
Chapter 7

Minimizing movements along a
sequence of functionals

Gradient flows, and hence minimizing movements, trivially do not commute even with
uniform convergence. As a simple example, take X = R and

F
"

(x) = x2 � ⇢ sin
⇣x

"

⌘

,

with ⇢ = ⇢
"

! 0 as "! 0, uniformly converging to F (x) = x2. If also

" << ⇢,

then for fixed x
0

the solutions u
"

to the equation
(

u0
"

= �2u
"

+
⇢

"
cos
⇣u

"

"

⌘

u
"

(0) = x
0

converge to the constant function u
0

(t) = x
0

as "! 0, which does not solve
⇢

u0 = �2u
u(0) = x

0

.

This is easily seen by studying the stationary solutions of

�2x +
⇢

"
cos
⇣x

"

⌘

= 0 .

With the remark above in mind, in order to give a meaningful limit for the energy-
driven motion along a sequence of functionals it may be useful to vary the definition of
minimizing movement as in the following section.
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94CHAPTER 7. MINIMIZING MOVEMENTS ALONG A SEQUENCE OF FUNCTIONALS

7.1 Minimizing movements along a sequence

Definition 7.1.1 (minimizing movements along a sequence) Let X be a separable
Hilbert space, F

"

: X ! [0,+1] equicoercive and lower semicontinuous and x"

0

! x
0

with

F
"

(x"

0

)  C < +1, (7.1)

and ⌧
"

> 0 converging to 0 as "! 0. Fixed " > 0 we define recursively x"

k

as a minimizer
for the problem

min
n

F
"

(x) +
1
2⌧
kx� x"

k�1

k2
o

, (7.2)

and the piecewise-constant trajectory u" : [0,+1) ! X given by

u"(t) = xbt/⌧

"

c . (7.3)

A minimizing movement for F
"

from x"

0

is any limit of a subsequence u"

j uniform on
compact sets of [0,+1).

After remarking that the Hölder continuity estimates in Proposition 6.1.4 only depend
on the bound on F

"

(x"

0

), with the same proof we can show the following result.

Proposition 7.1.2 For every F
"

and x"

0

as above there exist minimizing movements for
F

"

from x"

0

in C1/2([0,+1);X).

Remark 7.1.3 (growth conditions) The positiveness of F
"

can be substituted by the
requirement that for all x the functionals

x 7! F
"

(x) +
1
2⌧
kx� xk2

be bounded from below; i.e., that there exists C > 0 such that

x 7! F
"

(x) + Ckx� xk2

be bounded from below.

Example 7.1.4 We give a simple example that shows how the limit minimizing movement
may depend on the choice of the mutual behavior of " and ⌧ . We consider the functions

F
"

(x) =

8

<

:

�x if x  0
0 if 0  x  "
"� x if x � ",
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which converge uniformly to F (x) = �x. Note the that the energies are not bounded
from below, but their analysis falls within the framework in the previous remark. For this
example a direct computation is immediately carried on. We consider a fixed initial datum
x

0

.
If x

0

> 0, then for " < x
0

we have x"

k

= x"

k�1

+ ⌧ for all k � 0.
If x

0

 0 then we have x"

k

= x"

k�1

+ ⌧ if x"

k�1

 �⌧ . If 0 � x"

k�1

> �⌧ then x"

k

� x"

k�1

is obtained by minimizing the function

f(y) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�y +
1
2⌧

y2 if 0  y  �x"

k�1

x"

k�1

+
1
2⌧

y2 if �x"

k�1

 y  �x"

k�1

+ "

"� y +
1
2⌧

y2 if y � �x"

k�1

+ ",

whose minimizer is always y = ⌧ + x"

k�1

if "� x"

k�1

> ⌧ . In this case x"

k

= 0. If otherwise
"� x"

k�1

 ⌧ the other possible minimizer is y = ⌧ . We then have to compare the values

f(�x"

k�1

) = x"

k�1

+
1
2⌧

(x"

k�1

)2, f(⌧) = "� 1
2
⌧.

We have three cases:
(a) "� 1

2

⌧ > 0. In this case we have x"

k

= 0 (and this holds for all subsequent steps);
(b) "� 1

2

⌧ < 0. In this case we either have f(⌧) < f(�x"

k�1

), in which case x"

k

= x"

k�1

+⌧
(and this then holds for all subsequent steps); otherwise x"

k

= 0 and x"

k+1

= x"

k

+ ⌧ (and
this holds for all subsequent steps);

(c) "� 1

2

⌧ = 0. If x"

k�1

< 0 then x"

k

= 0 (otherwise we already have x"

k�1

= 0). Then,
since we have the two solutions y = 0 and y = ⌧ , we have x"

j

= 0 for k  j  k
0

for some
k

0

2 N [+1 and x"

j

= x"

j�1

+ ⌧ for j > k
0

.
We can summarize the possible minimizing movements with initial datum x

0

 0 as
follows:

(i) if ⌧ < 2" then the unique minimizing movement is x(t) = min{x
0

+ t, 0};
(ii) if ⌧ > 2" then the unique minimizing movement is x(t) = x

0

+ t;
(iii) if ⌧ = 2" then we have the minimizing movements x(t) = max{min{x

0

+t, 0}, x
1

+t}
for x

1

 x
0

.
For x

0

> 0 we always have the only minimizing movement x(t) = x
0

+ t.

7.2 Commutability along ‘fast-converging’ sequences

We now show that by suitably choosing " = "(⌧) the minimizing movement along the
sequence F

"

from x
"

converges to a minimizing movement for the limit F from x
0

.
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We consider an equi-coercive sequence F
"

of (non-negative) lower-semicontinuous func-
tionals on a Hilbert space X �-converging to F . Note that if y

"

! y
0

then the solutions
of

min
n

F
"

(x) +
1
2⌧
kx� y

"

k2
o

(7.4)

converge to solutions of

min
n

F (x) +
1
2⌧
kx� y

0

k2
o

(7.5)

since we have a continuously converging perturbation of a �-converging sequence. We want
this convergence to hold along the sequences of minimum problems defining minimizing
movements.

Let now x
"

! x
0

. Let ⌧ be fixed. We consider the sequence {x⌧,"

k

} defined by iterated
minimization of F

"

with initial point x
"

. Since x
"

! x
0

, up to subsequences we have
x⌧,"

1

! x⌧,0

1

, which minimizes

min
n

F (x) +
1
2⌧
kx� x

0

k2
o

. (7.6)

The point x⌧,"

2

converge to x⌧,0

2

. Since they minimize

min
n

F
"

(x) +
1
2⌧
kx� x⌧,"

1

k2
o

(7.7)

and x⌧,"

1

! x⌧,0

1

their limit is a minimizer of

min
n

F (x) +
1
2⌧
kx� x⌧,0

1

k2
o

. (7.8)

This operation can be repeated iteratively, obtaining (upon subsequences) x⌧,"

k

! x⌧,0

k

, and
{x⌧,0

k

} iteratively minimizes F with initial point x
0

.
With fixed T > 0, let K = bT/⌧c+ 1. Then, we deduce that there exists " = "(⌧) such

that we have
kx⌧,"

k

� x⌧,0

k

k  ⌧ for all k = 1, . . . ,K.

Upon subsequences of ⌧ these two schemes converge respectively to a minimizing move-
ment along F

"

and a minimizing movement for F . We have then proved the following result.

Theorem 7.2.1 Let F
"

be a equi-coercive sequence of (non-negative) lower-semicontinuous
functionals on a Hilbert space X �-converging to F , let x

"

! x
0

. Then there exists a choice
of " = "(⌧) such that every minimizing movement along F

"

with initial data x
"

converge to
a minimizing movement for F from x

0

on [0, T ] for all T .

Remark 7.2.2 Note that, given x
"

and F
"

, if F has more than one minimizing movement
from x

0

then the approximation gives a choice criterion. As an example take F (x) = �|x|,
F

"

(x) = �|x + "| and x
0

= x
"

= 0.
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Remark 7.2.3 (the convex case) If all F
"

are convex then it can be shown that actually
the minimizing movement along the sequence F

"

always coincides with the minimizing
movement for their �-limit. This (exceptional) case will be dealt with in detail separately.

Example 7.2.4 In dimension one we can take

F
"

(x) =
1
2
x2 + "W

⇣x

"

⌘

,

where W is a one-periodic odd Lipschitz function with kW 0k1 = 1. Up to addition of a
constant is not restrictive to suppose that the average of W is 0. We check that the critical
regime for the minimizing movements along F

"

is " ⇠ ⌧ . Indeed, if " << ⌧ then from the
estimate

�

�

�

F
"

(x)� 1
2
x2

�

�

�

 "

2
we deduce that

x
k

� x
k�1

⌧
= �x

k

+ O
⇣ "

⌧

⌘

,

and hence that the limit minimizing movement satisfies u0 = �u, so that it corresponds to
the minimizing movement of the limit F

0

(x) = 1

2

x2.
Conversely, if ⌧ << " then it may be seen that for |x

0

|  1 the motion is pinned; i.e.,
the resulting minimizing movement is trivial u(t) = x

0

for all t. If W 2 C1 this is easily
seen since in this case the stationary solutions, corresponding to x satisfying

x + W 0(
x

"

⌘

= 0

tend to be dense in the interval [�1, 1] as " ! 0. Moreover, it is easily seen that in this
regime the minimizing movement corresponds to the limit as " ! 0 to the minimizing
movements of F

"

for " fixed; i.e., solutions u
"

of the gradient flow

u0
"

= �u
"

�W 0
⇣u

"

"

⌘

.

Integrating between t
1

and t
2

we have
Z

u

"

(t2)

u

"

(t1)

1
s + W 0(s/")

ds = t
1

� t
2

.

By the uniform convergence u
"

! u we can pass to the limit, recalling that the integrand
weakly converges to the function 1/g defined by

1
g(s)

=
Z

1

0

1
s + W 0(�)

d�,
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and obtain the equation
u0 = �g(u).

This equation corresponds to the minimizing movement for the even energy eF
0

given for
x � 0

eF
0

(x) =

8

>

<

>

:

0 if x  1
Z

x

1

g(w) dw if x � 1.

The plot of the derivatives of F
"

, F
0

and eF
0

is reproduced in Fig. 7.1

Figure 7.1: derivatives of F
"

, F
0

and eF
0

We can explicitly compute the minimizing movement for ⌧ << " in the case W (x) =
|x� 1

2

|� 1

4

for 0  x  1. Here, the solutions with initial datum x
0

> 1 satisfy the equation

u0 =
1
u
� u.

Integrating this limit equation we conclude that the minimizing movement along F
"

corre-
spond to that of the e↵ecitve energy

eF
0

(x) =
⇣1

2
x2 � log |x|� 1

2

⌘

+

.
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7.3 An example: “overdamped dynamics” of Lennard-Jones
interactions

We now give an example of a sequence of non-convex energies which commute with the
minimizing movement procedure.

Let J be as in Section 3.4 and 1

"

= N 2 N. We consider the energies

F
"

(u) =
N

X

i=1

J
⇣u

i

� u
i�1p
"

⌘

with the periodic boundary condition u
N

= u
0

. As proved in Section 3.4, after identification
of u with a piecewise-constant function on [0, 1], these energies �-converge to the energy

F (u) =
Z

1

0

|u0|2 dt + #(S(u) \ [0, 1)), u+ > u�,

defined on piecewise-H1 functions, in this case extended 1-periodically on the whole real
line.

In this section we apply the minimizing movements scheme to F
"

as a sequence of
functionals in L2(0, 1). In order to have initial data u"

0

with equibounded energy, we may
suppose that these are the discretization of a single piecewise-H1 function u

0

(with a slight
abuse of notation we will continue to denote all these discrete functions by u

0

).
With fixed " and ⌧ , the time-discretization scheme consists in defining recursively uk

as a minimizer of

u 7!
N

X

i=1

J
⇣u

i

� u
i�1p
"

⌘

+
1
2⌧

N

X

i=1

"|u
i

� uk�1

i

|2. (7.9)

By Proposition 7.1.2, upon extraction of a subsequence, the functions u⌧ (t) = ubt/⌧c con-
verge uniformly in L2 to a function u 2 C1/2([0,+1);L2(0, 1)). Moreover, since we have
F (u(t))  F (u

0

) < +1, u(t) is a piecewise-H1 function for all t.
We now describe the motion of the limit u. For the sake of simplicity we suppose that

u
0

is a piecewise-Lipschitz function and that S(u
0

) \ {"i : i 2 {1, . . . , N}} = ; (so that we
do not have any ambiguity in the definition of the interpolations of u

0

)..
We first write down the Euler-Lagrange equations for uk, which amount to a simple

N -dimensional system of equations obtained by deriving (7.9) with respect to u
i

1p
"

⇣

J 0
⇣uk

i

� uk

i�1p
"

⌘

� J 0
⇣uk

i+1

� uk

ip
"

⌘⌘

+
"

⌧
(uk

i

� uk�1

i

) = 0. (7.10)

• With fixed i 2 {1, . . . , N} let v
k

be defined by

v
k

=
uk

i

� uk

i�1

"
.
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For simplicity of notation we set

J
"

(w) =
1
"
J(
p
"w).

By (7.10) and the corresponding equation for i� 1, which can be rewritten as

J 0
"

⇣uk

i�1

� uk

i�2

"

⌘

� J 0
"

⇣uk

i

� uk

i�1

"

⌘

+
"

⌧
(uk

i�1

� uk�1

i�1

) = 0.

we have

v
k

� v
k�1

⌧
=

1
⌧

⇣uk

i

� uk

i�1

"
� uk�1

i

� uk�1

i�1

"

⌘

=
1
"

⇣uk

i

� uk�1

i

⌧
� uk

i�1

� uk�1

i�1

⌧

⌘

=
1
"2

 

⇣

J 0
"

⇣uk

i�1

� uk

i�2

"

⌘

� J 0
"

⇣uk

i

� uk

i�1

"

⌘⌘

�
⇣

J 0
"

⇣uk

i

� uk

i�1

"

⌘

� J 0
"

⇣uk

i+1

� uk

i

"

⌘⌘

!

,

so that

v
k

� v
k�1

⌧
� 2
"2

J 0
"

(v
k

) = � 1
"2

⇣

J 0
"

⇣uk

i�1

� uk

i�2

"

⌘

+J 0
"

⇣uk

i+1

� uk

i

"

⌘⌘

� � 2
"2

J 0
"

⇣w
0p
"

⌘

. (7.11)

We recall that we denote by w
0

the maximum point of J 0.
We can interpret (7.11) as an inequality for the di↵erence system

v
k

� v
k�1

⌘
� 2J 0

"

(v
k

) � �2J 0
"

⇣w
0p
"

⌘

,

where ⌘ = ⌧/"2 is interpreted as a discretization step. Note that v
k

= w
0

/
p
" for all k is a

stationary solution of the equation

v
k

� v
k�1

⌘
� 2J 0

"

(v
k

) = �2J 0
"

⇣w
0p
"

⌘

and that J 0
"

are equi-Lipschitz functions on [0,+1). If ⌘ << 1 this implies that if v
k0 

w
0

/
p
" for some k

0

then
v
k

 w
0p
"

for k � k
0

,

or, equivalently, that if ⌧ << "2 the set

Sk

"

=
n

i 2 {1, . . . , N} :
uk

i

� uk

i�1

"
� w

0p
"

o



7.3. AN EXAMPLE: “OVERDAMPED DYNAMICS” OF LENNARD-JONES INTERACTIONS101

is decreasing with k. By our assumption on u
0

, for " small enough we then have

S0

"

=
n

i 2 {1, . . . , N} : ["(i� 1), "i] \ S(u
0

) 6= ;
o

,

so that, passing to the limit

S(u(t)) ✓ S(u
0

) for all t � 0. (7.12)

• Taking into account that we may define

u⌧ (t, x) = ubt/⌧c
bx/"c,

we may choose functions � 2 C1
0

(0, T ) and  2 C1
0

(x
1

, x
2

), with (x
1

, x
2

)\S(u
0

) = ;, and
obtain from (7.10)

Z

T

0

Z

x2

x1

u⌧ (t, x)
⇣�(t)� �(t + ⌧)

⌧

⌘

 (x) dx dt

= �
Z

T

0

Z

x2

x1

⇣ 1p
"
J 0
⇣p

"
u⌧ (t, x)� u⌧ (t, x� ")

"

⌘⌘

�(t)
⇣ (x)�  (x + ")

"

⌘

dx dt .

Taking into account that

lim
"!0

1p
"
J 0(
p
"w) = 2w,

we can pass to the limit and obtain that

�
Z

T

0

Z

x2

x1

u(t, x)�0(t) (x) dx dt =
Z

T

0

Z

x2

x1

2
@u

@x
�(t) 0(x) dx dt ;

i.e., that
@u

@t
= �2

@2u

@x2

(7.13)

in the sense of distributions (and hence also classically) in (0, T )⇥(x
1

, x
2

). By the arbitrari-
ness of the interval (x

1

, x
2

) we have that equation (7.13) is satisfied for x in (0, 1) \ S(u
0

).
• We now derive boundary conditions on S(u(t)). Let i

0

+1 belong to S0

"

, and suppose
that u+(t, x)� u�(t, x) � c > 0. Then we have

lim
⌧!0

1p
"
J 0
 

ubt/⌧c
i0

� ubt/⌧c
i0�1p

"

!

= 0 .

If i < i
0

, from (7.10) it follows, after summing up the indices from i to i
0

, that

i0
X

j=i

"

⌧
(uk

j

� uk�1

j

) = � 1p
"
J 0
⇣uk

i

� uk

i�1p
"

⌘

. (7.14)
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We may choose i = i
"

such that "i
"

! x and we may deduce from (7.14) that
Z

x0

x

@u

@t
dx = �2

@u

@x
(x),

where x
0

2 S(u(t)) is the limit of "i
0

. Letting x ! x�
0

we obtain

@u

@x
(x�

0

) = 0.

Similarly we obtain the homogeneous Neumann condition at x+

0

.

Summarizing, the minimizing movement of the scaled Lennard-Jones energies F
"

from
a piecewise-H1 function consists in a piecewise-H1 motion, following the heat equation on
(0, 1) \ S(u

0

), with homogeneous Neumann boundary conditions on S(u
0

) (as long as u(t)
has a discontinuity at the corresponding point of S(u

0

)).
Note that for "! 0 su�ciently fast Theorem 7.2.1 directly ensures that the minimizing

movement along F
"

coincides with the minimizing movement for the functional F . The
computation above shows that this holds also for ⌧ << "2 (i.e., "! 0 “su�ciently slow”),
which then must be regarded as a technical condition.

7.4 Homogenization of minimizing movements

We now examine minimizing movements along oscillating sequences (with many local min-
ima), treating two model cases in the real line.

7.4.1 Minimizing movements for piecewise-constant energies

We apply the minimizing-movement scheme to the functions

F
"

(x) = �
jx

"

k

"

converging to F (x) = �x (see Fig. 7.2). This is a prototype of a function with many local
minimizers (actually, in this case all points are local minimizers) converging to a function
with few local minimizers (actually, none).

Note that, with fixed ", for any initial datum x
0

the minimizing movement for F
"

is
trivial: u(t) = x

0

, since all points are local minimizers. Conversely the corresponding
minimizing movement for the limit is u(t) = x

0

+ t.
We now fix an initial datum x

0

, the space scale " and the time scale ⌧ , and examine
the successive-minimization scheme from x

0

. Note that it is not restrictive to suppose that
0  x

0

< 1 up to a translation in "Z.
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ε

Figure 7.2: the function F
"

The first minimization, giving x
1

is

min
n

F
"

(x) +
1
2⌧

(x� x
0

)2
o

. (7.15)

The function to minimize is pictured in Figure 7.3 in normalized coordinates (" = 1); note
that it equals �x + 1

2⌧

(x� x
0

)2 if x 2 "Z.

-3 -2 -1 0 1 2 3 4 5 6 7

-5

-2,5

2,5

5

7,5

10

12,5

15

Figure 7.3: the function in the minimization problem (7.15)

Except for some exceptional cases that we deal separately below, we have two possibil-
ities:

(i) if ⌧

"

< 1

2

then the motion is trivial. If we set x
0

= s" with 0  s < 1. Then we have
two sub-cases:

(a) the minimizer x
1

belongs to [0, "). This occurs exactly if F
"

(") + 1

2⌧

(" � x
0

)2 > 0;



104CHAPTER 7. MINIMIZING MOVEMENTS ALONG A SEQUENCE OF FUNCTIONALS

i.e.,

⌧ <
(s� 1)2"

2
. (7.16)

In this case the only minimizer is still x
0

. This implies that we have x
k

= x
0

for all k.
Otherwise, we have that x

1

= ". This implies that, up to a translation we are in the case
x

0

= 0 with s = 0, and (7.16) holds since ⌧ < "

2

. Hence, x
k

= x
1

for all k � 1;
(ii) if ⌧

"

> 1

2

then for " small the minimum is taken on "Z. So that again we may
suppose that x

0

= 0.
Note that we are leaving out for now the case when x

0

= 0 and ⌧

"

= 1

2

. In this case we
have a double choice for the minimizer; such situations will be examined separately.

If x
0

= 0 then x
1

is computed by solving

min
n

F
"

(x) +
1
2⌧

x2 : x 2 "Z
o

, (7.17)

and is characterized by

x
1

� 1
2
"  ⌧  x

1

+
1
2
".

We then have
x

1

=
j⌧

"
+

1
2

k

" if
⌧

"
+

1
2
62 Z

(note again that we have two solutions for ⌧

"

+ 1

2

2 Z, and we examine this case separately).
The same computation is repeated at each k giving

x
k

� x
k�1

⌧
=
j⌧

"
+

1
2

k "

⌧
.

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

-2,4

-1,6

-0,8

0,8

1,6

2,4

Figure 7.4: the velocity v in terms of w



7.4. HOMOGENIZATION OF MINIMIZING MOVEMENTS 105

We can now choose ⌧ and " tending to 0 simultaneously and pass to the limit. The
behaviour of the limit minimizing movements is governed by the quantity

w = lim
"!0

⌧

"
, (7.18)

which we may suppose exists up to subsequences. If w + 1

2

62 Z then the minimizing
movement along F

"

from x
0

is uniquely defined by

u(t) = x
0

+ vt, with v =
j

w +
1
2

k 1
w

, (7.19)

so that the whole sequence converges if the limit in (7.18) exists. Note that
• (pinning) we have v = 0 exactly when ⌧

"

< 1

2

for " small. In particular this holds
for ⌧ << " (i.e., for w = 0);

• (limit motion for slow times) if " << ⌧ then the motion coincides with the gradient
flow of the limit, with velocity 1;

• (discontinuous dependence of the velocity) the velocity is a discontinuous func-
tion of w at points of 1

2

+ Z. Note moreover that it may be actually greater than the limit
velocity 1. The graph of v is pictured in Figure 7.4

• (non-uniqueness at w 2 1

2

+ Z) in these exceptional cases we may have either of
the two velocities 1 + 1

2w

or 1 � 1

2w

in the cases "

⌧

+ 1

2

> w or "

⌧

+ 1

2

< w for all " small
respectively, but we may also have any u(t) with

1� 1
2w

 u0(t)  1 +
1

2w

if we have precisely "

⌧

+ 1

2

= w for all " small, since in this case at every time step we
may choose any of the two minimizers giving the extremal velocities. Note therefore that
in this case the limit is not determined only by w, and in particular it may depend on the
subsequence even if the limit (7.18) exists.

We remark that the functions F
"

above can be substituted by functions with isolated
local minimizers; e.g. by taking (↵ > 0)

F
"

(x) = �
jx

"

k

"+ ↵
⇣

x�
jx

"

k

"
⌘

,

with isolated local minimizers at "Z (for which the computations run exactly as above), or

F
"

(x) = �x + (1 + ↵)" sin
⇣x

"

⌘

.

Note that the presence of an energy barrier between local minimizers does not influence the
velocity of the final minimizing movement, that can always be larger than 1 (the velocity
as " << ⌧).
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Figure 7.5: other potentials giving the same homogenization pattern

We also remark that the same result can be obtained by a “discretization” of F ; i.e.,
taking

F
"

(x) =
⇢�x if x 2 "Z

+1 otherwise.

7.4.2 A heterogeneous case

We briefly examine a variation of the previous example introducing a heterogeneity pa-
rameter 1  �  2 and defining

F �(x) =

8

>

<

>

:

�2
jx

2

k

if 2
jx

2

k

 x < 2
jx

2

k

+ �

�2
jx

2

k

� � if 2
jx

2

k

+ �  x < 2
jx

2

k

+ 1.
(7.20)

If � = 1 we are in the previous situation; for general � the function F � is pictured in
Fig. 7.6.

We apply the minimizing-movement scheme to the functions

F
"

(x) = F �

"

(x) = "F �

⇣x

"

⌘

.

Arguing as above, we can reduce to the two cases

(a) x
k

2 2"Z, or (b) x
k

2 2"Z + "�.

Taking into account that x
k+1

is determined as the point in 2"Z [ (2"Z + "�) closer to
⌧ (as above, we only consider the cases when we have a unique solution to the minimum
problems in the iterated procedure), we can characterize it as follows.
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2

Figure 7.6: the function F �

In case (a) we have the two sub cases:
(a

1

) if we have

2n <
⌧

"
� �

2
< 2n + 1

for some n 2 N then
x

k+1

= x
k

+ (2n + �)".

In particular x
k+1

2 2"Z + "�;
(a

2

) if we have

2n� 1 <
⌧

"
� �

2
< 2n

for some n 2 N then
x

k+1

= x
k

+ 2n".

In particular x
k+1

2 2"Z. Note that x
k+1

= x
k

(pinning) if
⌧

"
<
�

2
.

In case (b) we have the two sub cases:
(b

1

) if we have

2n <
⌧

"
+
�

2
< 2n + 1

for some n 2 N then
x

k+1

= x
k

+ 2n".

In particular x
k+1

2 2"Z + "�. Note that x
k+1

= x
k

(pinning) if
⌧

"
< 1 � �

2
, which is

implied by the pinning condition in (a
2

);
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(b
2

) if we have

2n� 1 <
⌧

"
+
�

2
< 2n

for some n 2 N then
x

k+1

= x
k

+ 2n"� "�.

In particular x
k+1

2 2"Z.
Eventually, we have the two cases:
(1) when

�

�

�

⌧

"
� 2n

�

�

�

<
�

2
for some n 2 N then, after possibly one iteration, we are either in the case (a

2

) or (b
1

).
Hence, either x

k

2 2"Z or x
k

2 2"Z + "� for all k. The velocity in this case is then

x
k+1

� x
k

⌧
= 2n

"

⌧
;

(2) when
�

�

�

⌧

"
� (2n + 1)

�

�

�

< 1� �

2
for some n 2 N then we are alternately in case (a

1

) or (b
2

). In this case we have an
• averaged velocity: the speed of the orbit {x

k

} oscillates between two values with
a mean speed given by

x
k+2

� x
k

2⌧
=

2n"+ �"

2⌧
+

2(n + 1)"� �"

2⌧
= (2n + 1)

"

⌧
.

This is an additional feature with respect to the previous example.

Summarizing, if we define w as in (7.18) then (taking into account only the cases with
a unique limit) the minimizing movement along the sequence F

"

with initial datum x
0

is
given by x(t) = x

0

+ vt with v = f(w) 1

w

, and f is given by

f(w) =

8

>

>

<

>

>

:

2n if |w � 2n|  �

2
, n 2 N

2n + 1 if |w � (2n + 1)| < 1� �

2
, n 2 N

(see Fig. 7.7). Note that the pinning threshold is now �/2.
We can compare this minimizing movement with the one given in (7.19) by examining

the graph of w 7! bw + 1/2c � f(w) in Fig. 7.8. For 2n + 1/2 < w < 2n + �/2 the new
minimizing movement is slower, while for 2n + 2� �/2 < w < 2n + 2� 1/2 it is faster.
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1 2

2 -

Figure 7.7: The function f describing the e↵ective velocity

1 2

2 -

Figure 7.8: comparison with the homogeneous case

7.5 References to Chapter 7

The definition of minimizing movement along a sequence of functionals formalizes a natural
extension to the notion of minimizing movement, and follows the definition given in the
paper
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The energies in Example 7.2.4 have been taken as a prototype to model plastic phenomena
in

G. Puglisi and L. Truskinovsky. Thermodynamics of rate-independent plasticity. Jour-
nal of Mechanics and Physics of solids 53 (2005) 655–679.
More recently this example has been recast in the framework of quasi static motion in the
papers

A. Mielke and L.Truskinovsky. From discrete visco-elasticity to continuum rate-in-
dependent plasticity: rigorous results. Arch. Rational Mech. Anal. 203 (2012), 577–619

A. Mielke. Emergence of rate-independent dissipation from viscous systems with wiggly
energies. Continuum Mech. Thermodyn. 24 (2012), 591–606
The example of the minimizing movement for Lennard Jones interactions is original, and
is part of ongoing work with A. Defranceschi and E. Vitali. It is close in spirit to a semi-
discrete approach (i.e., the study of the limit of the gradient flows for the discrete energies)
in

M. Gobbino. Gradient flow for the one-dimensional Mumford-Shah functional. Ann.
Scuola Norm. Sup. Pisa (IV) 27 (1998), 145–193.


