
Chapter 4

Convergence of local minimizers

In this section we consider a generalization of the fundamental theorem of �-convergence
when we have strict local minimizers of the �-limit.

4.1 Convergence to isolated local minimizers

The following theorem shows that we may extend (part of) the fundamental theorem of
�-convergence to isolated local minimizers of the �-limit F ; i.e., to points u

0

such that
there exists � > 0 such that

F (u
0

) < F (u) if 0 < d(u, u
0

)  �. (4.1)

The proof of this theorem essentially consists in remarking that we may at the same time
apply Proposition 1.1.2 (more precisely, Remark 1.1.4) to the closed ball of center u

0

and
radius �, and Proposition 1.1.6 to the open ball of center u

0

and radius �.

Theorem 4.1.1 Suppose that each F
"

is coercive and lower semicontinuous and the se-
quence (F

"

) �-converge to F and is equicoercive. If u
0

is an isolated local minimizer of
F then there exist a sequence (u

"

) converging to u
0

with u
"

a local minimizer of F
"

for "
small enough.

Proof. Let � > 0 satisfy (4.1). Note that by the coerciveness and lower semicontinuity of F
"

there exists a minimizer u
"

of F
"

on B
�

(u
0

), the closure of B
�

(u
0

) = {u : d(u, u
0

)  �}. By
the equicoerciveness of (F

"

), upon extracting a subsequence, we can suppose that u
"

! u.
Since u 2 B

�

(u
0

) we then have

F (u
0

)  F (u)  lim inf
"!0

F
"

(u
"

) = lim inf
"!0

min
B

�

(u0)

F
"

(4.2)

 lim sup
"!0

inf
B

�

(u0)

F
"

 inf
B

�

(u0)

F = F (u
0

),

61



62 CHAPTER 4. CONVERGENCE OF LOCAL MINIMIZERS

where we have used Proposition 1.1.6 in the last inequality. By (4.1) we have that u = u
0

and u
"

2 B
�

(u
0

) for " small enough, which proves the thesis.

Remark 4.1.2 In the theorem above it is su�cient to require the coerciveness properties
for F

"

only on bounded sets, since they are applied to minimization problems on B
�

(u
0

).

Remark 4.1.3 Clearly, the existence of an isolated (local) minimizer in the limit does not
imply that the converging (local) minimizers are isolated. It su�ces to consider F

"

(x) =
((x� ") _ 0)2 converging to F (x) = x2.

Remark 4.1.4 In Section 3.4 we have noticed that the limit fracture energy F � possesses
families of L1-local minimizers with an arbitrary number of jump points, while the approx-
imating functionals F �

"

have local minimizers corresponding to limit functions with only
one jump point. This cannot directly be deduced from the result above since those limit
local minimizers are not isolated. Anyhow L1-local minimizers with one jump are strict
local minimizers with respect to the distance

d(u, v) =
Z

1

0

|u� v| dx +
X

x2(0,1)

|(u+ � u�)� (v+ � v�)|

=
Z

1

0

|u� v| dx +
X

x2S(u)\S(v)

|(u+ � u�)� (v+ � v�)|

+
X

x2S(u)\S(v)

|u+ � u�| +
X

x2S(v)\S(u)

|v+ � v�|,

which penalizes (large) jumps of a competitor v outside S(u). Upon suitably defining
interpolations of discrete functions in SBV (0, 1) (where jumps correspond to di↵erence
quotients above the threshold w

0

/
p

") it can be shown that the �-limit remains unchanged
with this convergence, so that we may apply Theorem 4.1.1. Note that for discrete functions
the notion of local minimizers is the same as for the L1-distance since we are in a finite-
dimensional space. Note moreover that L1-local minimizers of F � with more than one
jump are not strict local minimizers for the distance d above. Indeed, if u0 = 0 and
S(u) = {x

1

, . . . , x
N

} with 0  x
1

< · · · < x
N

and N � 2, then any u
s

= u + s�
(x1,x2)

is
still a local minimizer for F � with F �(u

s

) = F �(u) = N and d(u, u
s

) = s(1 + |x
2

� x
1

|).



4.2. TWO EXAMPLES 63

4.2 Two examples

We use Theorem 4.1.1 to prove the existence of sequences of converging local minima.

Example 4.2.1 (local minimizers for elliptic homogenization) Consider the func-
tionals in Example 1.4.2. Suppose furthermore that g has an isolated local minimum at z

0

.
We will show that the constant function u

0

(x) = z
0

is a L1-local minimizer of F
hom

+ G.
Thanks to Theorem 4.1.1 we then deduce that there exists a sequence of local minimiz-
ers of F

"

+ G
"

(in particular, if g is di↵erentiable with respect to u, of solutions of the
Euler-Lagrange equation (1.15)) converging to u

0

.
We only prove the statement in the one-dimensional case, for which ⌦ = (0, L). We

now consider � > 0 and u such that

ku� u
0

k
L

1
(0,L)

 �.

Since z
0

is an isolated local minimum of g there exists h > 0 such that g(z
0

) < g(z) if
0 < |z� z

0

|  h. If ku� u
0

k1  h then G(u) � G(u
0

) with equality only if u = u
0

a.e., so
that the thesis is verified. Suppose otherwise that there exists a set of positive measure A
such that |u� u

0

| > h on A. We then have

h|A| 
Z

A

|u� u
0

| dt  �,

so that |A|  �/h. We can then estimate

G(u) � min g|A| + (L� |A|)g(z
0

) � G(u
0

)� g(z
0

)�min g

h
� .

On the other hand, there exists a set of positive measure B such that

|u(x)� u
0

|  �

L

(otherwise the L1 estimate doe not hold). Let x
1

2 B and x
2

2 A, we can estimate (we
can assume x

1

< x
2

)

F
hom

(u) � ↵

Z

[x1,x2]

|u0|2 dt � ↵
(u(x

2

)� u(x
1

))2

x
2

� x
1

� ↵

⇣

h� �

L

⌘

2

L

(using Jensen’s inequality). Summing up we have

F
hom

(u) + G(u) � F
hom

(u
0

) + G(u
0

) + ↵

⇣

h� �

L

⌘

2

L
� g(z

0

)�min g

h
�

= F
hom

(u
0

) + G(u
0

) + ↵
h2

L
+ O(�)

> F
hom

(u
0

) + G(u
0

)

for � small as desired.
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Example 4.2.2 (Kohn-Sternberg) In order to prove the existence of L1 local minimiz-
ers for the energies F

"

in (1.18) by Theorem 1.4.2 it su�ces to prove the existence of
isolated local minimizers for the minimal interface problem related to the energy (1.20). In
order for this to hold we need some hypothesis on the set ⌦ (for example, it can be proved
that no non-trivial local minimizer exists when ⌦ is convex).

We treat the two-dimensional case only. We suppose that ⌦ is bounded, regular, and
has an “isolated neck”; i.e., it contains a straight segment whose endpoints meet @⌦ per-
pendicularly, and @⌦ is strictly concave at those endpoints (see Fig. 4.1). We will show

Figure 4.1: a neck in the open set ⌦

that the set with boundary that segment (we can suppose that the segment disconnets ⌦)
is an isolated local minimizer for the perimeter functional.

We can think that the segment is (0, L)⇥{0}. By the strict concavity of @⌦ there exist
h > 0 such that in a rectangular neighbourhood of the form (a, b) ⇥ (�2h, 2h) the lines
x = 0 and x = L meet @⌦ only at (0, 0) and (0, L) respectively. The candidate strict local
minimizer is A

0

= {(x, y) 2 ⌦;x > 0}, which we identify with the function u
0

= �1+2�
A0 ,

taking the value +1 in A
0

and �1 in ⌦ \ A
0

.
Take another test set A. The L1 closeness condition for functions translates into

|A4A
0

|  �.

We may suppose that A is su�ciently regular (some minor extra care must be taken when
A is a set of finite perimeter, but the proof may be repeated essentially unchanged).

Consider first the case that A contains a horizontal segment y = M with M 2 [h, 2h]
and its complement contains a horizontal segment y = m with m 2 [�2h, h]. Then a
portion of the boundary @A is contained in the part of ⌦ in the strip |y|  2h, and its
length is strictly greater than L, unless it is exactly the minimal segment (see Fig. 4.2).

If the condition above is not satisfied then A must not contain, e.g., any horizontal
segment y = t with t 2 [h, 2h] (see Fig. 4.3). In particular, the length of the portion of @A
contained with h  y  2h is not less than h. Consider now the one-dimensional set

B = {t 2 (0, L) : @A \ ({t}⇥ (�h, h)) = ;}.



4.3. GENERALIZATIONS 65

h

2h

M

m

Figure 4.2: comparison with a uniformly close test set

h

2h

Figure 4.3: comparison with a L1-close test set

We have
� � |A4A

0

| � h|B|,
so that |B|  �/h, and the portion of @A with h  y  2h is not less than L � �/h.
Summing up we have

H1(@A) � h + L� �

h
= H1(@A

0

) + h� �

h
,

and the desired strict inequality for � small enough.

4.3 Generalizations

We can give some generalizations of Theorem 4.1.1 in terms of scaled energies.

Proposition 4.3.1 Let F
"

satisfy the coerciveness and lower-semicontinuity assumptions
of Theorem 4.1.1. Suppose furthermore that a bounded positive function f : (0,+1) !
(0,+1) exists and constants m

"

such that the scaled functionals

eF
"

(u) =
F

"

(u)�m
"

f(")
(4.3)
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are equicoercive and �-converge on B
�

(u
0

) to eF
0

given by

eF
0

(u) =
⇢

0 if u = u
0

+1 otherwise
(4.4)

in B
�

(u
0

). Then there exists a sequence (u
"

) converging to u
0

of local minimizers of F
"

.

Remark 4.3.2 (i) First note that the functionals F
"

in Theorem 4.1.1 satisfy the hypothe-
ses of the above proposition, taking, e.g., f(") = " and m

"

equal to the minimum of F
"

in
B

�

(u
0

);
(ii) Note that the hypothesis above is satisfied if there exist constants m

"

such that
(a) �-lim sup

"!0

(F
"

(u
0

)�m
"

) = 0;

(b) �-lim inf
"!0

(F
"

(u)�m
"

) > 0 on B
�

(u
0

) \ {u
0

}.
Indeed condition (a) implies that we may change the constants m

"

so that the �-limit
exists, is 0 at u

0

, and we have a recovery sequence with F
"

(u
"

) = m
"

, while (b) is kept
unchanged. At this point is su�ces to chose, e.g., f(") = ".

Proof. The proof follows that of Theorem 4.1.1. Again, let u
"

be a a minimizer of F
"

on
B

�

(u
0

); we can suppose that u
"

! u 2 B
�

(u
0

) we then have

0 = eF
0

(u
0

)  eF
0

(u)  lim inf
"!0

eF
"

(u
"

) = lim inf
"!0

min
B

�

(u0)

eF
"

(4.5)

 lim sup
"!0

inf
B

�

(u0)

eF
"

 inf
B

�

(u0)

eF
0

= 0, .

so that u = u
0

and u
"

2 B
�

(u
0

) for " small enough, which proves the thesis after remarking
that (local) minimization of F

"

and eF
"

are equivalent up to additive and multiplicative
constants.

Proposition 4.3.3 Let F
"

satisfy the coerciveness and lower-semicontinuity assumptions
of Theorem 4.1.1. Suppose furthermore that there exist a bounded positive function f :
(0,+1) ! (0,+1), constants m

"

and ⇢
"

with ⇢
"

> 0 and ⇢
"

! 0, and eu
"

! u
0

such that
the scaled functionals

eF
"

(v) =
F

"

(eu
"

+ ⇢
"

v)�m
"

f(")
(4.6)

are equicoercive and �-converge on B
�

(v
0

) to eF
0

with v
0

an isolated local minimum. Then
there exists a sequence (u

"

) converging to u
0

of local minimizers of F
"

.

Proof. We can apply Theorem 4.1.1 to the functionals eF
"

(v) concluding that there exist
local minimizers v

"

of eF
"

converging to v
0

. The corresponding u
"

= eu
"

+ ⇢
"

v
"

are local
minimizers for F

"

converging to u
0

.
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Example 4.3.4 We illustrate the proposition with the simple example

F
"

(x) = sin
⇣x

"

⌘

+ x,

whose �-limit F (x) = x� 1 has no local (or global) minimizers. Take any x
0

2 R, x
"

! x
0

any sequence with sin(x
"

/") = �1, m
"

= x
"

� 1, ⇢
"

= "� with � � 1, and f(") = "↵ with
↵ � 0, so that

eF
"

(t) =
sin

⇣

x

"

+"

�

t

"

⌘

+ 1

"↵

+ "��↵t

=
sin

⇣

"��1t� ⇡

2

⌘

+ 1

"↵

+ "��↵t =
1� cos("��1t)

"↵

+ "��↵t.

In this case the �-limit eF coincides with the pointwise limit of eF
"

. If � = 1 and 0  ↵  1
then we have (local) minimizers of eF at all points of 2⇡Z; indeed if ↵ = 0 then the sequence
converges to eF (x) = 1� cos x, if 0 < ↵ < 1 we have

eF (x) =
⇢

0 if x 2 2⇡Z
+1 otherwise,

and if ↵ = 1
eF (x) =

⇢

x if x 2 2⇡Z
+1 otherwise.

In the case 2 > � > 1 we have two possibilities: if ↵ = 2� � 2 then eF (x) = 1

2

t2; if
� � ↵ > 2� � 2 then

eF (x) =
⇢

0 if x = 0
+1 otherwise.

If ↵ = � = 2 then eF (x) = 1

2

t2 + t. In all these cases we have isolated local minimizers in
the limit.

Note that in this computation x
"

are not themselves local minimizers of F
"

.

We now consider an infinite-dimensional example in the same spirit as the one above.

Example 4.3.5 (existence of infinitely many local minima for oscillating metrics)

Let the 1-periodic coe�cient a : R2 ! {1, 2} be defined on [0, 1]2 as

a(v
1

, v
2

) =
n 1 if either (v

1

� v
2

)(v
1

+ v
2

� 1) = 0 or
4 otherwise.

(4.7)

Let

F 0

"

(u) =
Z

1

0

a
⇣x

"
,
u

"

⌘

(1 + |u0|2) dx
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defined on
X = {u 2 W 1,1((0, 1); R2), u(0) = 0, u(1) = 1}

equipped with the L2-convergence. It may be useful to remark that F 0

"

can be rewritten
in terms of the curve �(x) = (x, u(x)) as the energy

Z

1

0

a
⇣�

"

⌘

|�0(x)|2 dx,

of an inhomogeneous Riemannian metric which favors curves lying on the network where
a = 1 (we will call that the 1-network), which is a sort of opus reticolatum as pictured in
Fig. 4.4.

The �-limit of F 0

"

is of the form

F 0

hom

(u) =
Z

1

0

'(u0) dx .

with domain X. It can be shown that '(z) =
p

2 if |z|  1, and that for functions with
|u0|  1 recovery sequences for F 0

hom

(u) are functions with a(x/", u
"

(x)/") = 1 a.e. (i.e.,
that follow the lines of the 1-network). This will also follow from the computations below.

We consider the functionals

F
"

(u) = F 0

"

(u) + G(u), where G(u) =
Z

1

0

|u|2 dx

(perturbation more general than G can be added). Since G is a continuous perturbation
the �-limit of F

"

is simply F = F 0

hom

+G. Since G is strictly convex, then F is also strictly
convex, and hence admits no local minimizers other than the absolute minimizer u = 0.
We will show that F

"

admit infinitely many local minimizers. To that end we make some
simplifying hypotheses: we suppose that " are of the form 2�k. In this way both (0, 0)
and (1, 0) (corresponding to the boundary conditions) belong to the 1-network for all ",
and 1-networks are decreasing (in the sense of inclusion) with ". We consider any function
u

0

2 X such that a(x2k0 , u
0

(x)2k0) = 1 a.e. for some k
0

, and hence for all k � k
0

; i.e., a
function following the lines of the 1-network for all " su�ciently small. We will prove that
every such u

0

is a local minimum for F
"

if " is small enough.
We consider the scaled functionals

eF
"

(v) =
F

"

(u
0

+ "2v)� F
"

(u
0

)
"2

.

We note that the term deriving from G still gives a continuously converging term, and can
be dealt with separately, since

G(u
0

+ "2v)�G(u
0

)
"2

= 2
Z

1

0

u
0

v dx + "2

Z

1

0

|v|2 dx.
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We concentrate our analysis on the term of eF
"

coming from F 0

"

: let ev
"

be such that

kev
"

� u
0

k
L

2  "2�; (4.8)

i.e., that ev
"

= u
0

+ "2v
"

with kv
"

k
L

2  �, and eF
"

(ev
"

)  C
1

< +1.
We denote e�

"

(x) = (x, ev
"

(x)) and �
0

(x) = (x, u
0

(x)). Note that if we set e1 = ( 1p
2

, 1p
2

)
and e2 = ( 1p

2

,� 1p
2

) then x 7! h�
0

(x), e1i and x 7! h�
0

(x), e2i are both non decreasing. We
may then suppose that the same holds for e�

"

. We also denote

kzk
1

= |hz, e1i| + |hz, e2i|.

For each " fixed we consider points 0 = x
0

< x
1

< . . . < x
N

= 1 such that

a
⇣

e�
"

"

⌘

= 1 a.e. or a
⇣

e�
"

"

⌘

= 4 a.e. alternately on [x
k�1

, x
k

] ;

we can suppose that the first case occurs for e.g. k odd and the second one for k even. In
the first case, by convexity and taking into account that the image of e�

"

is contained in
the 1-network, we have

Z

x

k

x

k�1

a
⇣

e�
"

"

⌘

|e�
"

|2 dx � (x
k

� x
k�1

)
�

�

�

e�
"

(x
k

)� e�
"

(x
k�1

)
x

k

� x
k�1

�

�

�

2

1

In the second case, again by convexity and by the inequality kzk
1

 p2|z|,
Z

x

k

x

k�1

a
⇣

e�
"

"

⌘

|e�0
"

|2 dx � 4(x
k

� x
k�1

)
�

�

�

e�
"

(x
k

)� e�
"

(x
k�1

)
x

k

� x
k�1

�

�

�

2

� 2(x
k

� x
k�1

)
�

�

�

e�
"

(x
k

)� e�
"

(x
k�1

)
x

k

� x
k�1

�

�

�

2

1

.

As a first consequence, we deduce that

F 0

"

(e�
"

) �
N

X

k=1

(x
k

� x
k�1

)
�

�

�

e�
"

(x
k

)� e�
"

(x
k�1

)
x

k

� x
k�1

�

�

�

2

1

+
X

k even
(x

k

� x
k�1

)
�

�

�

e�
"

(x
k

)� e�
"

(x
k�1

)
x

k

� x
k�1

�

�

�

2

1

�
�

�

�

N

X

k=1

e�
"

(x
k

)� e�
"

(x
k�1

)
�

�

�

2

1

+
X

k even

1
x

k

� x
k�1

ke�
"

(x
k

)� e�
"

(x
k�1

)k2
1

= ke�
"

(1)� e�
"

(0)k2
1

+
X

k even

1
x

k

� x
k�1

ke�
"

(x
k

)� e�
"

(x
k�1

)k2
1

= F 0

"

(u
0

) +
X

k even

1
x

k

� x
k�1

ke�
"

(x
k

)� e�
"

(x
k�1

)k2
1

.
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From the energy bound we then deduce that for each k even

(x
k

� x
k�1

)
⇣

1 +
⇣

ev
"

(x
k

)� ev
"

(x
k�1

)
x

k

� x
k�1

⌘⌘

 C"2 .

so that both (x
k

� x
k�1

)  C"2 and |ev
"

(x
k

)� ev
"

(x
k�1

)|  C". This implies that e�
"

can be
deformed with a perturbation with o("2) L2-norm to follow the 1-network between x

k�1

and x
k

. Hence, possible competitors essentially follow the 1-network (see Fig. 4.4). If � is

Figure 4.4: a local minimizer and a competitor

small enough then in order that (4.8) hold we must have v
"

! 0. This shows that the limit
of eF

"

is finite only at v = 0 on B
�

(0) as desired.
As a consequence of the computation above we deduce that for all u 2 X with ku0k1 

1 we have a sequence {u
"

} of local minimizers of F
"

converging to u.

Example 4.3.6 (density of local minima for oscillating distances) We may consider
a similar example to the one above for oscillating distances; i.e., length functionals defined
on curves. Let the 1-periodic coe�cient a : R2 ! {1, 2} be defined as

a(v
1

, v
2

) =
n 1 if either v

1

or v
2

2 Z
4 otherwise.

(4.9)

This is the same type of coe�cient as in the previous example up to a rotation and a
scaling factor. Let

F
"

(u) =
Z

1

0

a
⇣u

"

⌘

|u0| dx
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be defined on
X = {u 2 W 1,1((0, 1); R2), u(0) = v

0

, u(1) = v
1

}
equipped with the L1-convergence.

The �-limit of F
"

is

F (u) =
Z

1

0

ku0k
1

dx,

where
kzk

1

= |z
1

| + |z
2

|.
This is easily checked after remarking that recovery sequences (u

"

) are such that a(u
"

(t)/") =
1 a.e. (except possibly close to 0 and 1 if a(v

0

/") 6= 1 or a(v
1

/") 6= 1) and then that
|u0

"

| = |(u
"

)0
1

| + |(u
"

)0
2

|. For example, if both components of (u
"

) are monotone, then

F
"

(u
"

) =
Z

1

0

a
⇣u

"

"

⌘

|u0| dx =
Z

1

0

|u0
"

| dx + o(1)

=
Z

1

0

(|(u
"

)0
1

| + |(u
"

)0
2

|) dx + o(1)

=
�

�

�

(v
1

)
1

� (v
0

)
1

�

�

�

+
�

�

�

(v
1

)
2

� (v
0

)
2

�

�

�

+ o(1)

=
Z

1

0

(|u0
1

| + |u0
2

|) dx + o(1) = F (u) + o(1).

For all these energies there are no strict local minimizers since energies are invariant
with respect to reparameterization. Anyhow, if we consider equivalence classes with respect
to reparameterization (e.g., by taking only functions in

X1 = {u 2 X : ku0k
1

constant a.e.})
then an argument similar to the one in the previous example shows that local minimizers
are L1 dense, in the sense that for all u 2 X1 there exists a sequence of local minimizers
of F

"

(restricted to X1) converging to u.
As a technical remark, we note that in order to have coercivity the limit F should be

extended to the space of curves with bounded variations. Anyhow, since functionals are
invariant by reparameterization, it su�ces to consider bounded sequences in W 1,1 after a
change of variables.
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