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From discrete to continuous energies

Discrete system: with discrete variables u = {u;} indexed on a lattice (e.g.,
Qnzd)

Discrete energy: (e.g., pair interactions)

E(u) =Y fij(ui uy)
ij
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piecewise-constant interpolation; a sum of Dirac deltas, etc.)




From discrete to continuous energies

Discrete system: with discrete variables u = {u;} indexed on a lattice (e.g.,
Qnzd)

Discrete energy: (e.g., pair interactions)

E(u) =Y fij(ui uy)
ij

Scaling arguments: derive

Ee(u) = foj(uhuj)
ij

indexed on a scaled lattice (e.g., 2 NeZ%)

Identification: identify u with some continuous parameter (e.g., its
piecewise-constant interpolation; a sum of Dirac deltas, etc.)

Effective continuous theory: obtained by I'-limit as ¢ — 0.

B. I'-convergence for Beginners, OUP 2002
B. Handbook of I'-convergence (Handbook of Diff. Eqns, Elsevier, 2006)




BINARY SYSTEMS

Fine multi-scale effects occur even for the simplest discrete systems.
Starting example:

Cubic lattice: variables parameterized on Q N Z%

Binary systems: variable taking only two values; wlog u; € {—1,1} (spins).

Nearest-neighbour (NN) interactions: the energies depend only on (u;,u;)
with |i — j| = 1.
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BINARY SYSTEMS

Fine multi-scale effects occur even for the simplest discrete systems.
Starting example:

Cubic lattice: variables parameterized on Q N Z%
Binary systems: variable taking only two values; wlog u; € {—1,1} (spins).
Nearest-neighbour (NN) interactions: the energies depend only on (u;,u;)

with |i — j| = 1.

Only two possible energies (up to affine change of variables):

E(u) = Eferr(u Z Ui (ferromagnetic energy)
(with two trivial minimizers u; = 1 and u; = —1)
E(u) = Eanti( Z Ui (antiferromagnetic energy)

(with two minimizers u; = 4(—1)%)

Note: the change of variables v; = (—1)%u; is such that Eapnti(v) = Eferro(u), 50
actually we have only one energy




BINARY SYSTEMS: Continuous limits of ferromagnetic energies

Bulk scaling: (mixtures of ground states)

-1 if-1<u<1

400  otherwise

E:(u) = fZEduiuJ' — /Q Y(u)de, with ¢(u) = {
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BINARY SYSTEMS: Continuous limits of ferromagnetic energies

Bulk scaling: (mixtures of ground states)

-1 if-1<u<1

400  otherwise

E:(u) = 7ZEduin — /Q Y(u)de, with ¢(u) = {

Surface scaling: (crystalline perimeter) v € BV (Q;{£1})

E:(u) = st71(1 —ujuj) — 2/

QNo{u=1}

vl dH?=t, with vl = |vl
k
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BINARY SYSTEMS: Equivalent asymptotic expansions

Equivalent Cahn-Hilliard Theory: the analysis above shows that

=D _ctuiy; N/Qlﬂeff(u)dﬂ»"*‘SQ/QHVuHQdI

(Yefr a suitable two-well energy density with minima in +1)




BINARY SYSTEMS: Equivalent asymptotic expansions

Equivalent Cahn-Hilliard Theory: the analysis above shows that
= etugu; ~ / Ve (u) dz + 52/ [Vul|? da
Q Q
(temr a suitable two-well energy density with minima in £1)

Equivalent Ginzburg-Landau Theory/screw dislocations: a similar
expansion holds for the 2D vector case: d = 2 and u; € ST C R? and

_Zed@i,uj)NAweﬂ(u)dx+EQA|Vu\2dz

(off a suitable energy density with minima in S1), but the relevant scaling is
€2|logel, in which case we have vortices (Alicandro-Cicalese, ARMA 2009).
This formulation is ‘dual’ to screw-dislocation energies (Alicandro-Cicalese-
Ponsiglione, Indiana UMJ 2010)




General lattices

With the due changes the process can be repeated on more general periodic
lattices (e.g. triangular, exagonal, FCC, BCC, etc.); even though we do not have
in general a duality between ferro- and anti-ferromagnetic energies (frustration).

Techniques must be refined to take care of a-periodic lattices (e.g. Penrose
tilings or quasicrystals)

(B-Solci M®AS 2011)




BINARY SYSTEMS: “Dynamic” Continuous Theory

Continuous “flows” of the perimeter
Motion is obtained by introducing a discrete time-step 7, define a time-discrete
motion by successive minimizations for fixed 7, and pass to the limit as 7 — 0

Perimeter-driven motion of sets
U

motion by mean curvature

(Almgren-Taylor-Wang

SIAM J.Control.Optim. 1983)

v|=K




BINARY SYSTEMS: “Dynamic” Continuous Theory

Continuous “flows” of the perimeter
Motion is obtained by introducing a discrete time-step 7, define a time-discrete
motion by successive minimizations for fixed 7, and pass to the limit as 7 — 0

Perimeter-driven motion of sets

i
motion by mean curvature
(Almgren-Taylor-Wang
SIAM J.Control.Optim. 1983)
v|=K

Crystalline perimeter-driven motion of sets

motion by crystalline mean curvature v
(Almgren-Taylor J.Diff.Geom. 1995 in 2D) ™ L




Motion of discrete interfaces

Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009) We follow the
Almgren-Taylor-Wang scheme letting e, 7 — 0 at the same time.

e For 7 << € the motion E(t) is trivial (pinning):
E(t) = FEy

for all (sufficiently regular) bounded initial sets Eo;

e For € << 7 the sets E(t) follow motion by crystalline mean curvature.




Motion of discrete interfaces

Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009) We follow the
Almgren-Taylor-Wang scheme letting e, 7 — 0 at the same time.

e For 7 << € the motion E(t) is trivial (pinning):
E(t) = FEy
for all (sufficiently regular) bounded initial sets Eo;

e For € << 7 the sets E(t) follow motion by crystalline mean curvature.

e At the critical scale 7 = ac we have

‘quantized’ cristalline motion | I |




Discreteness effects at the critical scale

(i) (critical pinning side length) If all L > 2« then the motion is trivial:

E(t) = Eo;

(ii) (partial pinning and non strict inclusion principle; e.g for rectangles) If
L1 < 2 and La > 2a only one side is (initially) pinned

La(t)

(iii) (quantized velocity)
2a/L(t) ¢ N = velocity integer multiple of 1/«;

(iv) (non-uniqueness)
2a/L(t) € N = velocity not uniquely determined = non-uniqueness

(v) (non-convex pinned sets)
(vi) (pinning after initial motion)

N > - 2
\

barriers pinned final state




SPIN SYSTEMS

Coming back to the static framework, within binary systems (u € {£1}) we
may have more complex interactions:

E(u) = — Z O UiUj
2%

Conditions of the type

o (uniform minimal states) o;; > 0

e (coerciveness conditions) o;; > ¢ > 0 for |[i —j| =1
e (decay conditions) 3, 0i; < C < +oo for all i
guarantee that (up to subsequences)

stﬁlai]‘(l —ujuj) — p(z,v) dH41
ij QNno{u=1}

i.e., the limit is still a (possibly inhomogeneous) interfacial energy.

The integrand ¢ is determined by a family of discrete (non-local) minimal-surface
problems. In the 2D case and if only nearest-neighbours are considered (o;; = 0 if
|i — j] > 1) equivalently it is given by an asymptotic distance on the lattice Z?

(where the distance between the nodes i and j is ;) (B-Piatnitsky 2010)




Dilute Spin Systems - A Percolation Result

Non-coercive spin systems (only o;; > 0). We may consider w a realization of
an i.i.d. random variable in Z2, and the corresponding energy
1 ith propabilit
E“(u) = — Z"fj“i“j with afj = WT prop 11 yp
oy 0 with propability 1 —p

(only nearest-neighbour interactions)




Dilute Spin Systems - A Percolation Result

Non-coercive spin systems (only o;; > 0). We may consider w a realization of
an i.i.d. random variable in Z2, and the corresponding energy

_ {1 with propability p
ij

E¥(u) = — oluiug with o¥ =
(u) ZXJ: EAR 0 with propability 1 —p

(only nearest-neighbour interactions)

Percolation Theorem (B-Piatnitsky 2010)

In the surface scaling, the I'-limit F}, of EY is a.s.
(1) Fp(u) =0 on all w € LY (92;[—1,1]) for p < 1/2
(2) Fp(u) = / op(v) dHY for p> 1/2
QNo{u=1}
The limit is deterministic and ¢, (v) is given by a first-passage percolation formula
for p > 1/2.

Deterministic toy problem: discrete ‘perforated domain’; the case p > 1/2
corresponds to well-separated ‘holes’; i.e., where o;; = 0.




Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

1 ith bilit
E¥(u) ==Y ofuu;  with of = with propability p
i,j —1  with propability 1 —p

(only nearest-neighbour interactions)
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(= probabilistic approach beyond percolation theory)




Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

1 ith bilit
E¥(u) ==Y ofuu;  with of = with propability p
i,j —1  with propability 1 —p

(only nearest-neighbour interactions)

Deterministic ‘toy’ problem (for the case p ~ 0): discrete ‘perforated
domain’ with well-separated ‘holes’ where ¢;; = —1 (B-Piatnitsky 2010). In this
case

e need stronger separation conditions between the perforations

e the I'-limit may be still described by an interfacial energy / o) dH?!
QNo{u=1}

but ¢ is not given by a least-distance formula

(= probabilistic approach beyond percolation theory)

Note: when 0 < p < 1 it is not even clear what should be the correct
parameter in the limit




Systems with different limit parameters

When not only nearest neighbours are taken into account we do not have a
correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM
2006)

E(u)=c1 E’Miuj +co Z U U u; € {£1}
NN NNN

(NNN = next-to-nearest neighbours)




Systems with different limit parameters

When not only nearest neighbours are taken into account we do not have a
correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM
2006)

E(u)=c1 E’Miuj +co Z U U u; € {£1}
NN NNN

(NNN = next-to-nearest neighbours)
For suitable positive ¢1 and ca the ground states are 2-periodic

PG

(representation in the unit cell)

The correct order parameter is the orientation v € {£ej,+ea2} of the ground
state.




Surface-scaling limit
F(v) = / Pt —v™,v)dH?
S(v)

S(v) = discontinuity lines; v = normal to S(v)
1 given by an optimal-profile problem

Microscopic picture of a limit state with finite energy
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2) Ferromagnetic-anti-ferromagnetic spin systems in 1D (same form)
u; € {:I:l}

E(u) =
NNN

—c1 Zuiu]- + c2 Z UpU]
NN

For suitable positive ¢; and c2 the ground states are 4-periodic

+1 *-Q
$
$
§
§
§
¥
N
E
§
§

-1 e
The correct order parameter is the phase ¢ € {0, 1,2, 3} of the ground state




Surface-scaling limit

o e - > ' Y < e o -
§ } i FEEEA i\ fN 3 § 3 Y §
i \ |\ \ 2 i \ \ { \ § \ §
§ \ § \ i 1 i\ N J \ H \ i 3 §
i \ v Vo4 A \ / Voo v
/ VoS \ \ s Vo /
R N 3 VAR v \ § { A
i —e > o - - S - Y-

¢=0 ¢=3 =1
T'-limit of the form

F(o)= Y %% (1) - (1)
teS(o)
defined on ¢ : @ — {0,1,2,3}

S(¢) = phase-transition set

1 given by an optimal-profile problem




Higher-dimensional analog
We can consider e.g. two-dimensional systems with NN; NNN, NNNN (next-to-
next-...) interactions, u; € {£1} and

E uUUj + €1 E UUj + €2 E Ui Uy

NNN NNNN




Higher-dimensional analog
We can consider e.g. two-dimensional systems with NN; NNN, NNNN (next-to-
next-...) interactions, u; € {£1} and

E uUUj + €1 E UUj + €2 E Ui Uy

NNN NNNN

For suitable ¢; and c2 again we have a non-trivial 4-periodic ground state

OCOeeOOCee
OO0Oee@e@OCee
[ N NoNeN N NONe)
[ N NONON N NONC)
OoOeeOCee
OO0Oee@e@OCee
[ N NONON N NONC)
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but also...

ON N NeNeN N NoNoN N Ne
[ N NONON N NONCN N NONG)
| NONON N NONCN N NONON )
oNoN N NONON N NONON N J
oN N NONON N NONON N Ne
[ X NoNoN N NONON N NONe)
[ NoNON N NONON N NONON ]
oNeN N NoNoN N NoNoN N |
and also....
o N NoNON N NONON N NO)
ONON N NONON N NONON N )
[ NONON N NONON N NONON )
[ N NeNON N NONON N NONG)
Ceeo00CeeOOee O
cNoN N NoNON N NONON N J
[ NoNeN N NOoNON N NONON J
[ N NeNoN N NONON N NeN6)

(counting translations 16 different ground states)
and a description for the surface-scaling I'-limit combining the two previous
examples
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Ternary Systems: the Blume-Emery-Griffith model

e o o o o o Three phases: —1,0,1
) (I A SN SR ¢ B(u) =Y (k(uiuy)® — ujuy)
Qi NN
o e o o o
i fe
o o o o o w:Z2NQ {-1,0,1}, k€R




Ternary Systems: the Blume-Emery-Griffith model

e o o o o o Three phases: —1,0,1
o B(u) =) (k(uiug)® — uguy)
Qi NN
o o o o o
P fe
o o o o o w:Z2NQ {-1,0,1}, k€R
e o o o o

The description of the limit depends on the positive parameter k.
We focus on the case

1
- <k<l1
3

for which a richer continuous description is possible (the other cases are
treated as in the binary case)




Blume-Emery-Griffiths Model

1
If§<k<1then

e minimal phases are u =1 and u = —1
e the presence of the phase 0 is energetically-favourable on the interfaces

e o o 9o o o
e o o o o o
e o o o o o
o o o o o o
e o o o o o

e o o o o o

(Surface) scaling:

Ee(u) =Y e(k((uiug)® — 1) — uiu; + 1)
NN




Blume-Emery-Griffiths Model

1
If§<k<1then

e minimal phases are u =1 and u = —1
e the presence of the phase 0 is energetically-favourable on the interfaces

e o o 9o o o

(Surface) scaling:

Ee(u) =Y e(k((uiug)® — 1) — uiu; + 1)
NN
New variables (to keep track of the 0-phase)

Io(u) :={i : u; = 0}; w(u) = Z €d;.

i€l (u)

Ee(u) s p = p(u)
E =
e(u, 1) {—l—oo otherwise

(Ee are equi-coercive in (u, it))
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Surfactant energies as a continuous limit of the BEG model

Theorem (Alicandro-Cicalese-Sigalotti 2010)

Belus) = Bluw) = [ W) art v2(1-k) |l @\0fu = 1),

Qno{u=1} d)(dHl Llou=1}
u € BV (Q; {£1})

¢(z,v)

v1Avg vi1Vuvg 4
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Surfactant energies as a continuous limit of the BEG model

Theorem (Alicandro-C Sigalotti 2010)

du L B )
(m”’)dﬁ +2(1—k) |l (N\O{u = 1}),

u € BV (Q; {£1})

Ee(uy 1) S E(u, ) = / 8
QNo{u=1}

P(z,v)

I

:

viAvy viVrg z
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Surfactant energies as a continuous limit of the BEG model

Theorem (Alicandro-Cicalese-Sigalotti 2010)

Belus) = Bluw) = [ W) art v2(1-k) |l @\0fu = 1),

Qno{u=1} d)(dHl Llou=1}
u € BV (Q; {£1})

v
e o o o :L o o
¢(z,v)
e o o o o9 o o
o o o :_I—o o o
L] . L * ." L
o o o e o
o o J_: o o o
1 e o o690 o o o
1
: : o o690 o o o o
v1A\vg viVig z
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Surfactant energies as a continuous limit of the BEG model

Theorem (Alicandro-C Sigalotti 2010)

(Fe—
dH [ g{u=1}

u € BV (Q; {£1})

Be(us) L Blu) = [ V)M +2(1-8) ] @\ {u = 1)),

¢
QNo{u=1}

v
e o o o :L o o
¢(z,v)
e o o o o0 o o
e o o o o —o o o
. L] L d L3 *—9 . °
e o o o o oo o
e o o o9 o o o
1 o o o660 o o o
1
: : o o690 o o o o
viAve vi1Vvg z
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CONCLUSIONS

e As a limit of very simple discrete systems we have obtained: sharp interface
energies, Cahn-Hilliard theories, multi-phase vector functionals, energies on pairs
set/measure, etc. with links to homogenization, Ginzburg-Landau theory,
percolation issues, Statistical Mechanics, etc.

e Such discrete-to-continuous approach allows to ‘justify’ continuous theories from
simple atomistic or ‘molecular’ models

e At the same time it provides a possible simple approximation of a rich zoo of
target continuous energies via lattice systems, or vice versa




