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General Issue:
the description of the limit behavior of energy-driven
systems involving a small parameter

Model problems
Gradient theory of phase transitions (scalar Ginzburg-Landau)

Fε(u) =
∫

Ω

(
ε2|∇u|2 + (1− u2)2

)
dx, u : Ω→ R

(Lennard-Jones) atomistic systems

Fε(u) =
∑
i 6=j

J
( |ui − uj |

ε

)
u1, . . . , uNε ∈ Rn

Homogenization (of surface energies)

Fε(A) =
∫
∂A
a
(x
ε

)
dH1 A ⊂ R2



Global minimization:

can be stated in terms of De Giorgi’s Γ-convergence. Up to
technicalities,

Fε
Γ→ F0 ⇐⇒ min{Fε +G} → min{F0 +G}

(+ convergence of minimum points) for all G continuous
perturbations

Model problems

Scalar Ginzburg Landau. after scaling the energies by
1
ε

we
have a sharp-interface limit

F0(u) =
4
3
Hn−1(∂{u = 1} ∩ Ω) u ∈ BV (Ω; {±1})

(Modica-Mortola 1977)



1D picture: # of interfaces for piecewise-constant limit
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2D (and higher) picture: minimal-interface limit problems
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1D atomistic systems (nearest-neighbour interactions)

Fε(u) =
∑
i

J
(ui − ui−1

ε

)
L-J potential

1

1

We regard ui as values of a function defined in εZ and identify it
with its piecewise-affine interpolation u : [0, 1]→ R



ε

−→

After scaling the variable v =
√
ε(u− id) we have

F0(v) =
∫ 1

0
|v′|2 dx+ #(S(v))

with the constraint v+ > v− (defined on piecewise-Sobolev
functions)
(Griffith Fracture Energy/ Mumford-Shah Functional with
unilateral constraint on the jump opening)
(B-Lew-Ortiz ARMA 2006)



Local minimization
In general Γ-convergence does not imply any relation between
local minimizers of Fε and F0 (as for functions in R)

−→

(loss of local minimizers)

−→

(appearance of local minimizers)



Examples

• In 1D all functions u ∈ BV (Ω; {±1}) are local minimizers for
the sharp-interface model, but the scalar Ginzburg-Landau
energy has no non-trivial local minimizers.

• In 1D the Griffith fracture energy with boundary conditions
v(0) = 0, v(1) = L has local minimizers:
1) the uniform state u(x) = Lx (with energy L2)
2) all (increasing) piecewise-constant functions (with energy k =
number of jumps)

Note that the global minimizer is the uniform state if L2 ≤ 1.



Local minima for 1D Lennard-Jones systems

Fε(u) =
∑
i

J
(ui − ui−1

ε

)

Wo

1

1

In scaled variables v =
√
ε(u− id)

1) the uniform state : (discretization of) v = Lx (up to the
inflection point L = w0/

√
ε)

2) a uniform state except for one interaction exceeding the
inflection point (corresponding to one limit jump)



Comparison of patterns of local minima for Lennard-Jones
systems, in terms of the total displacement L,

of F0 and of Fε

(uniform states + (uniform states up to (scaled)
states with n jumps) inflection point +

minimizer with 1 jump)



Kohn-Sternberg variational principle

If x0 is an isolated local minimizer for F0 = Γ-limε Fε then there
exist xε → x0 local minimizers of Fε.

Χε Χο
−→

This is an immediate consequence of the ’local’ character of
Γ-convergence



An application (Kohn-Sternberg)

Existence of non-trivial solution of the Allen-Cahn equation
(Euler-Lagrange equation for the scalar Ginzburg-Landau
energy) in domains with a ‘neck’. Proved by showing the
existence of a local-minimizing interface



Generalizations

The same principle can be applied if we have an isolated local
minimizer of the Γ-limit of the scaled functionals

Gε(v) =
1
λε

(
Fε(ρεvε + xε)−mε

)
with xε → x0, ρε → 0, λε → 0, mε ∈ R

x_0

→

x_e

→

This can be used to prove the existence of multiple local
minimizers



Example of application
Density of local minimizers for the inhomogeneous
perimeter functionals

Fε(A) =
∫
∂A
a
(x
ε

)
dH1

a 1-periodic with a(y1, y2) = α if y1y2 = 0,
a(y1, y2) = β > 2α > 0 otherwise in (0, 1)2



F0(A) = α

∫
∂A
‖ν‖1dH1

(‖ν‖1 = |ν1|+ |ν2|, ν normal to ∂A) (crystalline perimeter)

F0 has no non-trivial local minimizer, but for all A there exists
Aε → A and Aε local minimizer of Fε



Local minimization as a choice criterion

Γ-equivalence: Gε ≈ Fε if “they have the same Γ-limits”
(cf. the notion of Γ-expansion, B-Truskinovsky CMT 2010)
Choice criterion: among equivalent theories of a desired form
choose the one(s) maintaining the pattern of local minima

Example: cohesive fracture from Lennard-Jones potentials

Fε(u) =
∑
i

J
(ui − ui−1

ε

)

Pattern of local minima for Fε
in terms of boundary condition



The same pattern can be achieved with fracture energies

Gε(v) =
∫ 1

0
|v′|2 dt+

∑
S(v)

gε(v+ − v−) v+ > v−

(this is the “desired form”)
Possible gε: gε(z) = g(z/

√
ε) with g strictly concave and

g′(0) = w0 g(+∞) = 1

-3

-2

-1

0

1

2

3

(Barenblatt cohesive-fracture energy density)

This argument provides a “validation” of a widely used Fracture
Mechanics model
(B-Dal Maso-Garroni ARMA 1999, revisited)



Evolution by local minimization: Minimizing
Movements

For a single energy F (Hilbert-space setting)
(1) (time-discrete scheme) fix τ > 0 time-discretization
parameter, and initial datum u0 define uτk+1 recursively as a
minimizer of

min
{
F (u) +

1
2τ
‖u− uτk‖2

}
(dissipation D(u) = 1

2τ ‖u‖2)

(2) (passage to the limit) define uτ (t) = uτbt/τc and pass to the
limit as τ → 0 (up to subsequences).

Each limit u is called a minimizing movement for F from u0

(Almgren-Taylor-Wang, De Giorgi, Ambrosio, etc.)
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F

2X X X3 4 etc.



Remarks
1. (approximation of gradient flow) If F is differentiable from
the E-L equation

∂u

∂t
≈ uτk+1 − uτk

τ
= −∇F (uτk+1) ≈ −∇F (u(t))

2. F need not be differentiable, just lower semicontinuous and
coercive
3. (trivial motions from local minima) if u0 is a local minimum
for F then u(t) = u0 for all t
4. We can add a forcing term by considering F = F (t, u) and
compare with quasistatic motion (obtained by global
minimization at all t, with no dissipation)).
Example: 1D Griffith fracture with u0 = 0 and as forcing term
the boundary condition u(0) = 0, u(1) = t
quasistatic: fracture at a critical tc (tc = 1 for our parameters)
minimizing movement: no fracture, evolution following the heat
equation



Minimizing movements along a sequence Fε

For a family of energies Fε (Hilbert-space setting)
(1) (time-discrete scheme) fix τ > 0, ε > 0, and initial datum
u0 (or uε0) define uτ,εk+1 recursively as a minimizer of

min
{
Fε(u) +

1
2τ
‖u− uτ,εk ‖2

}
(2) (passage to the limit) define uτ,ε(t) = uτ,εbt/τc and pass to
the limit as τ → 0 and ε→ 0 (up to subsequences).

Each such limit is called a minimizing movement along Fε
from u0

Note: the limit depends on how τ → 0 and ε→ 0
(simultaneously)



(In)compatibility with Γ-convergence

Theorem (extreme asymptotic behaviours)
(a) if τ << ε fast enough then the MM along Fε from u0 is a limit
of the MM for Fε from u0 (at ε fixed) as ε→ 0 (“the MM is the
limit of the Gradient Flows”)
(b) if ε << τ fast enough and Fε

Γ→ F0 then the MM along Fε
from u0 is a MM for F0 from u0 (“the MM is the Gradient Flow of
the limit”)
Proof : use of the property of convergence of minimum
problems.

Theorem (stability for convex energies)
If Fε are convex and Fε

Γ→ F0 then all MM are equal (to the
unique MM for F0)
Proof : use of the theory of Gradient Flows by Ambrosio-Gigli-
Savaré in the case τ << ε



General picture

• if τ << ε fast enough then we may have “pinning” at local
minimizers of Fε

• if ε << τ fast enough then we have the MM of the limit

• at a critical regime we have an “interpolation” of the extreme
cases.



A simple example

In R consider Fε(x) = −ε sin
(x
ε

)
+

1
2
x2

• critical regime: ε ≈ τ
• for ε << τ the limit satisfies x′ = −x (corresp., F0(x) = 1

2x
2)

• for τ << ε we compute the limit of the gradient flows

x′ε = cos
(xε
ε

)
− xε

which converge to x′ = −signx
√

(x2 − 1)+



• for τ ≈ ε the pinning threshold moves from 0 to 1

• Risultati: τ ∼ ε

Infine abbiamo preso in esame il caso ε ∼ τ scegliendo l’andamento ε = Cτ .
Nel grafico seguente sono riassunti i dati relativi alla soglia di pinning per C che
varia da 0 a 1.
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Come nel caso affine, per C abbastanza grande la soglia si stabilizza sul valore
1, tuttavia essa diventa costante già a partire da un valore C0 ∼ 0.6. Inoltre nel
caso sinusoidale non sembra esserci un andamento lineare, ma presumibilmente
parabolico.

14

ε/τ



Example of a Geometric Evolution

(B-Gelli-Novaga ARMA 2010) Fε = inhomogeneous perimeter
converging to F0 = α times the crystalline perimeter.

critical regime: τ ≈ ε
• if τ << ε all initial data are pinned (by density of loc. min.)
• if ε << τ the MM of the limit F0 is motion by crystalline
curvature (Almgren Taylor) with law for the velocity v = 2αk,
where κ is the suitably defined crystalline curvature.
• (effective homogenized motion) if τε → γ then the law is

v =
1
γ
b2αγκc

Note: the case γ = 1 gives every MM



Note: the “interpolation” between the cases τ << ε and ε << τ
depends on the details of Fε: in this example we may have

F̃ε(A) =
∫
∂A
ã
(x
ε

)
dH1

with the same Γ-limit and with the same total pinning for τ << ε
but with a different law for the velocity: we may have a
homogenized effective motion

v =
1
γ
fhom(γκ)

with fhom highlighting a “microscopic” homogenization of the
velocity. In particular we have an effective pinning threshold
depending on the “geometry” of ã
(B-Scilla 2012, Scilla 2013)



Time scaling

We may introduce (time-)scale λ and consider the iterations
uτ,ελ,k+1 by minimization of

min
{ 1
λ
Fε(u) +

1
2τ
‖u− uτ,ελ,k‖2

}
.

• this corresponds to considering time-scaled trajectories

uτ,ελ (t) = uτ,ε(λt)

for the MM along Fε.
If λ→ 0 then we look for long-time behavior of uτ,ε

• this procedure is meaningful also if Fε = F .

Example. For the 1D scalar Ginzburg-Landau equation we
obtain motion with λε exponential (Kohn-Bronsard). Note that all
u are locally minimizing for F0 (usual time scale gives pinning)



Example (long-time behaviour for Lennard-Jones systems).

• in this case we have stability, even though Fε are not convex,
and we always converge to the MM of the Griffith/Mumford-
Shah functional (B-Defranceschi-Vitali)

• piecewise-constant initial data u0 are local minima for F0;
hence, for such u0 we have pinning for the limit;

• if λε = ε6 the MM along Fε/λε from u0 piecewise-constant is
non trivial.

• (long-time “validation” of the Cohesive Fracture model) if we
take the Barenblatt cohesive-fracture energies with

g(w) ≈ 1− 1
w6

+ o
( 1
w6

)
then we have the same long-time behavior.



Other issues:

• use of MM for suitable Fε to define a motion for ill-posed
problems (e.g., backward motions, gradient flow for non-convex
energies, etc.)

• asymptotics of stable points (few results by Sandier-Serfaty,
Jerrard-Sternberg, B-Larsen)

• connection with quasistatic motion (formally obtained by
time-scaling λ = 0)

• etc.

Lecture notes: B. Local minimization, variational evolution
and Γ-convergence (downloadable from my web page)



Thank you for your attention!


