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A prototypical model for defects
A “non-defected” simple model: the discrete membrane:
quadratic mass-spring systems. Ω ⊂ Rd, u : εZd → R

Eε(u) =
∑
NN

εd
(ui − uj

ε

)2

(NN = nearest neighbours (in Ω))

As ε→ 0 Eε is approximated by the Dirichlet integral

F0(u) =
∫

Ω
|∇u|2 dx



A prototypical ‘defected’ interaction:
at a ‘defected spring’

substitute
(ui − uj

ε

)2
by

(ui − uj
ε

)2
∧ Cε

(truncated quadratic potential)

The spring ‘breaks’ when
ui − uj

ε
=
√
Cε



Note: Truncated quadratic potentials capture the main features
of classes of discrete potentials. For example (asymmetric)
truncated quadratic potentials can be used to derive limit
energies for Lennard-Jones interactions by a comparison and
scaling argument

min
{
α′z2, β′

}
≤ J(z) ≤ min

{
α′′z2, β′′

}
(z > 0)

NOTE: supα′ = inf α′′ = 1
2J
′′(0) =: α (Taylor expansion at 0)

supβ′ = inf β′′ = J(+∞) =: β (depth of the well)
(B-Truskinovsky, B-Lew-Ortiz, etc.)



The Blake-Zisserman weak membrane

The meaningful scaling for Cε is (of order) 1
ε , in which case the

energy of a ‘broken’ spring scales as a surface: εd · 1
ε

= εd−1.
If only ‘defected’ springs are present the total energy

Eε(u) =
∑
NN

εd
((ui − uj

ε

)2
∧ 1
ε

)
is then approximated as ε→ 0 by an (anisotropic) Griffith
fracture energy (Chambolle 1995)

F1(u) =
∫

Ω\S(u)
|∇u|2 dx+

∫
S(u)
‖ν‖1dHd−1

S(u) = discontinuity set of u (crack site in reference config.)
ν = (ν1, . . . , νd) normal to S(u), ‖ν‖1 =

∑
i |νi| (lattice anisotr.)

Hd−1 = surface measure; u ∈ SBV (Ω)



Models of defects in discrete systems

Q: describe the overall effect of the presence of defects

1. (Probabilistic setting) Assume that the distribution of
defects is random, and the probability of a defected interaction
is p ∈ (0, 1). Is the limit deterministic? What is its form? How
does it depend on p?

2. (“G-closure” approach) Fix any family of distributions of
defectsWε, and compute all the possible limits of the
corresponding energies. What type of energies do we get? How
does it depend on the local volume fraction of the defects?

NOTE: a possible limit energy is always sandwiched between
F0 (Dirichlet, from above) and F1 (Blake and Zisserman, from
below); in particular it equals F0 if no fracture occurs.



Random defects: a model for variational problems
with percolation

(We restrict to dimension d = 2)
Let ω : {(i, j) NN in Z2} → {strong, defected} be a realization
of an i.i.d. random variable such that

ω(i, j) =

{
strong with probability p
defected with probability 1− p

Define for i, j NN in εZ2

f εij(z) =

z
2 if ω

(
i
ε ,

j
ε

)
= strong

z2 ∧ 1
ε if ω

(
i
ε ,

j
ε

)
= defected

and the energy

Eωε (u) =
∑
NN

εdf εij

(ui − uj
ε

)



Tools for variational problems with percolation

Clusters of strong/defected connections

If p < 1/2 (resp., p > 1/2) almost surely there exists a (unique)
infinite connected component (cluster ) of strong
(resp., defected) connections in Z2.

strong
defected

paths of connections
in the clusters



“Measure-theoretical” properties of clusters

Each cluster is uniformly distributed: for all (large) cubes
# disjoint paths connecting opposite sides is proportional to the
area of the side

N>>1

Consequence: if p < 1/2 then the functionals Eωε are equi-
coercive on H1(Ω) (use Poincaré’s inequality on strong paths).



Metric properties of clusters
We define a distance on the cluster as

dω(x, y) = min{length of path in the cluster joining x and y}

This distance can be homogenized : a.s. (in ω)

dω

(x
ε
,
y

ε

)
→ ϕ(x− y),

with ϕ = ϕp deterministic, convex and one-homogeneous
(asymptotic chemical distance).

Consequence: if p > 1/2 cracks will follow a minimal path in
the defected cluster (the proof uses the property that long paths
not in the defected cluster contain a proportion of strong links).



The Percolation Theorem

(i) (subcritical regime) if p < 1/2 then defects are a.s.
negligible and the energy is approximated by

Fp(u) = F0(u) =
∫

Ω
|∇u|2 dx

defined in H1(Ω);
(ii) (supercritical regime) if p > 1/2 then a.s. the discrete
energy is approximated by a fracture energy governed by the
chemical distance; i.e.,

Fp(u) =
∫

Ω
|∇u|2 dx+

∫
S(u)

ϕp(ν) dH1

defined in SBV (Ω).
(B-Piatnitski 2008)



Notes
• other types of distributions of random defects⇒ different
percolation thresholds
• asymptotic expansion close to p = 1/2 not known
• analysis limited to d = 2 for the supercritical case
• similar variational formulation for other problems: dilute spin
systems, “spin glass”, etc.
• definition and asymptotic properties of distances dω depend
on the problem – little studied by the percolation community
• i.i.d. random variables essential to have energies defined on
surfaces



The deterministic case: design of weak
membranes

Contrary to the random case it is essential to handle particular
concentrations of defects on a single surface.
A side result: discrete transmission problems

limit interface K

voids

interfacial strong springs

Eε(u) =
∑
NN

εdcεij

(ui − uj
ε

)2
cεij =

{
1 (strong spring)
0 (void)



Theorem (B-Sigalotti) Let pε be the percentage of strong
springs over voids at the (coordinate) interface K. If

pε =

{
c ε| log ε| if d = 2
c ε if d ≥ 3

then Eε can be approximated by a “transmission energy”

F (u) =
∫

Ω
|∇u|2 dx+ b

∫
K
|u+ − u−|2dHd−1,

defined on H1(Ω \K), where

b =

{
c π2 if d = 2
c Cd

4+Cd
if d ≥ 3

and Cd is the 2-capacity of a “dipole” in Zd.



The Building Blocks for the design

Same geometry with voids substituted by defects

limit interface K

defects

interfacial strong springs
concentrated
capacitary contribution

diffuse surface energy 
due to defects

Proposition. The same pε give

F (u) =
∫

Ω
|∇u|2 dx+Hd−1({u+ 6= u−}) + b

∫
K
|u+− u−|2dHd−1

for u ∈ H1(Ω \K)



Note:
(i) surface contribution of defects and capacitary contribution of
strong springs can be decoupled as they live on different micro-
scopic scales
(ii) the construction is local, and is immediately generalized to
K a locally finite union of coordinate hyperplanes (i.e., hyper-
planes with normal in {e1, . . . , en})
(iii) the limit functional F can be interpreted as defined on
SBV (Ω) and can be identified with F1,b,K , where

Fa,b,K(u) =
∫

Ω
|∇u|2 dx+

∫
S(u)

(a+ b|u+ − u−|2)dHd−1

with the constraint S(u) ⊂ K



Limits of energies F1,b,K

1. Weak approximation of surface energies (on coordinate
hyperplanes) Suitable Kh s.t. Hd−1 Kh ⇀ aHd−1 K (a ≥ 1)

1/h

C/h
Kh
K

Then F1,b,Kh
Γ-converges to Fa,ab,K

2. Weak approximation of anisotropic surface energies. For
non-coordinate hyperplanes K we find locally coordinate Kh

s.t. Hd−1 Kh ⇀ ‖νK‖1Hd−1 K
K

Kh

1/h

Then Fa,b,Kh
Γ-converges to Fa‖νK‖1,b‖νK‖1,K



Summarizing 1 and 2: since all constructions are local, in this
way we can approximate all energies

Fa,b,K(u) :=
∫

Ω
|∇u|2 dx+

∫
S(u)

(a(x)+b(x)|u+−u−|2)‖ν‖1dHd−1

with a ≥ 1, b ≥ 0, K locally finite union of hyperplanes, and u
s.t. S(u) ⊂ K.



3. Homogenization of planar systems
Kh 1/h-periodic of the form

We can obtain all energies of the form

Fϕ(u) =
∫

Ω
|∇u|2dx+

∫
S(u)

ϕ(ν)dHd−1,

with ϕ finite, convex, pos. 1-hom., ϕ ≥ ‖ · ‖1



Note: The condition ϕ ≥ ‖ · ‖1 is sharp since we have the lower
bound Fϕ ≥ F1(= F‖·‖1).

Proof: choose (νj) dense in Sd−1, Πj := {〈x, νj〉 = 0},

Kh =
1
h

Zd +
h⋃
j=1

Πj ,

bh = 0 and ah(x) = ϕ(νj) on 1
hZd + Πj . Then Fah,0,Kh

= Fϕ on
its domain, and the lower bound follows.
Use a direct construction if ν belongs to (νj) Hd−1 a.e. on S(u),
and then use the density of (νj).



4. Accumulation of cracks (micro-cracking)
Kh locally of the form

1/h1/h2

Kh

K
We can obtain all energies of the form

Fψ(u) =
∫

Ω
|∇u|2dx+

∫
S(u)

ψ(|u+ − u−|)dHd−1,

with ψ finite, concave, ψ ≥
√
d.

Note: ψ ≥
√
d is sharp by the inequality Fψ ≥ F1 and√

d = max{‖ν‖1 : ν ∈ Sd−1}



Proof. Choose aj ≥
√
d, bj ≥ 0 such that

ψ(z) = inf{aj + bjz
2}

Z

ψ

1) For a planar K with normal ν, choose Kh =
⋃h
j=1(K + j

h2 ν)
and a(x) = aj , b(x) = bj on K + j

h2 ν;
2) To eliminate the constraint S(u) ⊂ K use the
homogenization procedure of Point 3.



Homogeneous convex/concave limit energies

Theorem (B-Sigalotti) For all positively 1-hom. convex
ϕ ≥ ‖ · ‖1 and concave ψ ≥ 1 there exists a family of
distributions of defectsWε such that the corresponding Eε
Γ-converge to

Fϕ,ψ(u) :=
∫

Ω
|∇u|2dx+

∫
S(u)

ϕ(ν)ψ(|u+ − u−|)dHd−1,

for u ∈ SBV (Ω).

Note: we can localize the construction to obtain all

Fa,ϕ,ψ(u) :=
∫

Ω
|∇u|2dx+

∫
S(u)

a(x)ϕ(ν)ψ(|u+ − u−|)dHd−1,

with a ≥ 1 lower semicontinuous.



Some comments:

(1) This characterization is clearly not complete. It does not
comprise, e.g.
• F with constrained jump set: S(u) ⊂ K
• non-finite ϕ (as for layered defects)
• non-concave subadditive ψ such as

√
d sub(1 + z2); etc.

Partial conjecture: the reachable (isotropic) subadditive ψ are
all that can be written as the subadditive envelope of
ψ(z) = infj{aj + bjz

2} (aj ≥
√
d, bj ≥ 0).

(2) The complete characterization seems to be out of reach.
It would need e.g. approximation results for general lower
semicontinuous surface energies (BV-elliptic densities); which
is a more mysterious issue than approximation of quasiconvex
functions (!)



(3) The result is anyhow sufficient for design of structures with
prescribed failure set and resistance

(4) (Prescribed limit defect density) The theorem holds as is,
also if we prescribed the local “limit volume fraction” θ of the
defects. To check this it suffices to note that we may obtain the
Dirichlet integral also with θ = 1 (i.e., with a “negligible”
percentage of strong springs)

Nε

(with Nε → +∞, εNε → 0)



Conclusions

Defects can be modeled as two-phase discrete interactions
• random setting (prototype of variational problems with
percolation): requires independent random variables to avoid
uncontrolled effects on exceptional surfaces.
Leading to a wide range of open questions for “variational”
percolation problems, completely unexplored for d ≥ 3
• G-closure setting (prototype of design problems for materials
with different scales): requires construction of surface energies
using homogenization, capacitary and subadditive arguments.
A variety of complex energies can be obtained, but that is only
a partial description due to lack of general approximation
results for surface energy densities.


