1 and
g(x, ·) convex and positively 1-homogeneous such that Eε → Econt

where
Econt(u) =

∫
∂{u=1}

g(x, ν)dHn−1

is defined on BVloc(Rn; {±1})

Note: (i) decay⇒ correctedness of surface scaling
(ii) coerciveness⇒ existence of a interface (De Giorgi BV-compactness)
(iii) control of the tail⇒ ‘locality’ of the energy⇒ integral represent.
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Flexibility of the method
Relaxation of the coercivity assumption⇒ multi-phase limit
Weak NN interactions⇒ the limit may be defined on a vector
parameter U = (u1 . . . uN ) ∈ BVloc(Rn; {±1})N

weak interaction

strong interaction
(diagonal)

σ
ij ~ ε

−→

(Figure: NNN interactions with weak NN interactions)

Econt(U) =
∫
S(U)

Φ(U+, U−, ν)+
∫

Rn

Ψ(U) dx

S(U) = set of interfaces
Ψ = interaction energies between the phases (bulk term)



Relaxation of the control on the tail⇒ non local limits
If only supε,i

∑
j c
ε
ij < +∞ then me may have an additional non-local

term; e.g.,

Econt(u) =
∫
∂{u=1}

g(x, ν)dHn−1 +
∫∫

k(x, y)G(u(x), u(y))dµ(x)dµ(y)

Relaxation of the periodic lattice assumptions
• random lattices (Alicandro-Cicalese-Ruf 2014)
• aperiodic lattices (such as Penrose lattices, etc) (B-Solci 2011)

Relaxation of the ferromagnetic assumption
(replaced by the existence of two “uniform ground states”) E.g.,
• non-frustrated antiferromagnetic systems⇒ anti-phase boundaries
(Alicandro-B-Cicalese 2006)
• models of phase segregation for chiral molecules
(B-Garroni-Palombaro, in progress)



Extension to a larger (finite) set of parameters K
⇓

1) functionals defined on partitions

Econt(u) =
∑

l,k∈K0

∫
∂{u=l}∩∂{u=k}

glk(x, ν)dHn−1

(K0 ⊂ K the set of ground states)
⇒ BV-ellipticity of glk (surface analog of quasiconvexity for vector
Sobolev maps (Federer, Ambrosio-B, White, Morgan))
⇒ relevant contribution of interfacial microstructure
In 2D applications to dislocations (Conti-Garroni-Massacesi 2014)



2) energies depending on measure concentration
Even if we have only two uniform ground states (±1) the energy can
depend on the concentration of a third phase (0-phase) on the
interface (e.g., in the Blume-Emery-Griffith model)

Econt(u, µ) =
∫
∂{u=1}

ϕ
(
x, ν,

dµ

dHn−1

)
dHn−1

=⇒ surfactant energies (Alicandro-Cicalese-Sigalotti 2012)

Extension to “positive temperature”
In terms of Statistical Mechanics this is a “zero-temperature limit”.
We may sometimes extend this procedure to positive temperature
(Kotecky-Luckhaus 2014)



‘Evolutionary’ framework

Variational evolution: an implicit Euler scheme (Almgren-
Taylor-Wang 1993, De Giorgi 1995, Ambrosio-Gigli-Savaré 2005) can be
adapted to study evolution of discrete systems: fix initial data
u0, time-step τ and space scale ε, define the
space/time-discrete evolution of Eε at time-scale τ as
• uτ,ε0 = u0

• uτ,εi+1 a minimizer of

Eε(u) +
1
τ
D(u, uτ,εi )

(D = “dissipation” measuring the “L2 interfacial distance”)
Up to subsequences, we define a space/time-continuum limit

u(t) = lim
ε→0

uτ,εbt/τc

as τ, ε→ 0 (Minimizing movement of Eε at scale τ from u0)



Connections with the static analysis

If Eε Γ-converge to Econt and D is a continuous perturbation
then

Eε(·) +
1
τ
D(·, uε)

Γ-converge to

Econt(·) +
1
τ
D(·, u)

if uε → u, from which we deduce that if ε→ 0 fast enough with
respect to τ then u(t) is the minimizing movement of the Γ-limit
Econt from u0

Hence, the Γ-limit gives also a description of the evolution but
only for “slow time”. In general, the limit u(t) does depend on
the mutual behaviour of ε and τ (B Lecture Notes Math 2013)



An Example: Flat Flow

Example. If we take NN ferromagnetic interactions in Z2 then
the Γ-limit is the crystalline perimeter with a square Wulff
shape. Its evolution (flat flow) is motion by crystalline
curvature (Almgren-Taylor 1995)

v = κ, κ = crystalline curvature

where e.g. each side of a rectangle moves inwards with velocity

v =
2
L

i.e., κ =
2
L

(crystalline curvature of the side)

(L = length of the side).

This evolution is also as the minimizing movement for Eε at
scale τ if ε << τ



2. Additional Effects of Discreteness -

Some Examples



a) Flexible Modeling
• Complex Materials. Thanks to the “non-local” aspect of discrete
interactions we can easily model problems that in the continuum
require complex assumptions; e.g., as we have seen
• multiphase materials
• surfactants
• double-porosity media, etc.

• “Low-dimensional” Objects. Discrete modeling can be extended
to thin films, nanotubes, etc.

(figure by Lee-Cox-Hill)

adapting a dimension-reduction procedure (Le Dret-Raoult 1995,
B-Fonseca-Francfort 2000, Friesecke-James-Müller 2002, etc)



The models involve “microscopic design parameters” as number of
layers of a thin film, chirality of a nanotube, etc.
The resulting low-dimensional model may depend effectively from
such parameters (Alicandro-B-Cicalese 2008)

• Quasicrystals. They can be modeled as “irrational thin films” in
higher-dimension through a ‘cut-and-proiect’ procedure

=⇒



b) Discrete Optimal Design Problems

Optimal design problems = construction of structures with “extreme
properties” subject to design constraints

Analytical tools = homogenization formulas (nonlinear, nonperiodic,
non-convex) (cf. the books by Allaire and Milton)

Discrete structures⇒ more flexible design constraints with
respect to the continuum case

Example: composites of two ferromagnetic materials
This translates in the computation of all possible limits of

Eε(u) =
∑
ij

εn−1σij(ui − uj)2

with periodic σij ∈ {α, β} with given proportions.



Optimal discrete geometries

In the continuum often extremal properties are obtained by
“laminates”, which “extremize” different properties in different
directions

In a discrete setting we can extremize the same property in different
directions by discrete lamination



Exact bounds in terms of Wulff shapes

We can describe all possible surface tensions ϕ in terms of the
proportion θ of β-connections. E.g., for θ ≤ 1/2 these are all convex
symmetric shapes internal to the cube of side-length 1

4α and
intersecting the curve 1

|x1| + 1
|x2| = 16(θβ + (1− θ)α)

Continuum 

Discrete

Possible

Outer bound

inner bound

inner bound

Wulff shape

With respect to the analogous continuum case
• exact bounds
• much larger set of reachable ϕ
(in the continuum case Wulff shapes must intersect the blue lines
in the discrete case Wulff shapes must intersect the red lines)



c) Variational Percolation Problems

The discrete setting is a perfect environment to include a
random distribution of coefficients σij = σωij and consider
energies

Eωε (u) =
∑
ij

εn−1σωij(ui − uj)2

depending on the realization ω of a random variable

Model case: σωij = α (resp., β) with probability p (resp., 1− p)
(e.g., modeling a random distribution of defects).



Variational Issues

• Prove that Eωε converges to some Eωcont a.s. in ω

• Prove that Eωcont is a.s. independent of ω (deterministic limit)

• Characterize Econt = Epcont in terms of p and suitable
percolation formulas (first-passage percolation for α, β > 0
finite)

• In the degenerate (limit) cases α = 0 (dilute spins) or β = +∞
(rigid spins) prove that we have different behaviours above/
below a percolation threshold
(B-Piatnitski 2012)



Variational Percolation Questions

Proof of probabilistic Understanding of geometric and
representation theorems ⇐⇒ ‘measure theoretic’ properties

of percolation clusters

Proof of random ⇐⇒ Estimates of metric properties
homogenization formulas of percolation clusters

⇓

New variational questions in Percolation Theory
Modeling of new variational problems in terms of percolation issues



d) Pinning and Evolutionary Homogenization

The time/space-discrete (τ /ε) evolution generally gives
• completely pinned motion for fast time; i.e., τ → 0 fast enough
• convergence to the evolution of the static Γ-limit for slow time; i.e.,
ε→ 0 fast enough
Hence we have existence of one or more critical time scales with
non-trivial evolution. In particular at such scales we obtain the
evolution of a “corrected” Γ-limit (ε and τ -dependent)

Example (B-Gelli-Novaga 2010) For NN ferromagnetic interactions in
Z2 the critical scale is ε/τ → γ for which the motion is

v =
1
γ

⌊
γκ
⌋

(btc is the integer part of t)

• large sets (of size depending on γ) are pinned; in particular
as γ → 0 all initial sets are pinned
as γ → +∞ we recover motion by crystalline curvature



Differently from the continuum case
• velocity is “quantized” (due to rows of microscopic energy barriers)
• (partial pinning) we may have non-trivial motions of compact sets
existing for all time (and not always finite-time existence)

Example (B-Scilla 2013) The geometry of discrete interactions may
give evolutionary effects that are not detected by the Γ-limit. For NN
ferromagnetic interactions in Z2 with “defects” the limit motion may be
of the form

v =
1
γ
fhom

(
γκ
)

where fhom is a homogenized velocity obtained implicitly by showing
the existence of “asymptotically periodic” orbits of an auxiliary
problem
Note. Even for simple distributions of defects the computation of fhom

raises non-trivial combinatorial issues



3. New Problems -

Patterns and Microgeometries∗

∗ unless otherwise stated the results of this part are in collaboration
with Alicandro and Cicalese



Lattice Microstructure

For (mixtures of ferromagnetic and) antiferromagnetic
interactions ground states may be frustrated; i.e., not all
interactions are minimized =⇒ lattice microstructure
Examples (all antiferromagnetic interactions)
ground states with frustrated interactions (in red)

NN Triangular lattice
(‘disordered’ ground states)

NNN square lattice
(periodic ground states)

or

(depending on σij)
NN square lattice
(periodic ground states)

(not frustrated)



Limit analysis

Q.: can we still describe the Γ-limit? with resp. to what convergence?
Note: L1 convergence uε → u in general is meaningless (e.g., for NN
and NNN square lattice all ground states have 0 average)

Example (NN antif. square lattice =⇒ anti-phase boundaries)

(NN antif. triangular lattice =⇒ no interfacial energy -
“total frustration”)



Limits parameterized on ground states
A positive convergence result

Theorem. Suppose σij periodic, no sign hypothesis
Suppose that there exist u1, . . . , uN periodic discrete functions s.t.
(i) uk are the “ground states’’ of E
(ii) “between different uk we have an energy barrier”
(iii) “surface-type decay of the interactions” with the distance

Then
(a) if supεEε(uε) < +∞ then locally uε =

∑N
k=1 χAε

k
uk, with (WLOG)

εAεk → Ak and {Ak} is a partition of sets of finite perimeter, and we
may define the convergence uε → (A1, . . . , AN )
With an abuse of notation we may say that the limit value is uk on Ak

(b) Eε Γ-converge to Econt of the form

Econt(A1, . . . , AN ) =
∑
i6=j

∫
∂Ai∩∂Aj

gij(x, ν)dHn−1
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Examples: (all σij of period 1)
NNN antif. square lattice – 4 “striped” ground states

NN antif.+ NNN ferrom. triangular lattice – 6 “hexagonal” gr. states

NNNN squ. lattice - 16 gr. states “slanted stripes” and “checkerboard”

(and translations)
etc.



Homogenization and G-closure Problems
Q: compute the possible limits of mixtures of (periodic) ferromagnetic
+ antiferromagnetic interactions (with given proportions)

Partial answer With NN, σij = ±1 and equal proportions we may
obtain 2 param. and all interfacial energies not greater than |ν1|+ |ν2|
(in the picture: single line = ferrom., double line = antiferrom.)

non-frustrated

frustrated/
degenerate surface energy

totally frustrated/
no surface energy

Note: question must be correctly put (equivalence by Γ-convergence)
It is not clear if with only NN we may have more than 2 parameters



Many (open) problems

E.g.,

Deterministic setting
• are there bounds in the case of long-range interactions?
• can we give a bound on the number of ground states from the
periodicity and the range of interactions?
• in the case of degenerate energies is there a higher-order
expansion?

Probabilistic setting
• if we replace the percentage with the probability of having
antiferromagnetic interactions, can we keep the limit description away
from p = 0 or 1?
• if so, how does the number of ground state changes with p?
• is there a limit variational formulation at p = 1/2? (spin glass?)



Boundary effects for finite domains

For finite domains the energetic description is not complete.
We have a non-trivial boundary effect.

E.g.,
Ω

(second configuration energetically convenient)

=⇒ effective energy of the form

Econt(A1, . . . , AN ) =
∑
i 6=j

∫
∂Ai∩∂Aj∩Ω

gij(x, ν)dHn−1

+
∑
k

∫
∂Ak∩∂Ω

g̃k(x, ν)dHn−1

(“wetting” term)
=⇒ Ω is an additional “design parameter”



Boundary effects for thin films - I
Boundary effects are particularly important for thin objects such
as thin films.
Example (dependence of # of parameters on the thickness)
The number of parameters of N -layer thin films may depend on N
and ‘stabilize’ to those of the ‘bulk’ limit

E.g., for triangular NN antiferrom. + NNN ferromagnetic,

2 ground states

6 ground states

4 or 6 ground states

4 ground states



Boundary effects for thin films - II
Example (rigidity by boundary effects)
“Total frustration” may only occur as the number of layers N → +∞

E.g., for triangular NN antiferromagnetic,

2 ground states

4 ground states

8 ground states

16 ground states

2N ground states… N layers



Motions by microstructures

New features in the motion of interfaces. E.g.,
(a) Motions by creation of defects (surface microstructures)

 

(of interfaces otherwise pinned for the Γ-limit)
(B-Cicalese-Yip, in progress)



(b) Motions by “mushy layers” (bulk microstructure)
(connection with Fluid Mechanics; (Grae Worster 1991))

=⇒ additional terms to motion by crystalline curvature
(B-Solci, in progress)



“Backwards evolution” by crystalline curvature
Approximation of crystalline perimeters by (anti-)ferromagnetic
interactions may give a meaningful definition of backward motion
(otherwise ill-defined in the continuum) by minimizing movements.

Example (nucleation in a triangular lattice driven by local
maximization of the perimeter, with “hexagonal dissipation”)

Continuum limit: hexagon expanding at constant velocity
(after scaling time)

In general the motion depends on the “dissipation-distance”, and may
give rise to complex patterns (linked to the problem of couting integer
points inside a ball) and homogenization of the velocity
(B-Scilla 2013)



Conclusions

I have illustrated the simplest (only two parameters) passage
discrete-to-continuum for variational lattice theories, and only in
the surface regime

Nevertheless we have seen interesting effects with applications
in optimal design of discrete structures, percolation, modeling,
etc., and a range of new problems from the role of lattice
microstructure

Analogous effect can be analyzed at other scales. Applications
have been given to problems in Computer Vision, Optimal
Design, Fracture Mechanics, Continuum Mechanics, Liquid
Crystals, etc. and some proposals have been made for the
overall problem of matching scales

At all scales new and challenging issues appear, and many
more are to come



Thank you for your attention!


