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General Issue:

the description of the limit behavior of energy-driven
systems involving a small parameter

Model problems
Gradient theory of phase transitions (scalar Ginzburg-Landau)

F.(u) = / (62]Vu\2 +(1— u2)2>d:v, u:Q—R
Q
(Lennard-Jones) atomistic systems

Fu(u) = ZJ(M) w1, ... uy, €R®
i#£]

Homogenization (of surface energies)

F.(A) = /aAa(Z)cml ACR?



Global minimization:

can be stated in terms of De Giorgi’s I'-convergence. Up to
technicalities,

F. L Fy — min{F. + G} — min{Fy + G}

(+ convergence of minimum points) for all G’ continuous
perturbations

Model problems

. . . 1
Scalar Ginzburg Landau. after scaling the energies by z we
have a sharp-interface limit

Fo(u) = gnnfl(a{u —1}NQ)  uwe BV(Q: {+1})

(Modica-Mortola 1977)



1D picture: # of interfaces for piecewise-constant limit

;

2D (and higher) picture: minimal-interface limit problems
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1D atomistic systems (nearest-neighbour interactions)

) = Yo (H)

L-J potential x

We regard u; as values of a function defined in ¢Z and identify it
with its piecewise-affine interpolation w : [0,1] — R
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After scaling the variable v = \/e(u — id) we have

1
Emo=A|M%m+#w@»

with the constraint v+ > v~ (defined on piecewise-Sobolev
functions)

(Griffith Fracture Energy/ Mumford-Shah Functional with
unilateral constraint on the jump opening)

(B-Lew-Ortiz ARMA 2006)



Local minimization

In general T'-convergence does not imply any relation between
local minimizers of F. and Fy (as for functions in R)

(loss of local minimizers)

(appearance of local minimizers)



Examples

e In 1D all functions v € BV (Q; {£1}) are local minimizers for
the sharp-interface model, but the scalar Ginzburg-Landau
energy has no non-trivial local minimizers.

¢ In 1D the Griffith fracture energy with boundary conditions
v(0) = 0, v(1) = L has local minimizers:
1) the uniform state u(x) = Lz (with energy L?)

2) all (increasing) piecewise-constant functions (with energy & =
number of jumps)

Note that the global minimizer is the uniform state if L? < 1.



Local minima for 1D Lennard-Jones systems

F.(u) = Z J(%)

1

— |

«Wor

In scaled variables v = y/e(u — id)

1) the uniform state : (discretization of) v = Lz (up to the
inflection point L = wq/+/€)

2) a uniform state except for one interaction exceeding the
inflection point (corresponding to one limit jump)



Comparison of patterns of local minima for Lennard-Jones
systems, in terms of the total displacement L,

of Fy and of F.

/
/
/
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(uniform states + (uniform states up fo (scaled)
states with n jumps) inflection point +
minimizer with 1 jump)



Kohn-Sternberg variational principle

If ¢ is an isolated local minimizer for £y = I'-lim. F. then there
exist . — x¢ local minimizers of F..

\ N
—y SAV

This is an immediate consequence of the ’local’ character of
I'-convergence




An application (Kohn-Sternberg)

Existence of non-trivial solution of the Allen-Cahn equation
(Euler-Lagrange equation for the scalar Ginzburg-Landau
energy) in domains with a ‘neck’. Proved by showing the
existence of a local-minimizing interface



Generalizations

The same principle can be applied if we have an isolated local
minimizer of the I'-limit of the scaled functionals

GE(U) = i (FE(psvs + xs) - ms)

with z. — zg, p- = 0, \c = 0, m: € R

This can be used to prove the existence of multiple local
minimizers



Example of application
Density of local minimizers for the inhomogeneous
perimeter functionals

= | o

a 1-periodic with a(y1,y2) = a if y1y2 = 0,
a(y1,y2) = B > 2a > 0 otherwise in (0, 1)?

a=p

R

d=o




Fo(A) :a/ v |dH!
0A

(lvllh = |v1| + |v2|, v normal to 0A) (crystalline perimeter)

Fy has no non-trivial local minimizer, but for all A there exists
A. — A and A, local minimizer of F;



Local minimization as a choice criterion

I'-equivalence: G. ~ F. if “they have the same T'-limits”
(cf. the notion of I"-expansion, B-Truskinovsky CMT 2010)

Choice criterion: among equivalent theories of a desired form
choose the one(s) maintaining the pattern of local minima

Example: cohesive fracture from Lennard-Jones potentials

o =5 a(42)

Pattern of local minima for F,
in terms of boundary condition




The same pattern can be achieved with fracture energies
1
Ge:(v) = / W' |2 dt + Zg,g(vJr —v7) vt >0
0 S(v)

(this is the “desired form”)
Possible g.: g:-(z) = g(z/+/¢) with g strictly concave and

g0)=wy  g(+oo0)=1

\ 4

(Barenblatt cohesive-fracture energy density)

This argument provides a “validation” of a widely used Fracture
Mechanics model
(B-Dal Maso-Garroni ARMA 1999, revisited)



Evolution by local minimization: Minimizing
Movements

For a single energy F' (Hilbert-space setting)

(1) (time-discrete scheme) fix 7 > 0 time-discretization
parameter, and initial datum w, define uj_ , recursively as a
minimizer of

. 1
mm{F(u) + ZHU — uﬂ|2}

(dissipation D(u) = %HUIP)

(2) (passage to the limit) define u” (t) = Wy and pass to the
limit as 7 — 0 (up to subsequences).

Each limit « is called a minimizing movement for F' from w
(Almgren-Taylor-Wang, De Giorgi, Ambrosio, etc.)



«O(1)>




Remarks
1. (approximation of gradient flow) If F' is differentiable from
the E-L equation
Ou Ujyy — U, T
9 % = —VF(up,) = =VF(u(t))
2. F' need not be differentiable, just lower semicontinuous and
coercive

3. (trivial motions from local minima) if ug is a local minimum
for I then u(t) = vy for all ¢

4. We can add a forcing term by considering F' = F'(¢,u) and
compare with quasistatic motion (obtained by global
minimization at all ¢, with no dissipation)).

Example: 1D Griffith fracture with ug = 0 and as forcing term
the boundary condition u(0) = 0, u(1) =t

quasistatic: fracture at a critical . (t. = 1 for our parameters)
minimizing movement. no fracture, evolution following the heat
equation



Minimizing movements along a sequence F.

For a family of energies F. (Hilbert-space setting)
(1) (time-discrete scheme) fix 7 > 0, £ > 0, and initial datum

ug (or uf) define u;’;, recursively as a minimizer of

. 1
mm{FE(u) + EHU — u;’sﬂz}

(2) (passage to the limit) define u™(t) = u@jT | and pass to
the limitas 7 — 0 and € — 0 (up to subsequences).

Each such limit is called a minimizing movement along F.
from g

Note: the limit depends on how 7 — 0 and ¢ — 0
(simultaneously)



(In)compatibility with I'-convergence

Theorem (extreme asymptotic behaviours)

(a) if 7 << ¢ fast enough then the MM along F. from ug is a limit
of the MM for F. from wug (at ¢ fixed) as ¢ — 0 (“the MM is the
limit of the Gradient Flows”)

(b) if e << T fast enough and F_ ER Fy then the MM along F.
from ug is a MM for Fy from ug (“the MM is the Gradient Flow of
the limit”)

Proof: use of the property of convergence of minimum
problems.

Theorem (stability for convex energies)

If F. are convex and F. RN Fy then all MM are equal (to the
unique MM for Fy)

Proof: use of the theory of Gradient Flows by Ambrosio-Gigli-
Savaré in the case 7 << ¢



General picture

e if 7 << ¢ fast enough then we may have “pinning” at local
minimizers of F;

e if = << 7 fast enough then we have the MM of the limit

e at a critical regime we have an “interpolation” of the extreme
cases.



A simple example

. 1
In R consider F.(x) = —¢ sin<g> + 5952

£
o critical regime: e = 7
o for e << 7 the limit satisfies 2’ = —z (corresp., Fy(z) = 52?)
e for 7 << ¢ we compute the limit of the gradient flows

r_ Te
xo =cos| — ) — x.
13

which converge to 2/ = —signz\/(22 — 1)+
vvu 0




e for 7 &~ ¢ the pinning threshold moves from 0 to 1
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Example of a Geometric Evolution

(B-Gelli-Novaga ARMA 2010) F. = inhomogeneous perimeter
converging to Fy = a times the crystalline perimeter.

critical regime: 7 = ¢

e if 7 << ¢ all initial data are pinned (by density of loc. min.)
e if ¢ << 7 the MM of the limit Fy is motion by crystalline
curvature (Almgren Taylor) with law for the velocity v = 2ak,
where « is the suitably defined crystalline curvature.

o (effective homogenized motion) if Z — ~ then the law is

1
v=—|2ayK]
v

Note: the case v = 1 gives every MM



Note: the “interpolation” between the cases 7 << e and e << 7
depends on the details of F.: in this example we may have

F.(A) = /aAa(Z)cml

with the same I'-limit and with the same total pinning for 7 << ¢
but with a different law for the velocity: we may have a
homogenized effective motion

v = ifhom(’wﬂ)

with from highlighting a “microscopic” homogenization of the
velocity. In particular we have an effective pinning threshold
depending on the “geometry” of a

(B-Scilla 2012, Scilla 2013)



Time scaling

We may introduce (time-)scale A and consider the iterations
uys 1 by minimization of

ol 1
mln{XFg(u) + EHu - T”E 2}.

e this corresponds to considering time-scaled trajectories

uye(t) = u™" (At)
for the MM along F-.
If A — 0 then we look for long-time behavior of ™
e this procedure is meaningful also if F. = F.

Example. For the 1D scalar Ginzburg-Landau equation we
obtain motion with ). exponential (Kohn-Bronsard). Note that all
u are locally minimizing for Fjy (usual time scale gives pinning)



Example (long-time behaviour for Lennard-Jones systems).

e in this case we have stability, even though F. are not convex,
and we always converge to the MM of the Griffith/Mumford-
Shah functional (B-Defranceschi-Vitali)

e piecewise-constant initial data ug are local minima for Fp;
hence, for such uy we have pinning for the limit;

o if \. = 28 the MM along F./\. from u, piecewise-constant is
non trivial.

e (long-time “validation” of the Cohesive Fracture model) if we
take the Barenblatt cohesive-fracture energies with

1 1
o)~ 1= 5 +o( )

then we have the same long-time behavior.



Other issues:

e use of MM for suitable F. to define a motion for ill-posed
problems (e.g., backward motions, gradient flow for non-convex
energies, etc.)

e asymptotics of stable points (few results by Sandier-Serfaty,
Jerrard-Sternberg, B-Larsen)

e connection with quasistatic motion (formally obtained by
time-scaling A = 0)

e ctc.

Lecture notes: B. Local minimization, variational evolution
and I'-convergence (downloadable from my web page)



Thank you for your attention!



