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Passage from discrete to continuum

Atomistic theories with interaction between (many) particles

4

Continuum theories depending on averaged parameters

Main issue: statement of a meaningful question in analytical
terms



Crystallization

Q: can the crystalline structure of solids be derived from
atomistic energetically considerations?

Typical energy (pairwise interactions)

;J(m —ul) (eg. I) = % _ %)

u; € RY i =1,..., N with N large




2D Ansatz : “ground states can be parameterized as a uniform
deformation of the (unit) triangular lattice T”

,r*

The lattice spacing r* is determined by minimization of

e(ry="Y_ J(rlil)

1€T\{0}

(energy density of the uniformly dilated »T).



Question 1 (Theil): Let u be a compact perturbation of »*T;
then

> (T(ui = ) = Il = 1)) = 0,

i#]
with equality achieved iff u is a reparameterization of u; = r*:.

Note: this has been proved for “Lennard-Jones-like” potentials
by Theil (earlier work by Radin)

“Challenges”: e prove that this holds for the L-J potential;
¢ prove the analogue for d = 3 (for what lattice?)



Question 2 (Friesecke): Consider the energy

Ex(u) =Y J(u—ul), i=1,...,N
i#]

Then, up to subsequences, the minimizers «"V tend to arrange
on the same r*T (up to rotations and translations).
Furthermore, the scaled @y = —=u" tend to an hexagonal

VN
shape.

Note: this has been proved for very special potentials. The
leading role is now played by a surface energy (rotationally
invariant in the target space)

“Challenges”: e prove that this holds for general potentials;
e describe the effective continuum surface energy



Consequence of crystallization: (simplification of the discrete
energies) we may restrict to nearest-neighbour (NN)
interactions on regular lattices; e.g. to

E(u)= Y J(ui — )
i,j NN
(upon scaling r* to 1) with » : T — R2.
Indeed this energy is pointwise minimized by (the identity on) T.

Analytical problem: energies as such have many more ground
states. Beside T we have “foldings”

foldings of foldings, etc.



Proposed solution: (Friesecke-Theil) add the geometrical
constraint

detVu >0
(u extended to a piecewise-affine map).
c
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(forbidden deformation)
Note: this is a three-point interaction (in 2D)

This addition rules out “flipping” and allows to state a first
question on the asymptotic analysis of energies.



Energies of Continuum Mechanics

Small deformations (B-Solci-Vitali)
Scale the lattice size and localize energies on a bounded
domain €:

E.(w)= Y 52J(|“i;“j|> detVu > 0
ij NN

u:QNeT — R2. Suppose that
w; =1+ ovy, § << e

Then E. I'-converge to a linear elastic energy

F(u):/QW(Vu) dx

W obtained by Taylor-expanding J.



Main issue: deduce that the domain of Fis H'(Q2;R?) by a
rigidity estimate (Friesecke-James-Mdller); use the validity of
the Cauchy-Born rule close to the identity to Taylor expand.

Note: the validity of the Cauchy-Born rule is a major
computational issue (see Blanc, Le Bris and Lions, Weinan E et
al.). It depends both on the lattice and the potentials.



Large deformations
... here it is not clear what the right question is!

1D case (B-Dal Maso-Garroni, Truskinovsky, B-Lew-Ortiz)
Relevant scaling: 6 = /. At this scaling we have the
possibility of fracture.

(potential in function of v)
elastic part

fracture part

)




[-limit energy:
F.(v) = a/ |v'|? dz + B#( jump points of v)
Q

(one-dimensional Griffith fracture energy)
with the constraint that v > v~ at jump points
(opening crack condition)

Note: the scaling 6 = /¢ is justified by I"-expansion theory
(B-Truskinovsky). This also allows for a wider choice of the limit
energy following additional criteria.

Possible additional criterion: accurate description of local
minimizers



The pattern of the local minimizers for E. and F (in terms of the
total displacement) are qualitatively different
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Equivalent energies on the continuum:
F.(v) = a/ W2 do + B 3 g<|“+_”|>
: Q . . I3
jump points of v

(Barenblatt fracture energy with internal parameter)
These energies have the same pattern of local minimizers as
E..



2D analysis (B- Gelli).

First issue: for large deformations there is no analytical
technique to deal with the positive-determinant constraint.

We may consider the surface scaling:

éEe(u) =3 <((

NN

ui—uj'

5 D —min J) (+ positive-det. constraint)

and analyse its behaviour through its I"-limit.
Questions:

e can we derive a opening-crack condition?
e can we characterize a surface energy?

Domain of the limit: the limit is finite iff Vu is a piecewise
rotation (piecewise rigidity Chambolle-Giacomini-
Ponsiglione);



A reference configuration with fracture site and its macroscopic normals

An underlying triangulation at step ¢
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Deformed configuration at the level of the triangulation

BN

Macroscopic deformed configuration




Very complex behaviour of the limit surface energy,
accounting for

e possibility of appearance of layers of cracks at interfaces
e surface relaxation (rearrangement of boundary atoms)

e concentration of energy at triple points

e non-local effects

Note: there is no theory for such types of energies, which seem
to arise naturally when dealing with many-points interactions.



Even bigger “challenges”

The static picture can give an idea of some type of dynamics
(“gradient-flow type”)

o for “fast motions” we have a “gradient flow” of the static limit
o for “slow motions” the system may be trapped by local
minimizers (pinning).

e the relevant motion is obtained at one (or more) intermediate
time-scale.

Note: for interfacial energies the relevant motion is a
“discontinuous” mean-curvature flow depending on the
microstructure of interactions (B-Gelli-Novaga, B-Scilla).

Note: for motion of fracture even the gradient flow of the static
limit (Grittith energy) is not known.



