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Preface

These are the lecture notes of the six-lecture course that I gave in Würzburg at the Winter
School “Calculus of Variations in Physics and Materials Science” beautifully organized by
Anja Schlömerkemper and Giuliano Lazzaroni from January 8 to 13, 2012, to whom go
my thanks, as well as to John Ball and Stefan Müller who gave the other courses with
stimulating interactions between the courses, and to the very receptive audience. The
content of Lecture 1 is subdivided into Chapter 1 and Chapter 2, while the other lectures
are contained in the corresponding chapters.

The subject of the course are discrete systems, more precisely lattice systems, and their
continuous description by variational methods. This is an extremely broad subject. I will
focus on a series of examples with the aim of
• show how we can adapt ‘macro’ techniques such as homogenization, relaxation, multi-

scale analysis, etc. to compute continuum limits;
• exhibit a variety of interesting limits starting from a limited set of very simple lattice

interactions;
• highlight new ‘micro’ effects that add up to the usual ‘macro’ energies.

Disclaimer
Part of the written material comes from a previous PhD course at the University of Rome
in collaboration with Roberto Alicandro and Marco Cicalese, and the final chapter from a
Summer School at the University of Utah. Hence, there might be some slight incoherences
from chapter to chapter. One of those may come from summation conventions, so that e.g. a
sum on nearest neighbours may be understood sometimes as counting once or sometimes
twice a connection (when parameterized as pairs (i, j) by its nodes), another one comes
from the convenience at times to use as a parameter a subset of Zd (especially if d = 1)
and at other times a subset of εZd. Moreover, the reader should consider that constants
may have been dropped without advice. All this will be corrected in a (near- or distant-)
future version. I have thought anyhow to present this “preliminary” version for the sake
of immediacy soon after the end of the school.
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Chapter 1

Γ-convergence and discrete
problems

Γ-convergence has been developed to analyze the behavior of variational problems, such
as homogenization and phase changes, where there appear small parameters that make
the treatment of the problem complex or numerically expensive. The idea then is to
substitute to these problems a new ‘effective’ problem, where these parameters do not
appear, or appear in a simplified manner. It is surprising that discrete systems, in which
problems are defined, for example, on lattices characterized by a vanishing lattice size, with
apparent analytical and numerical applications, have come rather late to the attention of
the experts of this branch of the Calculus of Variations. In these notes we will examine
some issues arising from the passage from discrete systems to continuous energies with a
special attention to those features that are characteristic of the microscopic variable.

Our energies will be defined on spaces of functions whose domain is a portion of a
lattice. We can take as a model the cubic lattice Zd, but we can also think of different
lattices (eg a triangular lattice in in R2) and not necessarily of Bravais lattices (for example,
the hexagonal lattice in R2). In this context, our variables are functions

u : lZd ∩ Ω→ Rm, (1.1)

where Ω ⊂ Rd is a reference open set, and l is the characteristic lattice size. For brevity of
notations we put

Ωl = lZd ∩ Ω, ui = u(i) for i ∈ Ωl (1.2)

The nature of the energies defined on these functions may be of different origins, and lead
to a number of problems of variational character.

Many of the problems we are interested in can be reduced to minimum problems

min{El(u) + boundary conditions, constraints, etc. : u : Ωl → Rm},
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Figure 1.1: representation of the discrete environment

and their analysis for l << 1. Our aim will be to carry on this analysis with the language
and methods of Γ-convergence

Example 1.0.1 (i) (binary systems/lattice gas) Let u : Zd → {−1, 1} and consider the
energy (the so-called ferromagnetic energy)

−
∑
|i−j|=1

uiuj ,

where the sum is extended to neighbouring nodes in a set Ω only. The value ui can be
interpreted as the spin of a particle sitting at i, or a parameter indicating whether at the
site i is present or not a gas particle. The energy is minimized when all ui are equal. If we
fix the average spin or the total number of gas particles then the minimizer is not trivial.

In problems of Statistical Mechanics it is the number of particles that tends to +∞.
We equivalently scale the lattice and consider functions parameterized on lZd ∩Ω. In this
case l ≈ N−1/d where N is the number of the particles of the sample, so that l << 1 is
equivalent to N >> 1. We will see that, up to an additive term of order l−d (not depending
on u) the energy of minimizers scales as l1−d. The relevant energies will then be of the
form

El(u) = −
∑
|i−j|=l

ld−1uiuj .

(ii) (conducting or elastic networks) we consider a portion of a cubic network contained
in an open set Ω. The scalar variable u is parameterized on the network nodes lZd∩Ω and
may be thought either to represents the value of an electric potential or the displacement
of the node in the reference configuration. For linear interactions the overall energy of the
system can be written as ∑

|i−j|=l
cij

∣∣∣ui − uj
l

∣∣∣2,
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where cij can be interpreted as a material constant of the piece of the network connecting
the nodes i and j. The correct scaling gives the energies

El(u) =
∑
|i−j|=l

ldcij

∣∣∣ui − uj
l

∣∣∣2 .
(iii) (pairwise interatomic potentials) If {ui}i=0,...,N are points in Rd and φ is a potential

describing the interaction between pair of atoms sitting at those points, the total energy
of this system is given by ∑

i,j

φ(ui, uj),

where now the sum is extended to all pairs. This can be approximated as a problem defined
on a lattice under the hypothesis of crystallization (ie, that ground states sit at a regular
lattice L; up to dilations, if d = 1 this lattice can be often proved to be Z, while if d = 2
it is the triangular lattice T). In this case ui can be interpreted as the displacement from
a reference position. As for spins then we may introduce a reference set Ω and consider
functions parameterized on lL∩Ω. Under decay hypotheses on φ as the distance of atoms
diverges it can be shown that the energy of ground states decays as N , the number of
atoms; ie, as l−d, so that now the correct scaled energies are

El(u) =
∑
i,j

ldφ(ui, uj),

An additional simplification is that only interactions up to a certain range be taken into
account; again the simplest case is that the sum be extended only to nearest neighbours
in the reference lattice.

1.1 Definition and properties

The idea of Γ-convergence is to approximate minimum problems

min{Fε(x) : x ∈ X}, (1.3)

by a problem
min{F (x) : x ∈ X}, (1.4)

independent of the small parameter ε (the lattice size l in the previous section). This is
done via a notion of convergence of the energies given in ‘local terms’ (ie, through the
characterization of the behavior of the energies of convergent sequences of points xε) and is
‘compatible with continuous perturbations’. Here and later we will call a sequence a family
parametrized by either ε > 0, (xε), or by j ∈ N; eg, (xj).
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Definition 1.1.1 (Γ-convergence) Let X be a metric space and let Fε, F : X → [−∞,+∞]
be functionals on X. We say that (Fε) Γ-converges to F , or that F is the Γ-limit of (Fε),
as ε→ 0+ (with respect to the metric X), and we will write

F = Γ- lim
ε→0+

Fε (1.5)

if for all x ∈ X the two following conditions hold
(i) (liminf inequality) for all xε → x we have F (x) ≤ lim inf

ε→0+
Fε(xε)

(ii) (limsup inequality) there exist xε → x such that F (x) ≥ lim sup
ε→0+

Fε(xε).

Taking (i) into account condition (ii) can be rephrased as the existence of a recovery
sequence, ie xε → x such that F (x) = lim

ε→0+
Fε(xε).

The first condition requires that F provide an estimate from below of the limit (of
the minima) of the energies Fε, while the second ensures that this limit is reached. The
definition is designed so that the following theorem applies.

Theorem 1.1.2 (Fundamental theorem of Γ-convergence) If a compact K ⊂ X ex-
ists such that inf Fε = infK Fε, then there exists minF and we have

minF = lim
ε→0+

inf Fε.

Moreover, if xε is a precompact sequence such that Fε(xε) = inf Fε+o(1) with a subsequence
converging to x ∈ X, then F (x) = minF .

Proof. It suffices to prove the second assertion. We can then consider a sequence (xεj ) such
that at the same time we have limj Fεj (xεj ) = lim infε→0+ inf Fε and xεj → x. We then
have F (x) ≤ lim infε→0+ Fε(xε) ≤ limj Fεj (xεj ) = lim infε→0+ inf Fε thanks to (i). From
(ii) instead for all x ∈ Xthere exists a sequence (xε) such that F (x) ≥ lim supε→0+ Fε(xε) ≥
lim supε→0+ inf Fε, which concludes the proof by taking the infimum in x and comparing
with the previous inequality.

Remark 1.1.3 (comments on the definition) (a) (lower semicontinuity) from (i) the
convergence of a constant sequence Fε = F0 is possible only if F0 is lower semicontinuous
(lsc for short), ie if for each xj → x

F0(x) ≤ lim inf
j

F0(xj); (1.6)

(b) (relaxation) if Fε = F0 the Γ-limit exists and is equal to the lower-semicontinuous
envelope of F0, ie the functional F given by

F (x) = sup{G(x) : G is lower semicontinuous and G ≤ F}; (1.7)
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(c) (choice of the topology) In order to apply the Fundamental Theorem it is convenient
to choose weak (metrizable) topologies, so as to have more converging sequences. This
makes it easy to construct recovery sequences, but it makes it more difficult to satisfy the
liminf inequality.

1.2 Computation of Γ-limits

In this section we make some observations that are useful in the actual computation of a
Γ-limit.

Proposition 1.2.1 (compactness of Γ-convergence) If X is a separable metric space
then from every sequence (Fj) with Fj : X → [−∞,+∞] we can extract a Γ-converging
subsequence.

Proposition 1.2.2 (stability under subsequences) A sequence (Fε) Γ-converges to F
if and only if from every subsequence (Fεj ) we can extract a subsequence converging to F .

These results are useful when first we extract converging subsequences by compactness,
and then we characterize the Γ-limit showing it does not depend on the subsequence.

Proposition 1.2.3 (stability under continuous perturbations) If (Fε) Γ-converges
to F and G is continuous, then (Fε +G) Γ-converges to F +G.

The use of this proposition is twofold. On one hand it can be applied to the study of
sequences (Hε) whose elements can be written as Hε = Fε + G with G continuous and
(Fε) with a known Γ-limit. On the other hand, by writing Fε = (Fε − G) + G, one can
sometime choose G such that the computation of the Γ-limit of (Fε−G) is more handy or
meaningful, and then add G to the result.

1.2.1 Upper and lower bounds

The computation of a Γ-limit can be reduced to two separate estimates in the same way as
the computation of an ordinary limit can be seen as the equality of an upper and a lower
limit.

Definition 1.2.4 (Γ-lim inf / Γ-lim sup) If Fε : X → [−∞,+∞] we define the Γ-lower
limit and the Γ-upper limit of (Fε) as

Γ- lim inf
ε→0+

Fε(x) := inf
{

lim inf
ε→0+

Fε(xε) : x→ x
}

(1.8)

Γ- lim sup
ε→0+

Fε(x) := inf
{

lim sup
ε→0+

Fε(xε) : x→ x
}
, (1.9)

respectively.
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Note the asymmetry of the definition. Note moreover that the quantities (1.8) and
(1.9) always exist.

The two inequalities characterizing the Γ-limit can be rewritten as a lower and upper
estimate for the Γ-lim inf and the Γ-lim sup

F (x) ≤ Γ- lim inf
ε→0+

Fε(x), Γ- lim sup
ε→0+

Fε(x) ≤ F (x), (1.10)

which can be treated separately. To that end, two useful observations are contained in the
following proposition.

Proposition 1.2.5 (lower semicontinuity and Γ-limits)
(i) The functionals F ′ and F ′′ defined by

F ′(x) := Γ- lim inf
ε→0+

Fε(x), F ′′(x) := Γ- lim sup
ε→0+

Fε(x) (1.11)

are lower semicontinuous on X;
(ii) If F ε denotes the lower-semicontinuous envelope of Fε, ie

F ε(x) = sup{G(x) : G ≤ Fε, G lower semicontinuous}, (1.12)

then we also have

F ′(x) = Γ- lim inf
ε→0+

F ε(x), F ′′(x) = Γ- lim sup
ε→0+

F ε(x). (1.13)

The first observation allows us to limit our choice of candidate Γ-limits to lower-
semicontinuous functionals. The second one allows to sometime simplify the form of Fε.

Example 1.2.6 If X = Lp(Ω) endowed with the weak topology on bounded sets (which
is metrizable) then in the class of integral functionals

F (u) =
∫

Ω
f(u) dx

we have that F is lower semicontinuous if and only if f is convex and lower semicontinuous
(this condition is implied by convexity if f takes only finite values). Furthermore the
lower-semicontinuous envelope of F is exactly

F (u) =
∫

Ω
f∗∗(u) dx,

where f∗∗ is the convex and lower-semicontinuous envelope of f , and a recovery sequence
can be constructed composed of piecewise-affine functions.
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Remark 1.2.7 (lower bound - supremum of measures) The way one often proves a
lower bound is by optimizing a family of inequalities; ie by finding a family of lsc functionals
Gλ (for discrete-to-continuous processes those will be functionals on the continuum; eg
those in the previous remark, so that they will satisfy simplifying convexity conditions)
such that

F ′(x) = Γ- lim inf
ε→0+

Fε(x) ≥ Gλ(x). (1.14)

This condition is verified in particular if the inequality Fε ≥ Gλ holds on the domain of
Fε. From (1.14) we then deduce that

Γ- lim inf
ε→0+

Fε ≥ sup
λ
Gλ (1.15)

(we recall that the supremum of a family of lsc functionals is lower semicontinuous).
This inequality can be further sharpened whenever we have a ‘localized’ version of

Γ- lim infε→0+ Fε, (for integral functional ‘localizing’ on a set A means simply to integrate
only on A, and the corresponding Γ-limits are computed by only requiring convergence on
A itself) by using the following lemma (with A the Γ-liminf localized on A).

Lemma 1.2.8 (supremum of measures) Let µ be a function defined on the open bounded
subsets of Rd such that µ(A ∪ B) ≥ µ(A) + µ(B) if A ∩ B = ∅, let σ be a Borel measure
and (fλ) a countable family of Borel functions. If µ(A) ≥ ∫A fλdσ for all λ and A bounded
open set, then µ(A) ≥ ∫A supλ fλdσ.

Remark 1.2.9 (upper bound by relaxation) The upper bound depends on a construc-
tion or Ansatz on recovery sequences. By the lsc properties of the Γ-limsup in general it is
not necessary to construct such sequences for all x ∈ X, but we may proceed as follows:
• we choose a subset D ⊂ X and for all x ∈ D we construct xε → x so that

F ′′(x) = lim sup
ε→0+

Fε(uε) ≤ G(x) for all x ∈ D (1.16)

for some functional G.
• from this inequality we deduce that

F ′′(x) ≤ GD(x) for all x ∈ X, (1.17)

where

GD(x) =
{
G(x) if x ∈ D
+∞ otherwise,

and GD it its lower-semicontinuous envelope.

A trivial upper bound is obtained choosing xε = x where possible (for lattice energies
taking xε the discretization of x).
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Remark 1.2.10 (upper bound by density) In the particular case when in the previous
remark GD = G, ie when D is dense in X, G is lsc and for all x ∈ X there exists (xj) ⊂ D,
xj → x such that G(xj)→ G(x), we deduce that

F ′′(x) ≤ G(x) for all x ∈ X. (1.18)

Hence, we obtain an upper bound thanks to a construction on a dense set D and the
computation of a lsc envelope. Particular choices of D will be regular or piecewise simple
functions or sets, which are dense in a stronger topology for which G is continuous.

1.2.2 Equivalence by Γ-convergence

Γ-convergence defines an equivalence relation as in the following definition, which will allow
us to state that discrete energies are ‘equivalent’ to energies on the continuum.

Definition 1.2.11 (equivalence by Γ-convergence) Two families (Fε) and (Gε) are
equivalent by Γ-convergence if from all sequences (εj) we may extract a subsequence (still
denoted by (εj)) and there exists a sequence of real numbers (mj) such that there exits
theΓ-limits

Γ- lim
j

(Fεj −mj), Γ- lim
j

(Gεj −mj),

they are equal and they are not trivial; ie, they do not take the value −∞ and are not
identically +∞.

Remark 1.2.12 (i) even though the limits are defined in the same space, the domains of
Fε and Gε will in general be different;

(ii) the translation by mj allows us to define the equivalence also for families whose
Γ-limits are trivial or identically ±∞. In this case, for example, two diverging sequences
with different ‘speeds’ are not equivalent (eg, the constant functions Fε(u) = ε−2 and
Gε(u) = ε−1).

(iii) if the Γ-limit H of (Fε −mε) exists, in particular (Fε) is equivalent to (H +mε);
(iv) if X is separable then a family (Fε) with inf Fε ∈ R is equivalent to itself. This is

ensured by Proposition 1.2.1 applied to (Fε − inf Fε).

1.3 Discrete-to-continuous convergence of lattice functions

1.3.1 Interpolations

Lattice energies are defined on sets depending on the lattice parameters. In order to apply
the methods of Γ-convergence we have to identify such sets with subspaces of a common
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metric space. To that end the simplest identification is with subspaces of L1(Ω; Rm): a
function u : Ω ∩ εZd → Rm is identified with its piecewise-constant interpolation on the
lattice εZd given by

u(x) =
{
ui if x ∈ Qεi , i ∈ Ω ∩ εZd,
0 otherwise,

Qεi = i+
(
−ε

2
,
ε

2

)d
. (1.19)

Note that in this way u ∈ L∞(Rd; Rm).
Note also that the 0-extension for the indices not contained in Ω is convenient to have

the interpolated function defined on the whole Ω.
Depending on the energies considered we will then choose X = Lp(Ω; Rm) for some

p ≥ 1 equipped with one of the convergences:
• strong convergence (in L1)
• weak convergence on bounded sets of Lp for some p > 1, or weak∗ if p = ∞ (which

are metrizable).

Remark 1.3.1 (convergence of averages) We recall that for bounded sequences in Lp

the weak convergence uε ⇀ u is equivalent to the convergence on integrals on open sets;
i.e., to

lim
ε→0

∫
A
uε dx =

∫
A
u dx

for all A regular open set. For lattice functions we can interpret this equality as the
requirement that u represent the asymptotic statistical properties of the discrete variables
uε; ie, that

lim
ε→0

∑
i∈A∩εZd

εduε(i) =
∫
A
u dx

for all A with a boundary of null Lebesgue measure. In fact this sum and the integral
above differ by an infinitesimal quantity as ε→ 0.

The Γ-convergence of a sequence of lattice energies Eε each defined on the spaces

Xε := {u : Ω ∩ εZd → Rm}
is then identified with the convergence of the energies Fε defined on Lp(Ω; Rm) by

Fε(u) =
{
Eε(u) if u ∈ Xε

+∞ otherwise,
(1.20)

with the identification of Xε with a subspace of Lp(Ω; Rm) as illustrated above.
Alternatively to Lp weak or strong convergences, we may also consider the topology

of convergence in measure, or the convergence in Lploc(Ω; Rm) (the latter is useful if we do
not want to take into account the precise definition on interpolated functions close to the
boundary of Ω).
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Remark 1.3.2 (different interpolations) It is sometime useful to consider other inter-
polations of lattice functions such as piecewise-affine interpolations over a triangulation
of the space. It is usually easy to check that the convergence to functions on the contin-
uum can be equivalently stated in terms of these functions; for example, remarking that
piecewise-affine interpolations can be written as convex combination of piecewise-constant
functions converging to the same limit. In dimension one the piecewise-affine interpolation
ũε on εZ can be written in term of a piecewise-constant interpolation as

ũε(t) = uε(t)
(

1−
( t
ε
−
⌊ t
ε

⌋))
+ uε(t+ ε)

( t
ε
−
⌊ t
ε

⌋)
.

If uε → u then also ũε → u.

1.3.2 Compactness conditions

Even though it may be interesting to compute Γ-limits in stronger topologies, usually it
is meaningful to study them with respect to topologies weak enough so that compactness
conditions hold and we may apply the Fundamental Theorem of Γ-convergence.
• Weak-compactness conditions. Those can be obtained directly from estimates on

‖uε‖Lp ; for example, whenever the energies Eε satisfy Eε(u) ≥ C(‖u‖pLp − 1) with p > 1,
or whenever they are finite only on bounded sets of L∞ (this is the case of spin energies).
• Strong-compactness conditions. These may be obtained from compactness criteria à

la Fréchet-Kolmogorov.
A criterion that allows to reduce the analysis to one-dimensional sections is the follow-

ing.

Theorem 1.3.3 (Sectional compactness criterion) Let (uε) be a bounded sequence in
Lp(Ω) for some p > 1and such that for all δ > 0 and k = 1, . . . , d there exists a sequence
(vε) such that

• (i) ‖vε − uε‖L1(Ω) ≤ δ

• (ii) foe almost all y ∈ Rd−1 the sequence of one-dimensional functions (vyε ) defined
as vyε : Ωy → R setting

Ωy = {t ∈ R : (y1, . . . , yk, t, yk+1, . . . , yd) ∈ Ω} (1.21)
vyε (t) = vε(y1, . . . , yk, t, yk+1, . . . , yd) (1.22)

is precompact in L1(Ωy) whenever Ωy 6= ∅,

then the sequence (uε) is precompact in L1(Ω).
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Remark 1.3.4 (1D compactness) The criterion stated above will be applied to se-
quences of functions uε ∈ Xε, often reducing the study directly to the analysis of their
one-dimensional sections uyε (ie, with vε = uε). We easily obtain the precompactness
of one-dimensional sequences (uε) for which the following energies are equibounded (we
suppose that Ω is a bounded interval):

(1) (spins) we write the energies as Eε(u) =
∑

i(ui−ui−ε)2 with the constraint |u| = 1.
We immediately deduce that the functions uε are piecewise constant with a finite number
of discontinuity points. The compactness of the functions is equivalent to the compactness
of the sequences of discontinuity points (Bolzano-Weierstrass Theorem).

(2) (finite-differences) Eε(u) =
∑

i ε
∣∣∣ui−ui−εε

∣∣∣p with p ≥ 1. In this case we identify dis-
crete functions with their piecewise-affine interpolations, and use the compact embedding
of W 1,1 in L1 in dimension 1;

(3) (free-discontinuity energies) Eε(u) =
∑

i ε
((

ui−ui−ε
ε

)2 ∧ 1
ε

)
(the Blake-Zisserman

energy). In this case we use a piecewise-affine interpolation of u between i − ε and i

if
(
ui−ui−ε

ε

)2 ≤ 1
ε , and with the constant value ui otherwise. Compactness follows by

combining the arguments in the cases (1) and (2).

1.3.3 Sets of finite perimeter

Functions taking two values (ie, spins) can be identified with characteristic functions and
then with sets. The notion of sets of finite perimeter is particularly useful when dealing
with energies that can be interpreted as surface energies on sets and thus provide easy
compactness properties.

Let Ω ⊂ Rd be an open set, B(Ω) denote the family of Borel subsets of Ω. We denote
by Hd−1 the d− 1-dimensional Hausdorff measure.

A good notion of perimeter from the standpoint of the Calculus of Variations will satisfy
the following properties

P(G) = Hd−1(∂G ∩ Ω) if G is a polyhedral set; (1.23)

P(G) ≤ lim inf
n→+∞ P(Gn) (1.24)

if Gn converges to G in measure; ie, |Gn4G| → 0. One way to define such a perimeter is
by relaxation; ie, by setting

P(G) = inf{lim inf
n→+∞H

d−1(∂Gn ∩ Ω) : Gn → G in measure, Gn polyhedral}.

In other words G ⊂ Ω has finite perimeter (in Ω) if and only if there exists a sequence of
polyhedral sets Gn converging to G in measure and such that Hd−1(Gn ∩ Ω) is bounded.

The following theorem summarizes the main structure properties of sets of finite perime-
ter.
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Theorem 1.3.5 If G has finite perimeter then there exists a set ∂∗G ⊆ ∂G, called the
reduced boundary of G, such that

P(G) = Hd−1(∂∗G);

∂∗G is rectifiable; that is, ∂∗G ⊂
⋃
h∈N

Γh ∪N for a sequence (Γh) of compact subsets of C1-

hypersurfaces and with Hd−1(N) = 0. Moreover there exists a function νG : ∂∗G→ Sd−1,
the inner normal to G, such that

lim
ρ→0+

|B+
ρ (x, νG(x)) \G|

ρd
= 0 ∀x ∈ ∂∗G,

where B+
ρ (x, ν) := {y ∈ Rd : ‖y − x‖ < ρ, 〈y − x, ν〉 > 0}.

The following compactness and lower-semicontinuity theorems will be very useful.

Theorem 1.3.6 (compactness) Let (Gn) ⊂ B(Ω) be a sequence of sets of finite perimeter
such that supn∈N P(Gn) < +∞. Then there exists a subsequence (Gnk) converging in
measure to a set G of finite perimeter. Moreover,

P(G) ≤ lim inf
n→+∞ P(Gn).

Theorem 1.3.7 (lower semicontinuity) Let Ω have Lipschitz boundary. If ϕ is a norm,
the functional

F (G) =
∫

Ω∩∂∗G
ϕ(νG) dHd−1

is lower-semicontinuous with respect to the convergence in measure. Moreover, for all G
there exists a sequence (Gn) of polyhedral sets converging to G such that

lim
n
F (Gn) = F (G).

1.4 Development by Γ-convergence

The Fundamental Theorem of Γ-convergence can be iteratively applied to get a better
description of the behaviour of minimum problems for energies Fε whenever the first Γ-
limit F (0) possesses a non-trivial set of minimizers. The iterative process goes as follows:
• we conjecture a second scale (that is, an infinitesimal function ofε), say εα (but it is

not necessarily a polynomial scale). This means that we find a converging sequence (xαε )
such that Fε(xαε ) = minF (0) +O(εα);
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• we consider the scaled functional

F (α)
ε (x) =

Fε(x)− inf F
εα

. (1.25)

Note that F (α)
ε has the same minimizers as Fε. Set

mε := inf Fε, m(0) := inf F (0), m(α)
ε := inf F (α)

ε (1.26)

so that

m(α)
ε =

mε −m(0)

εα
; (1.27)

• we compute the Γ-limit (Γ-limit of (Fε) at scale εα)

F (α)(x) = Γ- lim
ε→0

F (α)
ε (x); (1.28)

• if this limit is not trivial then we have the following result, immediately obtained
from the Fundamental Theorem of Γ-convergence.

Theorem 1.4.1 (development of minimum problems) Under the coerciveness hypothe-
ses of the Fundamental Theorem of Γ-convergence there exits the minima minF (0) and
m(α) := minF (α), and m(α)

ε → m(α), so that

mε = m(0) + εαm(α) + o(εα). (1.29)

Moreover, if (xε) is a εα-minimizing sequence of (Fε), ie, such that Fε(xε) = inf Fε+o(εα),
and x is one of its limit points, then x is a minimizer both for F (0) and F (α).

Remark 1.4.2 (i) From the definition of F (α) its domain is contained in the set of mini-
mizers of F (0); ie, F (α)(x) = +∞ if F (0)(x) 6= minF (0);

(ii) in the hypotheses of the theorem there can still exits an intermediate scale, say still
a polynomial εβ with εα << εβ << 1, such that

F (β)(x) = Γ- lim
ε→0

Fε(x)− inf F
εβ

(1.30)

exist and is not trivial, but in that case we must have minF (β) = 0, otherwise development
(1.29) would be violated;

(iii) if for all intermediate scale εα << sε << 1 we have

Γ- lim
ε→0

Fε(x)− inf F
sε

=
{

0 if F (0)(x) = minF (0)

+∞ otherwise
(1.31)

then we say that the development is complete at scale εα;
(iv) if the domain of F (α) is dense in the set of minimizers of F (0)then the development

is complete at scale εα;
(v) the process can be iterated, introducing a second scale, say εγ << εα and applying

the process to F (α)
ε , and so on.



18 CHAPTER 1. Γ-CONVERGENCE AND DISCRETE PROBLEMS

The definition of development by Γ-convergence given above allows us to extend the
equivalence relation by Γ-convergence.

Definition 1.4.3 (Equivalence by Γ-convergence at scale εα) We say that two fam-
ilies (Fε) and (Gε) are equivalent by Γ-convergence at scale εα if from every sequence (εj)
we can extract a subsequence (still denoted by (εj)) and there exists a sequence (mj) of real
numbers such that there exist the Γ-limits

Γ- lim
j

Fεj −mj

εαj
, Γ- lim

j

Gεj −mj

εαj
,

they coincide and are not trivial.

In particular, in the hypotheses of the theorem above and taking mj = mεj , we have
that Fε is equivalent to mε + εαF (α) at scale εα.

1.5 Bibliographical notes

An elementary introduction to Γ-convergence, mostly in dimension one can be found in
[1] A. Braides, Γ-convergence for Beginners, Oxford University Press, Oxford, 2002.
More examples and techniques in dimension higher than one are contained in
[2] A. Braides, A handbook of Γ-convergence. In Handbook of Differential Equations.
Stationary Partial Differential Equations, Volume 3 (M. Chipot and P. Quittner, eds.),
Elsevier, 2006.
A general introduction to integral functionals and to homogenization by Γ-convergence is
[3] A. Braides and A. Defranceschi,Homogenization of Multiple Integrals. Oxford University
Press, Oxford, 1998.
The standard reference to the general properties of Γ-convergence, also in non-metrizable
spaces, its metric properties, etc., is
[4] G. Dal Maso, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.
Definitions and examples about description by Γ-convergence at multiple scales and various
notions of equivalence are found in
[5] A. Braides and L. Truskinovsky. Asymptotic expansions by Gamma-convergence. Cont.
Mech. Therm. 20 (2008), 21–62



Chapter 2

Some simple 1D examples

2.1 Point energies. ‘Mesoscopic’ oscillations

We consider lattice energies defined as

Eε(u) =
∑
i∈Ωε

εdW (ui), u : Ωε → R, (2.1)

where Ω is a regular bounded open set. and W : R → (−∞,+∞] is bounded below and
with polynomial growth at infinity. Without loss of generality we shall suppose that

W ≥ 0, W (u) ≥ c(|u|p − 1) (2.2)

for some p > 1. The energies Eε are (identified with) equi-coercive functionals in Lp(Ω)
with respect to the weak topology. We may take as prototypical W non-convex energies
such as

W (u) = min{(u− 1)2, (u+ 1)2} or W (u) = (u2 − 1)2 (double-well potentials)

W (u) =
{

0 if u = 1 or u = −1
+∞ otherwise.

We fix λ > 0; for ε sufficiently small we have⋃
{Qεi : i ∈ Ωε, dist (i, ∂Ω) > λ/2} ⊃ Ω(λ) := {x ∈ Ω : dist (x, ∂Ω) > λ}

so that
Eε(u) ≥

∫
Ω(λ)

W (u) dx

for all u ∈ Xε. If we recall the lower-semicontinuity theorems for integral energies in Lp-
spaces, equivalent to lower semicontinuity (in R) and convexity of the integrand, we can
take as Gλ

Gλ(u) =
∫

Ω(λ)
W ∗∗(u) dx.

19
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For all our examples we have

W ∗∗(u) =
{
W (u) if |u| ≥ 1
0 if |u| < 1.

We trivially have Eε(u) ≥ Gλ(u), so that, taking the limit as e→ 0, we have

Γ- lim sup
ε→0+

Eε(u) ≤ Gλ(u).

Taking the sup in λ (ie, letting λ→ 0) by Beppo Levi’s Theorem we deduce

Eε(u) ≥ sup
λ

∫
Ω(λ)

W ∗∗(u) dx =
∫

Ω
W ∗∗(u) dx := G(u)

In this case the introduction of the parameter λ has been useful to avoid estimating the
contribution of points close to the boundary. Here we have used the hypothesis that W be
bounded below.

As the upper bound is concerned, in this case we may fix as D the space of piecewise-
constant functions on a family of sufficiently regular sets (eg, constant on cubes of Rd). In
that case we take uε(i) = u(i), obtaining

Γ- lim sup
ε→0+

Eε(u) ≤ G(u)

for u ∈ D. By using a relaxation argument we conclude the upper bound with G, and
conclude the proof.

In the terminology of equivalence by Γ-convergence, the family of discrete energies Eε
is equivalent (as ε→ 0) to the continuous energy

∫
ΩW

∗∗(u) dx.

Remark 2.1.1 (microscopic relaxation and mesoscopic oscillations) The argument
by relaxation above makes the proof very fast, but hides the details of recovery sequences,
which may be relevant to a more refined analysis of the behaviour of minimum problems.

To construct a recovery sequence, we preliminarily relax functional Eε. In this case,
since Ωε is a finite set of parameters, the lower semicontinuity of Eε is equivalent to the
lower semicontinuity of W . The lower-semicontinuous envelope of Eε is then

Eε(u) =
∑
i∈Ωε

εdW (u),

where W is the lower-semicontinuous envelope (in R) of W . We may then suppose that W
itself be lower-semicontinuous. From the growth condition and the lower semicontinuity of
W we have

W ∗∗(u) = min{tW (v) + (1− t)W (w) : u, v ∈ R; 0 ≤ t ≤ 1, tv + (1− t)w = u}. (2.3)
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Consider for simplicity the one-dimensional case, with Ω = (0, 1) and a constant target
function u. The relaxation argument on the continuum can be realized by choosing as
functions uj ⇀ u those constructed by taking a periodic function u of period 1 with

u(s) =
{
v if 0 < s ≤ t
w if t < s ≤ 1,

where v and w are given by (2.3) and uj(s) = u(Tjs), where Tj → +∞. In order to repeat
this argument with uε a discretization of u(Tεs) we have to require Tε << 1/ε so that the
oscillation period T−1

ε of u(Tεs) does not interfere with the discrete scale ε. Hence, such
type of ‘regular’ oscillations generated by the non-convexity of W must take place at a
scale much larger than ε, even if infinitesimal (a mesoscopic scale).

Remark 2.1.2 In one dimension, we can consider equivalently functionals

Eε(z) =
∑

i,i−ε∈Ωε

εW
(zi − zi−ε

ε

)
, z : Ωε → R. (2.4)

The Γ-limit can be computed with respect to the strong L1-convergence of zε, and is given
by the same energy function as above:

F (z) =
∫

Ω
W ∗∗(z′) dx

with domain contained in W 1,p(Ω). The proof is as above with ui = zi−zi−ε
ε . The only

thing to note is that by Remark 1.3.4 the functionals are equi-coercive in L1(Ω).

2.2 Homogenization. ‘Multi-phase’ limits

We consider a simple variant to the previous problem, where the integrand depends pe-
riodically on the site i (we can think that we have a number Kd of different ‘species’ of
variables). We then have

Eε(u) =
∑
i∈Ωε

εdWi/ε(ui)

where k 7→Wk is periodic of period K in every coordinate direction (ie, Wk = Wk+Kej for
allj = 1, . . . , d). In this case we can consider the sub-lattices

Ωj
Kε = εj + εKZd for allj ∈ {1, . . . ,K}d.

By the previous example we can study the convergence of

Ejε(u) =
∑
i∈ΩjKε

(Kε)dWj(ui),
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whose limit is
F j(u) =

∫
Ω
W ∗∗j (u) dx.

If uε : Ωε → R, we set ujε(i) = uε(i), identified now with an element of the space XKε

of the functions constant on the cubes QKεi . If uε is a sequence with equibounded energy,
Eε(uε) ≤ c < +∞, then every sequence (ujε) is bounded in Lp and then we can extract
from it a converging sequence to some uj for all j. if moreover uε ⇀ u then we have

u =
1
Kd

∑
j∈{1,...,K}d

uj .

In addition, we have

Eε(uε) =
∑

j∈{1,...,K}d

1
Kd

Ejε(u
j
ε),

so that we deduce the liminf inequality

lim inf
ε→0+

Eε(uε) ≥
∑

j∈{1,...,K}d

1
Kd

F j(uj) ≥
∫

Ω
Whom(u) dx, (2.5)

where Whom is given by the homogenization formula

Whom(z) = min
{ ∑
j∈{1,...,K}d

1
Kd

W ∗∗j (zj) : z =
1
Kd

∑
j∈{1,...,K}d

zj

}
. (2.6)

The upper bound for u = z constant can be obtained by considering optimal zj in the
homogenization formula. Given those, we may consider the oscillating ujε constructed in
the previous example and optimal for F j(zj). the optimal sequences for u = z are then
given by uε(i) = ujε(i) if i ∈ Ωj

Kε. Hence, the functional

Fhom(u) =
∫

Ω
Whom(u) dx

represents theΓ-limit of Eε.

Remark 2.2.1 (the homogenization formula) Formula (2.6) corresponds to those in
the homogenization theory for scalar integral functionals. It must be noted that the contin-
uous formula can be set as a minimum problem on a periodicity cell, while in this formula
we use a convexification involving a mesoscopic scale (and hence a possibly infinite number
of cells). Note moreover that on the continuum a relaxation argument allows to consider
convex energy densities.
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Remark 2.2.2 (“Coarse graining”) A proof alternative to the introduction of the vari-
ables uj consists in directly considering the mesoscopic scale, by introducing an average
on many periodicity cells (coarse graining). To this end, we take M ∈ N and estimate the
energy Eε(u) by the energy EMε (v) defined on functions v ∈ XMKε by

EMε (v) =
∑

i∈ΩMKε

(MKε)dWM (vi),

v is given by the average of u; ie,

vi =
1

(MK)d
∑

k∈εZd∩QMKε
i

uk.

and WM is given by

WM (z) = min
{ ∑
j∈{1,...,MK}d

1
(MK)d

Wj(zj) : z =
1

(MK)d
∑

j∈{1,...,MK}d
zj

}
. (2.7)

Letting M → +∞ we have a lower bound with infM WM (asymptotic homogenization
formula), which, in this case, coincides with Whom defined above. This coarse graining
argument is more general than the one used above, and is usually applied to vector problems
(ie, when u is a vector) where the ‘periodicity cell’ description of the limit integrand fails.

Remark 2.2.3 (multi-phase limits) The argument in (2.5) shows that we may equiv-
alently compute the Γ-limit with respect to the convergence uε → u := (uj)j∈{1,...,K}d
defined by ujε ⇀ uj for all j. In this case the Γ-limit is defined on the space of vector-
valued functions Lp(Ω; RKd

), and is given by

F (u) =
∑

j∈{1,...,K}d

1
Kd

F j(uj).

In this way we separately describe the energy relative to each ‘species’ j. Note that the
convergence of (uε) thus defined is still compact.

2.3 Nearest-neighbours energies. Microscopic oscillations

In the previous examples we have used arguments where the continuum techniques of
relaxation, convexification and homogenization have been adapted to the discrete setting.
We now examine an example where a new type of argument must be envisaged to treat
the discrete variable.
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We consider the case d = 1 and Ω a bounded interval. In this case we use a different
parameterization of discrete functions. If N = #(εZ∩Ω), then we may reparameterize our
energies taking as domain of our functions the set { jN : j = 1, . . . , N} and, with an abuse
of notation, we set

ε =
1
N
, uj = u(jε).

In terms of the functionals we consider this amounts to divide by εN (= |Ω| + o(1) as
ε→ 0+) and to reparameterize on (0, 1) the continuum energies.

The energies we are now considering can be written as

Eε(u) =
N∑
j=1

εW1(uj) +
N−1∑
j=1

εW2(uj + uj+1).

Hence, they sum to a point energy another energy taking into account interactions of
nearest neighbours. On W1 and W2 we make for simplicity the same hypotheses (2.2)
of the previous example. By a relaxation argument we can suppose that they are lower
semicontinuous.

We briefly examine the estimates that we obtain by repeating the arguments used above,
Note that if uε ⇀ u then also for the functions uε defined by (uε)j = ((uε)j + (uε)j+1)/2
we have uε ⇀ u. We then obtain the lower bound

lim inf
ε→0+

Eε(uε) ≥ lim inf
ε→0+

N∑
j=1

εW1((uε)j) + lim inf
ε→0+

N−1∑
j=1

εW2(2(uε)j)

≥
∫

(0,1)
W ∗∗1 (u) dx+

∫
(0,1)

W ∗∗2 (2u) dt. (2.8)

Conversely, testing the upper bound with uε(εj) = u(εj) (eg, if u is piecewise constant)
we obtain

lim
ε→0+

Eε(uε) =
∫

(0,1)
(W1(u) +W2(2u)) dt,

and then, by relaxation,

Γ- lim sup
ε→0+

Eε(u) ≤
∫

(0,1)
(W1(u) +W2(2u))∗∗ dt. (2.9)

The functionals in these bounds are in general different, and then do not allow to conclude
the Γ-convergence.

In order to compute the Γ-limit we use a different optimization argument for the nearest-
neighbour interactions. In order to formalize it, we write

Eε(u) =
N∑
j=1

ε
1
2
W1(uj) +

N−1∑
j=0

ε
1
2
W1(uj+1) +

N−1∑
j=1

εW2(uj + uj+1)
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=
N−1∑
j=1

ε
(1

2
W1(uj) +

1
2
W1(uj+1) +W2(uj + uj+1)

)
+

1
2
εW1(uN ) +

1
2
εW1(u1)

≥
N−1∑
j=1

εWeff

(uj + uj+1

2

)
, (2.10)

where
Weff(z) = min

{1
2
W1(z1) +

1
2
W1(z2) :

z1 + z2

2
= z
}

+W2(z). (2.11)

In this way we obtain the lower bound

Γ- lim inf
ε→0+

Eε(u) ≥
∫

(0,1)
W ∗∗eff (u) dt.

In order to check the upper bound we cannot use the discretization of the limit function.
If u = z is a constant then we choose uε defined by

uε(εj) =
{
z1 if j is even
z2 if jis odd,

where z1 and z2 minimize the problem in (2.11). The same construction can be repeated
if u is piecewise constant, obtaining

lim
ε→0+

Eε(uε) =
∫

(0,1)
Weff(u) dt,

and then, by relaxation, the desired upper bound. In conclusion, the Γ-limit is

Γ- lim inf
ε→0+

Eε(u) =
∫

(0,1)
W ∗∗eff (u) dt (2.12)

and recovery sequences exhibit microscopic oscillations on the period 2ε (described by
the formula that optimizes the interaction between nearest neighbours, which is a kind of
homogenization formula) and mesoscopic oscillations highlighted by the second convexifi-
cation procedure.

Example 2.3.1 A simple example is obtained by taking

W1(z) =
{

0 if z = 1 or z = −1
+∞ otherwise

W2(z) =
1
4
z2.

Then we have

min
{1

2
W1(z1) +

1
2
W1(z2) :

z1 + z2

2
= z
}

=
{

0 if z ∈ {−1, 0, 1}
+∞ otherwise



26 CHAPTER 2. SOME SIMPLE 1D EXAMPLES

and

Weff(z) =
{
z2 if z ∈ {−1, 0, 1}
+∞ otherwise

W ∗∗eff (z) =
{
|z| if |z| ≤ 1
+∞ otherwise.

The functions obtained in (2.8) and (2.9) are instead

W ∗∗1 (z) +W ∗∗2 (2z) =
{
z2 if |z| ≤ 1
+∞ otherwise

(W1(z) +W2(2z))∗∗ =
{

1 if |z| ≤ 1
+∞ otherwise.

A comparison with the integrand of the Γ-limit is drawn in Figure 2.1.

Figure 2.1: the energy function of the Γ-limit in Example 2.3.1 and its comparison with
the trivial estimates

Remark 2.3.2 As in Remark 2.1.2 we can equivalently consider functionals

Eε(z) =
∑
i

εW1

(zi − zi−1

ε

)
+
∑
i

εW2

(zi+1 − zi−1

ε

)
, (2.13)

and obtain that the Γ-limit with respect to the strong L1-convergence, is given by the same
energy function as above:

F (z) =
∫

Ω
W ∗∗eff (z′) dx

with domain contained in W 1,p(Ω).
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Remark 2.3.3 (open problem) We may consider longer range of interactions; eg, next-
to-nearest neighbour interactions, with energy of the form

Eε(u) =
N∑
j=1

εW1(uj) +
N−1∑
j=1

εW2(uj + uj+1) +
N−1∑
j=2

εW3(uj−1 + uj + uj+1).

Note that the Γ-limit can always be proven to exist and its energy function is described by
an asymptotic homogenization formula Wasy obtained by coarse graining.

Question. Is there an analog of formula Weff ; ie, a minimization formula over period
functions with a fixed finite period (not necessarily 3) such that the Γ-limit can be expressed
in the same way (2.12) as above?

Conjecture. The answer to the previous question is negative; ie, there existW1,W2,W3

such that for all periods the relative formula Weff is strictly larger than Wasy at some point.

2.4 One-dimensional spins

We consider one-dimensional energies defined on functions u : εZ→ {−1,+1} (spins), with
nearest-neighbour interaction

Eε(u) =
∑

εi,εj∈Ωε,|i−j|=1

εf(ui, uj)

(we adopt the notation ui = u(εi)).
We now show that we may consider f of a simplified form: first of all, since

Eε(u) =
∑

εi,εj∈Ωε,|i−j|=1

ε
(f(ui, uj) + f(uj , ui)

2

)
we may suppose that f be symmetric: f(u, v) = f(v, u). Hence, up to reparameterization
of the points in Ωε we may suppose to have the energy

Eε(u) =
N∑
i=1

εf(ui, ui−1),

with N = 1/ε.
We may rewrite

Eε(u) =
N∑
i=1

ε(f(ui, ui−1) + g(ui, ui−1))−
N∑
i=1

εg(ui, ui−1), (2.14)
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where g(u, u) := f(−u,−u) and g(1,−1) = g(−1, 1) := 1
2(f(1, 1) + f(−1,−1)). By adding

such g the integrand in the first sum has the same value in (−1,−1) and (1, 1). Note that

g(u, v) =
1
2
g(u, u) +

1
2
g(v, v), (2.15)

and hence we have

N∑
i=1

εg(ui, ui−1) =
N−1∑
i=1

ε g(ui, ui) +
1
2
ε g(u0, u0) +

1
2
ε g(uN , uN ).

Since the last two terms can be neglected, the second sum in (2.14) can be rewritten as∑N−1
i=1 εW0(ui), where W0 is the affine function such that W0(±1) = g(±1,±1). Note

that this sum corresponds to G(u) =
∫

(0,1)W0(u) dt, which is a continuous functional with
respect to the weak L1-convergence, and hence commuted with the Γ-limit. We may limit
to considering only the first sum in (2.14). This is an example in which the addition of a
continuous perturbation allows us to simplify the form of the functionals we consider.

Summing up, it is not restrictive to suppose that f be symmetric and f(1, 1) =
f(−1,−1). Hence, excluding the trivial case f constant, there are the two cases: f(1, 1) <
f(1,−1) and f(1, 1) > f(1,−1). Up to translations we may suppose that the two values
taken by f be 0 and 1. We may rewrite the two cases as

f(u, v) =
1
4

(u− v)2, f(u, v) =
1
4

(u+ v)2.

Note again that, up to multiplicative and additive constants, the two cases correspond,
respectively, to

f(u, v) = −uv, f(u, v) = uv.

We only treat the first case since the second one can be reduced to the first by the change
of variables wi = (−1)iui. We finally consider

Eε(u) =
1
4

N∑
i=1

ε(ui − ui−1)2 ui ∈ {−1, 1}. (2.16)

We may compare Eε with an energy of the type Ẽε(v) =
∑

i εW (vi) by setting

vi =
ui + ui−1

2
, W (v) =

{ 0 if v = −1 or v = 1
1 if v = 0
+∞ otherwise.

(2.17)

Note that if uε ⇀ u then also vε ⇀ u, so that

lim inf
ε→0+

Eε(uε) ≥ lim inf
ε→0+

Ẽε(vε) ≥
∫

(0,1)
W ∗∗(u) dt.
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The Γ-limsup inequality for Eε cannot be directly deduced from that for Ẽε since not all
recovery sequences for vε are derived from uε by (2.17). In order to highlight the error due
to the lack of this last correspondence, note that in order to weakly approximate a constant
with functions oscillating we have again to introduce a mesoscopic scale ε << ηε << 1,
and take uε oscillating on this scale between 1 and −1. We need only to specify this
construction when the limit function is a constant 0 < z < 1. In that case we define the
function uz : R→ {−1, 1} periodic of period 1 and such that

uz(s) =
{

1 if 0 < s ≤ z+1
2

−1 if z+1
2 < s ≤ 1

and uε(i) = uz

( εi
ηε

)
.

Since uz(t/ηε) ⇀ z, also uε ⇀ z and it may be easily checked that it gives the desired
value. Hence, we have

Γ- lim
ε→0+

Eε(u) =
{

0 if |u| ≤ 1 almost everywhere
+∞ otherwise.

We may now analyze the Γ-limit at the scale ε. This scale is suggested from the fact
that ε is the error that we make when we have a transition from a minimal state identically
1 or −1. In this case we simply have

E(1)
ε (u) =

1
4

N∑
i=1

(ui − ui−1)2 ui ∈ {−1, 1}. (2.18)

Hence, if E(1)
ε (uε) ≤ c < +∞ then the piecewise-constant extension of uε has a set of

discontinuity points S(uε) of cardinality at most c. If

lim inf
ε→0+

#S(uε) = M

we may then suppose that, up to subsequences, such discontinuity points (tjε) satisfy 0 <
t1ε < t2ε < · · · < tMε < 1 and converge to points tj with 0 ≤ t1 ≤ · · · ≤ tM ≤ 1. Hence, uε
converges (strongly) to a piecewise-constant function ui,whose set of discontinuity points
S(u) is contained in {tj : j = 1, . . . ,M}. We then have

lim inf
ε→0+

E(1)
ε (uε) = lim inf

ε→0+
#(S(uε)) ≥ #(S(u)).

The converse inequality is obtained by taking uε(εi) = u(εi). Hence, the Γ-limit at scale ε
is

F (1)(u) =
{

#(S(u)) if u is piecewise constant and u ∈ {1,−1} a.e.
+∞ otherwise.
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We may hence conclude that Eε is equivalent to Fε = εF (1) at scale ε. In this case we may
also choose other functionals on the continuum equivalent to Eε; eg the functionals from
the gradient theory of phase transitions

Fε(u) =
∫ 1

0
(W0(u) + ε2|u′|2) dt, u ∈ H1(0, 1),

with W0 a double-well potential with minimum in −1 and 1 and such that

2
∫ 1

−1

√
W (s) ds = 1.

Note that the functions on which F (1) is finite are dense for the weak topology in the
set of the minimizers of F (0) and hence the development at scale ε is complete.

Remark 2.4.1 (anti-phase interfaces) Note that the parameter w defined by wi =
(−1)iui changes an antiferromagnetic energy (in u) into a ferromagnetic energy (in w). A
phase A phase boundary for w corresponds to an antiphase boundary of u; ie a passage
from a state (−1)i to (−1)i+1.

phase interface antiphase interface

w u

Figure 2.2: phase boundary and corresponding antiphase boundary

Exercise 2.4.2 (homogenization) Let

Eε(u) = −
∑
i

ciεuiui−1 with |ui| = 1
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where i 7→ ci is positive and M -periodic. Compute the Γ-limit at scale 1 and ε. In
particular, prove that the Γ-limit at scale ε is given by

F (u) =
(

min
i
ci

)
#S(u).

Exercise 2.4.3 (asymmetric case) Let

Eε(u) =
∑
i

ϕ(ui, ui−1) with |ui| = 1

where ϕ is a non-negative function with ϕ(u, v) = 0 only when u = v, but not necessarily
symmetric. Compute the Γ-limit F of Eε, showing that if ϕ(1,−1) 6= ϕ(−1, 1) then we
have a unique minimizer to the problem

min
{
F (u) :

∫ 1

0
u dt = C

}
,

contrary to the symmetric case where we have two minimizers for |C| < 1.

Exercise 2.4.4 (long-range interactions) Compute the Γ-limit of

Eε(u) =
1
2

∑
i

K∑
k=1

ck(1− uiui−k) with |ui| = 1

(with periodic conditions).
Note first that if we write for k = 1, . . . ,K, j = 1, . . . ,K

Ek,jε (u) =
1
2

∑
i

ck(1− uik+lu(i−1)k+l)

each such Ek,jε is a n.n. ferromagnetic energy on a lattice of size length εk. Deduce the
equality

Γ- lim
ε→0

Eε(u) =
K∑
k=1

k∑
j=1

Ek,jε (u) =
K∑
k=1

kck #(S(u)).
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2.5 Boundary layers

As we have remarked earlier, the interaction between nearest neighbours may add to an
integral energy an additional phase transition effect. In Section 2.4 the transition is ‘sharp’,
by the nature of the energies; we now examine an example, of general nature, where this
transition involves ‘boundary layers’ at the lattice level. To this end we consider a non-
convex point energy perturbed by a nearest-neighbour interaction.

Example 2.5.1 (spins with elastic potential - analysis at scale 1) We consider a spin
system where the constraint ui ∈ {−1, 1} is substituted by a double-well potential; we take

W (u) = (|u| − 1)2,

and the energy (ε = 1/N and K ∈ R)

Eε(u) =
N∑
i=1

ε(W (ui) +Kuiui−1)

=
N∑
i=1

ε
(1

2
(W (ui)−Ku2

i ) +
1
2

(W (ui−1)−Ku2
i−1) + 2K

(ui + ui−1

2

)2)
−1

2
εW (u0) +

1
2
εW (uN ). (2.19)

We first analyze the behaviour of Eε at scale 1.
1. If K ≥ 1 then we cannot apply the analysis of Section 2.4 to the potential W (u)−

Ku2. In this case the Γ-limit is identically −∞. To check that, it suffices to exhibit for all
u and for all M > 0 a sequence uε ⇀ u such that Eε(uε) ≤ −M . We show that for u = z
constant. In this case fix t > |z| and take

uε(εi) = z + (−1)it.

We then have
Eε(uε) ≤ (t− 1)2 + z2 +K(z2 − t2) + ε(t+ |z|)2.

Since the second term tends to −∞ per t→ +∞ we have the desired estimate.
2. Conversely, if K ≤ −1 the nearest-neighbours term gets unbounded and again the

Γ-limit is identically −∞. In this case if u is continuous it suffices to take uε(εi) = u(εi),
obtaining

lim
ε→0+

Eε(uε) =
∫

(0,1)

(
(|u| − 1)2 +Ku2) dt.

Since the convex envelope of the integrand on the right-hand side is −∞ the desired
estimate follows by relaxation.
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3. If −1 < K < 1 we can apply the analysis of Section 2.4, obtaining the ‘effective’
integrand

Weff(u) =
K

K − 1
+ 2Ku2 + (1−K) min

{(
|u| − 1

1−K
)2
, u2
}
.

Such a function may take three different shapes as in Figure 2.3.

Figure 2.3: ‘effective integrands’ for elastic spins (0 < K < 1, K = 0 and −1 < K < 0)

Example 2.5.2 (analysis at scale ε: boundary layers) We may now examine the next
scale, that, as in the case of spins, is ε. We examine the three non-trivial cases of the pre-
vious example.

1: −1 < K < 0. In this case the minimizers of the limit energy are all the functions u
with ‖u‖∞ ≤ 1

1+K , and their common value of the energy is K
K+1

We examine the energy

E(1)
ε (u) =

N∑
i=1

(
W (ui) +Kuiui−1 − K

K + 1

)
=

N∑
i=1

(1
2

(W (ui)−Ku2
i ) +

1
2

(W (ui−1)−Ku2
i−1) + 2K

(ui + ui−1

2

)2 − K

K + 1

)
−1

2
W (u0) +

1
2
W (uN ). (2.20)

From E
(1)
ε (u) ≤ M we first deduce that we may estimate the number of indices i where

(W (ui)−Ku2
i ) + 1

2(W (ui−1)−Ku2
i−1) + 2K

(
ui+ui−1

2

)2
is not close to its minimum K

K+1 .
Since that minimum is obtained only for ui = ui−1 ∈ {−1/(1 + K), 1/(1 + K)}, more
precisely, we have:
• with fixed η > 0 the number of indices i such that we do not have at the same

time |ui − 1
1+K | ≤ η and |ui−1 − 1

1+K | ≤ η, or at the same time |ui + 1
1+K | ≤ η and

|ui−1 + 1
1+K | ≤ η is bounded by a constant C(η,M) independent of ε.
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We may hence consider such indices and regroup then in sets of consecutive indices (we
omit the dependence on ε): {ijk : j ∈ {0, . . . , J + 1}, k ∈ {0, . . . ,Mj}. We may suppose
that i00 = 0 and iJ+1

MJ+1
= N and moreover that if |ui − 1/(1 +K)| ≤ η for i = ij0 − 1, then

for i = ijJj + 1| we have |ui + 1/(1 +K)| ≤ η (ie, in each such group of indices, except the
extreme ones, the function has a phase transition approximately between 1/(1 +K) and
−1/(1 +K)).

We may hence give a lower bound of our energy taking into account only the contribu-
tion from those sets of indices, by 2Bη +DηJ , where

Bη = inf
{ M∑
i=1

(1
2

(W (ui)−Ku2
i ) +

1
2

(W (ui−1)−Ku2
i−1) + 2K

(ui + ui−1

2

)2 − K

K + 1

)
−1

2
W (u0) : |uM−1 − 1/(K + 1)| ≤ η, |uM − 1/(K + 1)| ≤ η, M ∈ N

}
and

Dη = inf
{ M∑
i=−M

(1
2

(W (ui)−Ku2
i ) +

1
2

(W (ui−1)−Ku2
i−1) + 2K

(ui + ui−1

2

)2 − K

K + 1

)
:

|u±M−1 ± 1/(K + 1)| ≤ η, |u±M ± 1/(K + 1)| ≤ η, M ∈ N
}
.

As η → 0 these two quantities tend, respectively, to

B = inf
{ M∑
i=−M

(1
2

(W (ui)−Ku2
i ) +

1
2

(W (ui−1)−Ku2
i−1) + 2K

(ui + ui−1

2

)2 − K

K + 1

)
−1

2
W (u0) : uM−1 =

1
(K + 1)

, uM =
1

(K + 1)
, M ∈ N

}
and

D = inf
{ M∑
i=1

(1
2

(W (ui)−Ku2
i ) +

1
2

(W (ui−1)−Ku2
i−1) + 2K

(ui + ui−1

2

)2 − K

K + 1

)
:

u±M−1 = ± 1
(K + 1)

, u±M = ± 1
(K + 1)

, M ∈ N
}
.

The constant B represent the energy of an external boundary layer, with a condition at
infinity given by the constant minimal state 1

(K+1) . The constant D represents the energy
of an internal boundary layer, with conditions at ±∞ the two minimal states ± 1

(K+1) ,
respectively.

By applying this argument to a sequence uε with bounded energy we obtain that
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• up to subsequences it converges to a piecewise-constant function u with u ∈ {±1/(K+
1)};
• having denoted by S(u) the set of discontinuity points of u we have

lim inf
ε→0+

Eε(uε) ≥ 2B +D#(S(u)).

u

uε

internal boundary layer

     external   
boundary layer

Figure 2.4: boundary layers

From the definition of B and D it is immediate also to construct a recovery sequence
for a piecewise-constant function u with u ∈ {1/(K + 1),−1/(K + 1)}, by joining con-
stant interpolations with (almost) minimal transitions for the problems defining the two
constants (see Figure 2.4).

For the sake of completeness we also include the analysis of the other two cases.

2: 0 < K < 1. Consider for simplicity periodic boundary conditions: u0 = uN and N
even. In this case the Γ-limit of the scaled functionals is simply

F (1)(u) =
{

0 if u = 0
+∞ otherwise.

Recovery sequences for u = 0 are given by uε(εi) = 1
1−K (−1)i and uε(εi) = − 1

1−K (−1)i.
Note that if instead N is odd, the Γ-limit must take into account the presence of

anti-phase interfaces due to the incompatibility of recovery sequences at the periodicity
condition. In this case we have to introduce a new parameter as in the case of antiferro-
magnetic spins.



36 CHAPTER 2. SOME SIMPLE 1D EXAMPLES

3: K=0. In this case the effect of the nearest neighbours disappears and the analysis
at scale εα for all α > 0 is particularly simple. The Γ-limit of

E(α)
ε (u) =

N∑
i=1

ε1−αW (ui)

is

F (α)(u) =
{

0 if ‖u‖∞ ≤ 1
+∞ otherwise.

Since the Γ-limit must be +∞ except than on minimizers of the Γ-limit at scale 1 it
suffices to check that F (α)(u) = 0 if ‖u‖∞ ≤ 1. This is an immediate consequence of
W (1) = W (−1) = 0.

2.6 Limits depending on a pattern variable

We now show how we may have limits where the relevant parameter in the final energy
must be carefully chosen so as to distinguish different ground states. A very simple case
is that of anti-ferromagnetic spin systems where ground states are two two-periodic states
oscillating between 1 and −1. In that case we have again two parameters and a change of
variable allows to go back to the analysis of ferromagnetic spin systems. We now see how
we can modify that example to obtain more complex ground states.

We consider the one-dimensional spin energies defined on u : εZ ∩ [0, 1] → R with
nearest and next-to-nearest interactions of the form

Eε(u) =
N∑
i=0

ε(αuiui−1 + ui−1ui+1)

(with the notation ui = u(εi)), where we suppose that N = 1/ε be integer. In order to
avoid boundary effects we consider periodic boundary conditions

uN = u0; uN+1 = u1; etc.,

so that we may write

Eε(u) =
N∑
i=0

ε
(1

2
α(uiui−1 + ui+1ui) + ui−1ui+1

)
Ground states of Eε can be looked for among the functions (if they exist) that for all i

minimize the corresponding term in the sum. Depending on α we obtain the three cases:
(1) α < 2. In this case the nearest-neighbour ferromagnetic term dominates and the

minimizers are the constants ±1;
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(2) α > 2. In this case the oscillations between nearest neighbours dominate, and we
have the two minimizers ±(−1)i, of period 2;

(3) |α| < 2. In this case the interactions between second neighbours dominates; hence,
we have four minimizers, corresponding to the four possible combinations of the ‘antiferro-
magnetic’ oscillating minimizers for second neighbours. The ground states are 4-periodic
functions of the form

(uk)i = vi+k,

(k = 0, 1, 2, 3), where v = u0 is given by

vj =
{

1 if j = 1, 2
1 if j = 3, 4.

(see Figure 2.5).
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(k = 0, 1, 2, 3), dove v = u0 è data da

vj =
{−1 se j = 1, 2

1 se j = 3, 4

(si veda Fig. 1.5).

-1

+1

Figure 1.5: un minimo 4-periodico

Nel caso α = −2 abbiamo un totale di sei minimi (sia quelli dei caso α < −2 che
|α| < 2), e analogamente nel caso α = 2.

1.7.1 Analisi all’ordine 1

In caso interessante è il caso (3). Per rendere l’esistenza di minimi compatibile con le
condizioni di periodicità supponiamo che

Nε sia un multiplo di 4

(questa condizione e le condizioni di periodicità possono essere facilmente rimosse, con però
una leggera complicazione della forma del Γ-limite).

Notare che si ha (1
2
(α(vivi−1 + vi+1vi) + vi−1vi+1

)
= −1,

per cui possiamo considerare le energie riscalate

E(1)
ε (u) =

1
ε
(Eε(u)−minEε) =

Nε∑
i=1

(1
2
α(uiui−1 + ui+1ui) + ui−1ui+1 + 1

)
.

Compattezza. Notiamo che se supE
(1)
ε (uε) < +∞, allora, a meno di passare a sotto-

successioni, esiste K ∈ N e un numero finiro di indici iε1, . . . , i
ε
K tali che εiεj → xj ∈ [0, 1] e,

avendo postox0 = 0 e xK+1 = 1, se xj %= xj−1 allora esiste φj ∈ {0, 1, 2, 3} tale che

uε(εi) = vi+φj
definitivamente localmente (xj−1, xj). (1.45)

Figure 2.5: a 4-periodic minimizer

In the case α = −2 we have six ground states (both those for α < −2 and those for
|α| < 2), and analogously in the case α = 2.

2.6.1 Analysis at scale ε

The interesting case is (3). Note that in order to have absolute minimizers compatible with
ground states we would have to suppose that N be a multiple of 4 In any case, we may
scale our functional noting that for ground states we have

1
2
α(vivi−1 + vi+1vi) + vi−1vi+1 = −1

and consider the scales energies

E(1)
ε (u) :=

1
ε

(Eε(u)−minEε) =
N∑
i=0

(1
2
α(uiui−1 + ui+1ui) + ui−1ui+1 + 1

)
(in the case N is not a multiple of 4 the translation does not correspond to the value of
the minimum of Eε).

To understand the behaviour of this energy consider the particular case α = 0 and
N even. In such a case the interactions between odd and even indices are decoupled,
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and correspond to two antiferromagnetic disjoint systems. To each of such energy we can
associate a macroscopic variable, v1 (odd) and v2 (even) with values ±1 corresponding
to the alternating microscopic states. The overall continuous variable is then the vector
variable v = (v1, v2) and the limit energy is

F (v) = #(S(v1)) + #(S(v2)),

which can also be written in a more general form as∑
t∈S(v)

ψ(|v+
1 − v−1 |+ |v+

2 − v−2 |),

with ψ(t) = t/2. In the general case when the odd and even lattices are not decoupled,
then it is more convenient to introduce a pattern variable.

Compactness. Note that if supεE
(1)
ε (uε) < +∞ then, up to subsequences, there exist

K ∈ N and a finite number of indices Iε1 , . . . , i
ε
K such that εiεj → xj ∈ [0, 1] and, having set

x0 = 0 and xK+1 = 1, if xj 6= xj−1 then there exists φj ∈ {0, 1, 2, 3} such that

uε(εi) = vi + φj definitively locally in (xj−1, xj) (2.21)

Definition of the order parameter. Let φ : [0, 1] → {0, 1, 2, 3} be a piecewise-
constant function. We say that uε → φ if there exists a finite set of points 0 = x0 < x1 <
. . . < xM = 1 such that φ = φj on (xj−1, xj) and (2.21) holds.
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Definizione del parametro d’ordine limite. Sia φ : [0, 1]→ {0, 1, 2, 3} una funzione
costante a tratti. Diremo che uε → φ se esiste una partizione finita x0 = 1, . . . , xK+1 tale
che φ = φj su (xj−1, xj) e vale (1.45).

Calcolo del Γ-limite. È facile localizzare il calcolo del Γ-limite e ricondursi ad anal-
izzare la transizione ottimale tra due stati v = uk e uk+l for φ ∈ {1, 2, 3}, il cui valore
minimo è dato da

ψ(l) = min
{ +∞∑

i=−∞

(1
2
α(uiui−1 + ui+1ui) + ui−1ui+1 + 1

)
: ui = (u0)i for i ≤ −4 ui = (ul)i for i ≥ 4

}
.

Dato che questo minimo è fatto su un numero finito di stati il suo calcolo è immediato. Il
suo valore è

ψ(l) =


min{6− 3α, 2 + α} se l = 1
2− 2|α| se l = 2
min{6 + 3α, 2− α} se l = 3.

Il Γ-limite ha la forma

F (φ) =
∑

t∈S(φ)∩[0,1)

ψ(|φ(t+)− φ(t−)|),

dove φ è estesa 1-periodicamente fuori di (0, 1). Nella Fig 1.6 è rappresentata una funzione
u e il corrispondente “parametro di fase” φ.

-1

+1

!=0 !=3 !=1

Figure 1.6: spin con transizioni della fase φFigure 2.6: a function u and its corresponding phase parameter φ

Computation of the Γ-limit. We may localize the reasoning and compute the Γ-
limit just for an optimal transition between two states corresponding to uk and uk+l with
l ∈ {1, 2, 3}. The energy of such a transition is obtained by a minimal-transition problem

ψ(l) = min
{ +∞∑
i=−∞

(1
2
α(uiui−1 + ui+1ui) + ui−1ui+1 + 1

)
:

ui = (u0)i for i ≤ −4, ui = (ul)i for i ≥ −4
}
.

This value is computed over a finite set of states, and can be easily seen to be

ψ(l) =


min{6− 3α, 2 + α} if l = 1
2− 2|α| if l = 2
min{6 + 3α, 2− α} if l = 3.
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The Γ-limit has the form

F (φ) =
∑

t∈S(φ)∩[0,1)

ψ(|φ(t+)− φ(t−)|),

where φ is extended periodically outside (0, 1).

2.6.2 Three-point interactions

We may consider (directly in the surface scaling) interaction between three (or more)
neighbouring points; i.e., of the form

Eε(u) =
∑
i

f(ui−1, ui, ui+1)

It is interesting to note that next-to-nearest neighbours interactions can be seen as a
particular case of three-point interactions where

f(ui−1, ui, ui+1) =
1
2

(
f1(ui, ui+1) + f1(ui−1, ui)

)
+ f2(ui−1, ui+1).

The pattern energy above can be recovered when f is minimized by triplets of the form
(±1,±1,∓1) and (±1,∓1,∓1).

2.7 Ternary systems: multiscale limits

We now highlight a further phenomenon due to the presence of more than two competing
‘species’ of phases. We consider u : εZ ∩ [0, 1] → {−1, 0, 1}, and ϕ : {−1, 0, 1}2 → R
satisfying the following properties:

(i) (symmetry) ϕ(u, v) = ϕ(v, u) = ϕ(−u,−v)
(ii) (uniform ground states) argminϕ = {(1, 1), (−1,−1)} and, wlog, minϕ = 0;
(iii) (optimal phase transition) ϕ(−1, 1) > 2ϕ(0, 1) > 0.
The energies we consider are

Eε(u) =
∑
i

ϕ(ui, ui−1).

As usual we suppose that N = 1/ε is integer and we assume periodic boundary conditions
so as to avoid boundary effects. Condition (ii) ensures that ground states are only the
constant functions identically equal to 1 and −1. Condition (iii) implies that if we have a
transition between 1 and −1 it is energetically favourable to insert a 0 phase

If {uε} is a sequence with supEε(uε) = C < +∞ then we deduce that ϕ((uε)i(uε)i−1) =
0 except for a finite set of i. Up to subsequences, we may suppose that this set may be
written as

Iε := {iε1, . . . , iεM}
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for some M . We also define iε0 = 0 and iεM+1 = N . Note that condition (i) gives
• (uε)i = (uε)iεk ∈ {−1, 1} for i = iεk, . . . , i

ε
k+1 − 1 for all k = 0, . . .M ;

• if Jε := {εi : (uε)i = 0} then #Jε ≤M .

Note then the ‘multiscale behaviour’ of the parameters:
(i) the 0-phase is not detected by L1-convergence; moreover, the piecewise-constant

extensions of uε converge to a function u ∈ BV ((0, 1); {±1});
(ii) the 0-phase is concentrated on a finite number of points, which converge, up to

subsequences, to points in the set J := {x1, . . . , xM}. Note that some of these points may
coincide.

It is convenient to consider the measures

µε =
∑
i∈Jε

δεi .

Up to subsequences these measures converge weakly∗ to a measure∑
x∈J

k(x)δx,

with k(x) ∈ N representing the number of sequences in Jε converging to x.

We may alternatively compute the Γ-limit with respect to L1-convergence (thus in-
tegrating out the effect of the 0-phase in the limit), or with respect the convergence in
L1 ×M. The energies are coercive with respect to both convergences. The second Γ-limit
gives more information, and is compatible with more constraints (eg, if we fix the total
mass of µε or, equivalently the number of points in Jε).

Theorem 2.7.1 (multiphase limits) The Γ-limit is finite on pairs function/measures
(u, µ) as above, and is of the form

F (u, µ) = C0#(S(u) \ J) +
∑
x∈J

(C1 + C2(k(x)− 1)) ,

where

C0 = ϕ(1,−1),
C1 = 2ϕ(0, 1),
C2 = min{ϕ(0, 0), 2ϕ(0, 1)} .

Proof. If x ∈ S(u) \ J then there exist no sequences of points of εJε converging to x; hence
we have at least one index i with εi→ x and ϕ((uε)i, (uε)i−1) = ϕ(1,−1)
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If x ∈ J then there exist at least two indices i such that ϕ((uε)i(uε)i−1) = ϕ(0,±1);
The other interactions of i where (uε)i = 0 or (uε)i−1 = 0 satisfy

ϕ((uε)i, (uε)i−1) ≥ min{ϕ(0, 1), ϕ(0, 0)}
so that (taking into account that (0, 0) pairs are counted twice) for any such x we have a
contribution of at least C1 + C2(k(x)− 1).

The recovery sequences are constructed by optimizing the process above, and are pic-
tured in Figures 2.7 and 2.8.

Figure 2.7: recovery sequence in the case ϕ(0, 0) < 2ϕ(0, 1) for k(x) = 4

Figure 2.8: recovery sequence in the case ϕ(0, 0) > 2ϕ(0, 1) for k(x) = 4

Note that we may rewrite F as

F (u, µ) =
∑

x∈S(u)

ψ(k(x)) +
∑

x∈J\S(u)

(C1 + C2(k(x)− 1)) ,

where ψ given by

ψ(k) =
{
C0 if k = 0
C1 − C2 + C2k if k ≥ 1

highlights the effect of the 0-variable on the interface.

Corollary 2.7.2 The Γ-limit with respect to the L1-convergence is given by

F (u) = C1#(S(u)).
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C0

C1

Figure 2.9: dependence of the interfacial energy on the 0-variable density

Proof. The Γ-limit is obtained from the theorem above by choosing J = S(u) and k(x) = 1;
ie µ =

∑
x∈S(u) δx.

Exercise 2.7.3 Let K > 0 be a fixed natural number and let Eε(u) be defined as above
with the constraint that #{i : ui = 0} = K. Prove that the Γ-limit with respect to the
L1-convergence is given by

F (u) =
{
C1 + C2(K − 1) if u is constant
(C1 − C2)#S(u) + C2K otherwise.
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[2] A. Braides and M.Cicalese. Surface energies in nonconvex discrete systems. M3AS 17
(2007) 985-1037
Ternary systems (in any dimension) are studied in
[3] R. Alicandro, M. Cicalese, and L. Sigalotti. Phase transition in the presence of surfac-
tants: from discrete to continuum. Preprint cvgmt.sns.it



Chapter 3

Spin Systems

In this section we consider energies defined on functions u : Ωε := εZd ∩ Ω→ {−1,+1}.

3.1 Nearest-neighbour interactions

We first consider energies taking into account only nearest-neighbour interactions; i.e., of
the form

Eε(u) =
∑

εi,εj∈Ωε,|i−j|=1

εdf(ui, uj)

(we adopt the notation ui = u(εi)).
Following the arguments in Section 2.4, which are valid in any dimension, it is not a

restriction to limit our analysis to two f :
i) f(u, v) = 1

4(u − v)2 (ferromagnetic energies). In this case the minimization of Eε
favours uniform states u ≡ 1 or u ≡ −1;

ii)f(u, v) = 1
4(u− v)2 (antiferromagnetic energies). In this case the minimization of Eε

favours configurations with nearest neighbours of changing sign.
We will mainly concentrate on the first of the two cases, as the second one can be

reduced to the first (for the cubic lattice) by the change of variables wi = (−1)iui, where
(−1)i = (−1)i1+i2+...+id .

Hence, we consider the family of energies

Eε(u) =
1
4

∑
εi,εj∈Ωε,|i−j|=1

εd(ui − uj)2 ui ∈ {−1, 1}. (3.1)

As in the one-dimensional case, we may relate to Eε a point-energy functional as follows.
We introduce the ‘dual lattice’ of Zd

Z =
{ i+ j

2
: i, j ∈ Zd, |i− j| = 1

}
,

43



44 CHAPTER 3. SPIN SYSTEMS

and correspondingly
Ω′ε = εZ ∩ Ω

and to every u : Ωε → {−1,+1} we associate a new function v : Ω′ε → {−1, 0,+1} defined
by

vk =
ui + uj

2
, where k ∈ Z and are such that k =

i+ j

2
, i, j ∈ Zd, |i− j| = 1. (3.2)

Note that v is such that

vk =


−1 if ui = uj = −1
0 if ui = −uj
1 if ui = uj = 1.

We then obtain
Eε(u) =

∑
εk∈Ω′ε

εdW (vk) =: Ẽε(v),

where

W (v) =

{ 0 if v = −1 or v = 1
1 if v = 0
+∞ otherwise.

(3.3)

Note that if uε ⇀ u then also vε ⇀ u (here vε is identified with its piecewise-constant
interpolations on the cells of the dual lattice, so that

lim inf
ε→0+

Eε(uε) ≥ lim inf
ε→0+

Ẽε(vε) ≥ d
∫

Ω
W ∗∗(u) dt,

where in the last inequality we have taken into account that the measure of the reference
unit cell in the dual lattice Z is 1

d

As in one dimension the Γ-limsup inequality for Eε cannot be directly deduced from
that for Ẽε. In the case when the limit function is of the form u = 2χC − 1 with C
sufficiently regular, eg C a finite union of cubes of Rd, then a recovery sequence is given by
uε(εi) = u(εi). Indeed, for these functions the energy concentrates on the interface ∂C∩Ω;
ie, all the strictly positive contributions derive from nearest-neighbour interactions with
εi, εj on opposite sides of ∂C (for which we have vε(εk) = 0 for k = i+j

2 ) and

lim
ε→0

Eε(uε) = lim
ε→0

ε(d− 1-dimensional measure of ∂C ∩ Ω) = 0. (3.4)

Hence, we have

Γ- lim
ε→0+

Eε(u) =
{

0 if |u| ≤ 1 a.e.
+∞ otherwise.
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3.1.1 Phase and anti-phase transitions

As in the one-dimensional case, the construction of recovery sequences at scale 1 suggest
to analyze the limit at scale ε. We then scale the energy as

E(1)
ε (u) =

Eε(u)
ε

=
1
4

∑
εi,εj∈Ωε,|i−j|=1

εd−1(ui − uj)2 ui ∈ {−1, 1}. (3.5)

From now on we suppose that Ω has a Lipschitz boundary. Let uε be such that
supεE

(1)
ε (uε) < +∞ and set Gε := {uε = 1}. Note that the interaction energy be-

tween two nearest neighbours is 0 if εi, εj ∈ Gε and is εd−1 otherwise; that is, exactly the
d − 1-dimensional measure of the common boundary of the two cells ε(i + [−1

2 ,
1
2)d) and

ε(j + [−1
2 ,

1
2)d). Hence, having set

Iε :=
{
i ∈ Zd : ε

(
i+ [−1

2
,
1
2

)d
)
⊂ Ω

}
, Ω̃ε :=

⋃
i∈Iε

ε
(
i+ [−1

2
,
1
2

)d
)
,

we have
E(1)
ε (uε) ≥ Hd−1(∂Gε ∩ Ω̃ε). (3.6)

Moreover, since Ω has Lipschitz boundary,

Hd−1(∂Gε \ Ω̃ε) ≤ cHd−1(∂Ω). (3.7)

Hence, by Theorem 1.3.6, from (3.6) and (3.7) we deduce that, up to subsequences, Gε
converges in measure to a set of finite perimeter G ⊂ Ω; ie, uε converges strongly in L1 to
u = −1 + 2χG . We now analyze the Γ-limit of E(1)

ε with respect to the L1-convergence.
We may optimize estimate (3.6) by observing that νGε may only take the values

±ek, k = 1, . . . , d, and then, for all Ω′ ⊂⊂ Ω, we have

E(1)
ε (uε) ≥

∫
∂Gε∩Ω′

ϕ(νGε) dHd−1, (3.8)

for every norm ϕ such that ϕ(ek) ≤ 1 for all k = 1, . . . , d. The largest such norm is

‖ν‖1 :=
d∑

k=1

|νk|, ν = (ν1, . . . , νd).

Hence, thanks to (3.8) and Theorem 1.3.7, we have

lim inf
ε→0

E(1)
ε (uε) ≥ sup

Ω′⊂⊂Ω

∫
∂∗G∩Ω′

‖νG‖1 dHd−1 =
∫
∂∗G
‖νG‖1 dHd−1. (3.9)
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As for the Γ-lim sup inequality, it is sufficient to construct a recovery sequence for
a polyhedral set G. For such a set we may easily check that the sequence uε(εi) :=
−1 + 2χG(εi) is such that

lim
ε→0

E(1)
ε (uε) =

∫
∂G
‖νG‖1 dHd−1.

Hence, we have

E(1)(G) := Γ- lim
ε→0+

E(1)
ε (G) =


∫
∂∗G
‖νG‖1 dHd−1 if Per(G) < +∞

+∞ otherwise.

(3.10)

Remark 3.1.1 (minimal interface problems) We consider the minimum problems

mε := min
{
E(1)
ε (u) : #{i : ui = 1} = pε# Ωε

}
,

where pε is chosen such that mε 6≡ +∞ (eg, we may take pε such that pε#Ωε ∈ N) and
pε → p ∈ [0, 1]. Then thanks to the previous Γ-convergence result, we have that minimizers
of mε converge to functions minimizing

m := min
{∫

∂∗G
‖νG‖1 dHd−1 : |G| = p |Ω|

}
.

To check this it suffices to check that for |G| = p |Ω| we may construct a recovery sequence
uε for G in such a way that #{i : uε(εi) = 1} = pε# Ωε. It is sufficient to show this for G
a polyhedral set. In this case, consider the recovery sequence ũε(εi) = −1+2χG(εi) (which
may not satisfy #{i : ũε(εi) = 1} = pε# Ωε)strongly converging in L1 to −1+2χG. Having
set c̃ε := #{i : ũε(εi) = 1}, εdc̃ε converges to p|Ω|. Hence, if we set cε := pε#Ωε, we have
εd(cε− c̃ε)→ 0. We may suppose, eg, that cε > c̃ε and set lε := (cε− c̃ε) 1

d , lε := [lε], where
we denote by [t] the integer part of t ∈ R. Note that εlε → 0 and 0 < ldε − ldε ≤ dld−1

ε . We
choose iε such that Qε := εiε + [0, lεε)d ⊂ Ω \G and let Jε ⊂ (Ω \ (G ∪Qε)) ∩ εZ be such
that #Jε = ldε − ldε . We then set

uε(εi) =
{

1 if εi ∈ Qε ∪ Jε
ũε(εi) otherwise.

By construction then, uε satisfies the constraint #{i : uε(εi) = 1} = cε and moreover

Eε(uε) ≤ Eε(ũε) + Cεd−1(#(∂Qε ∩ εZd) + #Jε) ≤ Eε(ũε) + C(εlε)d−1,

from which the conclusion.
We conclude that, in order to minimize E(1)

ε the spins 1 and −1 arrange in a fashion
so as to minimize the ‘interface’ between the two regions {uε = −1} and {uε = 1}. In
other words, the two ‘phases’ 1 and −1 do not mix, and they generate a ‘sharp’ interface
minimizing an anisotropic ‘crystalline’ perimeter.
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Exercise 3.1.2 Consider anisotropic microscopic interactions; i.e., energies of the form

Eε(u) =
1
4

∑
εi,εj∈Ωε,|i−j|=1

ci−jεd(ui − uj)2 ui ∈ {−1, 1}. (3.11)

with ck = c−k. Prove that in the surface scaling we obtain the energy

F (1)(G) =
∫
∂∗G∩Ω

d∑
k=1

ck|νk| dHd−1 . (3.12)

The antiferromagnetic case: antiphase boundaries

As in the one-dimensional case with the change of variables wi = (−1)iui, an antiferromag-
netic energy (in u) turns into a ferromagnetic energy (in w). Moreover, to a phase interface
for w there corresponds an antiphase boundary for u; i.e. the passage from a state (−1)i

to (−1)i+1. Note that the two ground states are ‘indistinguishable’ as the average spin is
concerned, being zero in both cases.

3.1.2 The triangular lattice. Frustration

The analysis of nearest-neighbour interactions for ferromagnetic systems can be carried on
following exactly the same line for other lattices, such as the triangular lattice. The change
of parameter that carries an antiferromagnetic variable into a ferromagnetic variable, thus
reducing the study to a single energy is possible on lattices where all cycles have even
order (eg, the hexagonal lattice in two dimension), but does not hold for example for
the triangular lattice (where we have cycles of order 3). In this case the behaviour of
antiferromagnetic systems is completely different in the surface scaling regime.

We consider in two dimensions the triangular lattice T generated by the vectors v1 =
(1, 0) and v2 = (1

2 ,
√

3
2 ); ie, T = Zv1 ⊕ Zv2. This lattice entails a partition of R2 into

equilateral triangles, where every node i of the lattice has six nearest neighbours: i ± v1,
i ± v2 and i ± (−1

2 ,
√

3
2 ). We consider nearest-neighbour energies defined on functions

u : εT∩Ω→ {±1}. We may identify such functions with their piecewise-constant extensions
to parallelograms centered in the nodes εi and edges parallel to v1 and v2 which take on
these sets their value in the center εi.

For ferromagnetic energies the analysis is similar to the one for the square lattice. The
Γ-limit at order 1 is still of the form (3.10) with a norm ϕ with hexagonal symmetry in
the place of ‖ · ‖1. We consider in detail the antiferromagnetic case; ie, energies

Eε(u) =
1
4

∑
εi,εj∈Ωε,|i−j|=1

ε2(ui + uj)2.
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It is again useful to rewrite the energy in terms of a new variable. More precisely, to every
discrete function u we associate an auxiliary variable v defined as follows: for every triple
(i, j, k) ∈ T3 of nodes which are the vertices of a triangle of minimal area in the lattice, we
set

v(εi, εj, εk) =
1
3

(ui + uj + uk).

Note that if uε ⇀ u, then also vε ⇀ u (here, vε is identified with its piecewise-constant
interpolation taking the value vε(εi, εj, εk) on the triangle with vertices εi, εj, εk). We also
have

v(εi, εj, εk) =


±1 if ui = uj = uk = ±1
1
3 if ui = uj = 1 and uk = −1
−1

3 if ui = uj = −1 e uk = 1.

We then set

W (v) =


3
2 if v = ±1
1
2 if v = ±1

3
+∞ otherwise.

so that
W (v(εi, εj, εk)) =

1
2

∑
i,j,k

ε2 1
4

((ui + uj)2 + (uj + uk)2 + (uk + ui)2)

(the factor 1
2 is due to the fact that every pair of such points belong to two different

triangles). We may then write

Eε(u) =
∑

(i,j,k)

ε2W (v(εi, εj, εk)) + o(1) =: Ẽε(v) + o(1), (3.13)

where the sum is computed on all triples which are vertices of triangles contained in Ω.
The term o(1) is an error due to the contribution of triangles which intersect the boundary
of Ω.

We may then repeat the arguments as in the computation of the Γ-limit of ferromagnetic
energies on the square lattice, to show that the Γ-limit of Eε coincides with that of Ẽε and
is given by

Γ- lim
ε→oEε(u) =


4√
3

∫
Ω
W ∗∗(u) dx if |u| ≤ 1 a.e.

+∞ otherwise.

We may explicit the limit energy density W ∗∗:

W ∗∗(u) =


1
2 if |u| ≤ 1

3

3
2 |u| if 1

3 ≤ |u| ≤ 1.
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Note that such energy density takes its minimum in the whole interval [−1
3 ,

1
3 ]; ie, mini-

mizing sequences can be constructed by mixing in arbitrary proportion (periodic) minimal
configurations corresponding to v = −1

3 and v = 1
3 . It is interesting to note that in this

case the geometry of the lattice allows phase transitions without interfacial penalization at
any scale. In fact, we may construct sequences of lattice functions converging to piecewise-
constant functions with values 1

3 and −1
3 with interfaces in the lattice directions, and

minimizing the energy at every single microscopic triangle, as pictured in Figure 3.1 (dark
dots corresponding to +1, empty dots to −1). By a density argument, we may approximate
all functions u with |u| ≤ 1

3 . This shows that in this case we may have arbitrarily complex
patterns of ground states (frustration)

1

3

-
1

3

Figure 3.1: microscopic pattern of a transition with zero-energy interface (dotted line)

The absence of an interfacial energy can be described by studying the Γ-limit of the
scaled energy

E(1)
ε (v) =

∑
(i,j,k)

ε

(
W (v(εi, εj, εk))− 1

2

)
.

If we take Ω = [0, 1]v1⊕ [0, 1]v2, ε = 1
n , n ∈ N , and v, eg, satisfying periodicity conditions,

then by using the previous construction we may show that the Γ-limit of E(1)
1
n

is 0 on all

the functions v with |v| ≤ 1
3 . Note that, taking Ω arbitrary, boundary interactions may

give a non-negligible contribution to the limit.

3.1.3 The XY model: vortices

We briefly outline an important variant to the scalar spin model, where instead the variable
u is vectorial. We only treat the two-dimensional case d = 2; i.e., u : εZ2 ∩ Ω → R2 and
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satisfies |u| = 1 (ie, u ∈ S1). The energy (after normalization) is

Eε(u) =
∑
ij

ε2(1− 〈ui, uj〉) . (3.14)

In this case the vectors ui tend to be aligned at neighbouring points.
Note that Eε can also be written as

Eε(u) =
1
2
ε2
∑
ij

ε2
∣∣∣ui − uj

ε

∣∣∣2 =
1
2
ε2

∫
Ω
|∇u|2 dx , (3.15)

where u is now identified with a piecewise-affine interpolation on a triangulation of εZ2.
This shows that the Γ-limit is 0 on H1(Ω, S1) at all scales εα with α < 2; in particular it
is 0 at the surface scale ε.

We note that the energy can also be viewed as a penalization of the distance to S1; in
particular (after regrouping terms) we can write

Eε(u) ≥ C
∫

Ω
(|u|2 − 1)2 dx (3.16)

(note that, while ui ∈ S1, its piecewise-affine extension does not satisfy the constraint
|u| = 1).

Discrete Ginzburg-Landau energies

We may scale the energy above by ε2| log ε|, and define

Evε (u) =
1

ε2| log ε| |
∑
ij

ε2(1− 〈ui, uj〉) . (3.17)

Taking into account (3.15) and (3.16), for all fixed 1 > δ > 0 we may estimate

Evε (u) ≥ δ

2| log ε|
∫

Ω
|∇u|2 dx+

(1− δ)
ε2| log ε|

∫
Ω

(|u|2 − 1)2 dx. (3.18)

The latter is a Ginzburg-Landau energy. Its Γ-limit is finite on functions u such that there
exist x1 . . . xN ∈ Ω and u ∈ H1

loc(Ω \ {x1 . . . xN}, S1). For each such xj we may define the
degree dj ∈ Z of u at xj . Then, we have

Γ- lim
ε→0

( δ

2| log ε|
∫

Ω
|∇u|2 dx+

(1− δ)
ε2| log ε|

∫
Ω

(|u|2 − 1)2 dx
)

= δπ

N∑
j=1

|dj | . (3.19)

By letting δ → 1 we obtain an optimal lower bound.
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From the density results on Ginzburg-Landau vortices it is sufficient to check the upper
bound only at functions with degree −1 or +1; e.g., for u = x/|x|. For this the computation
reduces to a Riemann sum giving π as a limit. We finally obtain that

Γ- lim
ε→0

Evε (u) = π
N∑
j=1

|dj |

is a vortex energy (v for vortex).

Liquid crystal-type singularities

A further variation of the scalar energy (after normalization) is

Eε(u) =
∑
ij

ε2
(

1− (〈ui, uj〉)2
)
, (3.20)

with u ∈ S1. In this case the vectors ui tend to have the same direction at neighbouring
points, but may also have opposite versus. The same reasoning as above applies, but the
limit parameter is a function with vortices of degree in 1

2Z.

3.2 Next-to-nearest neighbours

We proceed with a brief study of the subsequent case (in order of complexity), when each
point in a square lattice ‘interacts’ with its nearest and second-nearest neighbours. Again,
the pattern that may appear depend on the ‘sign’ of the interactions that may favour
or disfavour oscillating configurations, but also on the balance between first and second-
neighbour interactions. We treat the two-dimensional setting only, in the case that we
consider the most interesting.

We fix an open bounded set Ω in R2 with regular boundary. Our energy will be of the
form

Eε(u) =
1
4
c1

∑
n.n.

ε2uiuj +
1
4
c2

∑
n.n.n.

ε2uiuj ,

where n.n. (nearest neighbours) entails that the sum is taken over all i, j ∈ Z2 such that
εi, εj ∈ Ω and |i−j| = 1, while n.n.n. (next-to-nearest neighbours) are such that |i−j| = √2
(corresponding to the diagonals of the squares of the lattice).

3.2.1 Ferromagnetic interactions: superposition

Consider next-to-nearest neighbour ferromagnetic interactions; i.e. with c1, c2 < 0. We
immediately obtain a lower bound by considering separately n.n. and n.n.n. interactions.
In fact,

Eε(u) ≥ E1
ε (u) + E2,e

ε (u) + E2,o
ε (u),
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where
E1
ε (u) =

1
4
c1

∑
n.n.

ε2uiuj , E2,e/o
ε (u) =

1
4
c2

∑
even/odd n.n.n.

ε2uiuj ,

and by even/odd indices we mean those i ∈ εZ2 for which
∑

k ik/ε is even/odd. In this
way we have regrouped the interactions as interactions on three separate square lattices
(see Fig. 3.2):

Figure 3.2: nnn interactions as the superposition of three nn systems

εZ2,
√

2εJZ2, and
√

2ε
(( 1√

2
,

1√
2

)
+ JZ2

)
.

where J is the rotation by π/4. By the results for nearest neighbours we have

Γ- lim
ε→0

E1
ε (u) = c1

∫
S(u)
‖ν(u)‖1dH1

Γ- lim
ε→0

E2,e
ε (u) =

c2√
2

∫
S(u)
‖Jν(u)‖1dH1 = c2

∫
S(u)
‖ν(u)‖∞dH1

Γ- lim
ε→0

E2,o
ε (u) =

c2√
2

∫
S(u)
‖Jν(u)‖1dH1 = c2

∫
S(u)
‖ν(u)‖∞dH1dH1

Since we have

lim inf
ε

Eε(uε) ≥ lim inf
ε

E1
ε (uε) + lim inf

ε
E2,e
ε (uε) + lim inf

ε
E2,o
ε (uε),

we immediately obtain

Γ- lim inf
ε→0

Eε(u) ≥
∫
S(u)

ϕ(ν(u))dH1,
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where
ϕ(ν) = c1‖ν‖1 + 2c2‖ν‖∞ .

On the other hand we have remarked that for nearest-neighbour interactions recovery
sequences are simply given by the discretization of the target function; hence, they are the
same for the three Γ-limits and indeed

Γ- lim
ε→0

Eε(u) =
∫
S(u)

ϕ(ν(u))dH1 .

The shape of {ϕ(ν) = 1} is described in Fig. 3.3.

(1,0)/(c1+2c2)

(1,1)/(2c1+2c2)

Figure 3.3: energy density level set for nnn ferromagnetic interactions

Exercise 3.2.1 Let ϕ be a symmetric norm in R2; ie, ϕ(ν) = ϕ(−ν). Then prove that ϕ
can be obtained as the energy function of a system of long-range interactions

Eε(u) =
1
4

∑
k∈Z2\{0}

∑
|i−j|=εk

ε2ckuiuj .

(Treat first the case of ϕ crystalline (ie, {ϕ = 1} a polygon) with vertices corresponding to
directions k ∈ Z2 \ {0} with |k| ≤M for a fixed M).

Deduce that minimizer for the minimum problem with constraint ε2#{i : ui = 1} = Cε
with Cε → C converge to an octagon.



54 CHAPTER 3. SPIN SYSTEMS

3.2.2 Anti-ferromagnetic interactions: partitions and patterns

In this case it is convenient to rewrite the energy taking into account the local interactions
in a fashion similar to that used for the hexagonal lattice. Indeed we may rewrite

Eε(u) =
1
4

∑
i,j,k,l

ε2
(1

2
c1(uiuj + ujuk + ukul + ului) + c2(uiuk + ujul)

)
+ o(1)

where the sum is taken over all i, j, k, l vertices of a lattice square, ordered in such a way
that |i− j| = |j − k| = |k − l| = |l − i| = 1 and |i− k| = |j − l| = √2. The factor 1

2 comes
from the fact that each pair of nearest neighbours belongs to two such lattice squares, and
again the error o(1) is due to the squares close to the boundary. Note that each cube is
considered four times.

Note that indeed the sum above can be rewritten as parameterized on the centres of
the cubes; i.e. on the points m = 1

4(i+ j + k + l). We would like to introduce equivalent
energies of a simpler form

Fε(v) =
∑
m

ε2f(vm),

and

vm =
1
4

(ui + uj + uk + ul).

Figure 3.4: possible patterns of interactions on a cube

The possible values of v are

ui = uj = uk = ul = 1 =⇒ vm = 1
ui = uj = uk = ul = −1 =⇒ vm = −1

ui = uj = uk = 1, ul = −1 =⇒ vm =
1
2

ui = uj = uk = −1, ul = 1 =⇒ vm = −1
2

ui = uj = −1, uk = ul = 1 =⇒ vm = 0
ui = uk = −1, uj = ul = 1 =⇒ vm = 0.
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The list comprises all different cases (upon cyclical permutation of the indices), which are
pictured in Figure 3.4.

How to define f? There is no ambiguity for v = ±1 and v = ±1
2 . In these cases

f(vm) =
1
2
c1(uiuj + ujuk + ukul + ului) + c2(uiuk + ujul)

so that

f(v) =
{

2c1 + 2c2 if |v| = 1
0 if |v| = 1

2 .

For v = 0 the definition must take into account the two values −2c2, corresponding
to the case ui = uj = −1 uk = ul = 1, and −2c1 + 2c2, corresponding to the case
ui = uk = −1 uj = ul = 1. As we are interested in minimum energy configurations, the
‘natural’ definition for f is then

f(0) = min{−2c2, −2c1 + 2c2}.

This is a very simple case of a homogenization formula that gives the overall value of an
averaged quantity in terms of a minimum problem among functions (in this case just two
possible states) satisfying some average conditions (in this case, that their average be zero).

We have two cases, whether

−2c2 ≥ −2c1 + 2c2 (i.e., 2c2 ≤ c1)

or not. In the first case, when f(0) = −2c1 + 2c2, the minimum configuration is the same
alternating state as that we encountered in the ‘plus case’ for nearest neighbours.

The case f(0) = −2c2 is more interesting since the minimizers have less symmetries.
We will consider this case only. We make the assumptions

0 < c1 < 2c2, c1 + 2c2 > 0

(in particular, f(0) = −2c2 < 0). In this case, the convex envelope of f is given by

ψ(v) =

 4c2

(
|v| − 1

2

)
if |v| ≤ 1

2

4(c1 + c2)
(
|v| − 1

2

)
if 1

2 ≤ |v| ≤ 1,

and the Γ-limit can be again described by
∫

Ω ψ(u) dx with the constraint that |u| ≤ 1.
The proof of this fact is the same as for nearest neighbours; the only care is in using the
minimal configuration in the computation of f(0) (that now corresponds to a layering of
ones and minus ones).

The limit minimal state is now 0, as in the ‘plus case’ for nearest neighbours, where anti-
phase boundaries appeared in the description of the second Γ-limit. In that computation, a
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simple change of sign in the variables allowed to use the computation for the ‘minus case’.
Here, this is not possible since the minimal configuration have more symmetries.

Note that the locally minimal configurations u in Z2 (for ε = 1) are periodic with period
two. Hence, it is natural to parameterize them after a translation in 2Z2 to a reference
cube. The four configurations we have after this translation may then be parameterized
by four parameters, that is suggestive to take ±e1 and ±e2. We have the correspondence

u(0, 0) = u(0, 1) = −1, u(1, 0) = u(1, 1) = 1 corresponds to e1

u(0, 0) = u(1, 0) = −1, u(0, 1) = u(1, 1) = 1 corresponds to e2

u(0, 0) = u(0, 1) = 1, u(1, 0) = u(1, 1) = −1 corresponds to −e1

u(0, 0) = u(1, 0) = 1, u(0, 1) = u(1, 1) = −1 corresponds to −e2.

If we may neglect the effects of the boundary of Ω (for example, if Ω is a cube and we
have periodic conditions for u), then we may describe the Γ-limit of the scaled functional

E(1)
ε (u) =

1
4
c1

∑
n.n.

εuiuj +
1
4
c2

∑
n.n.n.

ε(uiuj + 1)

in terms of a new four-dimensional parameter: for each uε we may define w : 2Z2 → R4

w(εi) = (ui, u(ε(i+ (1, 0))), u(ε(i+ (1, 1)), u(ε(i+ (0, 1))).

If we follow a sequence (uε) with supεE
(1)
ε (uε) < +∞ then we deduce that uε → 0 and

wε → w, where w takes a.e. only the values (−1, 1, 1,−1), (−1,−1, 1, 1), (1,−1,−1, 1)
and (1, 1,−1,−1), corresponding to e1, e2,−e1,−e2 above. In this case the surface energy
depends also on the two states on both sides of the interface, and can be written as

F (w) =
∫
S(w)

ϕ(w+, w−, νw)dH1,

where w± are the traces of w on both sides of the jump set S(w).
We do not describe the form of ϕ, but only give a picture of the ‘optimal transitions’ in

Figure 3.5 where the microscopical transitions are shown between the states (from left to
right) e2, e1, −e1 and −e2. The grey squares are those where the value of the interactions
between the corners is not minimal. It must be noted that the transition between e2

and −e2 is less energetically favourable since it must use a ‘diffuse’ interface, while the
transition between −e2 and −e1 with an interface at an angle of π/4 is more advantageous
than that at π/2. Even though this does not immediately suggest the form of ϕ, it shows
that it must be more complex than the surface energy in the nearest-neighbour case.

Exercise 3.2.2 (Three-point interactions) Consider the energy function f in Section
2.6.2, and the two-dimensional version of the energy therein; ie,∑

i

(
f(ui+εe1 , ui, ui−εe1) + f(ui+εe2 , ui, ui−εe2)

)
.
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Figure 3.5: microscopical transitions between four different phases

Describe the 16 ground states for this energy.

3.3 Bibliographical Notes

Most of this section is derived from
[1] R. Alicandro, A. Braides and M. Cicalese. Phase and anti-phase boundaries in binary
discrete systems: a variational viewpoint. Netw. Heterog. Media 1 (2006), 85–107
The study of the XY model is contained in
[2] R. Alicandro and M. Cicalese. Variational Analysis of the Asymptotics of the XY
Model. Arch. Rational Mech. Anal. 192 (2009), 501–536
A concise introduction to sets of finite perimeter can be found in
[3] A. Braides. Approximation of Free-Discontinuity Problems. Lecture Notes in Math.
1694, Springer Verlag, Berlin, 1998.
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Chapter 4

Homogenization of spin systems

4.1 Ferromagnetic homogenization

We consider inhomogeneous interactions. The corresponding energies are then of the form

Eε(u) = −
∑
ij

cεijuiuj ,

with the sum ranging on nearest neighbours. If cij ≥ 0 then the constant functions u = ±1
are absolute minimizers. We can then consider the scaled energies

Eε(u) =
∑
ij

εd−1cεij(1− uiuj),

and study their asymptotic behaviour.
Note that if

+∞ > C2 ≥ sup
ij
cεij ≥ inf

ij
cεij ≥ C1 > 0

then the functionals are coercive, and we immediately obtain the lower estimate

C2

∫
S(u)
‖ν‖1dHd−1 ≥ Γ- lim sup

ε→0
Eε(u)

≥ Γ- lim inf
ε→0

Eε(u) ≥ C1

∫
S(u)
‖ν‖1dHd−1

Note that the same problem makes sense also when long-range interactions are taken
into account. In this case a condition for the lower estimate to hold is that

inf
|i−j|=1

cεij ≥ C1 > 0,

59
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while the upper estimate holds (taking trivial interpolations as recovery sequences) if we
have

sup
i

∞∑
k=1

∑
|j−i|≥k

cεij ≤ C2 < +∞.

We are interested in cases when we expect the limit to be translationally invariant.
This is reasonable in the following cases.

Periodic setting

In this case we have a N -periodic function cij on Zd × Zd; ie such that

ci+N,j = ci,j+N = cij

and define the coefficient cεij on εZd × εZd by

cεi,j = ci/ε,j/ε .

Random setting

In this case the function cij = cωij on Zd × Zd depends on the realization of a random
variable, and again we set the coefficient cεij on εZd × εZd by

cεi,j = cωi/ε,j/ε .

4.1.1 The surface homogenization formula

We consider the two-dimensional case d = 2. The idea of an asymptotic formula translates
the ansatz that in the limit we will have a homogeneous energy of the form F (G) =∫
∂∗G ϕ(ν)dH1. If this is the case, then we may use the knowledge that ϕ must be convex

for lower semicontinuity reasons. This means that

ϕ(ν) = min
{∫

∂∗G∩Qν
ϕ(ν)dH1 : χG = χΠν on ∂Qν

}
. (4.1)

Here:
• Qν = Qν(0) is a unit square centered in 0 with a side orthogonal to ν
• Πν is the half plane {〈x, ν〉 ≥ 0},

formula (4.1) states that the plane Πν is minimal among variations contained in Qν . With
the notation

F (G,A) =
∫
A∩∂∗G

ϕ(ν)dH1, (4.2)
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we then have
ϕ(ν) = min

{
F (G,A) : χG = χΠν on ∂Qν

}
, (4.3)

and, introducing the same notation for discrete problems and using the Fundamental The-
orem of Γ-convergence

ϕ(ν) = lim
ε→0

min
{
Eε(u,A) : u = χΠν on ∂Qν

}
. (4.4)

By scaling ε to 1 (here below T plays the role of 1/ε) we finally obtain the asymptotic
homogenization formula

ϕ(ν) = lim
T→+∞

1
T

min
{ ∑
i or j∈Z2∩TQν

: u = χΠν outside ∂TQν
}
. (4.5)

Note that we have had to modify a little our boundary conditions since in general ∂TQν
does not intersect Z2.

4.1.2 Periodic Homogenization

In this case we can show that the limit in (4.5) holds.

Lemma 4.1.1 The limit (4.5) exists for all ν ∈ S1.

Proof. The proof is by subadditivity. Let

g(T ) = min
{ ∑
i or j∈Z2∩TQν

: u = χΠν outside ∂TQν
}
.

Let S > T ; then by covering (most part of) SQν∩∂Πν with copies of TQν we may construct
a test function for g(S) from the minimizer of g(T ) obtaining

g(S) ≤ S

T
g(T ) + o(S)

as S → +∞ and T → +∞. The existence of the limit is then proven after dividing by S
and taking first the limsup for S → +∞ and then the liminf for T → +∞.

Theorem 4.1.2 (periodic homogenization theorem) In the periodic setting above we
have

Γ- lim
ε→0

Eε(G) =
∫
∂∗G

ϕ(ν)dH1 =: Fhom(G) (4.6)

where ϕ is given by (4.5).
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Proof. We outline the proof, which follows standard arguments of homogenization theory.
The lower bound is obtained by blow-up: if uε → G we can define the measures

µε =
∑
ij

cεijε
1
2

(uεi − uεj)2δ(i+j)/ε,

so that Eε(uε) = µε(R2), and their weak∗ limit µ. In order to prove that lim infεEε(uε) ≥
Fhom(G) it suffices to prove that

dµ

dH1|G
(x) ≥ ϕ(ν(x))

at H1 a.a. points of G. Using the derivation formula

dµ

dH1|G
= lim

ρ→0

µ(Qρν(x))
ρ

and the fact that
lim
ρ→0

µε(Qρν(x)) = µ(Qρν(x))

except for a countable number of ρ, upon introducing T = ρ/ε, we finally obtain that

dµ

dH1|G
(x) = lim

T→+∞
1
T
E1(uT , TQν(x)),

where uT are obtained by scaling uε. At this point it suffices to note that
• upon a slight modification that does not change the limit of uT and the limit energy

we may suppose that uT = χx+Πν close to ∂TQν(x)
• we may translate x to 0 by the periodicity of cij .

In this way E1(uT , TQν(x)) ≥ g(T ) with ν = ν(x) in the notation of the lemma above,
and we have the lower bound.

The upper bound close to a linear interface of normal ν is obtained by covering it by
copies of translations of εTQν for T >> 1 and using the minimal uT for gT . For a polygon
the construction is repeated locally. The general case is recovered by density.

Exercise 4.1.3 Let 0 < α < β < +∞ and let cij be the N -periodic function given by

cij =
{
α if i1i2 = 0
β otherwise

on {0, . . . , N − 1}2. Prove that the homogenized energy density is α‖ν‖1 as in the case
when cij is identically α.
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Remark 4.1.4 (open problem) A typical problem in Optimal Design (usually for inte-
gral functionals) is that of the G-closure, which in its simplest form can be translated into
examining all possible energies that can be obtained by ‘homogenizing’ mixtures of two
types of homogeneous energies. In our case we can think of mixing ‘bonds’ of type α and
β as in the previous exercise, but with fixed proportion, say of α bonds.

Problem 1: Given a proportion θ ∈ [0, 1] compute the set of the limits ϕ of all possible
ϕh that can be obtained starting from periodic geometries of α and β of arbitrary period
and proportions θh of α bonds (and correspondingly 1− θh of β bonds) with θh → θ.

Problem 2: A simpler problem is that of giving (sharp) bounds for the ϕ described
in Problem 1. Note that the exercise above shows that for all θ ∈ [0, 1] we have a sharp
bound α‖ν‖1 ≤ ϕ(ν), independent of θ.

4.1.3 A simplified view to percolation theory

We want to compute a Γ-limit as in the previous section, of an energy where we randomly
mix coefficients. To this end we have to introduce some notions of percolation theory for
what is called the ‘bond percolation model’ (i.e., when the random choice is thought to be
performed on the connections. A different model, that can be treated similarly, is the site
percolation model. In our intuition it would correspond to choosing weak and strong nodes
– and to define a weak connection as a connection between two nodes of which at least one
is a weak node).

We do not want to introduce the formal definition of a random variable, but just to look
at the relevant elements of percolation theory that will allow us to describe our models.
From now on we will restrict to the two-dimensional case N = 2. We start by introducing
the dual lattice

Z =
{ i+ j

2
: i, j ∈ Z2, |i− j| = 1

}
.

Let
0 < α < β < +∞

A choice of connections between nodes of Z2 is a function ω : Z → {α, β}. We identify
each point γ ∈ Z with the segment [i, j] such that i, j ∈ Z2 and 2γ = i+ j.

We now want to express the fact that

ω(γ) =
{
α with probability 1− p
β with probability p.

This can be done rigorously by introducing some ‘independent identically distributed’ ran-
dom variables. This is not however the scope of our presentation. It suffices to describe
the ‘almost-sure’ properties of such ω.
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Let i, j ∈ Z2. A path L between i and j is a family {il : l = 0, . . . , N} in Z2 with
|il − il−1| = 1, i0 = i and iN = j. The length of a path is given by

|L|ω =
N∑
l=0

ω
( il + il−1

2

)
,

and corresponding to endowing the lattice Z (thought as the union of the segments) with
an inhomogeneous Riemannian distance. The distance between i and j is

dω(i, j) = min{|L|ω : L path between i and j} .
The following result can be derived from first-passage percolation results.

Lemma 4.1.5 (first-passage percolation formula) The limit

ϕp(ν) = lim
K→+∞

lim inf
T→+∞

inf
{ 1
|T |d

ω(i, i′) : i− i′ = Tν + o(T ); |i|+ |i′| ≤ KT
}

(4.7)

is finite and independent of ω for all ν, except for a set of ω with zero probability.

From this lemma in particular we infer the existence of the limit defining the function
ϕ in (4.5) taking ν⊥ in place of ν in (4.7) and i and i′ points close to Πν ∩ ∂TQν , and that
ϕ = ϕp. In addition, we also have that

ϕ(ν) = lim
T→+∞

1
T

min
{ ∑
i or j∈Z2∩TQν

: u = χxT+Πν outside ∂(xT + TQν)
}
. (4.8)

for any choice of points {xT } with supT |xT | = O(T ). This allows to carry on the proof of
the lower bound of the following theorem in the same way as for Theorem 4.1.2. Similarly,
we can also construct a recovery sequence.

Theorem 4.1.6 (Random homogenization theorem) In the random setting above we
almost surely have

Γ- lim
ε→0

Eε(G) =
∫
∂∗G

ϕp(ν)dH1 =: Fhom(G) (4.9)

where ϕ is given by (4.7).

4.2 Variational Percolation

In this section we consider two extreme cases when the final Γ-limit, which depends on p
exhibits a “percolation” phenomenon; ie, below (or above) some threshold is degenerate,
while above (or below) it is described by a usual surface energy.
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4.2.1 Percolation Clusters

In the notation of Section 4.1.3, we may deal with the two extreme cases α = 0 or β = +∞.
To this end we will have to introduce the notion of percolation cluster. As a matter of
notation, the case α will corresponds to a strong connection, and β to a weak connection.

Given ω, we say that two points γ, γ′ ∈ Z such that ω(γ) = ω(γ′) are connected if there
exists a path in Z such that each element of this path γ′′ is such that ω(γ′′) = ω(γ). Such
a path is called a weak channel if ω(γ) = α and a strong channel if ω(γ) = β. In this way,
we subdivide Z into ‘connected subsets’ where either ω(γ) = α or β.

If p < 1/2 then it is ‘more probable’ to have some γ with ω(γ) = α; not only, it is not
likely to have a large number of connected points with ω(γ) = β. This is expressed by the
fact that there is one (necessarily unique) infinite connected component of {ω = α}. We
call this set the infinite weak cluster (or simply weak cluster). Of course, the situation is
symmetrical for p > 1/2, in which case we have an infinite strong cluster.

The weak cluster (and the strong cluster for p > 1/2) are ‘well distributed’. This can
be expressed in the following way (channel property): there exist constants c(p) > 0 and
c1(p) > 0 such that a.s. for any δ, 0 < δ ≤ 1 there is a large enough number N0 = N0(ω, δ)
such that for all N > N0 and any square of size length δN contains at least c(p)δN disjoint
weak channels which connect opposite sides of the square. Moreover, the length of each
such a channel does not exceed c1(p)δN .

The dilute case: α = 0

In this case we normalize β = 1. Note that a path of weak connections has length 0.
The function ϕp can be defined as in Section 4.1.3. In this case we have ϕp identically

equal to 0 if p ≤ 1/2, while we have

min{ϕp(ν) : ν ∈ S1} > 0

if p > 1/2.
In this case the main difficulty is defining the convergence with respect to which to

compute the Γ-limit. In fact, given u with Eε(u) < +∞, we can construct ũ by setting
ũi = −ui at every i in the “interior” of the weak cluster; ie, such that ω((i + j)/2) = 0
whenever |i − j| = 1. Clearly, we still have Eε(u) = Eε(ũ) since the changes are not
detected by the energy. This shows that we cannot expect a strong convergence of the
piecewise-constant interpolations. In the case p > 1/2 we may nevertheless change the
parameter by choosing the limit u as the “majority” phase defined on the strong cluster.
The convergence we consider is the following: let S be the set of nodes corresponding to
bonds in the strong cluster; we say that uε → u if we have that

lim
ε→0

∑
i∈εS

ε2|(uε)i − ui| = 0 .
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Lemma 4.2.1 (compactness) Almost surely, from every sequence with Eε(uε) ≤ C <
+∞ we can extract a subsequence, and a function u ∈ BV (Ω; {±1}) such that uε → u.

Proof. The complement of the weak cluster is composed of finite-size “open” (ie, coinciding
with their interior in the sense above) connected sets of nodes (islands). It can be shown
that a.s. large islands are negligible. Given uε as above, we can define ũε as equal to uε on
εS, and on each island equal to the “majority phase” on the boundary (the boundary is
defined as the set in the strong cluster with distance 1 to the island). Note that

Eε(ũε) ≤ Eε(uε).

Then ũε can be shown to have equibounded ferromagnetic energy, and hence be strongly
precompact in L1. This means that

0 = lim
ε→0

∑
i

ε2|(ũε)i − ui| = lim
ε→0

∑
i∈εS

ε2|(ũε)i − ui| = lim
ε→0

∑
i∈εS

ε2|(uε)i − ui| ,

as desired.

Theorem 4.2.2 (dilute percolation theorem) Almost surely in ω, the Γ-limit of Eε is
deterministic. Moreover, we have

(i) if p ≤ 1/2 the Γ-limit is identically 0 on the whole L1(Ω);
(ii) if p > 1/2 the Γ-limit F depends on p through ϕp, and we have

F (u) =
∫
S(u)

ϕp(ν(u))dH1

on its domain.

Proof. (i) By the channel property we immediately see that F (u) = 0 if {u = 1} is the
characteristic function of a polyhedron. The result follows then by density.

(ii) If ũ is constructed as in the previous lemma, we can use the previous result with
α > 0 and β = 1 and obtain that

lim inf
ε

Eε(uε) ≥ lim inf
ε

Eε(ũε) ≥
∫
S(u)

ϕpα(ν)dH1 − Cα ≥
∫
S(u)

ϕp(ν)dH1 − Cα,

so that the liminf inequality follows by letting α→ 0.
The construction of a recovery sequence follows as for the case α > 0.



4.2. VARIATIONAL PERCOLATION 67

The rigid case: β = +∞
In this case we normalize α = 1. The energy we consider is defined by

Eε(u) = εd−1#{ui 6= uj , |i− j| = 1},
if ω((i+ j)/2) = 1 for all i, j in the set above, and Eε(u) = +∞ otherwise (ie, the interface
must all lie in the weak cluster).

Note that a path has finite length if all its connections are weak, and in this case
|L|ω = |L| is simply the number of connections in the path.

If p < 1/2 and two points γ and γ′ belong to the weak cluster then there is at least one
path L in the cluster joining γ and γ′. The chemical distance of γ and γ′ is defined as

dω(γ, γ′) = min |L|,
where the minimum is taken over all such paths L.

This distance is not isotropic (it suffices to think about the trivial case p = 0) and
depends on ω. Nevertheless, its limit behavior as the points γ and γ′ are scaled properly
is well defined and independent of ω: we define

ϕp(ν) = lim
K→+∞

lim inf
T→+∞

inf
{ 1
|T |d

ω(γ, γ′) : γ − γ′ = Tν, |γ|+ |γ′| ≤ KT
}
.

This limit is finite and independent of ω for all ν, except for a set of ω with zero probability.
Note that for p = 1 we have ϕp(ν) = ‖ν‖1.

The number ϕp(ν) describes the average distance on the weak cluster in the direction ν
(and by symmetry also in the orthogonal direction). Its value cannot be decreased by using
‘small portions’ of strong connections: if δ > 0 then there exists T > 0 and c = c(δ) ∈ (0, 1)
such that if L is a path joining γ and γ′ = γ + Tν and |L| < (ϕp(ν)− δ)T , then there are
at least c(δ)T strong connections in the path L.

Theorem 4.2.3 (rigid percolation theorem) Almost surely in ω, the Γ-limit of Eε is
deterministic. Moreover, we have

(i) if p > 1/2 the Γ-limit is identically +∞ on the whole L1(Ω) except for u constant
identically ±1;

(ii) if p < 1/2 the Γ-limit F depends on p through ϕp, and we have

F (u) =
∫
S(u)

ϕp(ν(u))dH1

on its domain.

Proof. (i) If u is not constant then there exists at least a point in S(u). By the channel
property there must be at least one pair i, j of nearest neighbours in the strong cluster
such that (uε)i 6= (uε)j so that Eε(uε) = +∞.
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Chapter 5

Motion of discrete interfaces

In this section we will see how it is possible to describe a motion of a lattice system driven
by a ferromagnetic spin-type energy. How we have already observed, the continuum Γ-
limit of such energies is a functional of ‘crystalline-perimeter’ type. To such an energy we
can associate a motion by curvature. In the following sections we will briefly describe a
variational approach to such a motion.

5.1 Motion by curvature

In this section we provide a simplified view of motion by curvature in the continuum. For
simplicity of exposition we consider the two-dimensional case. The motion by curvature of
a set E0 ⊂ R2 is continuous function E defined on an interval [0, T ] with values subsets of
R2 such that
• E(0) = E0;
• for t ∈ [0, T ) the boundary ∂E(t) at a point x moves with velocity proportional to

the curvature κ in the point x (which is meant to point towards the center of curvature).
The precise definition of such a motion and its study is a complex problem which is not

in the scope of these notes. For our purposes, in order to have an idea of how a set evolves
by curvature it will suffice to examine the case whenE0 = BR0 is a disk of (center 0 and)
radius R0. In this case the curvature is constant at every point of ∂E0 and hence E(t) is
a disk BR(t) for all t. The radius R(t) satisfies the ODE

Ṙ = −C 1
R

R(0) = R0,

(5.1)

whose solution is
R(t) =

√
R0 − 2Ct, T =

R0

2C
. (5.2)

69
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Figure 5.1: Motion by curvature of disks in terms of their radius

Since it is possible to prove an inclusion principle for motion by curvature (ie, that if
E(t) and E′(t) are two motions of E0 and E′0 with E0 ⊂ E′0 then the motion by curvature
maintains the inclusion at all times: E(t) ⊂ E′(t)) we deduce that for all bounded E0

the motion by curvature will be defined up to a maximal time T , where either we have
extinction of the motion (as in the case of a disk) or we do not have enough regularity of
the boundary of E(T ) as to guarantee that the motion be rigorously defined.

5.2 A variational approach to motion by curvature

We now briefly illustrate an approach due to Almgren, Taylor and Wang to define the
motion by curvature by means of discrete-time motions obtained by iterative minimization.
The scheme is as follows.
• fix a time scale τ and define a family (Eτi ) recursively by setting:

Eτ0 = E0,
Eτi is a minimizing set of

min
{

Per (E) +
1
τ
D(E,Eτi−1)

}
, (5.3)

where Per denotes the (euclidean) perimeter of E, and D is a suitable distance between
sets (the choice of this distance is crucial as remarked below);
• define the motion

Eτ(t) = Eτ[t/τ ]; (5.4)

• prove that (up to subsequences in τ) these exists the limit

E(t) = lim
τ→0+

Eτ (t),

not empty for t ∈ [0, T ) and this is a motion by curvature of E0.
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Remark 5.2.1 (i) In this procedure the sets Eτi a priori are only sets of finite perimeter.

(ii) We may try a heuristic explanation of this approach: the Euler-Lagrange equations
for the functional Per(E) (suitably interpreted) give an integral of the curvature on the
boundary of E. If

D(E,E′) = |E4E′|, (5.5)

then this can be interpreted as an L2-distance

D(E,E′) =
∫
|χE − χE′ |2 dx, (5.6)

from which we get, in the Euler-Lagrange equations of (5.3), the integral of the difference
quotient

χEτi − χEτi−1

τ
,

corresponding to a discretization of the time derivative of E(t).

(iii) Unfortunately, the choice of D as in (5.6) is not possible. To see this, consider
the initial datum E0 = BR0 . In this case we expect that the motions Eτi be composed of
disks with centre 0. With fixed τ , if BR1 ⊂ E0 is a minimizing disk for the first minimum
problem, every other disk BR1(x) of the same radius still contained in E0 is clearly still a
minimizing set. Hence, we may easily choose such disks in a way that the resulting motion
concentrates at the extinction time at an arbitrary point of the closure of the initial disk.

The choice of Almgren, Taylor and Wang for the distance D is

D(E,E′) =
∫
E4E′

dist (x, ∂E′) dx. (5.7)

We will se how this choice in (5.3) favours sets E ‘uniformly distant’ to the boundary of
Eτi .

In the following example we will now briefly examine the model case of E0 a disk, with
a proof that we may easily adapt to the crystalline perimeter, and then in many points to
the discrete case.

Example 5.2.2 Let E0 = BR; it will suffice to examine the minimum problem (5.3) with
i = 1. We start with some preliminary observations:

1) the sets E in (5.3) may be chosen with every connected component contained in BR.
Indeed otherwise taking E ∩ BR would decrease both perimeter and symmetric difference
with BR;

2) the sets E in (5.3) can be chosen with convex connected components, by the same
reason;
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3) if E′ is a connected component of E not containing the center, we may consider the
set obtained by substituting E′ with

E′(s) = E′ − sxE′ , where xE′ :=
∫
E′
x dx

is the baricenter of E′ and s > 0 is sufficiently small. Note that the derivative of our energy
along this path for s = 0 is

−
∫
E′

1
|x| 〈x, xE′〉 dx < 0.

Hence, we may conclude that the minimum Eτ1 has a unique connected component (which
is convex) containing 0.

Figure 5.2 pictures points 1)–3) above.

a) b) c)

0

Figure 5.2: simplification of the sets E in (5.3) by: a) intersection; b) convexification;
c) translation towards 0

4) We now check that the minimal set is a disk of center 0. Let A = |Eτ1 |, and consider
our minimum problem with such an area constraint. By the isoperimetric inequality the
perimeter term is minimized on disks; it then suffices to show that the term D(E,E0) has a
disk of center 0. To this end we use polar coordinates and denote f(θ) = sup{ρ : ρeiθ ∈ E},
so that

A =
∫ 2π

0

∫ f(θ)

0
ρ dρdθ =

1
2

∫ 2π

0
|f(θ)|2dθ

(Figure 5.3). By introducing the function u(θ) = π|f(θ)|2 our volume constraint becomes
simply

A =
1

2π

∫ 2π

0
u(θ)dθ.

By this condition, we may write

D(E,E0) =
∫ 2π

0

∫ R

f(θ)
(R− ρ) dρ dθ
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Figure 5.3: introduction of the variable f

=
1
3
πR2 −RA+

1
3

∫ 2π

0
|f(θ)|3dθ

=
1
3
πR2 −RA+

1
3π3/2

∫ 2π

0
|u(θ)|3/2dθ.

By the strict convexity of s 7→ s3/2, applying Jensen’s inequality we obtain that the mini-
mum is obtained only on the constant function u = A; ie, the minimal set is a disk centered
in 0.

5) We may now compute the radius r of the minimal disk, which is the minimum point
of

min
{

2πr +
2π
τ

∫ R

r
(R− ρ)ρdρ

}
,

and hence satisfies 2π − 2π
τ (R− r)r = 0.

The computations above may be repeated iteratively for all radii rτi−1 in the place of R
and rτi in the place of r,obtaining

rτi − rτi−1

τ
= − 1

rτi
,

which is exactly the discretization of the equation Ṙ = −1/R characterizing motion by
curvature of disks.

5.3 Crystalline motion

The functional given by the Γ-limit of ferromagnetic energies does not non correspond to
the euclidean perimeter, but to a crystalline anisotropic perimeter. The scheme proposed
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by Almgren, Taylor and Wang has been applied by Almgren and Taylor in dimension two
with

Per (E) =
∫
∂∗E
‖ν‖1dH1, D(E,E′) =

∫
E4E′

dist∞(x, ∂E′) dx.

For this choice the resulting motion (called crystalline motion) is more complex to describe
in general by the of the non-local definition of ‘crystalline curvature’. We may instead
examine the relevant case when the initial set E0 is a rectangle (this is the analog of the
disk for the euclidean perimeter). We may follow the line of the previous chapter.

Example 5.3.1 (crystalline motion of a rectangle) Let E0 be a rectangle centered in
0 with edges L1

0 and L2
0; ie, E0 = [−L1

0/2, L
1
0/2]× [−L2

0/2, L
2
0/2]. With fixed τ > 0 we now

characterize the set E1 minimizing∫
∂∗E
‖ν‖1dH1 +

1
τ

∫
E4E0

dist∞(x, ∂E0) dx . (5.8)

by adapting the argument of the previous section.
1) Note that E1 ⊂ E0. Otherwise, E1 ∩ E0 both decreases the perimeter and the

symmetric difference with E0;
2) Note that every connected component of E1 is a rectangle. Otherwise, we substitute

to this connected component the minimal rectangle containing it, possibly repeating this
operation if two of these rectangles intersect. The set thus obtained has a perimeter not
greater than the previous one, but symmetric difference with E0 strictly decreasing;

3) By translating each connected component of E1 not containing 0 towards the origin
the second integral in (5.8) strictly decreases (same computation as point 3 in Example
5.2.2). This shows that there is a unique connected component and that this component
contains the origin.

We may hence take sets E in (5.8) only of the form (−x1, x2)× (−y1, y2) ⊂ E0. Up to
an uniformly small error as τ → 0 the minimum problem becomes hence the minimization
of

f(x1, x2, y1, y2) = 2(x2 + x1) + 2(y2 + y1) +
1
τ

(
1
2

(L1
0

2
− x1

)2
L2

0 +
1
2

(L1
0

2
− x2

)2
L2

0

+
1
2

(L2
0

2
− y1

)2
L1

0 +
1
2

(L2
0

2
− y2

)2
L1

0

)
. (5.9)

From the stationarity condition for f we obtain

2− 1
τ

(L1
0

2
− x1

)
L2

0 = 2− 1
τ

(L1
0

2
− x2

)
L2

0 = 0

2− 1
τ

(L2
0

2
− y1

)
L1

0 = 2− 1
τ

(L2
0

2
− y2

)
L1

0 = 0. (5.10)
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We deduce that E1 is a rectangle of the form E0 = [−L1
1/2, L

1
1/2] × [−L2

1/2, L
2
1/2], where

L1
1 = x1 + x2 and L2

1 = y1 + y2 satisfy

L1
1 − L1

0

τ
= − 4

L2
0

L2
1 − L2

0

τ
= − 4

L1
0

. (5.11)

The computation can be repeated iteratively, obtaining two sequences (Lτ,1i ) and(Lτ,2i )
that satisfy

Lτ,1i − Lτ,1i−1

τ
= − 4

Lτ,2i

Lτ,2i − Lτ,2i−1

τ
= − 4

Lτ,1i
, (5.12)

up to a uniformly small error as τ → 0, and Lτ,10 = L1
0, Lτ,20 = L2

0. By letting τ → 0 we
hence deduce the following characterization of the crystalline motion of E0.

Proposition 5.3.2 (crystalline evolution of rectangles) The evolution by crystalline
curvature of a rectangle E0 of edges L1

0, L
2
0 obtained as limit of time-discrete evolutions is

given by a family E(t) of rectangles with the same center and of edges L1(t), L2(t) satisfying
the system of ODE 

L̇1 = − 4
L2
, L̇2 = − 4

L1

L1(0) = L1
0, L2(0) = L2

0 .

(5.13)

Remark 5.3.3 1) The rectangles are all similar. Indeed we have

d

dt

(L2

L1

)
=
L1L̇2 − L2L̇1

(L1)2
= 0;

2) the area A(t) = L1L2 of the rectangles decreases linearly:

d

dt
A(t) = L1L̇2 + L2L̇1 = −8,

from which we deduce that A(t) = L1
0L

2
0− 8t, and that the extinction time of the motion is

T =

√
L1

0L
2
0

8
.
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5.4 Motion (and ‘pinning’) of discrete interfaces

We may now examine the motion of discrete sets, with in mind the crystalline motion of
the previous section. In this case we have to understand the role of the ‘discrete spatial
scale’ ε and its interaction with the ‘discrete time scale’ τ which appear in the time-discrete
minimization scheme.

In the case of spin systems with nearest-neighbour interactions in the place of the
crystalline perimeter we have its discrete version. If E ⊂ εZ2 is identified with the set
where ui = 1 the ferromagnetic energy considered above can be written as

Pε(E) := ε#{(i, j) : εi ∈ E, εj ∈ εZ2 \ E}.

The distance between subsets of εZ2 analogous to D can be written as

Dε(E,E′) = ε2
∑

i∈E\E′
dist∞(i, E′) + ε2

∑
i∈E′\E

dist∞(i, εZ2 \ E′).

We may then fix τ and ε and proceed by successive minimization starting from an initial
set of indicesE0 = Eε,τ0 . We will describe the motion only when the initial set is a rectangle,
so as to compare it with the continuum crystalline motion obtained in the previous section.

Example 5.4.1 (discrete motion of a rectangle) As in the previous examples we may
describe the set E minimizing

Pε(E) +
1
τ
Dε(E,E0) (5.14)

among the sets εZ2. As in Example 5.3.1 note that we may limit to considering E in the
class of rectangles contained in E0:

1) if E is not contained in E0 we may consider E0 ∩E for which we have both Pε(E0 ∩
E) < Pε(E) and Dε(E0 ∩ E,E0) < Dε(E,E0);

2) if (a connected component of) E is not a rectangle then we may substitute it with
the least rectangle E′ containing it. We have both Pε(E′) ≤ Pε(E) and Dε(E′, E0) <
Dε(E,E0);

3) if a connected component does not contain the center of E0 we may translate it
towards the center. This operation maintains constant the perimeter and decreases the
second term in (5.14). By repeating this operation we translate this component until it
reaches another component (and then we apply point 2) or it contains 0.

From points 1)–3), pictured in Figure 5.4, we deduce that each minimizer of (5.14) is a
rectangle contained in E0.

We now characterize the side length of the minimizer. Suppose that

E0 = ([−εM1, εM2]× [−εM2, εM2]) ∩ εZ2,
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a) b)

Figure 5.4: simplification of sets E in (5.14) by: a) intersection and ‘rectangular envelope’;
b) translation towards the center

where we drop the dependence on ε of M1 = M ε
1 and M2 = M ε

2 . Then the minimizer of
(5.14), up to negligible error as τ → 0, is a rectangle

E1 = ([−ε(M1 − n1), ε(M1 − n2)]× [−ε(M2 −m1), ε(M2 −m2)]) ∩ εZ2.

where n1, n2,m1,m2 minimize

f(n1, n2,m1,m2) = −2ε(n1 + n2)− 2ε(m1 +m2)

+
1
τ
ε2

(
(2M2 + 1)

( n1∑
k=1

εk +
n2∑
k=1

εk
)

+ (2M1 + 1)
(m1∑
j=1

εk +
m2∑
j=1

εk
))

. (5.15)

To understand this computation, we may refer to Figure 5.5. The rectangle E1 is obtained
by removing n1 columns of 2M2 + 1 points on the ‘left’ side of E0, n2 columns of 2M2 +
1points in the ‘right’ of E0, m1 rows of 2M1 +1 points in the ‘lower’ part of E0, m2 rows of
2M1 +1 points in the ‘upper’ part of E0. The k-th column removed on the left is composed
by points at a distance εk from εZ2 \ E0 (except those points in the smaller rectangles of
size ε2nimj , which are negligible when τ is small), and gives rise to the first sum. In an
analogous way we can explain the terms in the other sums.

By using the formula
∑n

k=1 k = 1
2n(n+ 1) we obtain

f(n1, n2,m1,m2) = −2ε(n1 + n2)− 2ε(m1 +m2)

+
ε3

2τ

(
(2M2 + 1)(n1(n1 + 1) + n2(n2 + 1))

+(2M1 + 1)(m1(m1 + 1) +m2(m2 + 1))
)
. (5.16)

We may consider separately the dependence of f on each variable and examine the parabola
g(x) = −2x+ ε2

2τ (x2 + x)M whose minimum is obtained by x = 2τ
Mε2
− 1

2 . Hence, we have
that n1 is characterized by the inequalities

n1 − 1
2
≤ 2τ

(2M2 + 1)ε2
− 1

2
≤ n1 +

1
2

;
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n1 columns

k-th column

asymptotically negligible sets

Figure 5.5: computation of the minimal set in (5.14)

ie,

n1 =



[
2τ

(2M2 + 1)ε2

]
if

[
2τ

(2M2 + 1)ε2

]
6∈ N

[
2τ

(2M2 + 1)ε2

]
oppure

[
2τ

(2M2 + 1)ε2

]
− 1 if

[
2τ

(2M2 + 1)ε2

]
∈ N.

(5.17)

Analogous conditions hold for the other indices.

Three different regimes. We now describe the limit motion by choosing τ in func-
tion of ε. By assuming that the initial data converge to a ‘continuum’ rectangle E0 =
[−L1/2, L1/2]× [−L2/2, L2/2]; ie, that

ε(2M1 + 1) = ε(2M1 + 1)ε → L1, ε(2M2 + 1) = ε(2M2 + 1)ε → L2 (5.18)

we may define the discrete motions by successive minimization by Eε(t) = Eε,τ[t/τ ] and
consider their limit motion E(t). We have the three following cases.

1: pinning. If τ << ε then the motion limit is trivial: E(t) = E0 at all times. Indeed, by
(5.17) we have definitively n1 = n2 = m1 = m2 = 0;

2: crystalline motion. If τ >> ε then by (5.17) we obtain an equation for the motion of
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L1(t) as a limit of the corresponding discrete motions (L1,ε
i ). We have

L1,ε
i − L1,ε

i−1

τ
= −ε(n1 + n2)

τ
≈ −2

ε

τ

[
2τ

L2,ε
i ε

]
≈ − 4

L2,ε
i

(5.19)

and then
L̇1 = − 4

L2
,

which, together with the companion equation for L̇2, characterizes the (continuum) crys-
talline motion of E0;
2: interaction between scales. In the regime when τ ≈ ε we may assume that the limit

α := lim
ε→0

τ

ε

exist. Then, the discrete motions are characterized by the equation

L1,ε
i − L1,ε

i−1

τ
= −ε(n1 + n2)

τ
=


− 2
α

[
2α

L2,ε
i

]
if

[
2α

L2,ε
i

]
6∈ N

− 2
α

[
2α

L2,ε
i

]
oppure − 2

α

[
2α

L2,ε
i

− 1

]
if

[
2α

L2,ε
i

]
∈ N.

(5.20)

Proposition 5.4.2 The motion is characterized by the differential inclusion

L̇1 ∈


{
− 2
α

[
2α
L2

]}
if 2α

L2
6∈ N[

− 2
α

[
2α
L2

]
,− 2

α

[
2α
L2
− 1
]]

otherwise,
(5.21)

and by the analogous differential inclusion for L̇2

Proof. The proof i immediately obtained by passing to the limit in (5.20), and noting that
if
[

2α
L2

]
∈ N both choices n1 and n2 maintain the difference quotient in the desired interval.

Remark 5.4.3 (differences with the continuum) 1) Pinning: we note a pinning thresh-
old: if the edges of the initial datum satisfy

min{L1, L2} > 2α

then by (5.21) we have L̇1 = L̇2 = 0, and the motion is trivial;
2) ‘Speed quantization’: the speed of each edge is always an integer multiple of 2

α , and is
then locally constant, except for a discrete set of points;
3) not self-similar motion: by (5.21) we obtain d

dt(L1/L2) 6= 0 and hence E(t) is not in
genera similar to E0.
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Remark 5.4.4 (uniqueness and non-uniqueness) 1) Uniqueness: from the charac-
terization of the motion in (5.21) we obtain that the limit motion limit is unique if
min{L1, L2} > 2α (ie, in the case of ‘pinning’) or if max{L1, L2} < 2α. In the second
case the times when 2α

L1
∈ N or 2α

L2
∈ N are discrete and hence negligible;

2) Non-uniqueness: we may easily construct initial data for which we do not have unique-
ness of the limit motion. For example:

(a) If L1 > 2α and 2α
L2
∈ N, then we may construct motions E(t) with L̇2 = 0 and L̇1

any function v with

v(t) ∈
[
− 2
α

[2α
L2

]
,− 2

α

[2α
L2
− 1
]]

until the value T for which L1(T ) = 4/α;
(b) If L1 = L2 = 2α, then we may construct E(t) such that E(t) = E0 for t ∈ [0, T1]

and E(t) a square of side length L satisfying L̇ = − 2
α

[2α
L

]
and L < 2α for a.e. t > T1 until

extinction time. In Figure 5.6 we have included all the motions by crystalline curvature of
squares in terms of their edge length.

Figure 5.6: motions by crystalline curvature of squares in terms of their edge length
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Chapter 6

Fracture mechanics from
interatomic potentials

This section will be devoted to the study of a one-dimensional system of lattice interactions
driven by some potentials that are usually involved in the description of atomic interactions.
Examples of such potentials are Lennard-Jones potentials

JLJ(z) =
c1

z12
− c2

z6
,

with c1, c2 > 0 and the restriction that z > 0, or Morse potentials

JM(z) = −cze−z,
with c > 0.

The common features of these potentials J : R→ (−∞,+∞] are:
• the domain of J , {z : J(z) < +∞}, is an interval, J admits a unique minimum

point z∗, and on its domain J is (strictly) decreasing and convex for z ≤ z∗ and (strictly)
increasing for z ≥ z∗;
• J is smooth on its domain;
• J satisfies the growth conditions at ±∞:

lim
z→−∞

J(z)
|z| = +∞, lim

z→+∞ J(z) = 0

(JLJ(z) is set equal to +∞ for z ≤ 0).

6.1 Nearest-neighbors

We consider energies of the form
n∑
i=1

J(vi − vi−1), v : {0, . . . n} → R

81
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where n ∈ N. For the sake of simplicity we consider a potential with the constraint that
vi−vi−1 ≥ 0 (for example, Lennard-Jones potentials). This will simplify some descriptions
since the function v will always be non decreasing. To remove this constraint, it is sufficient
to note that the growth condition at −∞ will provide strong compactness properties for
the decreasing part of the function. Note that at this stage we have not performed any
scaling of the energy.

6.1.1 A first scaling giving a trivial bulk energy

The first possibility is to perform the usual change of variables to interpret vi − vi−1 as a
difference quotient, and consider energies ε = 1

n ,

Eε(u) =
n∑
i=1

εJ
(ui − ui−1

ε

)
, u : εZ ∩ [0, 1]→ R

Note that if we consider simple problems of the form

mε(L) = min{Eε(u) : u(0) = 0, u(1) = L},

then the monotonicity of test functions along with the fixed boundary conditions, provides
a bound in BV (0, 1) of minimizers, and hence compactness in any Lp(0, 1) (p < +∞)). We
can then compute the Γ-limit of Eε in L1(0, 1) (or equivalently with respect to the weak∗

convergence in BV (0, 1)). A trivial lower bound is obtained by identifying each u with its
continuous piecewise-affine interpolation and correspondingly the sum with an integral: if
uε → u

lim inf
ε

Eε(uε) = lim inf
ε

∫ 1

0
J(u′ε) dt ≥ lim inf

ε

∫ 1

0
J∗∗(u′ε) dt ≥

∫ 1

0
J∗∗(u′) dt.

It must be noted that u is not AC, so that u′ must be understood as the almost-everywhere
defined derivative of u (that exists since u is non-decreasing). Note that u may be discon-
tinuous (more precisely, it may have ‘increasing’ jumps), and that its discontinuities do not
affect the value of the latter integral.

We have to check that this inequality is sharp. To this end note explicitly that

J∗∗(z) =
{
J(z) if z ≤ z∗
J(z∗) if z ≥ z∗,

and that a general u ∈ BV (0, 1) may be approximated by uk ∈ SBV (0, 1) with a finite
number of jumps and u′ ≤ z∗ in such a way that

lim
k

∫ 1

0
J(u′k) dt =

∫ 1

0
J∗∗(u′) dt.
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It suffices then to consider u ∈ SBV (0, 1), with 0 < u′ ≤ z∗ and with a finite number
of jumps. For these functions we may just take uε = u (more precisely, the discrete
interpolation of u), and note that

Eε(uε) =
∑

i∈{1,...,N}\I∗ε
εJ
(ui − ui−1

ε

)
+
∑
i∈I∗ε

εJ
(ui − ui−1

ε

)
,

where
I∗ε = {i : [ε(i− 1), εi) ∩ S(u) 6= ∅},

so that, for ε small enough,

Eε(uε) =
∑

i∈{1,...,N}\I∗ε
εJ
(ui − ui−1

ε

)
+
∑
i∈I∗ε

εJ
(ui − ui−1

ε

)
≤

∑
i∈{1,...,N}\I∗ε

εJ
(ui − ui−1

ε

)
=

∫ 1

0
J(u′) dt+ o(1),

as desired.

We must also note that if (uε) is a sequence satisfying some boundary conditions;
e.g., uε(0) = 0, uε(1) = L, then the limit function for this energy may not satisfy these
conditions. Anyhow, since each one of these uε is increasing we deduce that we have
u(0+) ≥ 0 and u(1−) ≤ L (u(t±) are the traces of u at the point t). For such u the
construction above still works unchanged.

As a consequence of this Γ-convergence result, we obtain that the limit of mε(L) is
given by

m(L) = min{
∫ 1

0
J∗∗(u′) dt : u increasing, u(0+) ≥ 0, u(1−) ≤ L} = J∗∗(L)

The information we can draw from this minimum problem is that we have two types of
regimes corresponding to the case:
• if L ≤ z∗ then the unique minimizer of m(L) is the linear function u(t) = Lt;
• if L > z∗ then every increasing function with u′ ≥ z∗, u(0+) ≥ 0 and u(1−) ≤ L is a

minimizer for m(L).

If we interpret our system as a chain of atoms, then we may interpret the corresponding
continuous model as having an elastic behavior in a compressive regime (z ≤ z∗), while it
undergoes complete failure in a tensile regime (z > z∗).
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It must be noted that our result is in a sense ‘trivial’, as it says that Eε can be identified
with the integral ∫ 1

0
J(u′) dt,

whose relaxation is precisely
∫ 1

0 J
∗∗(u′) dt.

6.1.2 A second scaling giving Griffith fracture energy

We first perform a translation of the energy, by setting

ψ(z) = J(z + z∗)− J(z∗),

so that the minimum of ψ is ψ(0) = 0. We then perform a different scaling of the energies,
whose underlying idea is to have the bulk and interfacial energy of the same order.

The energies we consider are now

Eε(u) =
N∑
i=1

ψ
(ui − ui−1√

ε

)
The choice of this scaling is heuristically explained as follows: if u is (the interpolation

of) a smooth function, then

ψ
(ui − ui−1√

ε

)
= ψ

(√
ε
ui − ui−1

ε

)
≈ ψ(

√
εu′(εi)) ≈ ε1

2
ψ′′(0)(u′(εi))2;

here and after we make the assumption that

α :=
1
2
ψ′′(0) > 0. (6.1)

In this way we have

Eε(u) ≈ α
∫ 1

0
|u′|2 dt.

Conversely, if we only have (increasing) jumps (i.e., u is piecewise constant and non-
decreasing), then if t ∈ S(u) ∩ [ε(i− 1), εi] we have

ψ
(ui − ui−1√

ε

)
≈ ψ

(u+(t)− u−(t)√
ε

)
≈ ψ(+∞) = −J(z∗) =: β,

and
Eε(u) ≈ β#(S(u)).

Actually, what we have just shown (to have a complete proof it suffices to use a density
argument by functions that are smooth except for a finite numbers of increasing jumps) is
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that we have an upper bound with the functional, whose domain are SBV functions with
only a finite number of increasing jumps, given by

F (u) = α

∫ 1

0
|u′|2 dt+ β#(S(u)) (u+ > u− on S(u)).

We now show that this is also a lower bound. To do this, we compare our energy with a
family of energies whose limit is easier to compute, and subsequently optimize this estimate.
The family F of energy densities we consider are all f ≤ ψ of the form

f(z) =
{
c1|z|2 ∧ c3 if z ≤ 0
c1|z|2 ∧ c2 if z ≥ 0,

with ci > 0; i.e. f is a ‘non-symmetrically-truncated quadratic potential’.
Note that

sup{c1 : f ∈ F} = α, sup{c2 : f ∈ F} = β, sup{c3 : f ∈ F} = +∞. (6.2)

Note also that

f
(ui − ui−1√

ε

)
=


c3 if ui−ui−1

ε ≤ −
√

c3
c1

1√
ε

εc1

∣∣∣ui−ui−1

ε

∣∣∣2 if −
√

c3
c1

1√
ε
< ui−ui−1

ε <
√

c2
c1

1√
ε

c2 if ui−ui−1

ε ≥
√

c2
c1

1√
ε
.

(6.3)

Let (uε) be a sequence converging to some u. Then we identify each uε with its
piecewise-affine discontinuous interpolation vε with discontinuity set S(vε) = S+

ε ∪ S−ε ,
where

S+
ε = {εi :

uε(εi)− uε(ε(i− 1))√
ε

≥
√
c2

c1
}, S−ε = {εi :

uε(εi)− uε(ε(i− 1))√
ε

≤ −
√
c3

c1
},

and vε is constant on the corresponding intervals (ε(i− 1), εi).
We then have

lim inf
ε

Eε(uε) = lim inf
ε

Ff (vε)

=: lim inf
ε

(
c1

∫ 1

0
|v′ε|2 dt+ c2#(S+(vε)) + c3#(S−(vε))

)
≥ c1

∫ 1

0
|u′|2 dt+ c2#(S+(u)) + c3#(S−(u)),

where
S+(v) := {t ∈ S(u) : u+ > u−}, S−(v) := {t ∈ S(u) : u+ < u−}.
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We have used the lower semicontinuity of Ff .
We can locally optimize this estimate; i.e., we may take the supremum in c1, c2, c3

separately. Taking the supremum in c3 implies that S−(u) = ∅, while the other two
‘optimizations’ give the desired lower bound.

This new scaling approximates minimum boundary value problems for Eε with

m(L) = min{α
∫ 1

0
|u|2 dt+ β#(S̃(u)) : u+ > u−, u(0+) ≥ 0, u(1−) ≤ L}

=
{

min{αL2, β} if L ≥ 0
αL2 if L < 0,

where we take into account that the jump of u may occur at the boundary, setting

S̃(u) = S(u) ∪ {t ∈ {0, 1} : ũ−(t) < ũ+(t)},
ũ− = u− on (0, 1], ũ+ = u+ on [0, 1), ũ−(0) = 0 and ũ+(1) = L.

The case L ≥ 0 corresponds to the tensile regime in the previous scaling, and the
corresponding energy may be interpreted as a Griffith fracture energy.

Note that for m(L) = β we have infinitely many minimizers given by

u(t) =
{

0 if t ≤ t0
L if t > t0;

i.e., the fracture site is not localized.

6.1.3 Equivalence by Γ-convergence

We may consider again energies of the form

Eε(u) =
n∑
i=1

εJ
(ui − ui−1

ε

)
, u : εZ ∩ [0, 1]→ R

and interpret the second scaling as a change of variables

ui = εz∗i+
√
εvi,

so that we have

Eε(u) =
n∑
i=1

εJ
(
z∗ +

vi − vi−1√
ε

)
, v : εZ ∩ [0, 1]→ R

In terms of the notation in the previous section then,

Eε(u) = ε

n∑
i=1

ψ
(vi − vi−1√

ε

)
+ J(z∗). (6.4)
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The energy defined by the sum Γ-converges to

α

∫ 1

0
|v′|2 dt+ β#(S(v)).

Formally, carrying the argument of change of variables to the continuum, we have

v(t) = (u(t)− z∗t)/√ε
and the Γ-limit is rewritten as

1
ε
α

∫ 1

0
|u′ − z∗|2 dt+ β#(S(u)).

This suggests, plugging this argument back in (6.4), to consider the continuum energies

Ẽε(u) = J(z∗) + α

∫ 1

0
|u′ − z∗|2 dt+ εβ#(S(u)). (6.5)

These energies are actually ‘uniformly equivalent’ to Eε in the ‘tensile’ regime u′ ≥ z∗.

6.2 Next-to-nearest neighbors

We now consider energies taking into account first and second neighbors; i.e., both terms
of the form J(ui − ui−1) and of the form J(ui+1 − ui−1).

In this case, the way boundary conditions are stated does influence the form of the
limit problems. Dirichlet boundary conditions

u(0) = 0, u(1) = L

may be imposed as a pointwise condition on 0 and 1, or by requiring that u be a periodic
perturbation of the linear function uL(t) = Lt. In terms of minimum problems, in the first
case we consider

min
{ N∑
i=1

J(ui − ui−1) +
N−1∑
i=1

J(ui+1 − ui−1) : u0 = 0, uN = L
}

(note that we have N nearest-neighbor interactions and N − 1 next-to-nearest neighbor
interactions in the interval 0, . . . , N), while in the second one

min
{ N∑
i=1

(
J(ui − ui−1) + J(ui+1 − ui−1)

)
: u0 = 0, uN = L, uN+1 = u1 + L

}
(equivalently, this minimum is performed among u : Z → R satisfying the periodicity
condition ui+N = ui + L).
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6.2.1 First scaling

In this case boundary conditions given in either way give the same limit energy. We briefly
illustrate the result in a more general case, for energies of the form

Eε(u) =
N∑
i=1

ε
(
J1

(ui − ui−1

ε

)
+ J2

(ui+1 − ui−1

ε

))
,

where J1, J2 satisfy the same conditions as the Lennard-Jones potentials.
The idea is to rewrite the energy in a more symmetric way as

Eε(u) =
N∑
i=1

ε
(1

2
J1

(ui − ui−1

ε

)
+

1
2
J1

(ui+1 − ui
ε

)
+ J2

(ui+1 − ui−1

ε

))
.

then to integrate out the nearest-neighbor interactions by considering

J̃(z) =
1
2

min{J(z1) + J(z2) : z1 + z2 = z},

and the ‘effective energy density’

Jeff(z) = J2(2z) + J̃(2z).

Note that (1
2
J1

(ui − ui−1

ε

)
+

1
2
J1

(ui+1 − ui
ε

)
+ J2

(ui+1 − ui−1

ε

))
≥

(
J̃
(ui+1 − ui

ε

)
+ J2

(ui+1 − ui
ε

))
= Jeff

(ui+1 − ui−1

2ε

)
.

In this way we have the inequality

Eε(u) ≥
N∑
i=1

εJeff

(ui+1 − ui−1

2ε

)
=

1
2

( ∑
i even

2εJeff

(ui+1 − ui−1

2ε

)
+
∑
i odd

2εJeff

(ui+1 − ui−1

2ε

))
,

and hence a lower bound is given by

F (u) =
∫ 1

0
(Jeff)∗∗(u′) dt.

This is indeed the Γ-limit.
In the Lennard-Jones case

J1(z) = J2(z) = J(z)
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the recovery sequences are simple discrete interpolations and we indeed have

Jeff(z) = J(z) + J(2z),

that is an energy again of Lennard-Jones type. Note that the critical state z∗ giving the
transition between the compressive and tensile regions is then defined as the minimizer of
Jeff .

6.2.2 Second scaling. Periodic case

The first scaling has served in finding the minimal state z∗. Now we may scale differently
the energies by setting

Eε(u) =
N∑
i=1

(1
2
J
(ui − ui−1√

ε
+z∗

)
+

1
2
J
(ui+1 − ui√

ε
+z∗

)
+J
(ui+1 − ui−1√

ε
+2z∗

)
−Jeff(z∗)

)
.

A first lower bound is then obtained by the inequality

Eε(u) ≥
N∑
i=1

Jeff

(ui+1 − ui−1√
ε

+ 2z∗
)

The right-hand side is a superposition of two lattice energies and gives the Γ-limit

F0(u) = α

∫ 1

0
|u′|2 dt+ C#(S(u)),

where

α :=
1
2
J ′′eff(z∗) =

1
2
J ′′(z∗) + 2J ′′(2z∗), C :=

1
2

min J −min Jeff = Jeff(+∞)−min Jeff .

This lower bound is also an upper bound if u ∈ H1(0, 1); i.e., if S(u) = ∅. Indeed, if u
is smooth then a recovery sequence is simply its discrete interpolation uε for which

Eε(uε) ≈
N∑
i=1

(J(
√
εu′(εi) + z∗) + J(2

√
εu′(εi) + 2z∗)− Jeff(z∗))

≈
N∑
i=1

(Jeff(
√
εu′(εi) + z∗)− Jeff(z∗))

≈
N∑
i=1

αε|u′(εi)|2 ≈ α
∫ 1

0
|u′|2 dt.
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In general the lower bound above is not optimal for jumps. Indeed, suppose that we
have one jump (that in this periodic setting we may always suppose at 0); i.e., uε(0) = 0,
uε(ε) ≈ u(0+) = c > 0, then

Eε(u)

=
(1

2
J
( u1√

ε
+ z∗

)
+

1
2
J
(u2 − u1√

ε
+ z∗

)
+ J

(u2 − u0√
ε

+ 2z∗
)
− Jeff(z∗)

)
+
N−1∑
i=2

(1
2
J
(ui − ui−1√

ε
+ z∗

)
+

1
2
J
(ui+1 − ui√

ε
+ z∗

)
+ J

(ui+1 − ui−1√
ε

+ 2z∗
)
− Jeff(z∗)

)
+
(1

2
J
(−uN−1√

ε
+ z∗

)
+

1
2
J
( u1√

ε
+ z∗

)
+ J

(u1 − uN−1√
ε

+ 2z∗
)
− Jeff(z∗)

)
≈ 1

2
J
(u2 − u1√

ε
+ z∗

)
− Jeff(z∗)

+
N−1∑
i=2

(1
2
J
(ui − ui−1√

ε
+ z∗

)
+

1
2
J
(ui+1 − ui√

ε
+ z∗

)
+ J

(ui+1 − ui−1√
ε

+ 2z∗
)
− Jeff(z∗)

)
+

1
2
J
(uN − uN−1√

ε
+ z∗

)
+ J

(u1 − uN−1√
ε

+ 2z∗
)
− Jeff(z∗)

≥ 2 inf
{1

2
J(z∗ + z1) +

K∑
i=1

(1
2
J(zi + z∗) +

1
2
J(zi+1 + z∗) + J(2z∗ + zi + zi+1)

)}
− 2Jeff(z∗),

where K is any fixed natural number (≤ N/2). The optimal lower bound for a jump is
then given by

β := 2B − 2 minJeff ,

where

B := inf
K

inf
{1

2
J(z∗ + z1) +

K∑
i=1

(1
2
J(zi + z∗) +

1
2
J(zi+1 + z∗) + J(2z∗ + zi + zi+1)

)}
We may interpret B as a free-boundary energy: the energy to generate a discontinuity
amounts to the energy −2 minJeff (that is positive) due to the complete detachment of the
neighboring atoms plus the energy 2B (that is negative) due to the rearrangements of the
atoms on both sides of the fracture.

Finally, the Γ-limit is again given by

F (u) = α

∫ 1

0
|u′|2 dt+ β#(S(u)).
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6.2.3 Second scaling. Boundary terms

In this case, the Γ-limit for the integral term and for interior jumps is the same, while the
estimate as above performed for a jump at the boundary gives B −min Jeff = β/2; hence,
the resulting limit energy is

F (u) = α

∫ 1

0
|u′|2 dt+ β#(S(u)) +

β

2
#(S̃(u) ∩ {0, 1}).

As a consequence we have a localization at the boundary of the discontinuity points.
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