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Analysis of complex lattice systems

Starting point:
lattice systems (interactions parameterized on an underlying
lattice L)
pair interactions depending on a parameter u = ui through
potentials fij = fij(ui − uj) (but may be generalized to any
n-point interactions)
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j

Energies: E(u) =
∑

i,j∈Ω∩L
fij(ui − uj) (Ω=reference set)

GOAL: description of overall properties of equilibria of E when
the number of points contained in Ω is very large.



From discrete systems to continuous variational
problems

• Introduction of a small scaling parameter ε
• Scale the lattice (keeping the reference set Ω fixed)

i

j

ε

• Scale the energy densities (from fij to some f εij) so that the
overall energy retains the relevant features of E

SCALED ENERGIES: Eε(u) =
∑

i,i∈Ω∩εL
f εij(ui − uj)

GOAL: find a continuous energy F that describes the main
properties of Eε (as ε→ 0)



Definition of the limit energy

Minimal requirements:
• (convergence) fixed φ, minimum problems of the type

min{Eε(u) : u = φ on ∂Ω}

(boundary conditions must be understood properly and can be
replaced by other types of conditions) are approximated by

min{F (u) : u = φ on ∂Ω}

• (“locality”) the form of F is independent of Ω (and φ)

NOTE: “approximation” means that minimizers uε for Eε are
“close” to minimizers u of F . To this end an identification of uε
with piecewise-constant functions is understood, so that a
convergence uε → u is defined.



Gamma-convergence

The two requirements above imply that F is the Γ-limit of Eε.
In analytical terms
(1) (ansatz-free lower bound) F (u) ≤ lim inf

ε→0
Eε(uε) if uε → u

(2) (existence of recovery sequences) for all u there exists
uε → u such that F (u) = lim

ε→0
Eε(uε)

This convergence has been introduced by De Giorgi in the
1970s and has been extensively applied to integral energies.
Its application to discrete energies is particularly interesting
since the definition of the limit parameter u and the scaling of E
to obtain Eε are interlinked with the computation of the Γ-limit.



Example: bulk limit energy

Q.(elasticity scaling) Under what scaling law the limit is a bulk
energies, i.e., of the form

F (u) = F (u,Ω) =
∫

Ω
W (∇u) dx ?

The locality property suggests to look at scaling properties of
samples with respect to their dimensions
We expect for fixed u

F (u,Ω) ≈ |Ω|

e.g. (taking Ω = (0, δ)d – a small sample in macroscopic units)
F (u, (0, δ)d) ≈ δd



A variational coarse-graining principle for W :

If ε << δ << 1 we can transfer back the scaling property of F to
Eε using the convergence of minima : if ξ = ∇u(x0) (eg x0 = 0)

W (ξ) ≈ min
{∫

(0,δ)d

W (∇u) dx : u = ξx on ∂(0, δ)d
}

(note that at that scale ∇u ≈ ξ, so that φ ≈ ξx)

≈ min
{ ∑
i,j∈(0,δ)d∩εL

f εij(ui − uj) : u = ξx on ∂(0, δ)d
}

(write δ = Tε and change variables u = εv)

≈ min
{ 1
T d

∑
i,j∈(0,T )d∩L

1
εd
f εij
(
ε(vi − vj)

)
: v = ξx on ∂(0, T )d

}



Scaling of the energy densities: suggested scaling to reduce
from f εij to fij

f εij(ui − uj) = εd fij

(ui − uj
ε

)
(if Ω ⊂ Rd)

In this way the coarse-graining principle for W is

W (ξ) = lim
T→+∞

min
{ 1
T d

∑
i,j∈(0,T )d∩L

fij
(
vi−vj

)
: v = ξx on ∂(0, T )d

}
(existence of the limit⇒ “ansatz-free coarse graining”)



This is a homogenization formula: optimization over
oscillations at all micro-scales T with fixed “overall strain” ξ

Application: derivation of elasticity theories from interactions
fij with polynomial growth conditions (Alicandro-Cicalese ’04)



Issues of convergence

No restriction on oscillations at microscopic scale
⇒ any competing function v with v = ξx on the boundary in the
formula for W
•Wide range of applicability to convergence of minimum
problems (no restriction on ξ)
• Growth restrictions on the function f
• Hard computations

Q. Can we restrict to “regular patterns” for test functions?
(Cauchy-Born rule)
In general no (e.g. Friesecke-Theil ’02 example – periodic
ground states for NNN interactions on a square lattice. For
analysis of the CB rule see E-Ming ’07)



Restricted theories

Assumptions on the convergence of minimizers uε
⇒ different sets of test functions v in minimum problems
⇒ different forms of W
⇒ different range of applicability
Strong convergence⇒ only competing function v = ξx
((strict) Cauchy-Born rule) (see e.g. Blanc-Le Bris-Lions ’02).
• No restriction on the function f
• Easier computations
• Smaller range of applicability to convergence of minimum
problems

A COMPROMISE: Small oscillations at microscopic scale
⇒ Lipschitz bound on competing function v = ξx⇒ (weak)
Cauchy-Born rule (see e.g. Friesecke-James ’00, Schmidt ’08)



A different scaling: interfacial limit energy

In this case F (u,Ω) scales as a surface area.
Scaling:

f εij(ui − uj) = εd−1fij

(ui − uj
ε

)
Particular case: Phase-transition limits. F is defined on
functions u : Ω→ {±1} (a parametrization of two preferred
phases) and

F (u) =
∫

Ω∩S(u)
ϕ(ν) dHd−1 where S(u) = ∂{u = 1}

(phase boundary) ν = normal to S(u)



A variational coarse-graining principle for ϕ:

in 1D ϕ = surface tension constant, given by

ϕ = min
{∑
i,j∈Z

fij(vi − vj) : v(−∞) = −1, v(+∞) = 1
}

(optimal-profile problem)
In dimension d the minimum problem is among transitions v
from −1 to 1 oriented with ν on cubes of side-lenght T → +∞



Range of applications:
• high-order analysis of non-convex discrete systems: here ±1
represent a parametrization of two “wells” of the energy
computer using the bulk variational principle
• “spin systems” (ui ∈ {±1}): ψ(ν) optimal-interface problem

ν

=-1 =+1

(connections with Statistical Mechanics, Percolation)



Multiscale analysis

The examples above are an over-simplified view.

Some general issues:

• more scales are present at the same time⇒ iteration of
Γ-convergence to obtain a development or expansion

• a single macroscopic scaling may result from
superposition of microscopic effects⇒ separation of
scales must be described

• the relevant macroscopic order parameter is part of the
unknown⇒ derivation of the order parameter by looking at
ground states



Example of expansions: fracture from Lennard
Jones interactions

Equilibrium configurations linked to the energy∑
i 6=j

J(|ui − uj |) J Lennard-Jones potential

J

ui = position of the i-th atom; (number of atoms→ +∞)



Derivation of bulk and surface energies
Two regimes:

(after translation of J in 0)

Note: surface and bulk scalings are different



A comparison energy: Blake-Zisserman model in
Computer Vision

Ψε(z) =

{
min

{
z2, 1

ε

}
if z > 0

z2 if z ≤ 0
1D analysis (atomic chain)

Γ-limit:
∫
|u′|2 dt+ #(S(u)) u+ > u− on S(u)

(Griffith brittle fracture energy with unilateral constraint -
Chambolle 1993)



‘Universal form’ of the Blake-Zisserman energy
Analysis by comparison with (scaled) Blake-Zisserman
energies:

min
{
α′z2, β′

}
≤ J(z) ≤ min

{
α′′z2, β′′

}
(z > 0)

NOTE: supα′ = inf α′′ = 1
2J
′′(0) =: α (Taylor expansion at 0)

supβ′ = inf β′′ = J(+∞) =: β (depth of the well)



Scaling argument to recover Griffith fracture (B-Lew-Ortiz ’06):

min
{
α′z2,

β′

ε

}
≤ 1
ε
J(
√
εz) ≤ min

{
α′′z2,

β′′

ε

}
Change of variables (‘linearization’ around 0) u =

√
ε v

Eε(u) =
∑
i

εJ
(ui − ui−1

ε

)
= ε

∑
i

ε · 1
ε
J
(√

ε
vi − vi−1

ε

)
≈ ε

(
α

∫
|v′|2 dt+ β#(S(v))

)
= ε

(
α

∫ ∣∣∣ u′√
ε

∣∣∣2 dt+ β#(S(u))
)

= α

∫
|u′|2 dt+ εβ#(S(u)) (with u+ > u−)



Differences from the bulk/surface scalings

New scaling argument
In this case a ‘linearization’ argument is combined with the
scaling

f ε(z) = f(
√
εz)

Different form of the limit
The limit energy retains the small parameter ε
(Γ-expansion, B-Truskinovsky ’08)

F (u) = α

∫
|u′|2 dt+ ε β#(S(u)) (with u+ > u−)

(Griffith fracture energy with an internal parameter )



Separation of scales

The macroscopic behavior can result from the superposition of
micro/meso-scopic effects.
Example (NNN interactions for non-convex energies)
(B Gelli ’02) Bulk scaling for a 1D energy

Eε(u) =
∑
i

εf1

(
ui+1 − ui

ε

)
+
∑
i

εf2

(
ui+1 − ui−1

ε

)
The Γ-limit is of the form ∫

W (u′) dt

The homogenization formula for W can be simplified by
separating the two effects:
• microscopic optimization
• mesoscopic relaxation



1) optimization of the effect of first-neighbors

feff(z) = f2(2z) +
1
2

min{f1(z1) + f1(z2) : z1 + z2 = 2z}

(note that feff may be more wiggly than f1 and f2)
2) optimization of mesoscopic oscillations: W=convex envelope
of feff

microscopic oscillations

mesoscopic oscillations

average slope



Note: in this case the development reads as∫
feff(u′) dt+ Cε2

∫
|u′′|2 dt

(high-order term accounting for interfacial energy)
(B-Cicalese ’06)

Similar multi-scale arguments:
collective behavior of dislocations
pinning effects, etc



Examples of order parameters from ground states
1) Anti-ferromagnetic spin systems in 2D
(B-Alicandro-Cicalese ’06)

E(u) = c1

∑
NN

uiuj + c2

∑
NNN

ukul ui ∈ {±1}

For suitable positive c1 and c2 the ground states are 2-periodic

(representation in the unit cell)
The correct order parameter is the orientation v ∈ {±e1,±e2}
of the ground state.



Surface-scaling limit

F (v) =
∫
S(v)

ψ(v+ − v−, ν) dH1

S(v) = discontinuity lines; ν = normal to S(v)
ψ given by an optimal-profile problem

Microscopic picture of a limit state with finite energy



2) Ferromagnetic-anti-ferromagnetic spin systems in 1D
(same form)

E(u) = −c1

∑
NN

uiuj + c2

∑
NNN

ukul ui ∈ {±1}

For suitable positive c1 and c2 the ground states are 4-periodic

-1

+1

The correct order parameter is the phase φ ∈ {0, 1, 2, 3} of the
ground state.



Surface-scaling limit

-1

+1

φ=0 φ=3 φ=1

F (φ) =
∑
t∈S(φ)

ψ(φ+(t)− φ−(t))

defined on φ : Ω→ {0, 1, 2, 3}
S(φ) = phase-transition set
ψ given by an optimal-profile problem



Conclusions

We have a number of variational coarse-graining principles for
lattice energies based on
• scaling properties
• study of ground states
• multi-scale analysis via developments
• separation of scales arguments
These arguments are flexible and can be adapted to lattice-like
environments (e.g. random lattices, layered lattices,
quasicrystals), adding long-range interactions (non-local limit
functionals) and taking into account also (to some extent)
dynamic problems.

Do they give a complete enough picture ?
Comparison needed with experiments, numerical simulations,
etc.


