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A nonlinear and non-local cochlear model has been efficiently solved in the time domain
numerically, obtaining the evolution of the transverse displacement of the basilar membrane at each
cochlear place. This information allows one to follow the forward and backward propagation of the
traveling wave along the basilar membrane, and to evaluate the otoacoustic response from the time
evolution of the stapes displacement. The phase/frequency relation of the response can be predicted,
as well as the physical delay associated with the response onset time, to evaluate the relation
between different cochlear characteristic times as a function of the stimulus level and of the physical
parameters of the model. For a nonlinear cochlea, simplistic frequency-domain interpretations of the
otoacoustic response phase behavior may give inconsistent results. Time-domain numerical
solutions of the underlying nonlinear and non-local full cochlear model using a large number
�thousands� of partitions in space and an adaptive mesh in time are rather time and memory
consuming. Therefore, in order to be able to use standard personal computers for simulations
reliably, the discretized model has been carefully designed to enforce sparsity of the matrices using
a multi-iterative approach. Preliminary results concerning the cochlear characteristic delays are also
presented. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3224762�
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I. INTRODUCTION

Otoacoustic emissions �OAEs� are a physiological by-
product of the activity of the mammalian cochlea �Probst
et al., 1991�. The OAE generation and backward transmis-
sion is effectively described by transmission line cochlear
models, including tonotopically resonant transverse imped-
ance terms �e.g., Talmadge et al., 1998�. These terms must
also model the active feedback mechanism mediated by the
outer hair cells �OHCs�, which is responsible for the excel-
lent threshold sensitivity and frequency resolution of the
mammalian hearing system. A comprehensive cochlear
model must be, to some extent, both nonlinear and non-local,
and based on the knowledge of the OHC mechanoelectric
behavior. Several models of the OHC feedback mechanism
have been developed �e.g., Nobili and Mammano, 1996; de
Boer and Nuttall, 2003� including detailed analyses of the
OHC coupling to the basilar membrane �BM� and to the
tectorial membrane, and they have been tested and refined in
the past decades through comparison with experimental data,
reaching a fairly high degree of complexity, and a corre-
spondingly high number of free parameters. Most models
used to predict the OAE generation adopt a simplified view
of the OHC active mechanism. This attitude is partly justified
by the fact that OAE generation is only a by-product of the
cochlear amplifier activity, and the OAE measurable param-
eters may be critically dependent on cochlear transmission

properties other than the details of the local cochlear ampli-
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fier at the generation place�s�. Nevertheless, some key prop-
erties of the OHC physiology must be retained in a full co-
chlear model, even if one’s main purpose is getting correct
predictions of the OAE phenomenology.

Nonlinearity is an intrinsic feature of the cochlear physi-
ology, so the frequency-domain solutions of the linearized
problem can only approximately predict the behavior of the
system, and only in a perturbative regime. Much care must
therefore be used when applying to such a system concepts
that are fully meaningful for linear systems only, such as the
complex frequency response, defined as the Fourier trans-
form �FT� of the impulsive response, or the group delay,
defined as the negative slope of the phase/frequency relation.
The intrinsically nonlinear equations describing the cochlear
micromechanics require, in a nonperturbative regime, a so-
lution in the time domain. On the other hand, the time-
domain numerical solutions may become expensive in terms
of computational time and memory demanding, if sufficient
spatial and time resolutions have to be achieved. High spatial
resolution is necessary because the discontinuous variation in
the transverse impedance parameters caused by discretization
itself must not cause significant spurious reflection of the
forward traveling wave �TW�. High time resolution is auto-
matically provided by the adaptive integration time step set
by the routines used to solve the differential equations, and

the related computational cost depends strongly not only on
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the number of elements of the discretized cochlea but also on
the frequency content of the stimulus and on the character-
istic frequencies of the system.

Elliott et al. �2007� proposed a matrix formalism, ap-
plied to a finite-difference solution method of cochlear mod-
els, which is used in this study to model the propagation of
the TW and the generation and backward propagation of
OAEs. Elliott et al. �2007� originally applied this solution
scheme to an active linear and local model developed by
Neely and Kim �1986�. In the Neely and Kim �1986� model,
each micromechanical element is a two degree of freedom
system of coupled oscillators, simulating some the active co-
chlear amplifier properties �negative resistance, or anti-
damping, in a limited region close to the resonant place�. The
same scheme can be modified to represent several different
cochlear models. In the model by Kim and Xin �2005�
�adapted from Lim and Steele, 2002 and generalized to
model cochlear impairment in Bertaccini and Fanelli, 2009�,
the forces applied by the OHCs on the BM are schematized
by a nonlinear non-local feed-forward term.

In this work, a feed-forward nonlinear non-local model
similar to that proposed by Kim and Xin �2005�, in which the
OHC additional pressure is assumed proportional to the total
pressure on the BM within a slightly more basal region, is
implemented in the Elliott et al. �2007� semidiscrete scheme,
including as well random spatial variations in the impedance
parameters �cochlear roughness�, which are needed to get
appreciable OAE response through coherent reflection �Tal-
madge et al., 1998�, acting as backscattering centers for the
forward TW. The semidiscrete model is then fully dis-
cretized, and the resulting discrete model is solved effi-
ciently. A nontrivial mass matrix and stiffness of the BM
micromechanics �in the numerical analysis sense, i.e., the
presence of high Lipschitz constants in the nonlinear model�
are suggested using an implicit time-step integrator. There-
fore, at each time step, a large system of fully coupled
nonlinear algebraic equations should be solved in order to
generate the numerical approximations, and this is computa-
tionally expensive. In this work, an efficient and reliable nu-
merical simulation is enforced by decoupling the differential
part of the discretization of the integrodifferential model by
solving sparse linear systems using multi-iterative projection
algorithms instead of inverting matrices. A graphical user
interface has been added to facilitate the parameters inputted
and the analysis of the results. The backward TW associated
with OAEs is observed as a displacement wave at the stapes,
and some properties of the otoacoustic delays are analyzed.

A variation in the above model was also considered, in
which the feed-forward coupling is obtained assuming that
the OHC additional pressure is directly proportional to the
BM velocity. In this model, this additional force explicitly
behaves as a simple anti-damping term.

This discrete model, implemented in our package, after
its necessary optimization through comparison with the
available data, could be a useful tool to design future OAE
experiments, predicting the OAE response at different stimu-

lus levels, and, in particular, to study in more detail the gen-
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eration place and time of the different components of the
OAE response, as well as their direction of propagation
along the BM.

In Sec. II, we recall the physical meaning of the cochlear
characteristic times that are estimated with different experi-
mental techniques. In Sec. III A we briefly describe the ap-
plication of Elliott’s solution scheme to a very simple one-
dimensional �1D� linear, passive, and local cochlear model,
to help the reader through Sec. III B, where we discuss its
generalization to more realistic, still semidiscrete models, in-
cluding feed-forward nonlinear and non-local terms. In Sec.
III C, we propose a fully discrete feed-forward analog of the
underlying model and notes concerning its implementation in
the MATLAB environment. In Sec. IV, we discuss our prelimi-
nary results, focusing on the relation between different char-
acteristic times in a nonlinear cochlea.

II. BACKGROUND ON COCHLEAR DELAYS IN
MODEL AND EXPERIMENT

The study of the characteristic times of the OAE re-
sponse may provide important information about the co-
chlear mechanics and the otoacoustic generation mecha-
nisms, complementing other measures coming, e.g., from
direct observations of the BM vibration �Ren, 2004; He
et al., 2007� and from the analysis of the auditory brainstem
response �ABR� �e.g., Neely et al., 1988; Donaldson and
Ruth, 1993�.

A. TEOAE latency from time-frequency analysis and
cochlear transmission delay

In the case of transient evoked OAEs �TEOAEs� and,
particularly for click-evoked OAEs �CEOAEs�, the latency
may be defined in the time domain as the interval between
the impulsive stimulus and the onset of the otoacoustic re-
sponse at a given frequency, which can be measured using
time-frequency analysis techniques, based on the wavelet
transform or on the MATCHING PURSUIT algorithm �Tognola
et al., 1997; Sisto and Moleti, 2002; Jedrzejczak et al.,
2004�. As the middle ear roundtrip transmission introduces
only a very short time delay, of order 0.1–0.2 ms �Puria,
2003; Voss and Shera, 2004�, the OAE latency is almost
entirely of cochlear origin, being associated for each fre-
quency with the time needed to transmit forward the stimulus
from the cochlear base to each tonotopic place as a TW, and
backward to the base. This delay is a function of the geo-
metrical and mechanical characteristics of the BM, including
those of active filter associated with the feedback mechanism
that is mediated by the OHCs. The tonotopic structure of the
BM causes the overall decrease in latency with increasing
frequency, simply because the cochlear round trip path is
longer for lower frequencies. The frequency selectivity of the
active cochlear filter is also related to the OAE delay, which
increases by increasing the tuning factor Q of the resonance.
As a consequence, the OAE latency is a decreasing function
of both frequency and stimulus level �Sisto and Moleti,
2007�. This property has also been found in the wave-V ABR
delay, which is made up �Eggermont and Don, 1980; Neely

et al., 1988; Don et al., 1993; Donaldson and Ruth, 1993;
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Abdala and Folsom, 1995� of a constant term of neural origin
�this is surely true for its main contribution, the delay be-
tween wave-I and wave-V�, independent of frequency and
stimulus level, and of a cochlear term, decreasing with in-
creasing frequency and stimulus level, which is evidently
associated with the forward cochlear transmission delay.

Transmission line cochlear models �Furst and Lapid,
1988; Talmadge et al., 1998; Shera et al., 2005� are usually
in agreement in representing the acoustic signal propagation
along the BM as a TW. Due to the tonotopicity of the BM,
each Fourier component of the stimulus propagates up to its
resonant place, where it produces the maximum transversal
displacement of the BM, associated with that tone percep-
tion, and then it is locally absorbed.

B. OAE generation mechanisms

It is generally accepted that OAEs are produced by two
different mechanisms: nonlinear distortion and linear reflec-
tion �Shera and Guinan, 1999�.

The cochlear response nonlinearity generates distortion
at moderate and high BM excitation levels. A threshold for
the onset of nonlinearity can be fixed at some transverse
displacement amplitude of order 10 nm. At these stimulus
levels, significant OAE generation is expected from the non-
linear generation mechanism. If a given cochlear region is
simultaneously excited by two tones of different frequencies,
the system nonlinearity also produces tones at frequencies
that are linear combinations of those of the stimulus, as in
the case of the distortion product OAEs �DPOAEs�. The non-
linear distortion generation always occurs at the tonotopic
cochlear place of the stimulus frequency, or, as in the
DPOAE case, in a place that is a well-defined function of the
frequencies of the stimulus �primary tones�; this generation
mechanism is therefore called “wave-fixed” �Shera and
Guinan, 1999�. Linearized transmission line cochlear models
�Talmadge et al., 1998, 2000; Shera et al., 2005�, solved in
the frequency domain, predict for OAEs generated by wave-
fixed mechanisms a flat phase spectrum �at least, in the scale-
invariant limit�. If the resulting null “group delay” were sim-
plistically interpreted as instantaneous cochlear response,
there would be obvious contradiction with the hypothesis
that the otoacoustic response is generated at �or near� the
tonotopic place, for each frequency, because at least the for-
ward propagation of the stimulus �one could argue that the
backward OAE propagation could be much faster� would
need a significant and well-measurable transmission time,
from a few to several milliseconds, dependent on frequency.

OAE generation is also expected to be associated with
the reflection of a significant fraction of the forward TW. It is
necessary to postulate the presence of randomly distributed
microirregularities of the cochlear mechanical structure,
which act as backscattering centers for the forward TW
�Zweig and Shera, 1995�. Perturbative estimates of the co-
chlear reflectivity, based on the osculating parameters tech-
nique �Shera and Zweig, 1991; Talmadge et al., 2000�, sug-
gest that most of the linearly reflected wave should come
from a region close to the resonant place. Recent estimates

based on a linear model by Choi et al. �2008� suggest instead
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that a significant contribution to the overall SFOAE response
may come from cochlear regions remote from the resonant
place. Coherent reflection from a rather broad cochlear re-
gion slightly basal to the resonant place is predicted by the
coherent reflection filtering �CRF� theory, which also intro-
duces time-delayed stiffness terms in the BM micromechan-
ics to get the necessary tall and broad activity pattern. These
“Zweig” terms, due to their rather fine-tuned delays, act as
effective damping and anti-damping terms in that cochlear
region, providing the negative resistance region required by
the solution of the inverse cochlear problem applied to ex-
perimental BM transfer function data. As already remarked,
similar results could be obtained with different mathematical
approaches, e.g. modeling each cochlear partition as a two
degree of freedom system of linear actively coupled oscilla-
tors �Neely and Kim, 1986�, or by introducing active non-
local terms. In the CRF theory, the OAE generation mecha-
nism is considered “place-fixed” because the backscattering
centers are localized at fixed positions. The CRF theory pre-
dicts, for such a place-fixed mechanism, a rapidly rotating
phase spectrum �Talmadge et al., 1998; Shera et al., 2005�.
The additional reflection from more basal cochlear regions
suggested by Choi et al. �2008� would imply a flatter phase-
frequency relation, and the vector superposition of the two
sources would explain the observed stimulus-frequency OAE
�SFOAE� spectral fine structure, without having to assume
contributions from nonlinear distortion.

C. Relation among different cochlear characteristic
times

Much experimental evidence has been gathered about
the relation among different cochlear characteristic times. A
general warning applies to such comparisons. In classical
BM transfer function measurements �e.g., Rhode, 1971�, the
place of measurement is fixed as the frequency changes. The
phase slope represents a partial derivative. In OAE experi-
ments, this is not generally the case. The relation between
OAE phase-gradient delays and the actual time delay of each
frequency component of the OAE response is not straightfor-
ward, and depends on the wave-fixed or place-fixed nature of
the OAE generator. OAE phase-gradient delays are actually
measured by computing the slope of the phase-frequency
relation, but the phase is a function of both the frequency of
the OAE and the position of the source. The experimentally
measured slope is therefore a total derivative, which includes
an additional term for wave-fixed generation, which almost
totally cancels, in the WKB approximation �Sisto et al.,
2007�, the one associated with the roundtrip transmission
delay. For place-fixed generation, instead, the phase is a
function of frequency only, and the phase-gradient delay is
therefore expected to approximately coincide with the physi-
cal transmission delay.

At low stimulus levels, the OAE response should be
dominated by linear place-fixed mechanisms, the SFOAE
phase-gradient delay is therefore expected to be closely re-
lated to the physical delay associated with the forward and
backward transmissions along the BM. Early applications of
the CRF theory predicted indeed that the SFOAE phase-

gradient delay is twice the BM group delay �Shera and

ti et al.: Otoacoustic emissions in nonlinear cochlear models 2427



Guinan, 2003�, while refined calculations �Shera et al., 2005�
concluded that the phase-gradient delay should be slightly
less than twice the BM group delay.

Accurate studies on chinchillas �Siegel et al., 2005�
demonstrated that the SFOAE phase-gradient delay is sig-
nificantly less than twice the BM group delay, particularly at
low-frequency. This result has been considered in agreement
with the CRF theory assuming that some contribution from
nonlinear distortion is also present in the SFOAE response
�Shera et al., 2006�. Another explanation of these discrepan-
cies could be provided by the linear reflection sources remote
from the resonance place proposed by Choi et al. �2008�. It
has also been shown �Sisto et al., 2007� that the roundtrip
cochlear delay measured by time-frequency analysis of
CEOAE waveforms closely matches the phase-gradient de-
lay of the same OAE spectra, at click stimulus levels from 60
to 90 dB peak SPL �pSPL�, concluding that linear reflection
from roughness is the main source of TEOAEs in this stimu-
lus level range. We recall that the pSPL level of a click is
given by the ratio between its peak amplitude and the stan-
dard reference pressure level �20 �Pa�, expressed in deci-
bels. The associated spectral density is a function of the click
duration.

For DPOAEs, the relation between latency, phase-
gradient delay, BM group delay and frequency is even less
straightforward, and depends on the experimental sweeping
paradigm �Prijs et al., 2000; Schoonhoven et al., 2001�. If
the ratio f2 / f1 is kept constant, from the solution of the lin-
earized cochlear equations �Talmadge et al., 2000�, it follows
that the nonlinear distortion component, originated in x�f2�,
should have flat phase spectrum, while the linear reflection
source coming from x�fDP� should give a contribution with
rapidly rotating phase. In the time domain, it is clear that the
nonlinear generation may start only after the transmission
time needed for the f1 and f2 tones to reach the nonlinear
generation place x�f2�. After that, an additional �shorter� time
is necessary for the backward TW at frequency fDP to reach
the base. The backward delay is shorter because the wave
packet of frequency fDP moves away from a region that is
already more basal than its tonotopic region, where its group
velocity would be considerably lower �Moleti and Sisto,
2003� �this slowing-down effect near the resonant place is
sometimes called “filter build-up time,” it may be seen as a
significant contribution to the path integral of the inverse
velocity coming from a rather short part of the path�. The
second DPOAE source �from linear reflection at x�fDP�� is
significantly more delayed because the distortion tone gener-
ated in x�f2� must reach its own tonotopic place x�fDP� to be
amplified and reflected back by roughness. Therefore, its
overall onset delay in the time domain is expected to be close
to the latency of the component of frequency fDP of a corre-
spondently high TEOAE response �neglecting the depen-
dence on the stimulus level, which makes a little shorter the
forward transmission delay to x�f2� of the primary tones f1

and f2, due to their higher level�. Summarizing, observing
the phase of the two DPOAE components in the frequency
domain, one should see a flat phase component and a rotating
phase component �which can be separated using time-

domain filtering�, whereas observing the onset of the re-
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sponse in the time domain, one should observe an early �but
not instantaneous� response from the first source and a more
delayed onset of the linear reflection contribution. Long et al.
�2008� recently exploited the different phase behaviors of the
two DPOAE components to separate them by using suffi-
ciently fast-sweeping primary tones. Whitehead et al. �1996�
were able to measure �in humans and rabbits� the onset time
of DPOAEs elicited by high-level primaries �75 dB sound
pressure level �SPL�� using a clever differential acquisition
technique based on phase rotation of the primary tones. They
measured delays from 2 to 5–10 ms �depending also on the
data analysis algorithm� in the 1–8 kHz range, with the ex-
pected frequency dependence. These delays are compatible
with those expected from the nonlinear distortion source,
which should be dominant at high stimulus levels.

D. OAE backward propagation

By comparing the OAE latency to the ABR wave-V la-
tency in the same stimulus level range, it has been shown
that the part of the ABR latency that is independent of fre-
quency and stimulus level �associated with the forward co-
chlear path of the stimulus� is approximately equal to half
the OAE latency �Moleti and Sisto, 2008�, supporting the
hypothesis that the backward propagation of OAEs is due to
a slow transverse TW on the BM. This conclusion is in
agreement with analyses of the data from Allen–Fahey ex-
periments �Shera et al., 2007�, and with direct measurements
by Dong and Olson �2008�, but it is contradicted by the slope
of the DP phase at different cochlear places measured by
accurate observations of the BM vibration either by moving
the observation place �He et al., 2007� or by moving the
primary frequencies �de Boer et al., 2008�. These contradic-
tory observations could be attributed to a dominant forward
traveling DP within the cochlea, which would obscure the
observation of reverse waves.

The above list of interesting issues, which can only be
approximately evaluated with frequency-domain solutions,
due to the intrinsic nonlinearity of the problem, was meant to
demonstrate the strong need for time-domain solutions of the
full cochlear problem. In the following, we will discuss some
preliminary results from the time-domain solution of a non-
linear non-local active cochlear model, focusing on possible
applications to the study of the OAE delays.

III. COCHLEAR MODELS

A. Linear 1D box model

In this subsection, we apply the scheme of Elliott et al.
�2007� to a very simple linear passive model, to help the
reader getting through the formalism before going to Sec.
III B, where the feed-forward model is described. A list of
the parameter values used in the model is reported in Table I.

For an incompressible fluid, in a cochlear duct of rect-
angular constant cross section of constant half-height H and
length L, divided by a tonotopically resonant elastic BM, the
wave propagation along the cochlea on the BM �z=0�, re-
duces to the 1D transmission line equation for the differential

pressure p:
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�2p�x,0,t�
�x2 =

2�

H
�̈�x,t� , �1�

where � is the fluid density and � is the BM transverse dis-
placement at the longitudinal position x and time t.

Equation �1� is obtained, as usual, assuming the fluid
incompressibility, using the boundary condition on the BM:

� �p�x,z,t�
�z

�
z=0

= 2��̈�x,t� , �2�

and that on the rigid upper wall:

� �p�x,z,t�
�z

�
z=H

= 0. �3�

As in Elliott et al., 2007, the first of the N elements of the
semidiscretized model includes the middle ear dynamics and
the boundary condition for the wave equation �1� at the basal
end:

� �p

�x
�

x=0
= 2��̈ow, �4�

where �̈ow is the acceleration of the stapes. Elliott et al.
�2007� wrote this acceleration as the linear combination of
two components: the acceleration due to external excitation
and that due to the loading by the internal pressure response
in the cochlea at x=0. We prefer to choose a slightly differ-
ent approach, putting the term associated with the stimulus in
the ear canal as a forcing term in the dynamical equation for
the first element of the partition, according to Eq. �10� of

TABLE I. Model parameters used in this study. Some of the parameter
values listed below are taken from Talmadge et al. �1998�, they are indicated
by �T98�.

Parameter Value Definition

� 103 kg m−3 Fluid density
L 3.5	10−2 m Length of the BM
k0 3.1	103 m−1 Cochlear geometrical wavenumber �T98�
�0 2.08	104 ·2
 s−1 Greenwood’s map frequency coefficient

�T98�
�bm 5.5	10−2 kg m−2 BM density �T98�
�1 −145·2
 s−1 Greenwood’s map frequency offset �T98�
k� 1.382	102 m−1 Greenwood’s map inverse length scale

�T98�
�0 5.035	103 s−1 Cochlear damping map coefficient �T98�
�1 100 s−1 Cochlear damping map offset �T98�
k� 1.382	102 m−1 Cochlear damping map inverse length

scale �T98�
Kow 2	108 N m−3 Effective middle ear-oval window stiffness
�ow 5	103 s−1 Effective middle ear-oval window damping
�ow 2 kg m−2 Effective middle ear-oval window density
�nl 10−8 m OHC gain saturation length scale
� 0.36 OHC gain parameter
� 1.2	10−7 m2 OHC non-local interaction range

�squared�
Talmadge et al., 1998:
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�̈ow�t� + �ow�̇ow�t� + �ow
2 ��t� =

p�0,t� + GmePdr�t�
�ow

, �5�

where, �ow, Kow=�ow
2 �ow, and �ow are the phenomenological

parameters reported in Table I, chosen to represent the filter-
ing properties of the middle ear, Pdr is the calibrated pressure
in the ear canal �for a rigid ear drum�, and Gme is the middle
ear mechanical gain of the ossicles.

The last element of the spatially discretized cochlea is
the helicotrema, which is described, as usual, by a pressure
release �short-circuit� boundary condition:

p�L,z,t� = 0. �6�

Considering the dynamical equation that relates the BM
transversal displacement to the p acting on the tonotopic os-
cillator, we have for the elements from 2 to N−1:

�̈�x,t� + �bm�x,�, �̇��̇�x,t� + �bm
2 �x,�, �̇���x,t� =

p�x,0,t�
�bm

.

�7�

The height H is related to the BM density and to the cochlear
geometrical wavenumber k0, defined in Talmadge et al.,
1998 by H=2� /k0

2�bm.
In the simplest form of the model, each tonotopic place

is schematized by a single passive oscillator, and both damp-
ing and stiffness are smooth functions of the x only, accord-
ing to the Greenwood map �Greenwood, 1990�:

�bm�x� = �0e−k�x + �1,

�bm�x� = �0e−k�x + �1. �8�

In the limit k�=k�, and �1=�1=0, the map is also scale-
invariant. This symmetry is violated in the real cochlea, par-
ticularly at low-frequency, due to the constant terms �1 and
�1, and also because k��k�. Indeed, cochlear tuning Q
=� /� increases with frequency, as shown by behavioral and
otoacoustic data �e.g., Glasberg and Moore, 1990; Shera
et al., 2002; Unoki et al., 2007; Sisto and Moleti, 2007�.

Elliott et al. �2007� described each element of the co-
chlear partition as a system of two coupled linear oscillators,
including active terms, according to a model by Neely and
Kim �1986�. In this study, we chose a different approach,
describing each partition with a single oscillator, and intro-
ducing, in the next subsection, active amplification and non-
linear saturation terms as additional forces triggered by the
OHCs and acting on the BM, generated by non-local feed-
forward longitudinal interaction, similar to what has been
proposed by Kim and Xin �2005�, see also Bertaccini and
Fanelli, 2009, in different solution schemes.

Using finite-difference approximation for the spatial de-
rivatives, the semidiscrete models can be written in matrix
form

FP�t� = �̈�t� , �9�

where F is Elliott’s N	N finite-difference matrix, whose
first and last lines include, respectively, the boundary condi-

¨
tions, Eqs. �4� and �6�, P�t� and ��t� are the N-dimensional
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vectors of the differential pressure and cochlear partition ac-
celeration, respectively:

F =
H

2���x�2�
−

�x

H

�x

H
0 0

1 − 2 1 0 0

0 1 − 2 1 0

. . . 1 − 2 1 0

1 − 2 1

0 0 −
2���x�2

H

� ,

�10�

where �x=xi−xi-1=L / �N−3�.
As in Elliott et al., 2007, we cast the dynamic variables

��̇ j�xj , t�, � j�xj , t�� of the micromechanical elements in a
single vector of state variables U of dimension 2N.

Equations �4�–�7� can be written for the whole set of
discrete tonotopic oscillators in the form of combined matrix
equations:

U̇�t� = AEU�t� + BE�P�t� + S�t�� , �11a�

�̇�t� = CEU�t� , �11b�

where S�t� is a vector whose only non-null element is the
first one, which is equal to GmePdr�t�.

The matrices AE �2N	2N�, BE �2N	N�, and CE �N
	2N� are block diagonal. In particular, each block Ai of the
matrix AE, for i=2, . . . ,N−1, contains the dynamics of the
ith resonant tonotopic oscillator:

AE = �A1

. . .

AN
� �the same rule applies to BE and CE� ,

�12�

with

Ai � 	− �bm�xi� − �bm
2 �xi�

1 0

, Bi

� 	 1

�bm
0 
T

for i = 2, . . . ,N − 1,

A1 � 	− �ow − �ow
2

1 0

, B1 � 	 1

�ow
0 
T

, AN

� 0, BN � 0,

Ci � �1 0 � . �13�

The finite-difference matrix F is invertible, so we can write
Eq. �9� as

P�t� = F−1�̈�t� = F−1CEU̇�t� . �14�

Substituting Eq. �14� into Eq. �11a�, the overall state space
equation with distributed micromechanics and boundary con-

ditions can be written in the general form

2430 J. Acoust. Soc. Am., Vol. 126, No. 5, November 2009
MlinU̇�t� = AEU�t� + BES�t� , �15�

where Mlin is the 2N	2N mass matrix of the system:

Mlin = I − BEF−1CE. �16�

B. Nonlinear feed-forward model

In a more advanced model, the OHCs-BM interaction
can be schematized as a nonlinear, non-local active system
that can be included into the same matrix solution scheme.

In the model by Kim and Xin �2005�, the pressure ap-
plied by OHCs on the BM is assumed proportional to the
total pressure on the BM, and, due to the longitudinal tilt of
OHCs, forces acting on the cilia at x cause OHCs to push at
a point x+� downstream on the BM:

q�x + �,t� = ��,x,t�pBM = ��,x,t��p�x,t� + q�x,t�� ,

�17�

where q is the additional pressure given by the OHCs, pBM is
the total pressure on the BM, and  is a nonlinear non-local
gain factor, which depends on the BM displacement � in a
cochlear region around the considered position x.

For the gain function, we use the integral expression
�Kim and Xin, 2005�:

�x,�,t� =
�

��

�

0

L

exp−
�x − x��2

�
�g���x�,t��dx�, �18�

where � is a dimensionless parameter controlling the
strength of the non-local terms, and �� is a characteristic
length �a constant in a scale-invariant cochlea�, representing
the longitudinal range of the non-local interaction.

Here we choose the nonlinear analytical gain function
g���x , t��:

g���x,t�� = tanh �nl
2

���x,t� − �0�2� , �19�

which approximately matches the nonlinear gain function
shown by Kim and Xin �2005� and by Lim and Steele
�2002�, where �nl is a transverse BM displacement scale for
the nonlinear saturation of the OHC gain, and �0 is a param-
eter controlling the vertical asymmetry of the OHC gain �in
our simulations �nl=10−8 m and �0=0�. This is surely an
oversimplified version of the actual physiology of the OHC
mechanism, which is much more accurately described else-
where �e.g., Nobili and Mammano, 1996�. The inclusion of a
more realistic description of the OHC physiology, which
would increase the complexity of the numerical solution of
the problem and would also introduce a much higher number
of parameters, is beyond the scope of the present study.

Including Eq. �17�, Eq. �7� is modified as follows:

p�x,t� + q�x,t� = �̈�x,t� + �bm�x��̇�x,t� + �bm
2 �x��̇�x,t� ,

q�x,t� = �x − �,�,t��p�x − �,t� + q�x − �,t�� �for �
� x � L� ,
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q�x,t� = 0 �for 0 � x � �� . �20�

In the semidiscrete model, the feed-forward term is related to
the pressure by

q�xi,t� − �xi−K,�,t�q�xi−K,t� = �xi−K,�,t�p�xi−K,t� , �21�

where K is an integer number such that

� = K�x . �22�

Equation �24� can be expressed as a matrix equation:

BQ�t� = CP�t� . �23�

Q�t� and P�t� are, respectively, the column vectors for q�xi , t�
and p�xi , t�. The matrix B has 1’s on its diagonal and off-
diagonal nonzero elements:

B�i + K,i� = − �xi,�,t� for i = 2, . . . ,N − K . �24�

The matrix C is a matrix whose nonzero elements are

C�i + K,i� = �xi,�,t� for i = 2, . . . ,N − K . �25�

The B and C matrices are both functions of the BM displace-
ment. In particular, B is invertible.

After same manipulations, it can be shown that the fol-
lowing equation for the state vectors U holds

MnlU̇�t� = AEU�t� + BES�t� , �26�

where the nonlinear mass matrix is

Mnl = �I − BEG�U�F−1CE� , �27�

and G�U� is the N	N gain matrix:

G�U� = B−1C + I . �28�

In the limit in which the nonlinear coupling term  is zero,
the matrix B reduces to the identity matrix and C is zero. In
this limit the gain matrix, G�U� is coincident with the iden-
tity matrix. This is the limit in which the linear passive equa-
tions hold, Eq. �26� reduces to Eq. �15�, and the mass matrix
of the system reduces to Mlin �Eq. �16��. For �0, in the
case K=0, there is no feed-forward asymmetry, but the
model is still nonlinear and non-local. Different values of K
could be chosen, providing the desired amount of asymme-
try, to match the experimentally measured shape of the BM
activity patterns.

The same scheme could be easily adapted to describe
different models of the OHC function. For example, one
could assume that the additional OHC pressure is propor-
tional to the BM velocity. This assumption may be question-
able on a physiological basis, but it is, however, interesting
to note that it would lead to a model in which the OHC force
would act as an explicit anti-damping term everywhere along
the BM, not only near the resonant place. As this assumption
is implicitly made, when one uses simple 1D transmission
line models in which the anti-damping term is just a negative
damping constant at each cochlear place and saturation is
given by a quadratic damping term �e.g., a Van der Pol os-
cillator model�, it could be interesting to compare the time
behavior of OAEs produced by such a model with that pre-
dicted by the previous one.
Equation �21� would formally change to
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q�xi,t� = ��xi−K,t��bm�bm�xi��̇�xi−K,t� , �29�

where ��xi� is the local damping constant and � is obtained
from an integral like that of Eq. �18�, with a different value
�� of the dimensionless constant � that controls the stability
of the resonance.

The mass matrix of Eq. �27� becomes

Mnl� = I − BE�F−1CE + CDE� , �30�

where DE is a block diagonal matrix, whose elements are

Di�1 = �0 �bm�bm�xi��, D1 = �0 0� , �31�

whereas the other matrices are unchanged.
If the nonlinear gain function g���x , t�� is also changed

to

g����x,t�� = 1 −
�2

�nl
2 , �32�

one gets a nonlinear non-local model with explicit anti-
damping and quadratic nonlinear damping at each cochlear
place x:

���x,�� = �bm�x�− � + 1 + �
�2

�nl
2 � . �33�

We note that the generalization to a wide class of different
models is a simple task, in the scheme of Elliott et al. �2007�,
exploiting the fact that one is free to select the BM velocity

as the first component of each element of the state vector U̇
or as the second component of each element of U using the
matrices CE and DE, respectively. This freedom of choice is
important because it allows one to put the nonlinear term
into the mass matrix of the system.

C. A fully discrete nonlinear active model and its
numerical implementation

In this section, we discuss a numerical approximation
technique for the semidiscrete model �26�. We recall that
semidiscrete means that we have to do it with a model that is
no longer based on partial differential equations, still con-
tinuous, but now only ordinary derivatives are present. We
consider a uniform mesh on a rectified model of the BM.
Discretization with respect to the spatial variable x imposed
on the BM gives the sequence of systems of nonlinear inte-
grodifferential equations �26�, �18�, and �19� with null initial
conditions, where each of the systems as in Eq. �26� is pa-
rametrized by the spatial step �x of the mesh. We recall that
the integral part of both the continuous and the semidiscrete
model �26� is due to the nonlocality of the gain factor
�� ,x , t� in Eq. �18� and hidden in the matrix functions B, C,
and G�U� in Eq. �26�, computed for each time step. In order
to simplify the overall calculation and to avoid potential in-
stabilities, we computed the gain factor by using information
from the previous step; i.e., we considered a sort of semi-
implicit reduction of the models �26�, �18�, and �19�.

We remark that the differential systems in Eq. �26� have
a nontrivial mass matrix whose expression can be simplified

in
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Mnl = I − BEB−1F−1CE, �34�

by using Eq. �28� and observing that C=−B+ I; i.e., the ex-
pression of the gain matrix can be reduced to G�U�=B−1.

In order to provide time-step integration of Eq. �26�, we
observe that, whenever the mass matrix is different from the
identity, using a package based on implicit or on explicit
formulas has similar computational costs. In particular, in
order to advance in time, one needs to solve algebraic non-
linear equations requiring the solution of algebraic linear
systems of neq equations, where neq is the number of single
differential equations in Eq. �26� even using a code based on
explicit formulas. Therefore, we modified for the use of a
multi-iterative procedure a stable package based on Back-
ward Differentiation Formulas �BDF-like� variable step,
variable order �from order 1 to 5� formulas that are of im-
plicit type, ode15s, that is part of MATLAB, by Mathworks©.
The underlying linear algebraic systems to be solved at each
time step of ode15s have matrices that can be decomposed in
the form

A = Mnl − �t · a · J , �35�

where Mnl is the mass matrix, �t is the actual time step, J is
the Jacobian matrix, and a is a constant. In our setting, the
Jacobian matrix J is constant. On the other hand, we stress
that the mass matrix Mnl is not and does depend on the
solution, i.e., on the BM position �. Moreover, the formal
expression of Mnl in Eqs. �26�, �30�, and �35� includes the
inverse of matrix function B �lower bidiagonal, changing
with the solution � at each time step� and of the matrix F
�tridiagonal, constant, generated by the five-point finite-
difference discretization of the Laplacian� that are full matri-
ces; i.e., all entries of B−1 ,F−1 are different from zero. There-
fore, in order to avoid full coupling of the differential
systems �26�, requiring a computational cost per time step of
O��2N�3� and a storage for O�N2� double precision floating
point entries, we should not invert any matrix explicitly. Un-
fortunately, due to the nature of the matrix A in Eq. �35� as a
sum of two components, we cannot use direct solvers for the
linear systems of the form Ax=b. A popular way to approach
this is the use of fixed-point iteration algorithms, as in Kim
and Xin, 2005. However, fixed-point iteration algorithms
converge slowly and often impose restrictions on the param-
eters of the model for convergence. In particular, artificial
restrictions on the time step and/or on the admitted values of
some parameters are an issue and this was the case for Kim
and Xin �2005� approach, see Bertaccini and Fanelli, 2009
for a way to overcome this. In view of this, we propose here
the use of iterative Krylov subspace solvers as the core
solver for the linear algebraic systems with matrices as in Eq.
�35�. Indeed, by using iterative Krylov subspace solvers, we
are able to lower the computational cost per step to at most
linear in N �the number of mesh points on the BM�. We
recall that working with iterative Krylov subspace solvers
does not require forming or storing the matrix A or its inter-
mediate components. It is enough to access A through
matrix-vector products, e.g,, there is no need to form Mnl.
The only requirement is to provide a fast procedure that,

given a vector v, computes the vector
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w = A · v , �36�

and the operation �36� is performed at each iteration of the
Krylov solvers. Therefore, the operation �36� becomes the
core “outer” operation in the solution of the underlying dis-
cretized model and it is performed through the solution of
several “inner” steps, consisting in the solution of two sparse
linear systems by sparse direct methods and in some other
matrix-vector products and linear combinations of vectors.
We experienced that the Krylov subspace iterative solver
chosen, GMRES, converges to the required tolerance within a
moderate average number of iterations that does not increase
with N, the mesh size on the BM. More details on the tech-
nical solutions adopted and an analysis of the convergence
process will be given in a forthcoming paper.

IV. RESULTS

In this section, we present some preliminary results to
show that the nonlinear and non-local model described in
Sec. II B, fully discretized and optimized in Sec. II C, may
become, after having been tuned by careful comparison with
the experimental available data, a useful complement to fu-
ture experiments, to study some of the OAE issues men-
tioned in Sec. III. In the following, we show that the model is
able to produce OAEs as a response to both impulsive
�TEOAEs� and stationary stimuli �DPOAEs�. The simulated
TEOAEs show the expected time-frequency behavior, with
shorter latency at higher frequency, consistent with the hy-
pothesis that their backward transmission is associated with a
slow transverse TW on the BM. The DPOAE components
are produced at the cochlear places predicted by the theory
after the corresponding forward transmission delays.

A. TEOAEs

The result of a numerical simulation �N=1000 parti-
tions� using a broad-band click stimulus �level corresponding
to 80 dB pSPL, duration of 80 �s in the ear canal, similar to
that routinely used in the clinical practice� is shown in Fig.
1�a�, where we plot the computed BM transverse displace-
ment as a function of time �in a 20 ms interval� and cochlear
position x. One could choose to plot the BM velocity instead
of displacement, obtaining a different vertical shape, due to
the factor �, which would amplify the basal part of the TW.
From the top view shown in Fig. 1�b�, the expected relation
between the forward transmission time delay �BM forward
delay� and the position x��� of the tonotopic resonant place
of each frequency component � is more clearly visible. This
relation may be converted into a relation between BM delay
and frequency using the Greenwood map �Greenwood,
1990�.

Including randomly distributed mechanical irregularities
�roughness� as spatial stiffness variations in relative ampli-
tude �=0.05, the click stimulus produces the delayed re-
sponse at the stapes shown �for a total time of 50 ms� in Fig.
2 �the data are windowed to cancel the stimulus and to allow
spectral analysis�. This response would be transmitted back
through the middle ear producing a TEOAE in the ear canal.

A high level of fluctuations is used in the example to get a
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strong TEOAE signal. The waveform of Fig. 2 has been
analyzed using time-frequency wavelet techniques to esti-
mate the time delay of each frequency component. This de-
lay closely corresponds to that of the TEOAE that would be
measured in the ear canal because the delay introduced by
the middle ear transmission, neglected in this model, is neg-
ligible �of order 100–200 �s�. The TEOAE wavelet delay

FIG. 1. BM response to a broad-band pulse �an 80 dB pSPL click of dura-
tion 80 �s�, as a function of time and cochlear longitudinal position x.

FIG. 2. “Otoacoustic” response computed at the stapes for 50 ms after the

click, corresponding to the cochlear activation pattern of Fig. 1.

J. Acoust. Soc. Am., Vol. 126, No. 5, November 2009 Mole
computed for the waveform of Fig. 2 is shown in Fig. 3�a�.
In Fig. 3�b�, we show twice the BM forward latency, esti-
mated from Fig. 1�b� as the time of the maximum BM exci-
tation and attributed to the frequency that is the best fre-
quency for each place according to the Greenwood map
�Greenwood, 1990�. In Fig. 3�c�, we show the phase-gradient
delay estimated from the slope of the fast Fourier transform
�FFT� phase. The good agreement confirms that the signal
observed at the stapes comes from a backward slow TW on
the BM, generated, for each frequency component of the
stimulus, near its resonant place. In this model, the backward
wave is generated by linear reflection from roughness. In-
deed, the same simulation without roughness �not shown�

(a)

(b)

(c)

FIG. 3. Wavelet analysis estimate of the latency/frequency relation �a� of the
response at the base of Fig. 2, compared to twice the delay of the BM
response at each tonotopic place �b� and to the phase-gradient delay mea-
sured from the FFT of the same waveform �c�.
produces no “OAE” response at the stapes. We note that the
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time-domain solution permits a direct estimate of the re-
sponse waveform at the base �and at all other cochlear
places� allowing us to compute time delays directly, without
any assumption about the linearity of the system.

B. DPOAEs

In Fig. 4, we show the generation of the 2f1− f2 distor-
tion product due to nonlinear interaction of two primary
tones �f1=2000 Hz, f2 / f1=1.22, L1−L2=10 dB, and L2

=60 dB SPL�. In Fig. 4, the spectrum of the cochlear dis-
placement is shown at different cochlear positions. The two
primary tones propagate up to x�f2�, where the DPOAE is

fdp

f2

fdp

f1

(a)

(b)

(c)

(d)

FIG. 4. Generation of the 2f2− f1 distortion product due to nonlinear inter-
action of two primary tones �f1=2000 Hz, f2 / f1=1.22�. The distortion tone
is generated at x�f2��a�, its amplitude constantly increases reaching first x�f1�
�b�, and then x�fDP� �c�. The response at the stapes includes several other DP
lines �d�.
generated and the f2 tone is absorbed �and partially reflected
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by roughness� �Fig. 4�a��, then the f1 tone is absorbed �and
partially reflected by roughness� at its resonant place �Fig.
4�b��, whereas the distortion tone propagates forward to its
tonotopic place, where it is amplified �Fig. 4�c��, absorbed,
and partially reflected by roughness. The continuum spec-
trum, shifting to lower frequencies with increasing x, which
can be observed below the spectral lines, is due to a small
spurious broad-band TW. Several distortion product lines are
visible in the spectrum of the response at the stapes �Fig.
4�d��, the most intense being that of frequency fDP=2f1− f2,
which is about 30 dB below the primary stimulus level.
These DP levels are rather high, which is an indication that
the parameters of the model still need to be optimized. At the
present stage, a high level of DPOAE response may help
show the qualitative behavior of the model.

The time-domain solution allows one to follow the gen-
eration of the DPOAE response also looking at displacement
at fixed cochlear positions x as a function of time or at fixed
times as a function of the position x. At the same three co-
chlear places of Figs. 4�a�–4�c�, one gets the time evolution
shown in Figs. 5�a�–5�c�. From these plots, one can visually
appreciate the different onset times of the response at differ-
ent cochlear positions and the different frequency contents of

(a)

(b)

(c)

FIG. 5. Time evolution of the cochlear response at the three cochlear places
of Figs. 4�a�–4�c�.
the signal.
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In Fig. 6�a�, we show the time-domain response at the
stapes, which is obviously dominated by the intense primary
tones. Performing an identical simulation in which the non-
linear distortion term is suppressed in the region around x�f2�
and subtracting the two response waveforms, one can cancel
the contribution from the stimuli and appreciate the onset
delay of the DP at the base in the time domain �Fig. 6�b�,
note that the scale is ten times smaller than that in Fig. 6�a��.
The observed onset delay is compatible with the forward
transmission delay of the primaries from the base to x�f2�
estimated from the TEOAE simulation, plus a shorter back-
ward transmission delay of the DP, as predicted by theory,
and similar to what has been actually observed by experi-
mental studies of the DPOAE onset time �Whitehead et al.,
1996�. The backward delay is expected to be shorter, as ex-
plained in Sec. II, because the frequency of the DP is lower
than the characteristic frequencies of the backward cochlear
path; therefore, its propagation is faster that that of the f2

tone along the same forward path. Slightly later, a contribu-
tion of the primary tones from their tonotopic places is ex-
pected to reach the base. This contribution is not canceled by
the subtraction technique because, having suppressed nonlin-
ear damping in the second simulation, the f1 and f2 compo-
nents do not cancel exactly. The DPOAE contribution from
the second source would come back even later, due to its
lower frequency and level.

V. CONCLUSIONS

The multi-iterative computational strategies used within

(a)

(b)

FIG. 6. Response at the stapes of the simulation shown in Fig. 4. which is
obviously dominated by the stationary intense primary tones �a�. Performing
an identical simulation in which the nonlinear distortion term was sup-
pressed in the region around x�f2� and subtracting the two response wave-
forms at the stapes, one can directly appreciate the onset delay of the DP at
the base in the time domain �b�.
a stable time-step integrator based on implicit formulas con-
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sidered in this study allowed us to solve accurately and effi-
ciently our full cochlear model in the time domain. This is
important in order to study the characteristic time delays
associated with the propagation of acoustic signals along the
BM, removing the ambiguities associated with the use of
frequency-domain formulations, which are fully meaningful
only for linear systems. A new 1D model, including feed-
forward nonlinear and non-local terms, as well as cochlear
roughness and a middle ear equation, has been implemented
in a matrix formulation scheme, proposed by Elliott et al.
�2007�.

The results show that several aspects of the OAE phe-
nomenology can be effectively predicted by such a model
formulation, and help to design specific experiments dedi-
cated to the study of a specific issue. In particular, the
TEOAE latency/frequency relation is predicted in fine agree-
ment with experimental data, and the DPOAE onset latency
is shown to be associated with the BM forward and back-
ward transmission delays, with results comparable to those
of experimental studies on the DPOAE onset time.

Some parameters of the proposed continuous full co-
chlear model still need to be refined and tuned with an accu-
rate comparison of its prediction with all available experi-
mental data. After that, this model formulation can be
extensively used to design experimental campaigns and di-
agnostic techniques, and to interpret the results of new ex-
periments.
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