### Asymptotic analysis of discrete systems

Andrea Braides (Roma Tor Vergata)

Asymptotic analysis in the calculus of variations and PDEs

Vancouver, July 8 2009

### From discrete to continuous

**Discrete system:** with discrete variables  $u = \{u_i\}$  indexed on a lattice (e.g.,  $\Omega \cap \mathbb{Z}^d$ )

Discrete energy: (pair interactions)

$$E(u) = \sum_{ij} f_{ij}(u_i, u_j)$$

Scaling arguments: derive

$$E_{\varepsilon}(u) = \sum_{ij} f_{ij}^{\varepsilon}(u_i, u_j)$$

indexed on a scaled lattice (e.g.,  $\Omega \cap \varepsilon \mathbb{Z}^d$ )

**Identification:** identify u with some continuous parameter (e.g., its piecewise-constant interpolation)

**Effective continuous theory:** obtained by  $\Gamma$ -limit as  $\varepsilon \to 0$ .

I present two case studies to highlight differences/mutual interactions with the continuous case

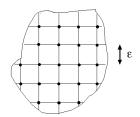


## Part One: A prototypical model for defects

A "non-defected" simple model: the discrete membrane: quadratic mass-spring systems.  $\Omega\subset\mathbb{R}^d,\,u:\varepsilon\mathbb{Z}^d\to\mathbb{R}$ 

$$E_{\varepsilon}(u) = \sum_{NN} \varepsilon^d \left( \frac{u_i - u_j}{\varepsilon} \right)^2$$

(NN = nearest neighbours (in  $\Omega$ ))



As  $\varepsilon \to 0$   $E_{\varepsilon}$  is approximated by the Dirichlet integral

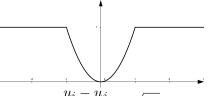
$$F_0(u) = \int_{\Omega} |\nabla u|^2 dx$$

### A prototypical 'defected' interaction:

at a 'defected spring'

$$\text{substitute} \qquad \left(\frac{u_i-u_j}{\varepsilon}\right)^2 \qquad \text{by} \qquad \left(\frac{u_i-u_j}{\varepsilon}\right)^2 \wedge C_\varepsilon$$

(truncated quadratic potential)



The spring 'breaks' when  $\frac{u_i-u_j}{\varepsilon}=\sqrt{C_\varepsilon}$ 

### The Blake-Zisserman weak membrane

The meaningful scaling for  $C_{\varepsilon}$  is (of order)  $\frac{1}{\varepsilon}$ , in which case the energy of a 'broken' spring scales as a surface:  $\varepsilon^d \cdot \frac{1}{\varepsilon} = \varepsilon^{d-1}$ . When all springs are 'defected' the total energy

$$E_{\varepsilon}(u) = \sum_{NN} \varepsilon^{d} \left( \left( \frac{u_{i} - u_{j}}{\varepsilon} \right)^{2} \wedge \frac{1}{\varepsilon} \right)$$

is then approximated as  $\varepsilon \to 0$  by an *(anisotropic) Griffith fracture energy* (Chambolle 1995)

$$F_1(u) = \int_{\Omega \setminus S(u)} |\nabla u|^2 dx + \int_{S(u)} ||\nu||_1 d\mathcal{H}^{d-1}$$

S(u) = discontinuity set of u (crack site in reference config.)  $\nu=(\nu_1,\ldots,\nu_d)$  normal to S(u),  $\|\nu\|_1=\sum_i |\nu_i|$  (lattice anisotr.)  $\mathcal{H}^{d-1}$  = surface measure;  $u\in SBV(\Omega)$ 



## G-closure theory for defects in discrete systems

Q: describe the overall effect of the presence of defects

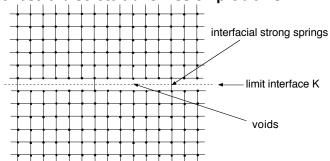
**"G-closure" approach**: Fix any family of distributions of defects  $\mathcal{W}_{\varepsilon}$ , and compute all the possible limits of the corresponding energies. What type of energies do we get? How does it depend on the local volume fraction of the defects?

**NOTE:** a possible limit energy is always sandwiched between  $F_0$  (Dirichlet, from above) and  $F_1$  (Blake and Zisserman, from below); in particular it equals  $F_0$  if no fracture occurs.

## **Design of Weak Membranes**

Contrary to usual continuous G-closure problems it is essential to handle particular concentrations of defects on a single surface.

### A side result: discrete transmission problems



$$E_{\varepsilon}(u) = \sum_{NN} \varepsilon^d c_{ij}^{\varepsilon} \Big(\frac{u_i - u_j}{\varepsilon}\Big)^2 \qquad c_{ij}^{\varepsilon} = \begin{cases} 1 \text{ (strong spring)} \\ 0 \text{ (void)} \end{cases}$$

**Theorem (B-Sigalotti)** Let  $p_{\varepsilon}$  be the percentage of strong springs over voids at the (coordinate) interface K. If

$$p_{\varepsilon} = \begin{cases} c \, \varepsilon |\log \varepsilon| & \text{ if } d = 2\\ c \, \varepsilon & \text{ if } d \geq 3 \end{cases}$$

then  $E_{\varepsilon}$  can be approximated by a "transmission energy"

$$F(u) = \int_{\Omega} |\nabla u|^2 dx + b \int_{K} |u^{+} - u^{-}|^2 d\mathcal{H}^{d-1},$$

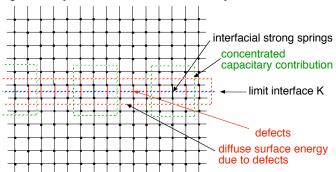
defined on  $H^1(\Omega \setminus K)$ , where

$$b = \begin{cases} c \frac{\pi}{2} & \text{if } d = 2\\ c \frac{C_d}{4 + C_d} & \text{if } d \ge 3 \end{cases}$$

and  $C_d$  is the 2-capacity of a 'dipole' in  $\mathbb{Z}^d$ .

## The Building Block for the design

Same geometry with voids substituted by defects



**Proposition.** The same  $p_{\varepsilon}$  give

$$F(u) = \int_{\Omega} |\nabla u|^2 dx + \mathcal{H}^{d-1}(\{u^+ \neq u^-\}) + b \int_{K} |u^+ - u^-|^2 d\mathcal{H}^{d-1}$$

for 
$$u \in H^1(\Omega \setminus K)$$



#### Note:

- (i) surface contribution of defects and capacitary contribution of strong springs can be decoupled as they live on different microscopic scales
- (ii) the construction is local, and is immediately generalized to K a locally finite union of *coordinate hyperplanes* (i.e., hyperplanes with normal in  $\{e_1,\ldots,e_n\}$ )
- (iii) the limit functional F can be interpreted as defined on  $SBV(\Omega)$  and can be identified with  $F_{1,b,K}$ , where

$$F_{a,b,K}(u) = \int_{\Omega} |\nabla u|^2 dx + \int_{S(u)} (a+b|u^+ - u^-|^2) d\mathcal{H}^{d-1}$$

with the constraint  $S(u) \subset K$ 

# Limits of energies $F_{1,b,K}$

1. Weak approximation of surface energies (on coordinate hyperplanes) Suitable  $K_h$  s.t.  $\mathcal{H}^{d-1} \sqcup K_h \rightharpoonup a\mathcal{H}^{d-1} \sqcup K$   $(a \ge 1)$ 



Then  $F_{1,b,K_h}$   $\Gamma$ -converges to  $F_{a,ab,K}$ 

2. Weak approximation of anisotropic surface energies. For non-coordinate hyperplanes K we find locally coordinate  $K_h$ 

s.t. 
$$\mathcal{H}^{d-1} \, \sqsubseteq \, K_h \to \|\nu_K\|_1 \mathcal{H}^{d-1} \, \sqsubseteq \, K_h$$

Then  $F_{a,b,K_h}$   $\Gamma$ -converges to  $F_{a\|\nu_K\|_1,b\|\nu_K\|_1,K}$ 

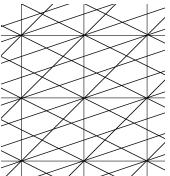
**Summarizing 1 and 2:** since all constructions are local, in this way we can approximate all energies

$$F_{a,b,K}(u) := \int_{\Omega} |\nabla u|^2 dx + \int_{S(u)} (a(x) + b(x)|u^+ - u^-|^2) ||\nu||_1 d\mathcal{H}^{d-1}$$

with  $a \ge 1, \, b \ge 0, \, K$  locally finite union of hyperplanes, and u s.t.  $S(u) \subset K$ .

#### 3. Homogenization of planar systems

 $K_h 1/h$ -periodic of the form



We can obtain all energies of the form

$$F_{\varphi}(u) = \int_{\Omega} |\nabla u|^2 dx + \int_{S(u)} \varphi(\nu) d\mathcal{H}^{d-1},$$

with  $\varphi$  finite, convex, pos. 1-hom.,  $\varphi(\nu) \geq \|\nu\|_1$  on  $S^{d-1}$ 



**Note:** The condition  $\varphi \ge \|\cdot\|_1$  is sharp since we have the lower bound  $F_{\varphi} \ge F_1(=F_{\|\cdot\|_1})$ .

**Proof:** choose  $(\nu_j)$  dense in  $S^{d-1}$ ,  $\Pi_j := \{\langle x, \nu_j \rangle = 0\}$ ,

$$K_h = \frac{1}{h} \mathbb{Z}^d + \bigcup_{j=1}^h \Pi_j,$$

 $b_h=0$  and  $a_h(x)=\varphi(\nu_j)$  on  $\frac{1}{h}\mathbb{Z}^d+\Pi_j$ . Then  $F_{a_h,0,K_h}=F_\varphi$  on its domain, and the lower bound follows.

Use a direct construction if  $\nu$  belongs to  $(\nu_j)$   $\mathcal{H}^{d-1}$  a.e. on S(u), and then use the density of  $(\nu_j)$ .

#### 4. Accumulation of cracks (micro-cracking)

 $K_h$  locally of the form



We can obtain all energies of the form

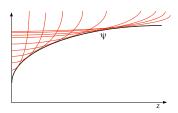
$$F_{\psi}(u) = \int_{\Omega} |\nabla u|^2 dx + \int_{S(u)} \psi(|u^+ - u^-|) d\mathcal{H}^{d-1},$$

with  $\psi$  finite, concave,  $\psi \geq \sqrt{d}$ .

**Note:**  $\psi \geq \sqrt{d}$  is sharp by the inequality  $F_{\psi} \geq F_1$  and  $\sqrt{d} = \max\{\|\nu\|_1 : \nu \in S^{d-1}\}$ 

**Proof.** Choose  $a_j \geq \sqrt{n}$ ,  $b_j \geq 0$  such that

$$\psi(z) = \inf\{a_j + b_j z^2\}$$



- 1) For a planar K with normal  $\nu$ , choose  $K_h = \bigcup_{j=1}^h (K + \frac{j}{h^2}\nu)$  and  $a(x) = a_j$ ,  $b(x) = b_j$  on  $K + \frac{j}{h^2}\nu$ ;
- 2) To eliminate the constraint  $S(u) \subset K$  use the homogenization procedure of Point 3.

## Homogeneous convex/concave limit energies

**Theorem (B-Sigalotti)** For all positively 1-hom. convex  $\varphi \geq \|\cdot\|_1$  and concave  $\psi \geq 1$  there exists a family of distributions of defects  $\mathcal{W}_{\varepsilon}$  such that the corresponding  $E_{\varepsilon}$   $\Gamma$ -converge to

$$F_{\varphi,\psi}(u) := \int_{\Omega} |\nabla u|^2 dx + \int_{S(u)} \varphi(\nu) \, \psi(|u^+ - u^-|) d\mathcal{H}^{d-1},$$

for  $u \in SBV(\Omega)$ .

Note: we can localize the construction to obtain all

$$F_{a,\varphi,\psi}(u) := \int_{\Omega} |\nabla u|^2 dx + \int_{S(u)} a(x)\varphi(\nu) \, \psi(|u^+ - u^-|) d\mathcal{H}^{d-1},$$

with a > 1 lower semicontinuous.

#### Some comments:

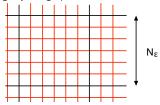
- (1) This characterization is clearly not complete. It does not comprise, e.g.
- F with constrained jump set:  $S(u) \subset K$
- non-finite  $\varphi$  (as for layered defects)
- non-concave subadditive  $\psi$  such as  $\sqrt{d} \operatorname{sub}(1+z^2)$ ; etc.

**Partial conjecture:** the reachable (isotropic) subadditive  $\psi$  are all that can be written as the subadditive envelope of  $\psi(z) = \inf_j \{a_j + b_j z^2\}$   $(a_j \ge \sqrt{n}, b_j \ge 0)$ .

- (2) The complete characterization seems to be out of reach. It would need e.g. approximation results for general lower semicontinuous surface energies (BV-elliptic densities); which is a more mysterious issue than approximation of quasiconvex functions (!)
- (3) The result is anyhow sufficient for design of structures with prescribed failure set and resistance



(4) **(Prescribed limit defect density)** The theorem holds as is, also if we prescribe the local "limit volume fraction"  $\theta$  of the defects. To check this it suffices to note that we may obtain the Dirichlet integral also with  $\theta=1$  (i.e., with a "negligible" percentage of strong springs)



(with  $N_{\varepsilon} \to +\infty$ ,  $\varepsilon N_{\varepsilon} \to 0$ )

### (5) (Comparison with the random case)

In that case  $F_p(u)=\int_{\Omega}|\nabla u|^2\,dx+\int_{S(u)}\varphi_p(\nu)d\mathcal{H}^{d-1}$  (p= probability of a weak spring)

### Part Two: Modeling of phase transitions

A multi-scale variational continuous model for phase transitions

$$F_{\varepsilon}(u) = \int_{\Omega} \left( W(u) - c_1 \varepsilon^2 |\nabla u|^2 + c_2 \varepsilon^4 |\nabla^2 u|^2 \right) dx$$

with W double-well potential.

- ullet if  $c_1 < 0$  and  $c_2 = 0$  then it's good old "Modica-Mortola"
- if  $c_1 = 0$  and  $c_2 > 0$  Fonseca-Mantegazza prove a sharp-interface limit (MM-like result)
- ullet if  $c_2>0$  and  $c_1>0$  small enough Cicalese-Spadaro-Zeppieri (in progress) prove a sharp-interface limit
- ullet if  $c_2>0$  and  $c_1>0$  **large enough** Mizel *et al.* prove that ground states are *periodic* (in particular no interface limit: all  $u_{arepsilon}$  with  $F(u_{arepsilon})=\min F_{arepsilon}+o(arepsilon)$  converge weakly to 0)

### A discrete analog - dimension one

### Ferromagnetic-anti-ferromagnetic spin systems in 1D

Substitute continuous u by discrete  $u=\{u_i\}$  parameterized on  $\varepsilon\mathbb{Z}$ 

$$W(u) \rightarrow u_i \in \{\pm 1\}$$
 (spin system)

$$\nabla u \quad \to \quad \frac{u_i - u_{i-1}}{\varepsilon}$$

$$\nabla^2 u \quad \to \quad \frac{u_{i+1} - 2u_i + u_{i-1}}{\varepsilon^2}$$

Upon rearranging/renormalizing, we obtain a NNN energy of the form

$$E_{\varepsilon}(u) = \frac{1}{\varepsilon} F_{\varepsilon}(u) = \sum_{i} \left( \alpha u_{i} u_{i-1} + u_{i-1} u_{i+1} \right) + C_{\varepsilon}$$

The case "large  $c_1$ " corresponds to  $|\alpha| < 2$ 



#### Rewrite

$$\sum_{i} \left( \alpha u_{i} u_{i-1} + u_{i-1} u_{i+1} \right) = \sum_{i} \left( \alpha \frac{1}{2} (u_{i} u_{i-1} + u_{i+1} u_{i}) + u_{i-1} u_{i+1} \right)$$

and note that for  $|\alpha| < 2$  the integrand

$$\alpha \frac{1}{2}(u_i u_{i-1} + u_{i+1} u_i) + u_{i-1} u_{i+1}$$

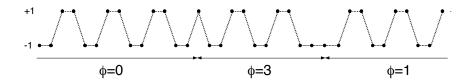
is minimal for +,+,- -type configurations; i.e, in that case ground states are 4-periodic



The correct order parameter is the **phase**  $\phi \in \{0,1,2,3\}$  of the ground state.

#### Surface-scaling limit (B-Cicalese)

Functions u with  $E_{\varepsilon}(u) = \min E_{\varepsilon} + o(1)$  have the form



$$F(\phi) = \sum_{t \in S(\phi)} \psi(\phi^+(t) - \phi^-(t))$$

defined on  $\phi:\Omega\to\{0,1,2,3\}$ 

 $S(\phi)$  = phase-transition set

 $\psi$  given by an optimal-profile problem

**NOTE:** for  $\alpha<2$  we have flat ground states  $\pm 1$  (sharp interface limit); for  $\alpha>2$  we have 2-periodic oscillating minimizers (anti-phase interfaces)



# Q: Is there a corresponding conjecture on the continuum? Let

$$F_{\varepsilon}(u) = \int_{\Omega} \left( W(u) - c_1 \varepsilon^2 |u'|^2 + \varepsilon^4 |u''|^2 \right) dt$$

with  $c_1$  "large"

We may **conjecture** that there exists a continuous phase variable  $\phi:\mathbb{R}\to S^1$  (we identify the period of the continuous ground states with  $S^1$ ) and a scale  $\varepsilon^\alpha$  such that a sequence  $u_\varepsilon$  with

$$|F_{\varepsilon}(u_{\varepsilon}) - \inf F_{\varepsilon}| = O(\varepsilon^{\alpha})$$

have the form (up to subsequences)

$$u_{\varepsilon}(x) = v\left(\frac{x}{\varepsilon} + \phi(x)\right) + o(\varepsilon)$$

(v= periodic ground state).

In this way we can define a convergence  $u_\varepsilon \to \phi$  and express the  $\Gamma$ -limit of  $\frac{1}{\varepsilon^\alpha} F_\varepsilon$  in terms of  $\phi$ 

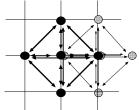


#### Q: is there a higher-dimensional analog?

We can consider e.g. two-dimensional systems with NN, NNN (next-to-nearest), NNNN (next-to-next-...) interactions,  $u_i \in \{\pm 1\}$  and

$$E_{\varepsilon}(u) = \sum_{NN} u_i u_j + c_1 \sum_{NNN} u_i u_j + c_2 \sum_{NNNN} u_i u_j$$

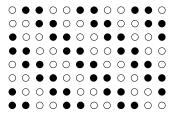
Again we can regroup the interactions to study ground states



For suitable  $c_1$  and  $c_2$  again we have a non-trivial 4-periodic ground state

but also...

and also....



(counting translations 16 different ground states) and a description for the surface-scaling  $\Gamma$ -limit similar to the 1-D case



### Conclusion

#### The discrete setting

- on one hand can be a source of inspiration for continuous problems in simplifying technical details and supplying easier conjectures
- on the other hand with the additional 'micro' dimension may add interesting effects to discrete problems corresponding to continuous ones