
NONSYMMETRIC PRECONDITIONER UPDATES IN

NEWTON-KRYLOV METHODS FOR NONLINEAR SYSTEMS ∗

STEFANIA BELLAVIA † , DANIELE BERTACCINI ‡ , AND BENEDETTA MORINI §

Abstract. Newton-Krylov methods, combination of Newton-like methods and Krylov subspace
methods for solving the Newton equations, often need adequate preconditioning in order to be suc-
cessful. Approximations of the Jacobian matrices are required to form preconditioners and this step
is very often the dominant cost of Newton-Krylov methods. Therefore, working with preconditioners
destroys in principle the “Jacobian-free” (or matrix-free) setting where the single Jacobian-vector
product can be provided without forming and storing the element of the true Jacobian.

In this paper, we propose and analyze a preconditioning technique for sequences of nonsymmetric
Jacobian matrices based on the update of an earlier preconditioner. The proposed strategy can be
implemented in a matrix-free manner. Numerical experiments on popular test problems confirm the
effectiveness of the approach in comparison with the standard ILU-preconditioned Newton-Krylov
approaches.

1. Introduction and motivations. The numerical solution of large scale non-
linear systems of algebraic equations

F (x) = 0, F : IRn → IRn,

is ubiquitous in models for applied sciences. Models requiring the solutions of such
problems are based on partial differential equations, on systems of coupled differen-
tial equations, on hybrid differential-algebraic problems, on equilibrium problems and
others. Newton and, more generally, Newton-like algorithms, are robust and deter-
ministic approaches which are often used as a standard tool in small and medium scale
problems. On the other hand, Newton methods are generally expensive when applied
to large scale problems, specially compared to splitting-based methods, [28]. The
most critical part of Newton-like algorithms is forming and storing an approximation
to the Jacobian matrix of the underlying problem. Several variants of Newton-like al-
gorithms targeted to save memory and computational resources have been considered
through the years, [1, 3, 17, 20, 25, 26, 35, 36].

Here we base our new proposal on the so called Jacobian-free Newton-Krylov
solvers i.e. Newton-like algorithms where the Newton correction linear equations are
solved by a Krylov subspace method without requiring explicitly the Jacobian matrix,
see e.g. [16, 18, 28, 36]. In particular, only the action of the Jacobian matrix on a
given vector is required and it is approximated performing one function F evalua-
tion. Unfortunately, these algorithms sometimes suffer from a slow convergence of
the (inner) Krylov linear iterations and building good preconditioners for the Jaco-
bian matrices in a matrix-free environment is not an easy task. Specifically, effective
algebraic preconditioners require accessing the entries of the Jacobian matrix but of-
ten their computation can be the most expensive part of the algorithm. As a result,

∗Revised version. Work supported in part by INDAM-GNCS grant “Progetti 2010”, “Analisi e
risoluzione iterativa di sistemi lineari di grandi dimensioni in problemi di ottimizzazione”, and by
grant PRIN 20083KLJEZ, MIUR, Roma, Italia.

†Dipartimento di Energetica “S. Stecco”, Università di Firenze, via C. Lombroso 6/17, 50134
Firenze, Italia, stefania.bellavia@unifi.it

‡Dipartimento di Matematica e Centro Interdipartimentale per la Biostatistica e la Bioinformat-
ica, viale della Ricerca Scientifica, 00133 Roma, bertaccini@mat.uniroma2.it

§Dipartimento di Energetica “S. Stecco”, Università di Firenze, via C. Lombroso 6/17, 50134
Firenze, Italia, benedetta.morini@unifi.it

1

computing a preconditioner each time the Jacobian matrix changes (recomputed pre-
conditioner) can be a very expensive task for large scale problems while reusing the
same preconditioner on several Newton iterations (frozen preconditioner) may yield
to a failure of the inexact Newton process. Therefore, something in between the for-
mer and the latter approach can be beneficial and the construction of a reasonable
candidate preconditioner should require the approximation of as few entries of the Ja-
cobian as possible; this purpouse can be accomplished by preconditioning strategies
for sequences of linear systems.

The issue of preconditioning sequences of linear systems has been investigated
in several papers. We recall approaches based on Quasi-Newton updates [8, 31], re-
cycling Krylov subspace techniques [34], partial matrix estimation [19], approximate
update of factorized preconditioners [5, 9, 10, 13, 22, 23, 30]. Focusing on the last
mentioned approach, the cited papers differ for the sequence of matrices considered
and the techniques implemented but share the following key features. If a factorized
preconditioner for a (reference) matrix of the sequence is known, then a factorized
updated approximation for a subsequent matrix can be algebraically derived; in the-
ory, such updated preconditioner requires the difference between the current and the
reference matrices. In most cases, forming the ideal update is not of practical interest
because of the computational cost and the fact that one term of the factorization is
dense. To cope with these difficulties the ideal update is approximated, e.g. by using
structured approximations to the matrices involved.

The approach given in [13, 22, 23] deserves a deeper analysis. To our knowl-
edge these are the only papers dealing with approximate preconditioner updates for
sequences of nonsymmetric linear systems arising in Newton-Krylov solvers. The up-
dating technique given in [13, 22, 23] was inspired by [5, 9] and it is based on an LDU
incomplete factorization of the reference matrix. Duintjer Tebbens and Tu̇ma assume
that either the factor L or U more or less approximate the identity matrix [22]. Then,
the updates proposed neglect one of the two factors L or U and take into account
one triangular part of the difference matrix between the current and the reference
Jacobian. In fact, it is typically assumed that the matrices have a strong diagonal;
this may occur in various applications, e.g. in some upwind/downwind discretization
schemes. For different applications, the condition imposed on the L and U factors
may be too strong. Interestingly, the proposed strategy can be implemented in a
matrix-free manner as discussed in [23].

We propose a new preconditioning technique for the sequence of linear systems
arising in Newton-Krylov algorithms. Our procedure generalizes the updates pre-
sented in [5, 9] for incomplete factorizations of shifted matrices and in [10] for sym-
metric matrices applied to an image restoration problem. It consists of two steps.
First, we compute a preconditioner for a reference Jacobian in the form of an in-
complete inverse factorization. Second, in the progress of the nonlinear iterations we
perform cheap updates of such preconditioner. This is achieved by a banded approxi-
mation of both the difference between the current Jacobian and the reference Jacobian
and the arising updating term. As we will show, the cheapest implementation allows
the construction of the preconditioner with a computational effort similar to that of
matrix-free settings, i.e. linear in the number of function F evaluations.

The proposed preconditioning technique is quite general. It can update any in-
complete factorization of the inverse of the reference Jacobian, e.g. an inverse ILU
technique [38] or an AINV preconditioner for nonsymmetric matrices [6]. Further, it
can be readily employed in the solution of arbitrary sequences of nonsymmetric linear

2

systems such as those arising in affine scaling methods for large bound constrained
nonlinear systems [4], electronic structure calculation [34], quantum chromodynamics
[34].

Our technique differs considerably from the proposals by Duintjer Tebbens and
Tu̇ma and may be an efficient alternative approach. In particular, our procedure
relies on approximate inverse preconditioners and therefore the application of the
preconditioner can be efficiently implemented on parallel computers. Further, the
difference matrix and the arising updating term are approximated by extracting the
main diagonal and zero or more diagonals on both sides instead of triangular parts as
in [13, 22, 23].

In §2 we describe the Inexact Newton-Krylov setting we are working on; in §3
we discuss preconditioning for Newton-Krylov algorithms and in §4 we introduce our
matrix-free updating strategy. §4.3 reports an analysis of the properties and behaviour
of our preconditioner along with a theoretical comparison of our preconditioner with
the frozen and recomputed preconditioners. Finally, in §5 we report some numerical
results and comparisons with a Matlab implementation of the paradigm implemented
in the widely used NITSOL software package [36].

Throughout the paper, ‖ · ‖ denotes an arbitrary vector or matrix norm. The
specific use of 1-norm and Euclidean norm will be indicated as ‖ · ‖1, ‖ · ‖2.

2. Newton-Krylov methods. Consider the system of nonlinear equations

F (x) = 0,(2.1)

where F : IRn 7→ IRn is continuously differentiable. Let F = (F1, F2, . . . , Fn)T ,
Fi : IRn 7→ IR, i = 1, . . . , n, and J denote the Jacobian matrix.

Given the current iteration xk, Newton method computes a step s as the solution
to the Newton equation

Jks = −Fk,(2.2)

where Fk = F (xk), Jk = J(xk), and then sets xk+1 = xk + s. On the other hand,
Newton-Krylov methods solve the linear system (2.2) approximately by using a Krylov
method and find a step sk such that

‖Jksk + Fk‖2 ≤ ηk‖Fk‖2,(2.3)

with ηk ∈ [0, 1). Clearly, these methods belong to the class of the Inexact Newton
methods [20] and, among the variety of contributions in this framework we cite the
papers [1, 3, 4, 17, 20, 25, 26, 35, 36].

The so-called forcing term ηk controls the level of accuracy in the solution of the
Newton equation. Solving (2.2) approximately is beneficial when the dimension n of
the problem is large and when xk is far from a solution. In practice, the role of ηk

is to avoid a pointless accuracy in the computation of the steps while retaining fast
local convergence. Thus, it is convenient to require a modest accuracy far away from
a solution and higher accuracy when approaching a solution, [26].

The convergence of Newton and Inexact Newton methods is local, i.e. convergence
is guaranteed if the initial iterate x0 is sufficiently near a solution. Globalization
techniques improve the likelihood of convergence from arbitrary starting point, see
e.g. [2, 25, 29], and most of them fall into two classes: linesearch methods and trust-
region methods. Focusing on linesearch strategies, they have been widely used in the

3

context of Newton-Krylov methods and impose a sufficient decrease in the value of
‖F‖2. Such strategies follow from the observation that any step p satisfying

‖Jkp + Fk‖2 ≤ ηk‖Fk‖2,(2.4)

is a descent direction for ‖F‖2 at xk, [25, Lemma 7.1]. A well-known strategy proposed
in [25] implements a test for accepting the inexact Newton step sk; if sk fails to satisfy
the test then backtracking is performed. The resulting Linesearch Newton-Krylov
Algorithm is stated below.

Algorithm 2.1: Linesearch Newton-Krylov.

Given x0, ηmax ∈ [0, 1), α ∈ (0, 1), 0 < σ0 < σ1 < 1.
For k = 0, 1 . . . until convergence do:

Choose ηk ∈ [0, ηmax].
Compute a step sk by applying the Krylov method to (2.2) and terminate

when (2.3) holds.
Set s̄k = sk and η̄k = ηk.
While ‖F (xk + s̄k)‖2 ≥ (1 − α(1 − η̄k)) ‖Fk‖2

Choose σ ∈ [σ0, σ1].
Update s̄k = σs̄k and η̄k = 1 − σ(1 − η̄k).

Set xk+1 = xk + s̄k.

At each iteration of Algorithm 2.1, an initial inexact Newton step sk at level ηk is
tried. If it does not provide a sufficient decrease in the value of ‖F‖2, then vectors
s̄k are tried until a satisfactory step is found. It is important to note that s̄k is still
an inexact step as it satisfies (2.3) with forcing term η̄k. The above procedure is a
general framework for linesearch method; Inexact Newton methods that incorporate
a linesearch procedure based on the first Goldstein-Armijo condition (the “alpha-
condition”) are a special case of the algorithm considered, [25].

If Jk is invertible and ‖Fk‖2 6= 0, the Linesearch Newton-Krylov Algorithm does
not break down. In particular, a step sk can be found; then, the analysis conducted
in [25] shows that the while-loop terminates in a finite number of steps. The principal
convergence result for the Algorithm 2.1 is the following.

Theorem 2.1. Assume that the Linesearch Newton-Krylov Algorithm does not
break down. If x∗ is a limit point of {xk} such that J(x∗) is nonsingular, then F (x∗) =
0 and xk → x∗. Furthermore, the initial sk and ηk are accepted without modification
in the while-loop for all sufficiently large k.

If J is Lipschitz continuous at x∗, then if ηk → 0, the convergence is q-superlinear,
and if ηk ≤ Γ‖Fk‖2 for some Γ > 0, the convergence is of q-order 2.

Proof. See [25, 26].

We explicitly note that under the above standing conditions, asymptotic convergence
to the solution x∗ is determined by the ultimate behaviour of the sequence {ηk}.

Another important feature of the Newton-Krylov methods is that they require
no matrix storage if a transpose-free Krylov method is used. In fact, a transpose-free
Krylov method applied to (2.2) requires only the action of the Jacobian J on a vector
v and Jacobian-vector products can be approximated using finite-difference formulas.

4

Formulas of orders one, two, and four are available, see e.g. [36, §2.2]. A first-order
approximation is given by

F ′(x)v ≈ F (x + ǫv) − F (x)

ǫ
,(2.5)

where the scalar ǫ is chosen on standard arguments to have a trade-off between floating
point errors and accuracy requirements, [16, 36]. The resulting approach is referred to
as “matrix-free” since it does not require forming or storing the Jacobian. Remarkably,
this approach still maintains the fast local convergence properties stated in Theorem
2.1, [16].

3. Preconditioning Newton-Krylov methods. Good performance of the
Linesearch Newton-Krylov Algorithm is strongly affected by effective precondition-
ing of the Newton equations. Usually, a maximum number of linear iterations is
allowed in the solution of (2.2). If the Krylov method converges slowly, the initial
step sk satisfying (2.3) may not be found within the prescribed iterations. In this
case, either a failure is declared or the algorithm proceeds with the last step, say s∗,
computed by the linear solver. In practice, let

sk = s∗, ηk =
‖Jks∗ + Fk‖2

‖Fk‖2

.

Provided that ηk is less than one, then sk is a descent direction for ‖F‖2 and back-
tracking can be performed along it, [3]. However, this step may be only a weak descent
direction and too many backtracking reductions may be necessary; as a consequence a
practical backtracking routine may declare failure before an acceptable step is found.

Unfortunately, algebraic preconditioning requires forming the Jacobian matri-
ces or approximating them and the resulting Newton-Krylov procedure is no longer
matrix-free. On the other hand, the preconditioning strategy is considered to be
matrix-free, or nearly matrix-free, if it needs matrices that are reduced in complexity
with respect to the full Jacobian and still takes advantage of matrix-vector product
approximations by finite differences, see e.g., [28, pp. 362, 374].

The excellent survey [28] includes a review on preconditioning Newton-Krylov
methods with ILU factorizations, multilevel Schwarz-type methods, multigrid and
structure-based approaches. These strategies require a high computational effort to
access to the Jacobians with the exception of Krylov iterative solvers used as precon-
ditioners and few cases using the special structure of the problem.

Updated preconditioners for sequences of nonsymmetric linear systems were moti-
vated by the need to avoid the expensive computation of a new preconditioner. Proper
implementations of the updating strategies allow to improve upon the frozen precon-
ditioners and obtain numerical performances which compare favorably with those of
a recomputed preconditioner.

4. Matrix free updating preconditioners. To reduce the computational cost
of preconditioning a sequence of Newton equations, the quality of a preconditioner
from an earlier Newton equation can be enhanced through updates containing infor-
mation on the current Jacobian. For sake of efficiency, the updating strategy should
require a small overhead, be simple to implement and interface with existing pieces
of codes.

In this section, we present a procedure for updating the factorization of a reference
preconditioner over several subsequent iterations. For specific options, this turns out

5

to be matrix-free and the computational effort is similar to that of matrix-free settings,
requiring only the evaluation of the n components of function F .

The idea is an evolution of what has been proposed in [5, 9] for special sequences
of symmetric matrices differing from one another by a diagonal matrix. In order to
build up an approximation for the Jacobian matrix Jk, consider an invertible reference
Jacobian Jseed and a factorization of J−1

seed

J−1

seed = W D−1ZT ,(4.1)

where D is a diagonal matrix, W and Z are upper triangular matrices, possibly
permuted, with ones on the main diagonal.

A factorization for the inverse of the current invertible Jacobian matrix Jk can
be obtained as follows. Letting

∆k = Jk − Jseed, Ek = ZT ∆k W,(4.2)

we get

J−1

k = (Jseed + ∆k)−1(4.3)

= (Z−T DW−1 + Z−T EkW−1)−1

= W (D + Ek)
−1

ZT .

Often, the factors Z and W are rather dense and their computation and storage are
too expensive to be feasible. On the other hand, it is often possible to compute sparse
approximations Z̃ and W̃ for Z and W which can provide a good factorized sparse
preconditioner for the inverse of Jseed. This gives rise to

Pseed = W̃ D̃−1Z̃T ,(4.4)

where D̃ is a nonsingular diagonal approximation to D.
Consequently, we can construct a candidate factorized sparse inverse precondi-

tioner Pk for J−1

k using Pseed and a sparsification of matrices Ek and ∆k. In fact, we
set

Pk = W̃
(

D̃ + Ẽk

)
−1

Z̃T ,(4.5)

where

Ẽk = g(Z̃T ∆̃k W̃), ∆̃k = f(∆k).(4.6)

Here f and g are functions extracting selected components of their matrix arguments.
In the following sections 4.1, 4.2 we describe a viable implementation of the

updating process. Specifically, we discuss how to generate a preconditioner Pseed for
Jseed and choose the functions g and f in order to avoid computing the entire Jacobian
matrix Jk and facing with full matrices. We also discuss how to avoid breakdowns in
the updates when the resulting preconditioner is nearly singular. Then in section 4.3
we analyze the quality of the updated preconditioners.

4.1. A factorized sparse approximate inverse for Jseed. In order to get
a usable sequence of approximations for the Jacobian matrices Jk, it is mandatory
to provide a good starting preconditioner. Let us suppose that an approximate fac-
torization for a possibly permuted version of J−1

seed exists; to simplify the treatise,
we omit the presence of permutations. Factors for the approximate inverse precon-
ditioner (4.4) can be computed from various decompositions. Here we describe two
viable approaches, one based on the inverse ILU technique proposed in [38] and the
other based on AINV preconditioners, [6].

6

The inverse ILU technique. The reference preconditioner Pseed can be pro-
vided using an inverse ILU technique. This amounts to compute first a threshold ILU
factorization, see e.g., [37, Chapter 10]

Jseed ≈ L̃ D̃ ŨT ,(4.7)

where L̃ and Ũ are unit lower triangular and D̃ is a diagonal matrix and then to
approximate the factorization of the inverse of the Jacobian matrix

J−1

seed = WD−1ZT .

Letting Z̃ and W̃ be sparse matrices such that

Z̃ ≈ Ẑ = L̃−T , W̃ ≈ Ŵ = Ũ−T ,(4.8)

Pseed takes the form

Pseed = W̃ D̃−1Z̃T .(4.9)

Clearly, this procedure is not feasible if the reference ILU factorization breaks
down or if it is very ill-conditioned. This can happen in the case of, e.g., strongly
indefinite matrices. A way to circumvent this relies often in allowing more fill-in.

The evaluation of L̃−1 and Ũ−1 can be performed by 2n triangular solves or by
using the analytical expression of the rows of the inverse of an unit upper triangular
matrix, [38]. Since Ẑ, Ŵ can be full even if L̃ and Ũ are sparse, sparsity in the factors
Z̃, W̃ can be obtained by dropping entries of L̃−1 and Ũ−1 on the basis of a level-of
fill scheme or of a drop tolerance [7]. Under some hypothesis on Jseed, like, e.g.,
diagonal dominance or being M-matrix or a suitable reordering with lumping etc., we
can ensure a fast decay of the entries of the inverses. Nonetheless, sparsification of Ẑ
and Ŵ even with very slow (or no) decay of the entries away from the main diagonal
can result in surprisingly good results in practice, [5]. Effective practical schemes for
computing Z̃ and W̃ consist in dropping fill as soon as it occurs within a sparse vector
update; at this regard we refer to the numerical fill drop strategy of Algorithm 3 in
[38]. In order to control the number of fills, we can easily impose a restriction on
the allowed number of nonzero entries. This approach is effective on shared memory
machines since the only concurrent access to the same memory location is a read type
access. The inversion and sparsification part of the underlying algorithm is perfectly
scalable because there are no dependencies between the calculation of the columns of
the triangular factors, [38].

The AINV method. Another method for computing an approximate factoriza-
tion of the inverse of the reference Jacobian (4.9) is the sparse AINV preconditioner
described in [6]. The algorithm is based on a biconjugate Gram–Schmidt orthogonal-
ization process with respect to the bilinear form associated with Jseed and requires
the computation of n (sparse) matrix vector products with Jseed and JT

seed. Sparsity
in the inverse factors is obtained by carrying out the biconjugation process incom-
pletely; a characterization of the fill-in occurring in the AINV procedure is given in
[6]. As noted in [7] the preconditioner construction phase offers limited opportunity
for parallelization.

The incomplete factorization for the inverse of the reference Jacobian matrix is
again expressed as in (4.9).

7

4.2. The updates, in practice. Let us consider functions f and g in (4.6) of
the form

band(A, kl, ku),(4.10)

a banded approximation of a square matrix A with kl lower and ku upper diagonals,
respectively. In (4.6) we sparsify the matrix ∆k and let ∆̃k be given by

∆̃k = band(∆k, kl, ku),

for some 0 ≤ kl, ku ≤ n. In fact, using a few diagonals of Jk to form ∆̃k significantly
reduces the storage requirement and the cost of forming the preconditioner. The
matrix ∆̃k has

nz
∆̃

= (kl + ku + 1)n − kl(kl + 1)

2
− ku(ku + 1)

2
,

nonzero elements and the direct computation of the entries of ∆̃k can be achieved
via function evaluations. In particular, from (2.5) it follows that individual elements
[Jk]i,j of the Jacobian can be computed as

[Jk]i,j ≈ Fi(xk + ǫej) − Fi(xk)

ǫ
, 1 ≤ i, j ≤ n,(4.11)

where ej denotes the jth unit vector. The cost of this formula is the scalar func-
tion Fi evaluation. Therefore, in case a full function F evaluation costs roughly n
scalar Fi, i = 1, . . . , n evaluations, if kl = ku = 0, the diagonal elements of Jk can be
computed as in (4.11) at the cost of approximately one full function evaluation. Anal-
ogously, in case ∆̃k is a matrix with small row and column bandwidth, a number of
scalar function evaluations equal to the number nz

∆̃
of nonzero elements are required;

this cost corresponds to approximately kl + ku + 1 full function evaluations. The pre-
vious analysis may yield to an underestimation of the costs when several components
of F contain a same expression requiring a substantial amount of computation, [24].

The ideal approximation of the “correction” Ẽk in (4.6) is diagonal, so there are no
subsidiary linear systems to be solved in the application of the updated preconditioner
(4.5). A true matrix-free setting, in the sense of computational complexity in time
and space can be reached by a diagonal approximation for Jk, generating a diagonal
∆̃k and then producing Ẽk by extracting just the main diagonal from the product
Ẽk = Z̃T ∆̃k W̃ . This correspond to

∆̃k = band(∆k, 0, 0), Ẽk = band(Z̃T ∆̃k W̃ , 0, 0).

Choosing 1 ≤ kl, ku ≪ n, D̃ + Ẽk has row bandwidth kl + ku + 1 and a cheap
factorization can be computed if it admits an LU decomposition (L has kl lower band-
width and U has ku upper bandwidth). Alternatively, the Givens QR decomposition
gives rise to a matrix R with kl + ku superdiagonals and requires about 2n(kl + ku)2

flops, see e.g. [14, p. 221].
More insight into the construction of matrix Ẽk, we need the elements

[Ẽk]ij = [Z̃]i,: [∆̃k W̃]:,j ,(4.12)

where i = 1, . . . , n, j = max{i − kl, 1}, . . . ,min{i + ku, n}, [Z̃]i,: denotes the ith row

of Z̃ and [∆̃k W̃]:,j represents the jth column of ∆̃k W̃ . By construction ∆̃k is a band

8

matrix and Z̃ and W̃ are triangular sparse matrices. A first approach to compute
Ẽk is based on the construction of ∆̃k as specified above. Then, computing [∆̃k W̃]:,j
amounts to forming a linear combination of a few sparse columns of ∆̃k corresponding
to the nonzero entries in the jth column of W̃ . Analogously, the scalar products in
(4.12) are sparse-sparse mode scalar products. In the limiting case kl = ku = 0,
the diagonal entries of Ẽk require n scalar vector products; the ith of such products
involves sparse vectors with nonzero components in the first i positions.

A second approach where ∆̃k is not explicitly needed is suggested in [23]. Taking
into account the structure of ∆̃k and W̃ , the vector [∆̃k W̃]:,j has at most j + kl

nonzero elements, i.e. [∆̃k W̃]i,j , i = 1, . . . ,min{j + kl, n}. These elements can be
evaluated by finite differences through at most j + kl scalar function evaluations; in
fact, let us consider the entry [∆̃k W̃]i,j and let us assume for sake of simplicity that
i − kl ≥ 1 and i − ku ≤ n. Then,

[∆̃k W̃]i,j =

i+ku∑

l=i−kl

([Jk]i,l − [Jseed]i,l)[W̃]l,j

and

i+ku∑

l=i−kl

[Jk]i,l[W̃]l,j = (Jkw̄)i

where w̄ ∈ IRn is given by w̄ = (0, . . . , 0, [W̃]i−kl,j , . . . , [W̃]i+ku,j , 0, . . . , 0)T . Thus,
the term (Jkw̄)i can be approximated by finite differences and requires the evaluation
of the ith component of the function F at xk + ǫw̄, for some scalar ǫ. Moreover, it is
important to note from (4.12) that only the components of [∆̃k W̃]:,j corresponding

to nonzero entries of [Z̃]i,:, i = max{j − kl, 1}, . . . ,min{j + ku, n}, are needed.

A breakdown of the updated approximation (4.5) occurs whenever D̃ + Ẽk is
singular. Using kl = ku = 0, we can easily monitor a possible breakdown in the
preconditioning strategy by checking the entries in D̃ + Ẽk. If a diagonal entry of
D̃ + Ẽk is close to zero, we can apply a diagonal shift of matrix D̃ + Ẽk or inhibit the
update as follows. Let Pk = W̃ (D̃+Ẽk)−1Z̃T in (4.5) be the candidate preconditioner
for matrix Jk and denote by [D̃ + Ẽk]i,i the ith diagonal element of matrix D̃ + Ẽk.
If

min
i=1,...,n

∣
∣
∣[D̃ + Ẽk]i,i

∣
∣
∣ > ω,(4.13)

for a prescribed tolerance ω, then the candidate preconditioner Pk is updated. Other-
wise Pk is abandoned and replaced by the one used in the previous Newton equation.
The above control prevents updates with small pivots and works well in practice as
shown in §5.

4.3. Approximations and convergence analysis. In this section we analyze
the quality of the proposed updated preconditioners. Some results will be provided
working with P−1

k rather than Pk, although in practice only Pk is employed.
Intuitively, the effectiveness of the preconditioner Pk in (4.5) depends on the

magnitude of the elements discarded by the functions f and g in (4.6). For this
reason, we introduce the functions

of (A) = A − f(A), og(A) = A − g(A),

9

where A is a matrix, f and g are the functions of the form (4.10) used in (4.6). In
practice, of (A) and og(A) consist of the elements of A which are not selected by
functions f and g, respectively. Using these functions, we provide a formal expression
of the matrices ∆̃k and Ẽk given in (4.6). Since

Ẽk = g(Z̃T ∆̃k W̃)

= g(Z̃T ∆k W̃) − g(Z̃T of (∆k) W̃)

= Z̃T ∆k W̃ − og(Z̃
T ∆k W̃) − g(Z̃T of (∆k) W̃),

letting

Θ1 = −og(Z̃
T ∆k W̃), Θ2 = −g(Z̃T of (∆k) W̃),(4.14)

we obtain

Ẽk = Z̃T ∆k W̃ + Θ1 + Θ2.(4.15)

Following [22, Lemma 2.1], the analysis is carried assuming that P−1

seed is close to
Jseed. In the following we let

ν = ‖Z̃−T ‖ ‖W̃−1‖.(4.16)

Theorem 4.1. Let Pseed and Pk be given in (4.4) and (4.5). Assume that Pseed

satisfies

‖Jseed − P−1

seed‖ = ǫ‖Jseed‖ < ‖Jseed − Jk‖,(4.17)

for some positive ǫ. Then

‖Jk − P−1

k ‖ ≤ ǫ‖Jseed‖ + ν(‖Θ1‖ + ‖Θ2‖)
‖Jk − Jseed‖ − ǫ‖Jseed‖

‖Jk − P−1

seed‖,(4.18)

where ν is given in (4.16).
Proof. By (4.2), (4.5) and (4.15) we have

Jk − P−1

k = (Jk − Jseed) + (Jseed − P−1

seed) − (P−1

k − P−1

seed)

= ∆k + (Jseed − P−1

seed) − (Z̃−T (D̃ + Ẽk)W̃−1 − Z̃−T D̃W̃−1)

= ∆k + (Jseed − P−1

seed) − Z̃−T ẼkW̃−1.

= ∆k + (Jseed − P−1

seed) − ∆k − Z̃−T (Θ1 + Θ2)W̃
−1.(4.19)

Thus, (4.17) gives

‖Jk − P−1

k ‖ ≤ ǫ‖Jseed‖ + ν(‖Θ1‖ + ‖Θ2‖).(4.20)

Condition (4.17) provides also the following bound

‖Jseed − Jk‖ − ǫ‖Jseed‖ = ‖Jseed − Jk‖ − ‖Jseed − P−1

seed‖
≤ ‖Jk − P−1

seed‖.

This fact along with (4.20) yields

‖Jk − P−1

k ‖ ≤ ǫ‖Jseed‖ + ν(‖Θ1‖ + ‖Θ2‖)
‖Jk − Jseed‖ − ǫ‖Jseed‖

(‖Jk − Jseed‖ − ǫ‖Jseed‖)

≤ ǫ‖Jseed‖ + ν(‖Θ1‖ + ‖Θ2‖)
‖Jk − Jseed‖ − ǫ‖Jseed‖

‖Jk − P−1

seed‖,

10

which completes the proof. �

The above theorem shows that the distance of P−1

k from Jk depends from the
quality of P−1

seed as an approximation to Jseed and from the discarded quantities Θ1

and Θ2 in forming Ẽk. In particular, small norms ‖Θ1‖, ‖Θ2‖ may yield ‖Jk−P−1

k ‖ <
‖Jk − P−1

seed‖, i.e. an improvement of the updated preconditioner upon Pseed. This
case can occur if the approximations (4.6) tend to contain most of the significant
entries of the matrices involved, e.g. when the Jacobian varies slowly and the entries
of Z̃, W̃ decay fast away from the main diagonal, [9, 32].

In Section 5 we will show that updating the preconditioner compares favorably
with using the frozen preconditioner Jseed. On the other hand, in case the quality
of Pk deteriorates and the convergence of the linear solver becomes too slow, a poor
descent direction for ‖F‖2 at xk is computed and the backtracking strategy is likely to
fail. One possibility to cope with this situation is to initialize a new reference matrix
Jseed and the related preconditioner Pseed.

In the following theorems, assuming that J is Lipschitz continuous in a convex set
containing a solution x∗ of F (x) = 0, we will focus on the occurrence where xseed is
close enough to x∗ to guarantee local convergence of the Inexact Newton method. In
this case, the iterates xk subsequent to xseed belong to the ball of radius ‖x∗−xseed‖,
and ‖∆k‖ = O(‖xk − xseed‖) from the Lipschitz continuity of J . To analyze the
spectral properties of matrix JkPk we first state the local convergence properties of
Algorithm 2.1 which can be shown by an easy modification of arguments used in
Theorem 11.3 in [33] and Theorem 6.1 in [25].

Theorem 4.2. Let F : R
n → R

n be continuously differentiable and x∗ such that
F (x∗) = 0. Using the vector norm ‖ · ‖ and the induced matrix operator norm, let J
be Lipschitz continuous with constant Λ/2 in a ball B(x∗, r) centered at x∗ with radius
r > 0, and such that J(x∗) is nonsingular. Assume that ηk → 0. Then, there exists
δ > 0 such that if ||x0 − x∗|| ≤ δ, then the sequence {xk} generated by Algorithm 2.1
is well defined, i.e. Jk is nonsingular for k ≥ 0, xk ∈ B(x∗, δ), sk and ηk are accepted
without modification in the while-loop and xk → x∗ superlinearly.

We now state a formal result that holds under the assumption that our updating
strategy does not break down. Hence, we assume that the updated preconditioners
(4.5) are well defined (nonsingular). We stress that in case a diagonal approximation
is used for Ẽk, this assumption is automatically satisfied by enforcing (4.13).

Theorem 4.3. Let the assumptions of Theorem 4.2 hold, {xk} be the sequence
generated by the Newton-Krylov Algorithm 2.1, xseed = x0. Assume that the precon-
ditioner Pseed in (4.4) is computed using a threshold τ ,

‖Jseed − P−1

seed‖ ≤ hτ,(4.21)

for some positive h independent of τ and ||Ẑ|| ≤ ζ, ||Ŵ || ≤ ζ. Then the right
preconditioned Jacobian matrix Jk Pk can be written as

Jk Pk = I + Rk Pk, Rk = Jk − P−1

k ,

where, for the 1 and infinity norms

||Rk|| ≤ hτ + (1 + c)Λδ,(4.22)

11

for some c ≥ 0, and for the Euclidean norm

||Rk||2 ≤ hτ + (1 + c)
√

nΛδ,(4.23)

for some c ≥ 0. Moreover, for the 1 and infinity norms

||Rk Pk|| ≤ ζ2 (hτ + (1 + c)Λδ) ‖(D̃ + Ẽk)−1‖,(4.24)

while for the Euclidean norm

||Rk Pk||2 ≤ ζ2

σmin(D̃ + Ẽk)

(
hτ + (1 + c)

√
nΛδ

)
.(4.25)

Proof. The inverse of the updated preconditioner is given by

P−1

k = Z̃−T
(

D̃ + g
(

Z̃T ∆̃kW̃
))

W̃−1,

where ∆̃k and g are defined in (4.6). We observe that

Rk = Jk − P−1

k = Jseed + ∆k − Z̃−T
(

D̃ + g
(

Z̃T ∆̃kW̃
))

W̃−1,

can be split as

Rk =
(
Jseed − P−1

seed

)
+

(

∆k − Z̃−T g
(

Z̃T ∆̃kW̃
)

W̃−1
)

.(4.26)

Let us consider the following upper bound for ||Rk||

||Rk|| ≤ ‖Jseed − P−1

seed‖ + ||∆k − Z̃−T g
(

Z̃T ∆̃kW̃
)

W̃−1||
︸ ︷︷ ︸

b

.(4.27)

The term ‖Jseed −P−1

seed‖ is bounded as in (4.21). Regarding the term b, first suppose
to use either the 1 or infinity norm. If the operator g is such that

g
(

Z̃T ∆̃kW̃
)

= Z̃T ∆̃kW̃ ,(4.28)

then

b = ||∆k − ∆̃k|| = ‖of (∆k)‖ ≤ ‖∆k|| = ||Jk − Jseed||.

More generally, in case (4.28) does not hold, it is easy to see that

b ≤ (1 + c) ||∆k||,

for some nonnegative scalar c.
Now, the bound (4.22) can be obtained using the Lipschitz continuity of the

Jacobian. In fact,

‖∆k‖ ≤ Λ

2
||xk − xseed|| ≤

Λ

2
(||x∗ − xseed|| + ||xk − x∗||) ≤ Λδ,(4.29)

where the last inequality holds as all iterates xk are contained in the ball B(x∗, δ).
Finally, by

||Pk|| ≤ ||W̃ || ||Z̃|| ||(D̃ + Ẽk)−1||,
12

and (4.22) we obtain (4.24).
Let now consider the use of the Euclidean norm. The inequalities (4.23) and

(4.25) are obtained proceeding as above noting that

b = ‖of (∆k)‖2 ≤
√

‖of (∆k)‖1‖of (∆k)‖∞ ≤
√

‖∆k‖1‖∆k‖∞ ≤
√

n‖∆k‖2.

The above theorem shows that the eigenvalue cluster’s radius of JkPk depends
on the magnitude of the norms ‖Z̃‖, ‖W̃‖, ‖xseed − x∗‖ and the accuracy of the seed
preconditioner. In fact, the update technique solves a sequence of systems through
subsequent exploitation of information from the current matrix Jk and Theorem 4.3
suggests that the updated preconditioner can give a clustered spectrum as if it would
have been recomputed. We believe that this result supports the updating strategy
as an improvement upon reusing the seed preconditioner which may give poor results
even for small variations of the matrices in the sequence, [5, 9].

As a consequence of Theorem 4.3, we have the following results.
Corollary 4.4. Let F : R

n → R
n satisfies the hypotheses of Theorem 4.3. Then

there exist δ∗ and τ∗ such that, for any 0 < δ ≤ δ∗ and 0 < τ ≤ τ∗, the eigenvalues
of the preconditioned matrices Jk Pk are clustered at 1 in the right half complex plane
for all k.

Proof. Consider the bounds (4.24), (4.25) and let δ∗ and τ∗ be a couple of real
positive numbers such that for any 0 < δ ≤ δ∗ and 0 < τ ≤ τ∗ either

ρ1 = ζ2 (hτ + (1 + c)Λδ) ‖(D̃ + Ẽk)−1‖ < 1,

or

ρ2 =
ζ2

σmin(D̃ + Ẽk)

(
hτ + (1 + c)

√
nΛδ

)
< 1.

Then we get a cluster at 1 in the right half complex plane with radius equal to ρ1 or
ρ2, respectively.

We note that, with a clustered spectrum, we can expect a fast convergence of
preconditioned iterations. Since the matrices of the algebraic linear systems are non-
symmetric, convergence behavior of the Krylov subspace method used to solve these
linear systems depends on further characteristics such as departure from symmetry,
condition number of the matrix of eigenvectors, pseudospectra; see, e.g., the conver-
gence analysis of GMRES in [37]. On the other hand, in our numerical tests, we
use BiCGSTAB that does not enforce an optimality condition, [37, Chapter 3] and
we found that very often eigenvalues can give useful insights for many nonsymmetric
problems when the Jacobian matrix J is diagonalizable; see, e.g., [11, 12]. Therefore,
we will not consider this issue any further.

Corollary 4.5. Under the hypotheses of Theorem 4.3, if Ẽk is a diagonal
approximation for Ek and [D̃ + Ẽk]i,i is the ith diagonal entry of the diagonal matrix

D̃ + Ẽk we have

Jk Pk = I + RkPk,

where

||RkPk|| ≤
hτ + (1 + c)Λδ

mini

∣
∣
∣[D̃ + Ẽk]i,i

∣
∣
∣

,

13

for 1 and infinity norm and

||RkPk||2 ≤ hτ + (1 + c)Λ
√

nδ

mini

∣
∣
∣[D̃ + Ẽk]i,i

∣
∣
∣

,

Proof. The thesis follows from (4.24) and (4.25) by observing that

‖(D̃ + Ẽk)−1‖1 = ‖(D̃ + Ẽk)−1‖∞ =
(

σmin(D̃ + Ẽk)
)
−1

=
1

mini

∣
∣
∣[D̃ + Ẽk]i,i

∣
∣
∣

.

We conclude our analysis providing a relation between the inverse of the update
preconditioner Pk and a preconditioner PR recomputed from scratch for Jk and such
that

‖Jk − PR‖ = ǫ‖Jk‖.(4.30)

The matrix PR can be computed in the form of an incomplete LDU factorization
of Jk or can be regarded as the inverse of an approximate inverse preconditioner for
Jk. Without loss of generality, we assume that the scalar ǫ used above is the same of
(4.17).

Corollary 4.6. Let Pk be given in (4.5) and PR be a recomputed preconditioner
for Jk. If Pseed satisfies (4.17) and PR (4.30), then

‖P−1

k − PR‖ ≤ ǫ(‖Jseed‖ + ‖Jk‖) + ν(‖Θ1‖ + ‖Θ2‖),(4.31)

where ν is defined as in (4.16). Moreover, under the assumptions of Theorem 4.3 and
using norm 1 or infinity, it follows

‖P−1

k − PR‖ ≤ ǫ(‖Jseed‖ + ‖Jk‖) + 2Λνζ2δ.(4.32)

Proof. By (4.19) we have

P−1

k − PR = (P−1

k − Jk) + (Jk − PR)(4.33)

= −(Jseed − P−1

seed) + Z̃−T (Θ1 + Θ2)W̃
−1 + (Jk − PR).

Thus, (4.17) and (4.30) give (4.31).
Let us now assume the hypotheses of Theorem 4.3. By (4.14), it easily follows

‖Θ1‖ ≤ ‖Z̃T ∆k W̃‖ ≤ ζ2‖∆k‖,

and

‖Θ2‖ ≤ ‖Z̃T of (∆k) W̃‖ ≤ ζ2‖of (∆k)‖.

Then, using (4.29), we get (4.32). �

Inequality (4.31) can be viewed as a condition of bounded deterioration of the
updated preconditioner with respect to a recomputed and accurate preconditioner
PR. In fact, P−1

k is near to PR whenever the quantities ǫ, ‖Θ1‖, ‖Θ2‖ are sufficiently
small. Note that ‖Θ1‖, ‖Θ2‖ are small whenever xseed and xk are close to a solution
x∗.

14

5. Numerical Results. In this section we give some details about the proce-
dures that were actually implemented. Then, we present some numerical experiments
which illustrate the efficiency and reliability of our preconditioning technique.

5.1. Implementation details. The Krylov solver used in our implementation
is BiCGSTAB, [37]. The level of inexactness in the solution of the Newton equations
is fixed in order to avoid oversolving and to guarantee quadratic convergence of the
Newton-Krylov procedure. Following the results by Eisenstat and Walker [26, 36], we
set η0 = ηmax = 0.5 and used the so-called Choice 2

ηk = γ

(‖F (xk+1)‖2

‖F (xk)‖2

)2

, k ≥ 1,

with γ = 0.9 and safeguard

ηk = max{ηk, γη̄2
k−1},

if γη̄2
k−1 > 0.1. Then, the additional safeguard ηk = min{ηk, ηmax} is imposed.
Starting from the null initial guess, a maximum of LImax = 400 linear iterations

is allowed. If within LImax iterations, BiCGSTAB does not provide a step satisfying
(2.3), we proceed as described in §3. Specifically, we check if the last computed step is
an inexact Newton step and in the affirmative case we apply the backtracking strategy
along it.

In the backtracking strategy, the scalar α is set to 10−4 and σ is computed by
the three-point parabolic rule. A maximum of Bmax = 20 backtracks is allowed.

In our setting, right preconditioners are applied and the reference matrices Jseed

are computed by finite differences avoiding the approximation of known zero entries.
The matrix Jseed = J0 is used as the first reference matrix and an approximate sparse
inverse preconditioner Pseed = P0 is constructed using two thresholds. Specifically
the incomplete LDU factorization of Jseed is computed by the Matlab function luinc

with a specified droptol drop ILU and the approximate inversion of the factors L and
U is obtained using a drop tolerance drop AI. Then, the update of the preconditioner
is performed allowing for a diagonal or tridiagonal banded approximation in (4.6).

In case a diagonal approximation is used, the update of the preconditioner is
performed monitoring the magnitude of the entries of D̃ + Ẽk. In particular, let
Pk = W̃ (D̃ + Ẽk)−1Z̃T in (4.5) be the candidate preconditioner for matrix Jk and
denote by [D̃ + Ẽk]i,i the ith diagonal elements of matrix D̃ + Ẽk. If

min
i=1,...,n

∣
∣
∣[D̃ + Ẽk]i,i

∣
∣
∣ ≤ 10−4‖Jseed‖1,(5.1)

then the candidate preconditioner Pk is abandoned and replaced by the one used in
the previous Newton equation. In fact, the preconditioner is frozen.

From the analysis performed in the previous section, we know that if the difference
between Jk and Jseed becomes large then the quality of the updated preconditioner
Pk can deteriorate and the convergence of the linear solver can slow down. This
may yield a poor descent direction for ‖F‖2 at xk and the failure of the backtracking
strategy. Therefore, a new reference matrix and preconditioner are initialized after
LImax linear iterations to solve the last Newton iteration. As a consequence, an LDU
factorization of Jseed and sparsified factors Z̃ and W̃ in (4.8) are updated using the
procedure described above.

15

Our preconditioning technique (Update) is compared here with three other strate-
gies. The first strategy (Freeze) consists in computing an ILU preconditioner only
for the first reference matrix Jseed and reusing it in all the subsequent nonlinear it-
erations. The second strategy (Refresh) refreshes the preconditioner occasionally; in
fact the preconditioner Pseed is frozen and, in case the limit of LImax linear iterations is
reached, it is computed from scratch. The third strategy (Recomp) computes an ILU
preconditioner for each Newton equation. In all cases, the Matlab function luinc and
droptol droptol ILU are employed.

The algorithms sketched above were written in Matlab 7.6 and run on a Intel Xeon
(TM) 3.4 Ghz desktop with 1GB RAM. The machine precision is ǫm ≃ 2 · 10−16.

5.2. Test problems, notations and parameters. We report here runs with
some classical benchmark problems: the nonlinear convection-diffusion problem, the
flow in a porous medium problem, the countcurrent reactor problem and the 2D driven
cavity problem. To describe the results of these experiments we give the dimension n of
the discretized problem, the numbers “NI” and “LI” of nonlinear and linear iterations
performed, the number “NJ” of reference matrices Jseed needed for the solve. Trivially,
NJ=1 for the Freeze strategy and NJ=NI for the Recomp strategy.

We monitor the seconds of CPU “Time P” needed, on average, for computing one
reference Jacobian matrices and its ILU decomposition and the overall execution time
“Time” in seconds taken to perform the Newton-Krylov procedure. The CPU time
Time measures the execution time needed for the overall procedure; hence it includes
the cost of triangular solves in the Freeze and Recomp strategies and the approximate
inversion of the factors L and U in the Update strategy.

Finally, we examine the fill-in occurred for computing the preconditioner. The
data monitored in the Freeze and Recomp strategies are

FL LU =
nnz(L) + nnz(U) − n

n2
,(5.2)

where L and U are the matrices in (4.7) and nnz(·) is the number of nonzero entries.
In the Update strategy we examine the matrices Z̃, W̃ in (4.8) and compute

FL ZW =
nnz(Z̃) + nnz(W̃) − n

n2
.(5.3)

We declare a successful termination of the Linesearch Newton-Krylov method
whenever

‖Fk‖2 < 10−8.(5.4)

A failure is declared when the previous condition is not satisfied within 100 nonlinear
iterations or a sufficient decrease on ‖F‖2 is not obtained within Bmax = 20 backtracks.
The latter failure will be denoted as “F B”.

The nonlinear convection-diffusion problem. The two-dimensional nonlinear
convection-diffusion model problem has the form, see e.g. [27]

−∆u + Reu(ux + uy) = f(x, y) in Ω = [0, 1] × [0, 1],

u = 0 in ∂Ω,

where f(x, y) = 2000x(1−x)y(1−y), and Re is the Reynolds number. We discretized
this problem using second order centered finite differences on a uniform m × m grid
and performed runs for various uniform meshes and Reynolds numbers.

16

Freeze Recomp Refresh Update

Re n NI LI NI LI NI LI NJ NI LI NJ

250 22500 19 3036 14 37 14 507 2 16 405 1
40000 13 1250 15 55 13 1250 1 15 359 1
62500 14 1154 15 78 14 1154 1 14 520 1

500 22500 F B − 15 36 16 788 2 18 781 2
40000 26 4292 14 42 16 755 2 17 647 1
62500 15 2119 15 58 14 1670 2 16 703 1

1000 22500 F B − 18 38 16 638 2 19 934 2
40000 F B − 17 46 19 634 2 20 959 1
62500 F B − 17 62 18 2147 2 19 977 1

Table 5.1

Nonlinear convection-diffusion problem. Test results: number of nonlinear and linear iterations,
number of Jacobian evaluations.

The initial guess for the discretized unknown is the null vector. In the precon-
ditioning strategies, the drop tolerances used are drop ILU = 10−2, drop AI = 10−1.
The updates (4.5) of the preconditioner are performed using tridiagonal matrices in
(4.6), i.e.

∆̃k = band(∆k, 1, 1), Ẽk = band(Z̃T ∆̃kW̃ , 1, 1).

In Tables 5.1, 5.2 we report the results obtained for the values m = 150, 200, 250,
and Re = 250, 500, 1000. In Table 5.2 the time Time P needed for computing the ref-
erence Jacobians and their ILU decomposition is mostly ascribed to the construction
of the Jacobian matrices. The values of the fill-in parameters FL LU and FL ZW given
in (5.2), (5.3) vary in the ranges [2 ·10−4, 8 ·10−4] and [4 ·10−4, 7 ·10−2], respectively.

The Freeze strategy lacked robustness and required a large number of linear
iterations. Refreshing the preconditioner was beneficial and gave considerable gains
in robustness and efficiency. All failures of the Freeze strategy were recovered by
the Refresh strategy and in the tests where the two strategies did not coincide, two
Jacobians and preconditioners were computed.

Remarkably, in most runs the Update procedure resulted to be faster than refresh-
ing the Jacobian occasionally as only the reference Jacobian Jseed = J0 was formed
(NJ = 1). In the remaining two runs, it is outperformed by the Refresh strategy.

Computing the preconditioner for each system of the sequence is time-consuming
and unnecessary. In the Recomp strategy, the number of linear iterations needed is
very low, as expected, while the number of nonlinear iterations is comparable to that
of the Refresh and Update strategies. Since the gain in the number of nonlinear
iterations was marginal, computing the preconditioners from scratch resulted highly
time-consuming and the execution time Time is mostly ascribed to such phase.

To give more insight into the behavior of our preconditioning strategy, we focused
on the test where Re = 250 and n = 40000 and in Figures 5.1, 5.2, we plotted some
results from the convergence history of the strategies considered. From the bottom
part of Figure 5.1 showing the values ‖xk − x0‖1 = ‖xk − xseed‖1 over the nonlinear
iterations, it is evident that the distance of xk from xseed is quite large. In particular,
‖xk − x0‖1 reaches the value of about 7 · 103 at the end of the iterative process. On
the other hand, the Jacobian varies slowly; the value of ‖∆k‖1 remains quite small
starting from the value of about 0.6 at the first iteration and reaching the value 3.6

17

Freeze Recomp Refresh Update

Re n Time P Time Time Time NJ Time NJ

250 22500 46 102 666 105 2 64 1
40000 191 226 2901 226 1 220 1
62500 600 656 8013 656 1 657 1

500 22500 46 − 698 110 2 128 2
40000 101 322 2630 397 2 234 1
62500 600 674 7850 1271 2 671 1

1000 22500 46 − 865 108 2 147 2
40000 191 − 3318 402 2 249 1
62500 600 − 8691 1267 2 692 1

Table 5.2

Nonlinear convection-diffusion problem. Test results: execution times.

0 5 10 15
0

2

4

6

8

10

nonlinear iterations

2 4 6 8 10 12 14 16

10
3.1

10
3.3

10
3.5

10
3.7

nonlinear iterations

||x
k
−x

0
||

Fig. 5.1. Convergence history of the nonlinear convection-diffusion problem with Re = 250
and n = 40000 solved by the Update strategy. The horizontal axis indicates the nonlinear iterations,
asterisks indicate a new nonlinear iteration. In the upper part of the figure: the dotted curve
represents ‖of (∆k)‖1, the solid curve represents ‖∆k‖1, the dashed curve is ‖og(Z̃∆̃kW̃

T)‖1. In
the bottom part the quantity ‖xk − x0‖1 is plotted in logarithmic scale.

at the end of the iterative process. This is shown in the upper part of the figure,
along with the values of ‖of (∆k)‖1 and ‖og(Z̃∆̃kW̃T)‖1, i.e the quantities discarded
by our preconditioning update. Obviously, all this quantities increase as long as the
iterative process proceeds, but they remain quite small. This fact explains the good
behavior of the updating strategy that does not require any refresh of Jseed even if
the starting guess is far from the solution. Finally, in Figure 5.2 we show the number
of linear iterations LI needed in the Freeze and Update strategies. It is interesting
to note that, despite the slow variation of the Jacobians, the frozen preconditioner
deteriorates in the progress of iterations. On the other hand, the Update strategy is
very effective in the solution of most linear systems.

Countercurrent reactor problem. This problem is a system of equations resulting

18

0 5 10 15
0

50

100

150

200

250

300

350

400

nonlinear iterations

LI, Freeze

LI, Update

Fig. 5.2. Convergence history of the nonlinear convection-diffusion problem with Re = 250 and
n = 40000. The horizontal axis indicates the nonlinear iterations, asterisks indicate a new linear
iteration. The dashed curve indicates the number of linear LI iteration in the Freeze strategy, the
solid curve indicates the number of linear LI iteration in the Update strategy.

from a set of countercurrent reactors and takes the form

Fi(x) = β − (1 − β)xi+2 − xi(1 + 4xi+1), i = 1,
Fi(x) = −(2 − β)xi+2 − xi(1 + 4xi−1), i = 2,
Fi(x) = βxi−2 − (1 − β)xi+2 − xi(1 + 4xi+1), mod(i, 2) = 1, 2 < i < n − 1,
Fi(x) = βxi−2 − (2 − β)xi+2 − xi(1 + 4xi−1), mod(i, 2) = 0, 2 < i < n − 1,
Fi(x) = βxi−2 − xi(1 + 4xi+1), i = n − 1,
Fi(x) = βxi−2 − (2 − β) − xi(1 + 4i−1), i = n,

where β = 0.5, [15]. The preconditioners are constructed using the tolerances

drop ILU = 10−1, drop AI = 10−1.

Then, our update (4.5) of the preconditioner was carried out in a matrix-free setting
extracting the main diagonal from the matrices ∆k and Ek in (4.2).

In Table 5.3 we show the results obtained using the starting guess x0 = (β, . . . , β)T

and various problem dimensions. The Freeze and Refresh strategies failed to solve
all tests and are not reported in the table.

In the Recomp strategy, the number of nonlinear and linear iterations slightly
varies with the dimension n. On the other hand, the timings steadily increase with the
dimension and are higher than in the Update strategy. In fact, the Recomp technique
takes advantage from the computation of the preconditioner at each iteration from
scratch, but savings in the linear iterations do not compensate the cost of evaluating
the Jacobians and forming the preconditioners.

In the Update strategy, condition (5.1) was never met and the preconditioner was
updated at each nonlinear iteration. Moreover, the reference matrix Jseed and the
corresponding preconditioner Pseed were recomputed one time in the progress of the
nonlinear iterations (NJ = 2). Concerning the number of linear iterations performed,
since the reference preconditioner was refreshed, LImax iterations were performed in

19

Recomp Update

n Time P NI LI Time NI LI NJ Time

6400 3 10 15 32 11 524 2 22
8100 4 10 14 46 12 479 2 34
10000 6 10 14 63 18 630 2 38
12100 9 10 14 93 19 728 2 60
15625 14 11 15 157 17 931 2 76

Table 5.3

Countercurrent reactor problem. Test results: number of nonlinear and linear iterations, num-
ber of Jacobian evaluations, execution times

the solution of one linear systems. Excluding such system from the statistics, the
average number of linear iteration per systems varied between 7 and 31.

Finally, we note that the maximum levels of fill-in FL LU, FL ZW in (5.2), (5.3) are
of order 10−4 and 10−1 in the Recomp and Update strategies respectively.

Flow in a porous medium. The problem we consider is a steady state special case
of a general equation that models the influence of capillary pressure and gravity on
flow in a homogeneous medium [39]

∆(u2) + d
∂

∂x
(u3) + f = 0, in Ω = [0, 1] × [0, 1],

u =

{
1, if x = 0 or y = 0,
0, if x = 1 or y = 1,

on ∂Ω.

In our experiments we use the parameters as in [36]; d is set equal to 50 and f is a
point source of magnitude 50 at the lower-left grid point. We discretized the problem
using centered differences on a uniform grid and the initial guess for the discretized
unknown is u(x, y) = 1 − xy on the interior grid points.

To form the preconditioners we fix drop ILU = 10−1, drop AI = 10−1. Then, our
updates are performed in a matrix-free setting by extracting the main diagonal from
the matrices ∆k and Ek in (4.2). Thus, from (4.5) we have

∆̃k = band(∆k, 0, 0), Ẽk = band(Z̃T ∆̃kW̃ , 0, 0).

Tables 5.4, 5.5 display the results obtained for m×m grids with m = 100, 125, 150, 175.
The values FL LU, FL ZW of fill-in given in (5.2), (5.3) are small: FL LU varies in the
range [2 · 10−4, 5 · 10−4] and FL ZW varies in the range [3 · 10−4, 9 · 10−4].

As usual, we inhibited the update of the preconditioner if the condition (5.1)
holds; the updates of the preconditioner in the runs reported varied between five and
six and in three cases out of four produced an improvement upon the other strategies.
Specifically, the Freeze and Refresh strategies differed in the run corresponding to
n = 15625 where the Refresh strategy outperformed the Update strategy in terms
of linear iterations and execution time. In the remaining runs, the overall cost of the
procedure was favorable to the Update strategy and major savings were obtained with
n = 22500 and n = 30625.

In accordance to the previous problems, the margin of superiority of the Recomp

strategy in the number of nonlinear iterations was slight and the gains in the values
NI and LI did not compensate the overhead associated with initializing new Jacobians
and preconditioners at each nonlinear iteration.

20

Freeze Recomp Refresh Update

n NI LI NI LI NI LI NJ NI LI NJ

10000 14 1205 12 190 14 1205 1 15 1143 1
15625 17 1675 18 54 16 954 2 16 1256 1
22500 18 2560 13 288 18 2560 1 16 1284 1
30625 16 3345 13 346 16 3345 1 17 1598 1

Table 5.4

Flow in a porous medium. Test results: number of nonlinear and linear iterations, number of
Jacobian evaluations.

Freeze Recomp Refresh Update

n Time P Time Time Time NJ Time NJ

10000 45 285 526 285 1 280 1
15625 129 877 2224 675 2 734 1
22500 327 2900 4103 2900 1 1286 1
30625 524 6379 8304 6379 1 3290 1

Table 5.5

Flow in a porous medium. Test results: execution times.

The driven cavity problem. The two-dimensional driven cavity problem has the
form

1

Re
∆2u + (uy∆ux − ux∆uy) = 0 in Ω = [0, 1] × [0, 1],

u = 0 on ∂Ω,

∂u

∂n
=

{
1 if y = 1
0 otherwise

on ∂Ω,

where Re is the Reynolds number. We discretized by 13-point finite differences on a
uniform m × m grid generating a system of n = m2 nonlinear equations and started
from the null initial guess. The code implementing this discretization is provided by
P. Brown; see [36].

The sequence of Newton equations resulted hard to be solved by BiCGSTAB.
Sparse preconditioners caused BiCGSTAB to stagnate at the first nonlinear iteration
and for this reason we allowed more fill-in setting drop ILU= 10−3 for the incomplete
L, U factors and drop AI= 10−2 in the approximate inversion of the L and U factors.

As stressed in [22], this problem represents the case where the refreshed and
recomputed ILU preconditioners deteriorate in the progress of nonlinear iterations.
When BiCGSTAB stagnates the computed inexact Newton step is not a good descent
direction and causes failures in the backtracking strategy.

Since recomputing the preconditioner should be avoided, the discretized problem
was hard to be solved with the Update strategy too and required the use of differ-
ent options from those seen in the previous benchmarks. The updates (4.5) of the
preconditioner were generated by tridiagonal approximations Ẽk for Ek in (4.6), i.e.

∆̃k = band(∆k, 1, 1), Ẽk = band(Z̃T ∆̃kW̃ , 1, 1).

Then, in order to avoid recomputing the preconditioner after LI max= 400 linear
iterations, we proceeded updating the preconditioner with our strategy but inhibited
the computation of a new reference preconditioner Pseed.

21

Freeze Update

Re Time P NI LI Time NI LI NJ Time

200 288 23 3250 431 19 1677 1 725
250 288 21 3133 423 17 1691 1 711
300 288 − − − 32 5167 1 1465
350 288 − − − 35 5745 1 1524

Table 5.6

Driven cavity problem, n = 22500. Test results: number of nonlinear and linear iterations,
number of Jacobian evaluations.

Several tests cases were considered varying the dimension m and the Reynolds
number Re. The Recomp and Refresh strategies performed poorly, as expected, while
both the Freeze and the Update strategies resulted competitive. The good perfor-
mance of the Freeze strategy clearly depends on the large value ηmax which avoids
pointless accuracy in solving the linear systems, i.e. the oversolving phenomenon.
When both the Freeze and the Update strategies succeed, the values NI and LI are
typically in favour of the Update strategy while the lowest timings are achieved by the
Freeze strategy. This fact depends on the computational overhead needed to form
the tridiagonal approximations ∆̃k and Ẽk and factorize Ẽk in the Update strategy.

In Table 5.6 we reports results obtained using m = 150 and Reynolds number
Re = 200, 250, 300, 350. The Recomp and Refresh procedures are not displayed
as they failed in solving all tests. The levels of fill-in FL LU, FL ZW are 2 · 10−3 and
4·10−2 in the Freeze and Update strategies respectively. Note that the linear systems
become more difficult to be solved as the Reynolds number increases and the Freeze

strategy fails in two tests. On the other hand, the Update strategy produces good
preconditioners and recovers the failures of the Freeze strategy. Finally, the overall
cost of the procedures confirm the above considerations: in runs successfully solved
by both the Freeze and Update strategies, freezing gains on updating in terms of
execution times.

6. Summary of the runs. To summarize the runs presented and visualize the
overall performances of the Freeze, Recomp, Refresh and Update preconditioning
strategies, we employ the performance profile approach; see [21]. In this approach,
when m solvers are compared on a test set, the performance of each solver in the
solution of a test is measured by the ratio of its computational effort and the best
computational effort by any solver on this test. Specifically, for each test t solved by
the solver s, let Qs,t denote the computational effort required by the solver s to solve
the test t. Moreover, let Q

s,t
be the computational effort of the solver that results to

be the most efficient in the solution of test t. Then, the ratio

qs,t =
Qs,t

Q
s,t

,

measures the performance on test t by solver s with respect to the best performance
among all the solvers on such test. Clearly, qs,t ≥ 1 and qs,t = 1 means that the solver
s is the most effective in solving the test t over all the solvers. Then, the performance
profile of solver s is defined as

πs(τ) =
no. of tests s.t. qs,t ≤ τ

total no. of tests
, τ ≥ 1.

22

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Freeze
Update
Recomp
Refresh

Fig. 6.1. Performance profile in terms of BiCGSTAB iterations

Assume that a parameter qM > qs,t for all s, t is chosen. Then, if the solver s fails
in solving test t, qs,t is set to qM . Note that qs,t = qM if and only if solver s does
not solve test t. As a result of this convention πs(qM) = 1 and limτ→qM

πs(τ) is
the probability that the solver solves a problem. Moreover, the performance profile
flattens for τ ∈ [τ̄ , qM] for some τ̄ < qM . Then, if πs(τ) is plotted in [0, τ̄], the value
of limτ→q

−

M

πs(τ) can be readily seen in the performance profile’s plot and the right

side of the plot gives the percentage of the test problems that are successfully solved
by the solver. On the other hand, the left side of the plot gives the percentage of test
problems for which the solver is the fastest.

Here we use two different quantities to measure the computational effort of each
strategy: the number LI of BiCGSTAB iterations performed and the execution time
Time needed to solve each test. In Figures 6.1 and 6.2 we plot the profiles of the codes
according to the two performance measures adopted. From these figures, it can be
readily seen that the Update approach results to be the more robust as it solved all
the tests. Considering Figure 6.1, as expected the Recomp strategy results to be the
most effective in terms of linear iterations while our Update strategy outperforms the
Freeze and Refresh approaches. Focusing on the overall computational time, Figure
6.2 shows that the proposed Update strategy is the most efficient in the solution
of 73% of the tests. The remaining tests succesfully solved by the Update strategy
require a computational effort that is at most two times the effort required by the
best solver.

REFERENCES

[1] S. Bellavia, S. Berrone, Globalization strategies for Newton-Krylov methods for stabilized FEM
discretization of Navier-Stokes equations, Journal of Computational Physics, 226 (2007),
pp. 2317-2340.

[2] S. Bellavia, C. Cartis, N. I. M. Gould, B. Morini, Ph. L. Toint, Convergence of a Regularized
Euclidean Residual Algorithm for Nonlinear Least-Squares, SIAM J. Numer. Anal., 48
(2010), pp. 1-29.

[3] S. Bellavia, B. Morini, A globally convergent Newton-GMRES subspace method for systems of
nonlinear equations, SIAM J. Sci. Comput., 23 (2001), pp. 940–960.

[4] S. Bellavia, B. Morini, Subspace trust-region methods for large bound-constrained nonlinear

23

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Freeze
Update
Recomp
Refresh

Fig. 6.2. Performance profile in terms of execution time

equations, SIAM J. Numer. Anal., 44 (2006), pp. 1535-1555.
[5] M. Benzi, D. Bertaccini, Approximate inverse preconditioning for shifted linear systems, BIT,

43 (2003), pp. 231–244.
[6] M. Benzi, M. Tu̇ma, A sparse approximate inverse preconditioner for nonsymmetric linear

systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.
[7] M. Benzi, M. Tu̇ma, A Comparative Study of Sparse Approximate Inverse Preconditioners,

Appl. Numer. Math., 30 (1999), 305–340.
[8] L. Bergamaschi, R. Bru, A. Martinez, M. Putti, Quasi-Newton preconditioners for the inexact

Newton method Electronic Trans. Num. Anal., 23 (2006) pp. 76–87.
[9] D. Bertaccini, Efficient preconditioning for sequences of parametric complex symmetric linear

systems, ETNA, 18 (2004), pp. 49–64.
[10] D. Bertaccini, F. Sgallari, Updating preconditioners for nonlinear deblurring and denoising

image restoration, Appl. Numer. Math., 60 (2010), pp. 994-1006.
[11] D. Bertaccini, G. H. Golub, S. Serra-Capizzano, Spectral analysis of a preconditioned iterative

method for the convection-diffusion equation, SIAM J. Matr. Anal. Appl., 29 (2007), pp.
260–278.

[12] D. Bertaccini, M. K. Ng, Band-Toeplitz preconditioned GMRES iterations for time-dependent
PDEs, BIT, 43 (2003), pp. 901-914.

[13] P. Birken, J. Duintjer Tebbens, A. Meister, M. Tuma, Preconditioner updates applied to CFD
model problems, Appl. Numer. Math., 58 (2008), pp. 1628-1641.

[14] A. Björck, Numerical methods for least squares problems, SIAM, 1996.
[15] I.D.L. Bogles, J.D. Perkins, A new sparsity preserving Quasi-Newton update for solving non-

linear equations, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 621-630.
[16] P. N. Brown, A local convergence theory for combined inexact-Newton/finite-difference projec-

tion methods, SIAM J. Numer. Anal., 24 (1987), pp. 407–434.
[17] P.N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci.

Statist. Comput., 11 (1990), pp. 450–481.
[18] P.N. Brown, H. F. Walker, R. Wasyk, C. S. Woodward, On using approximate finite-differences

in matrix-free Newton-Krylov methods, SIAM J. Numer. Anal., 46 (2008), pp. 1892-1911.
[19] J.K. Cullum, M. Tu̇ma, Matrix-free preconditioning using partial matrix estimation, BIT, 46

(2006), pp. 711–729.
[20] R.S. Dembo, S.C. Eisenstat, T. Steihaug,Inexact Newton methods, SIAM J. Numer. Anal., 19

(1982), pp. 400–408.
[21] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math-

ematical Programming 91 (2002), 201-213.
[22] J. Duintjer Tebbens, M. Tu̇ma, Efficient Preconditioning of Sequences of Nonsymmetric Linear

Systems, SIAM J. Sci. Comput., 29 (2007), pp. 1918–1941.
[23] J. Duintjer Tebbens, M. Tu̇ma, Preconditioner Updates for Solving Sequences of Linear Sys-

tems in Matrix-free Environment, Numer. Linear Algebra Appl., DOI 10.1002/nla.695.
[24] A.R. Curtis, M.J.D. Powell, J.K. Reid, On the estimation of sparse Jacobian matrices, J. Inst.

24

Maths. Applics., 13 (1974), pp. 117-119.
[25] S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods, SIAM J. Optim., 4

(1994), pp. 393–422.
[26] S.C. Eisenstat, H.F. Walker, Choosing the forcing term in an inexact Newton method, SIAM

J. Sci. Comput., 17 (1996), pp. 16–32.
[27] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied

Mathematics, SIAM, 1995.
[28] D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods, a survey of approaches and

applications, J. Comput. Phys., 193 (2004), pp. 357-397.
[29] L. Luksan, Inexact trust region method for large sparse systems of nonlinear equations, J.

Optim. Theory Appl., 81 (1994), pp. 569–591.
[30] G. Meurant, On the incomplete Cholesky decomposition of a class of perturbed matrices, SIAM

J. Sci. Comput., 23, 2001, pp. 419–429.
[31] J. L. Morales, J. Nocedal, Automatic preconditioning by limited memory Quasi-Newton updat-

ing, SIAM J. Opt., 10, 2000, pp. 1079–1096.
[32] R. Nabben, Decay rates of the inverse of nonsymmetric tridiagonal and band matrices, SIAM

J. Matrix Anal. Appl., 20 (1999), pp. 820837.
[33] J. Nocedal, S.J. Wright, Numerical Optimization, Springer Ser. Oper. Res., Springer-Verlag,

New York, 1999.
[34] M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, S. Maiti, Recycling Krylov subspaces for

sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651-1674.
[35] R.P. Pawlowski, J.N. Shadid, J.P. Simonis, H.F. Walker, Globalization techniques for Newton-

Krylov methods and applications to the fully-coupled solution of the Navier-Stokes equa-
tions, SIAM Review, 48 (2006), pp. 700-721.

[36] M. Pernice, H.F. Walker, NITSOL: a new iterative solver for nonlinear systems, SIAM Journal
Sci Comput., 19 (1998), pp. 302-318.

[37] Y. Saad, Iterative methods for sparse linear systems, 2nd ed., SIAM (2003).
[38] A.C.N. van Duin, Scalable parallel preconditioning with the sparse approximate inverse of tri-

angular systems, SIAM J. Matr. Anal. Appl., 20 (1999), pp. 987-1006.
[39] C.J. van Duijn, J.M. de Graaf, Large time behaviour of solutions of the porous medium equation

with convection, J. Differential Equations, 84 (1990), 183-203.

25

