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Variational Problems with Multiple Scales



Variational Analysis of Lennard-Jones interactions

Equilibrium configurations linked to the energy∑
i 6=j

J(|ui − uj |),
(
e.g., J(z) =

1
z12
− 2
z6

)
ui ∈ R2; i = 0, . . . , N as N → +∞

J



1D analysis - nearest neighbours

Early works by Truskinovsky (’96), B-Dal Maso-Garroni (’99)

1D parameterization: We can always reparameterize points on
i ∈ 1

N Z ∩ [0, 1]

Set ε = 1
N and scale energies∑

i

ε J
(ui − ui−1

ε

)
with ui > ui−1

{ui} ≈ piecewise-constant or piecewise-affine function

Note: minimum is achieved for ui the discretization of the
identity (up to constants)



Derivation of bulk and surface energies

(Translation in 0 of J)

Limit analysis by different scalings
Bulk scaling (ui−1 − ui << ε) =⇒ elastic approximation
Surface scaling (ui−1 − ui >> ε) =⇒ (opening) fracture

Note: Bulk energy= O(1), surface energy= O(ε) =⇒ relaxation



(Asymmetric) Blake-Zisserman weak membrane

Ψε(z) =

{
min

{
z2, 1

ε

}
if z > 0

z2 if z ≤ 0

Asymptotic behaviour (Chambolle ’92 - Γ-limit)∫ 1

0
|u′|2 dt+ #(Su) u+ > u− on Su

(Griffith brittle fracture energy with unilateral constraint)



‘Universal form’ of the Blake-Zisserman energy

Analysis of the Γ-development by comparison with (scaled,
asymmetric) Blake-Zisserman energies:

min
{
α′z2, β′

}
≤ J(z) ≤ min

{
α′′z2, β′′

}
(z > 0)

NOTE: supα′ = inf α′′ = 1
2J
′′(0) =: α (Taylor expansion at 0)

supβ′ = inf β′′ = J(+∞) =: β (depth of the well)



Scaling argument to recover Griffith fracture (B-Lew-Ortiz ’06):

min
{
α′z2,

β′

ε

}
≤ 1
ε
J(
√
εz) ≤ min

{
α′′z2,

β′′

ε

}
Change of variables (‘linearization’ around 0) u =

√
ε v

Eε(u) =
∑

i

εJ
(ui − ui−1

ε

)
= ε

∑
i

ε · 1
ε
J
(√

ε
(vi − vi−1

ε

))
≈ ε

(
α

∫
|v′|2 dt+ β#(Sv)

)
= ε

(
α

∫ ∣∣∣ u′√
ε

∣∣∣2 dt+ β#(Su)
)

= α

∫
|u′|2 dt+ εβ#(Su) (with u+ > u−)

(Griffith energy with an internal parameter)
(Uniform equivalence by Γ-convergence, B-Truskinovsky ’08)



Effects of long-range interaction
1) Surface relaxation: The fracture energy density β is not
simply given by a scaling argument (resizing the depth of the
well of J), but must take into account atomic relaxation on the
side(s) of the fracture
(B-Cicalese ’07)

NN picture NNN picture

2) Optimization of the reference lattice: (in this case we
cannot translate the minimum in 0) ground state are achieved
on some discretization of rx with 0 < r < 1.



1D ANALYSIS

1) Different behaviour in compression (no fracture/elasticity)
and in tension (Griffith fracture)
2) Opening fracture
3) Surface energy with possible surface relaxation (that can be
characterized by taking the limit of 1

εFε)
4) An approximate linearized Griffith fracture description
(with parameter ε and an opening constraint)
5) (up to slightly changing potential) can consider only nearest
neighbours



The two-dimensional case

Simplified hypotheses

Parameterization on the triangular lattice T: justified by the
validity of the ”Cauchy-Born rule” for ground states
(crystallization; see Theil ’06 in 2D)

Positive-determinant constraint (this replaces the condition
u′ > 0): admissible functions are {ui}i∈T whose
piecewise-affine interpolation u satisfies

det∇u > 0

(see Friesecke-Theil ’02)
(geometrically: vertices of deformed triangles maintain the
order)

Nearest-neighbour interactions. This reduces surface
relaxation (for that see recent work of Theil)



The scaled energy reads

Eε(u) =
∑
NN

ε2J
(∣∣∣ui − uj

ε

∣∣∣) (+ positive-det. constraint)

with the sum taken on nearest neighbors of Ω ∩ εT
(Ω fixed open subset of R2).



Surface scaling

Consider

1
ε
Eε(u) =

∑
NN

ε
(
J
(∣∣∣ui − uj

ε

∣∣∣)−min J
)

(+ positive-det. constraint)

and analyse its behaviour through its Γ-limit.
Questions:
• can we derive a opening-crack condition?
• can we characterize a surface energy?

Domain of the limit: the limit is finite only if u ∈ SBV and
∇u ∈ SO(2); =⇒ ∇u is a piecewise rotation (piecewise
rigidity Chambolle-Giacomini- Ponsiglione ’07);



ν

A reference configuration with fracture site and its macroscopic normals

An underlying triangulation at step ε



Deformed configuration at the level of the triangulation

Macroscopic deformed configuration



Constraints on the jump set

If the limit interface is achieved by only ‘breaking a single row of
atoms’ (rigid otherwise) we obtain a surface term

2
∫

Su

ϕ(νu)dH1

(ϕ with hexagonal Wulff shape), and the positive determinant
gives an opening-angle condition

〈u+(x)− u−(x), R±νi〉 ≥ 0 i = 1, 2

where u± are the approximate values, νu the macroscopic
normal, R± are the rotations on both sides of Su, and (νi)⊥ are
the directions of T that ‘average’ to ν
(if ν is itself orthogonal to the directions of T then νi = ν)





Note: “surface relaxation” allows to have finite (but larger)
energy when

〈u+(x)− u−(x), R±ν〉 ≥ 0 (opening constraint)



Loss of the constraint on interfaces
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reference triangulation with a double-layer interface
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deformed configuration with ‘fictitious’ extra fracture



Note: we may easily obtain deformations violating the opening
constraint

u-

u+
Id

-Id + const.

ν



... or non impenetrability...
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By using multiple-layer fracture we can remove all constraints
on the interface, but the final energy will have a surface term of
the form

2N
∫

Su

ϕ(νu)dH1

(N the number of layers)

Note: even when the constraint

〈u+(x)− u−(x), R±ν〉 ≥ 0

is satisfied we may have to optimize between surface relaxation
and fictitious interfaces



Determinant constraint on triple points

Even if the opening angle condition is verified on all Su we may
have triple points violating the positive determinant constraint

A

B

C
A

B

C

(triple point - reference and deformed configuration)



These can be “accommodated” by introducing extra fractures at
level ε (of non-vanishing length)

A X A ʼ Xʼ

This gives a strictly positive extra term (depending on the ‘size’
of the deformed ‘negative triangle’)



Limit energy

On a (wide) class of deformations satisfying the opening angle
condition the Γ-limit is of the form

2
∫

Su

ϕ(νu)dH1

On the other deformations the computation involves a
“relaxation procedure” involving extra layers of highly-deformed
triangles at level ε and surface relaxation.

Note: indeed the surface energy density is of the form

ϕ = ϕ
(
u±,

∂u±

∂τ
, ν
)

Such integrands could be defined also if u has ‘enough
regularity on Su’ (Ambrosio-B-Garroni ’97). Any use?



‘Small deformations’
If we suppose that u = Id+ δv with

√
ε << δ then we still have

a compactness theorem with the limit piecewise rigid. The
opening constraint reduces to

〈v+(x)− v−(x), ν〉 ≥ 0

(‘infinitesimal non-interpenetration condition’). Moreover, the
condition on triple points disappears.
This condition is closed (Giaquinta-Giusti, Anzellotti), so that a
candidate limit is simply

2
∫

Sv

ϕ(νv)dH1

(for v satisfying the opening-angle condition)
Question: any density theorem for partitions with this opening
condition? (same question in SBV, important for
non-interpenetration on the fracture)



Conclusions

In the case of ‘finite deformations’ we have derived
• conditions on the interface that characterize a ‘tensile’ regime
• a characterization via an anisotropic energy density on a
(wide) class of deformations
• a complex non-local description for deformations violating the
‘non-impenetrability constraint’

In the case of ‘small deformations’ we have
• a linearized ‘tensile regime’ with a opening fracture
condition
• a lower-semicontinuous candidate local surface energy



This gives the conjecture that

Eε(u) ≈
∫

Ω
Q(Eu) dx+ ε

∫
Su

ϕ(νu)dH1

(+ opening-angle condition) in GSBD(Ω) in the tensile regime
(this amounts to compute the ‘critical’ linearization δ =

√
ε à la

B-Lew-Ortiz))
Q quadratic form derived by computing the linearization around
Id on H1(Ω) (if δ <<

√
ε – B-Solci-Vitali ’07)

(without the positive-determinant constraint related results by
Alicandro-Focardi-Gelli ’99, Friedrich-Schmidt ’11)

Final conclusion: probably the positive-determinant constraint
is too strict in some cases; the simplifications seem to be
‘acceptable’ for small deformations (or for problems ensuring
the positive-determinat condition on the recovery sequences).


