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Lattice systems

Geometry. We will consider a parameter u : i 7→ ui defined on a (part of
a) lattice L, which can be a periodic lattice

or an aperiodic lattice, or a random lattice, etc.

Methods (but not results) will be independent of the lattice
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Energy. The behaviour of the parameter is governed by an internal energy,
that usually is written

E(u) =
X
i6=j

φij(ui, uj)

(pair interactions). Again the methods are valid for more general energies.

Motivations: from Continuum Mechanics, Statistical Physics, Computer
Vision, etc.

We will focus mainly on some simple energies, in order to highlight the
methods and some of the related issues.

General references: Alicandro, Braides, Cicalese. The Importance of
Being Discrete (provisional title, book in preparation)
A. Braides. Lecture Notes of the Würzburg Winter School 2012 on Calculus
of Variations in Physics and Materials Science (available at my web page).
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Example : scalar spin systems - I

Parameter: u : Ω ∩ Zd → {−1, 1}

Energy:

E(u) = −
X
i,j

cijuiuj Ising model/Lattice gas

or, up to additive/multiplicative constants

E(u) =
X
i,j

cij(ui − uj)2
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Variational Analysis.

Ferromagnetic interactions. If cij ≥ 0 then u ≡ 1 or u ≡ −1 are ground
states.

Also in this case, non-trivial minimum problems may be obtained by adding
some conditions; e.g.
Volume-constrained problems

min{E(u) : #{i : ui = 1} = N}

Problems with an external field

min
n
E(u) +

X
i

Hiui
o

We are interested in the behaviour of such problems when the
number i of indices involved diverges.
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Discrete-to-continuous analysis–I

Small scale parameter ε > 0. The overall behaviour of the system for a
large number of interacting particles will be rephrased as a continuum limit
of the interactions on the lattice εL as ε→ 0.

Scaled variable: u : εL → Rm

Scaled energies:

Eε(u) =
X
i,j

φεij(ui, uj)

(usually, up to constants, φεij(ui, uj) = εαφεij(ε
βui, ε

βuj)).

This is a multi-scale problem: the behaviour of the same φij can be
analysed through different scalings.
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Discrete-to-continuous analysis–II

Functional setting. Identify u : εL → Rm e.g. with its piecewise-constant
interpolation (or to a sum of scaled Dirac deltas on the nodes of the
lattice). In this way all u are defined on the same space.

Weak convergence methods.
Define a discrete-to-continuum convergence

uε : εL → Rm −→ u : Rd → Rm

as the convergence of the interpolations (or sum of deltas). Usually, weak
L1-convergence (convergence of averages), weak∗ convergence of measures,
etc., so that we have to be ready to find in the limit u to be also a Dirac
delta, a surface distribution, etc.

Define a continuum energy F which describes the “behaviour” of the
energies Eε as ε→ 0.
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Discrete-to-continuous analysis–III - Static limit

Γ-convergence. In a variational setting, F is given by the Γ-limit of Eε
(with respect to the convergence uε → u), which guarantees the
“convergence of minimum problems”.

Integral representation theory. The description of F depends on the
scaling and the parameter. Abstract results allow to recognise an integral
form of F ; e.g.

F (u) =

Z
f(x, u) dx f convex

F (u) =

Z
f(x, u,∇u) dx f quasiconvex

F (u) =

Z
S

g(ψ) dHd−1 if u = ψHd−1 S (surface energy) g BV-elliptic

F (u) =
X
i

Ψ(ci) if u =
P
i ciδxi (point energy) Ψ subadditive,

etc.

Homogenization: computation of the energy densities of F through
formulas that involve the microscopic formulation (fundamental for
numerical analysis, optimal design, etc.)
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Example : spin systems - II

Bulk scaling. Convergence = weak L1-convergence
Limit u(x) (magnetization) = average value of uε “around x”.
Scaling

Eε(u) =
X
ij

εdcij(ui − uj)2 i ∈ εZ2

The limit of the form

F (u) =

Z
f(x, u(x)) dx u : Rd → [−1, 1]

If, e.g., cij = cj−i, f = f(z) is given by an optimal location problem for ui
on large cubes [0, T ]d subject to the condition

P
i ui = zT d. f : [−1, 1]→ R

is convex:

f

u
-1 1m

m = effective magnetization
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Surface scaling.
For nearest-neighbour ferromagnetic interactions (cij = 0 for
|i− j| > 1, cij = 1 if |i− j| = 1) ) E can be viewed as a surface energyC

o
l
u
m
n
 
1

C
o
l
u
m
n
 
2

C
o
l
u
m
n
 
3

Scaled energies

Eε(u) =
X
i,j

εd−1(ui − uj)2

Convergence = strong L1-convergence/weak BV -convergence
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Limit surface energy:

F (u) =

Z
∂{u=1}

‖ν‖1dHd−1

‖ν‖1 = |ν1|+ · · ·+ |νd|

ν = normal to the interface ∂{u = 1}
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General Ferromagnetic Homogenization Result
B.-Piatnitski JFA 2012

Ferromagnetic interactions: cεij ≥ 0

Periodicity: cεij = C i
ε

j
ε

and C(k+K)(l+K) = Ckl for K ∈ TZd

Decay:
P
k′∈Zd Ckk′ < +∞ (e.g. Ckk′ = 0 for |k − k′| > M or

Ckk′ ∼ |k − k′|−γ with γ > d)

Then Eε Γ-converge to an interfacial energy

F (u) =

Z
Ω∩∂{u=1}

ϕhom(ν)dHd−1 u : Ω→ {−1, 1}

where ϕhom is given by a discrete least-area homogenization formula.
Periodicity can be substituted by a random dependence (⇒ a.s. result).

Note. If we relax the periodicity and decay assumptions we may obtain
non-local energies; e.g.,

F (u) =

Z
Ω∩∂{u=1}

ϕhom(ν)dHd−1 +

Z Z
Ω×Ω

k(x, y)|u(x)− u(y)| dx dy
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More complex patterns: antiferromagnetic interactions

Simplest case: nearest-neighbour energies E(u) =
P
NN uiuj , or, up to

additive/multiplicative constants

E(u) =
X
NN

(ui + uj)
2

Ground states: alternating states. C
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Note: in Zd we can reduce to ferromagnetic interactions introducing the
variable vi = (−1)iui (only for NN systems).
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Dependence on the lattice: the reduction to ferromagnetic interactions
is not always possible, and the description is lattice-dependent.

Anti-phase boundary in a square lattice

No anti-phase boundaries in a triangular lattice

A. Braides Variational methods for lattice systems 14/29



Order parameters from ground states
Alicandro-B.-Cicalese NHM 2006

In general magnetization is not a meaningful order parameter.

Anti-ferromagnetic spin systems in 2D

E(u) = c1
X
NN

uiuj + c2
X
NNN

ukul ui ∈ {±1}

For suitable positive c1 and c2 the ground states are 2-periodic

(representation in the unit cell)

The correct order parameter is the orientation v ∈ {±e1,±e2} of the
ground state.
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Γ-limit of scaled Eε:

F (v) =

Z
S(v)

ψ(v+ − v−, ν) dH1

S(v) = discontinuity lines; ν = normal to S(v)
ψ given by an optimal-profile problem

Macroscopic picture of a limit state with finite energy
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Phase-shift energies

We may consider a 2D spin model accounting for NN (nearest neighbors),
NNN (next-to-nearest neighbors) and NNNN (next-to-next-to...)
interactions

u : εZ2 → {±1}

Eε(u) =
X
NN

εuiuj + c1
X
NNN

εuiuj + c2
X
NNNN

εuiuj

It is possible to regroup the interactions to study the ground states
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For suitable c1 and c2, for ε small enough we obtain 4-periodic minimizers
as:

(counting translations, they are 16)
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The Γ-limit can be expressed in terms of a phase variable.
The limit functional is the energy of the shift transitions in
spatially-modulated phases.
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Stripe patterns

Formation of stripe patterns during Langmuir-Blodgett condensation

fast process
slow process
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General Phase-Shift energies

X ⊂ R finite space of configurations
For u : εZd → X let Eε(u) =

P
i ε
n−1Ψ({ui+j}j∈Zd) be such that

H1 (presence of periodic minimizers)
∃N,K ∈ N and {v1, . . . , vK} QN -periodic functions such that
u 6= vj in QN ⇒ Eε(u,QN ) ≥ C > 0
u = vj in QN ⇒ Eε(u,QN ) = 0

H2 (incompatibility of minimizers)

u =

(
vl in QN

vm in Q′N
=⇒ Eε(u,QN ∪Q′N ) > 0, QN ∩Q′N 6= ∅

H3 (locality of the energy)
u = u′ in QRN ⇒ |Eε(u′, QN )− Eε(u,QN )| ≤ CR andP
R CRR

d−1 <∞

A. Braides Variational methods for lattice systems 21/29



General Phase-Shift energies

X ⊂ R finite space of configurations
For u : εZd → X let Eε(u) =

P
i ε
n−1Ψ({ui+j}j∈Zd) be such that

H1 (presence of periodic minimizers)
∃N,K ∈ N and {v1, . . . , vK} QN -periodic functions such that
u 6= vj in QN ⇒ Eε(u,QN ) ≥ C > 0
u = vj in QN ⇒ Eε(u,QN ) = 0

H2 (incompatibility of minimizers)

u =

(
vl in QN

vm in Q′N
=⇒ Eε(u,QN ∪Q′N ) > 0, QN ∩Q′N 6= ∅

H3 (locality of the energy)
u = u′ in QRN ⇒ |Eε(u′, QN )− Eε(u,QN )| ≤ CR andP
R CRR

d−1 <∞

A. Braides Variational methods for lattice systems 21/29



General Phase-Shift energies

X ⊂ R finite space of configurations
For u : εZd → X let Eε(u) =

P
i ε
n−1Ψ({ui+j}j∈Zd) be such that

H1 (presence of periodic minimizers)
∃N,K ∈ N and {v1, . . . , vK} QN -periodic functions such that
u 6= vj in QN ⇒ Eε(u,QN ) ≥ C > 0
u = vj in QN ⇒ Eε(u,QN ) = 0

H2 (incompatibility of minimizers)

u =

(
vl in QN

vm in Q′N
=⇒ Eε(u,QN ∪Q′N ) > 0, QN ∩Q′N 6= ∅

H3 (locality of the energy)
u = u′ in QRN ⇒ |Eε(u′, QN )− Eε(u,QN )| ≤ CR andP
R CRR

d−1 <∞

A. Braides Variational methods for lattice systems 21/29



A compactness result
B-Cicalese 2014

The following results states that, under reasonable assumptions, a spin
system can be interpreted as a phase-shif energy

Compactness:
Let uε be such that Eε(uε) ≤ C < +∞. Then, under H1, H2 and H3,
∃A1,ε, . . . , AK,ε ⊆ ZN (identified with the union of the ε-cubes centered on
their points) such that uε = vj on Aj,ε, Aj,ε → Aj in L1

loc(Rd) and
A1, . . . , AN is a partition of Rd.

Γ-convergence:

Γ- lim
ε
Eε(u) =

X
i,j

Z
∂Aj∩∂Aj

ψ(i, j, ν) dHn−1
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Ferromagnetic vs antiferromagnetic interactions
B-Piatnitski, J.Stat.Phys. 2012

In general, when ferromagnetic and anti-ferromagnetic interaction are
present (spin glass) the behaviour at the surface scaling and the
macroscopic order parameter may not be clear. For small volume fractions
of the antiferromagnetic phase we still have a continuum interfacial energy
and an order parameter u : Rd → {−1, 1} (representing the majority phase).

grey area = anti-ferromagnetic interactions
As the volume fraction of the antiferromagnetic phase grows the order
parameter has to change. In this case the hypotheses of the phase-shift
characterization are not valid.
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Ternary Systems: the Blume-Emery-Griffith model
Alicandro-Cicalese-Sigalotti IFB 2012

We now examine the effect of more than two phases.

εi

Qi

ε6
?

Three phases: −1, 0, 1

E(u) =
X
NN

(k(uiuj)
2 − uiuj)

u : Z2 ∩ Ω 7→ {−1, 0, 1}, k ∈ R

New effects for
1

3
< k < 1: in this case

• minimal phases are u ≡ 1 and u ≡ −1
• the presence of the phase 0 is energetically-favourable on the interfaces
The description of the limit depends on the positive parameter k.
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Surfactant energies

The continuum limit of the BEG model involves: a parameter
u : R2 → {−1, 1} and a measure µ representing the limit concentration of
the 0-phase. In these variables the continuum description is as follows.

F = F (u, µ) =

Z
∂{u=1}

φ
“ dµ

dH1b∂{u=1}
, ν
”
dH1 + 2(1− k)|µ|(R2 \ ∂{u = 1}),

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

HYνHYνHYνHYνHYνHYνHYν
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Vector spin systems: the XY model
Alicandro-Cicalese ARMA 2009

Nearest-neighbour model

E(u) =
X
ij

‖ui − uj‖2 ∼ −
X
ij

〈ui, uj〉 u : Z2 → R2, |ui| = 1

New energy scales: vortex scaling

Eε(u) =
1

| log ε|
X
ij

‖ui − uj‖2

As ε→ 0 the energy concentrates on vortex singularities

degree 1 degree −1
The limit energy is defined on “vortices”

u =
X
i

ciδxi ci ∈ Z

for which
F (u) = π

X
i

|ci| .
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gradient scaling

Eε(u) =
X
ij

‖ui − uj‖2 =
X
ij

ε2
‚‚‚ui − uj

ε

‚‚‚2

Interpreting
ui−uj

ε
∼ ∇u gives F (u) =

Z
|∇u|2 dx for |u| = 1

Note: (1) The XY model presents a complete analogy with the
Ginzburg-Landau theory with energy

Fε(u) =

Z “
|∇u|2 +

1

ε
(|u|2 − 1)2

”
dx

(theory of superconductivity)
(2) discrete vortices can be interpreted as screw dislocations;
(3) for models with head-to-tail symmetry the same argument gives a
nematic liquid crystal theory
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Conclusions

Even for simple lattice spin system a complex continuum theory has been
obtained with a multi-scale (bulk, surface, gradient, vortex,...) nature
involving vector parameters, surface energies, measures, etc.

The analysis has moved beyond what we have seen, including
• the analysis of gradient-flow type motions for spin systems obtaining
geometric flows with pinning and homogenized velocity formulas;
• the treatment of displacemet fields ui ∈ Rm, with issues such as
crystallization: description of the ground states as a regular lattice;
derivation of elasticity theories both nonlinear and linear;
derivation of fracture theories,
etc.

Many questions remain unanswered. In particular
• remove the assumption of a reference lattice
• treat the case of non-zero temperature
etc.
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Thanks for the attention!
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