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Passage from discrete to continuum

Atomistic theories with interaction between (many) particles

⇓

Continuum theories depending on averaged parameters

Main issue: statement of a meaningful question in analytical
terms



Crystallization

Q: can the crystalline structure of solids be derived from
atomistic energetically considerations?

Typical energy (pairwise interactions)∑
i 6=j

J(|ui − uj |),
(
e.g., J(z) =

1
z12
− 2
z6

)
ui ∈ Rd; i = 1, . . . , N with N large

J



2D Ansatz : “ground states can be parameterized as a uniform
deformation of the (unit) triangular lattice T”

r∗

The lattice spacing r∗ is determined by minimization of

e(r) =
∑

i∈T\{0}

J(r|i|)

(energy density of the uniformly dilated rT).



Question 1 (Theil): Let u be a compact perturbation of r∗T;
then ∑

i 6=j

(
J(|ui − uj |)− J(r∗|i− j|)

)
≥ 0,

with equality achieved iff u is a reparameterization of u∗i = r∗i.

Note: this has been proved for “Lennard-Jones-like” potentials
by Theil (earlier work by Radin)

“Challenges”: • prove that this holds for the L-J potential;
• prove the analogue for d = 3 (for what lattice?)



Question 2 (Friesecke): Consider the energy

EN (u) =
∑
i 6=j

J(|ui − uj |), i = 1, . . . , N

Then, up to subsequences, the minimizers uN tend to arrange
on the same r∗T (up to rotations and translations).
Furthermore, the scaled uN = 1√

N
uN tend to an hexagonal

shape.

Note: this has been proved for very special potentials. The
leading role is now played by a surface energy (rotationally
invariant in the target space)

“Challenges”: • prove that this holds for general potentials;
• describe the effective continuum surface energy



Consequence of crystallization: (simplification of the discrete
energies) we may restrict to nearest-neighbour (NN)
interactions on regular lattices; e.g. to

E(u) =
∑

i,j NN

J(|ui − uj |)

(upon scaling r∗ to 1) with u : T→ R2.
Indeed this energy is pointwise minimized by (the identity on) T.

Analytical problem: energies as such have many more ground
states. Beside T we have “foldings”

B

A C A

B=C

foldings of foldings, etc.



Proposed solution: (Friesecke-Theil) add the geometrical
constraint

det∇u ≥ 0

(u extended to a piecewise-affine map).

A B

C

A B

C

(forbidden deformation)

Note: this is a three-point interaction (in 2D)

This addition rules out “flipping” and allows to state a first
question on the asymptotic analysis of energies.



Energies of Continuum Mechanics

Small deformations (B-Solci-Vitali)
Scale the lattice size and localize energies on a bounded
domain Ω:

Eε(u) =
∑

i,j NN

ε2J
( |ui − uj |

ε

)
det∇u ≥ 0

u : Ω ∩ εT→ R2. Suppose that

ui = i+ δvi, δ <<
√
ε

Then Eε Γ-converge to a linear elastic energy

F (u) =
∫

Ω
W (∇u) dx

W obtained by Taylor-expanding J .



Main issue: deduce that the domain of F is H1(Ω; R2) by a
rigidity estimate (Friesecke-James-Müller); use the validity of
the Cauchy-Born rule close to the identity to Taylor expand.

Note: the validity of the Cauchy-Born rule is a major
computational issue (see Blanc, Le Bris and Lions, Weinan E et
al.). It depends both on the lattice and the potentials.



Large deformations
... here it is not clear what the right question is!

1D case (B-Dal Maso-Garroni, Truskinovsky, B-Lew-Ortiz)
Relevant scaling: δ =

√
ε. At this scaling we have the

possibility of fracture.

(potential in function of v)



Γ-limit energy:

Fε(v) = α

∫
Ω
|v′|2 dx+ β#( jump points of v)

(one-dimensional Griffith fracture energy)
with the constraint that v+ > v− at jump points
(opening crack condition)

Note: the scaling δ =
√
ε is justified by Γ-expansion theory

(B-Truskinovsky). This also allows for a wider choice of the limit
energy following additional criteria.

Possible additional criterion: accurate description of local
minimizers



The pattern of the local minimizers for Eε and F (in terms of the
total displacement) are qualitatively different

Equivalent energies on the continuum:

Fε(v) = α

∫
Ω
|v′|2 dx+ β

∑
jump points of v

g
( |v+ − v−|

ε

)

(Barenblatt fracture energy with internal parameter)
These energies have the same pattern of local minimizers as
Eε.



2D analysis (B- Gelli).

First issue: for large deformations there is no analytical
technique to deal with the positive-determinant constraint.

We may consider the surface scaling:

1
ε
Eε(u) =

∑
NN

ε
(
J
(∣∣∣ui − uj

ε

∣∣∣)−min J
)

(+ positive-det. constraint)

and analyse its behaviour through its Γ-limit.
Questions:
• can we derive a opening-crack condition?
• can we characterize a surface energy?

Domain of the limit: the limit is finite iff ∇u is a piecewise
rotation (piecewise rigidity Chambolle-Giacomini-
Ponsiglione);



ν

A reference configuration with fracture site and its macroscopic normals

An underlying triangulation at step ε



Deformed configuration at the level of the triangulation

Macroscopic deformed configuration



Very complex behaviour of the limit surface energy,
accounting for
• possibility of appearance of layers of cracks at interfaces
• surface relaxation (rearrangement of boundary atoms)
• concentration of energy at triple points
• non-local effects

Note: there is no theory for such types of energies, which seem
to arise naturally when dealing with many-points interactions.



Even bigger “challenges”

The static picture can give an idea of some type of dynamics
(“gradient-flow type”)
• for “fast motions” we have a “gradient flow” of the static limit
• for “slow motions” the system may be trapped by local
minimizers (pinning).
• the relevant motion is obtained at one (or more) intermediate
time-scale.

Note: for interfacial energies the relevant motion is a
“discontinuous” mean-curvature flow depending on the
microstructure of interactions (B-Gelli-Novaga, B-Scilla).

Note: for motion of fracture even the gradient flow of the static
limit (Grittith energy) is not known.


