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A fast full second order time-step algorithm for some recently proposed nonlinear, nonlocal
active models for the inner ear is analyzed here. In particular, we emphasize the properties
of discretized systems and the convergence of a hybrid direct-iterative solver for its
approximate solution in view of the parameters of the continuous model. We found that
the proposed solver is faster than standard sparse direct solvers for all the considered dis-
crete models.

Numerical tests confirm that the proposed techniques are crucial in order to get fast and
reliable simulations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We propose a framework for fast and reliable solution of the discretized versions of inner ear models based on partial
integro-differential equations.

Modeling cochlea and, more in general, the various aspects of the ear’s response to multifrequency inputs, has found to
help prevention of various diseases and the design of the latest hearing aids technology.

The sound processing in the inner ear starts from input pressure waves that reach it through the middle ear. In mammals,
frequency discrimination and active amplification are both performed in the cochlea, a cavity filled with a liquid medium,
containing a tonotopically resonant vibrating membrane, the basilar membrane (BM for short from here on). When the input
wave is a pure tone (i.e., it is made of a single frequency), the BM motion reaches its maximum amplitude at a specific loca-
tion, the characteristic place (CP for short) after a short transient, lasting a few milliseconds. The frequency corresponding to
CP is called characteristic frequency. By mapping each frequency component of a sound input to its characteristic place, the
BM acts as a frequency analyzer. It is known that the cochlear dynamics is nonlocal, and strongly nonlinear, i.e., there is a
dependence of the effectiveness of the local active amplification mechanism on the BM displacement amplitude within a sur-
rounding cochlear region. In particular, the BM shows a compressive nonlinearity, i.e., responses to low-level inputs are more
sensitive and sharply tuned while the high level stimuli are less.

The basilar membrane is also the base for the sensory cells of hearing, the hair cells. Hair cells are the sensory receptors of
both the auditory system and the vestibular system in all vertebrates. In mammals, the auditory hair cells are located within
the organ of Corti on the BM. Cochlear hair cells come in two anatomically and functionally distinct types: the outer and
inner hair cells (OHCs and IHCs for short, respectively). OHCs are the receptor potential triggers active vibrations of the cell
body. This drives oscillations in the cells length and provide an ‘‘active’’ feedback amplification. OHCs do not send neural
. All rights reserved.
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signals to the brain, but they are responsible of the nonlinear response to the above mentioned compressive nonlinear re-
sponse of the BM. The amplification can be by movement of their hair bundles, or by an electrically driven motility of their
cell bodies. On the other hand, the IHCs transform the sound vibrations in the fluids of the cochlea into electrical signals sent
via the auditory nerve to the auditory cortex. In this research, we focus on mechanical aspects and then the OHCs will play
the major role.

Under certain conditions, due to nonlinearity, responses at frequencies other than the input frequencies are generated,
which are called distortion products (DP for short). Distortion product otoacoustic emissions (DPOAEs for short), which
can be recorded in the ear canal, are generated in the cochlea in response to two primary tones of given frequencies f1

and f2, and sound pressure level L1 and L2, presented in the ear canal, at frequencies that are linear combination of the
primary frequencies. Due to the cubic nature of the cochlear amplifier nonlinearity, the strongest DPOAE is observed at
the frequency fDP = 2f1 � f2. The level of this DPOAE is an objective and frequency-specific indicator of the cochlear function-
ality. Two mechanisms are assumed to contribute to the DPOAE: nonlinear generation of a backward and of a forward wave
at the DP frequency in the cochlear region that is simultaneously excited at both primary frequencies, and linear reflection of
the nonlinearly generated forward DP wave at its resonant cochlear place [15]. Both backward wave propagate along the BM
and through the middle ear, and their vector sum is measured as a DPOAE in the ear canal.

In this work, we study a fast and reliable hybrid direct/multi iterative algorithm for solving the discretized counterpart of
variations of nonlinear and nonlocal models proposed in [13] and in [16] built on the basis of the model proposed in [11]
with the state-space formulation in the style of Elliott et al. [7].

In Section 2 we discuss two nonlinear nonlocal full cochlear continuous models and in Section 3 the underlying contin-
uous models are converted into sequences of discrete problems. In Section 4 we analyze some issues of the approximate
solution of the discrete models in Section 3 with special emphasis on the iterative solution of the sequences of large linear
systems arising in the time-step process. In Section 5 we compare the typical behavior of the timings for two different
approaches used to solve the underlying large scale linear systems for a distortion product example with the theoretical
computational cost and the influences of the parameters of the experiments. Finally, in Section 6 we resume the results.

2. Nonlinear nonlocal full cochlear models

The cochlea contains the BM, that is immersed in an incompressible Stokes fluid. We concentrate on the upper cochlear
chamber by simplifying it into a two dimensional rectangle [0,L] � [0,H], with the BM at z = 0. Signals generate vibrations on
the left boundary at x = 0 at stapes level, which induce fluid motion that goes from the upper chamber to the lower chamber
through the helicotrema, a small hole at x = L. Pressure gradients move the BM; see Fig. 1. Symmetry allows to ignore details
of helicotrema and to concentrate on the upper chamber, as in [11].

2.1. The continuous models

Let us summarize the model proposed in [13]. For an incompressible fluid, in a cochlear duct of rectangular constant cross
section of constant half-height H and length L, divided by a tonotopically resonant elastic BM, the wave propagation along
the cochlea on the BM, i.e., for z = 0, reduces to the one dimensional transmission line equation for the differential pressure p,
which is defined here as the difference between the pressure in the lower chamber and that in the upper chamber. With this
sign convention a positive differential pressure drives a positive acceleration of the BM. The conservation of the momentum
and of the mass of the fluid, which is assumed incompressible, implies:
@

@x
pðx;0; tÞ ¼ 2q

@

@t
Vðx; 0; tÞ; ð1Þ
Fig. 1. Simplified upper cochlear chamber: a two dimensional rectangle [0,L] � [0,H], with the BM at z = 0.
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where V is the fluid longitudinal velocity, and the following relation between V and the BM transverse velocity at the longi-
tudinal position x and time t:
@

@x
Vðx;0; tÞ ¼ 1

H
@

@t
uðx; tÞ; ð2Þ
By deriving the first equation with respect to x and the second equation with respect to the time and combining the two, the
propagation equation for the pressure is obtained:
@2

@x2 pðx;0; tÞ ¼ 2
q
H
@2

@t2 uðx; tÞ; ð3Þ
where q is the fluid density.
The following boundary condition also holds at the stapes:
@

@x
pð0; z; tÞ ¼ 2q

@2

@t2 uow; 0 6 z 6 H; ð4Þ
where @2

@t2 uow is the acceleration of the stapes. Let us consider a uniform partition on the BM, x = x0, x1, . . ., xN, xi = i � h,
h = L/N, where L is the length of the rectified cochlea. The term associated with the stimulus in the ear canal is a forcing
term in the dynamical equation for the first element of the partition, i.e., uow(t) = u(x0, t) and, according to Talmadge et al.
[19, eq. (10)],
@2

@t2 uðx0; tÞ þ cow
@

@t
uðx0; tÞ þx2

owuðx0; tÞ ¼
pð0; tÞ þ GmePdr

row
; ð5Þ
where cow, row and Kow ¼ x2
owrow are the phenomenological parameters chosen to represent the filtering properties of the

middle ear, Pdr is the calibrated pressure in the ear canal (for a rigid ear drum), and Gme is the middle ear mechanical gain of
the ossicles.

Considering the dynamical equation which relates the BM transversal displacement to the pressure p acting on the tono-
topic oscillator, we have for the elements from 2 to N � 1:
@2

@t2 uðx; tÞ þ cBMðxÞ
@

@t
uðx; tÞ þx2

BMðxÞuðx; tÞ ¼
pðx; 0; tÞ þ qðx; tÞ

rbm
; ð6Þ
where q is the additional pressure given by the OHCs, cBM and x2
BM , damping and stiffness functions, respectively, are smooth

functions of the x only in our setting. With some more computational efforts, dependency on the BM position and velocity
can be easily included. According to the Greenwood map, we set, as done in [13]:
xBMðxÞ ¼ x1 þx0ekxx; cBMðxÞ ¼ c1 þ c0ekcx;
i.e., each tonotopic place is schematized by a single passive oscillator. An homogeneous Neumann boundary condition is as-
sumed for pressure fluid field because the upper wall is rigid. The last element of the spatially discretized cochlea is the hel-
icotrema, which is described, as usual, by a pressure release (short-circuit) boundary condition
pðL; z; tÞ ¼ 0; 0 6 z 6 H: ð7Þ

The initial conditions are
uðx;0Þ ¼ 0;
@

@t
uðx;0Þ ¼ 0; 0 6 x 6 L: ð8Þ
The OHCs–BM interaction can be schematized as a nonlinear, non-local active system. Active amplification and nonlinear sat-
uration terms as additional forces triggered by the OHCs and acting on the BM, can be seen as generated by nonlocal feed-
forward longitudinal interaction, similarly to what has been proposed by Kim and Xin [11], see also Bertaccini and Fanelli [2].
In particular, the force applied to the BM is transmitted to the OHCs, which act on the cilia and back on the BM. The pressure
applied by OHCs on the BM is assumed proportional to the total pressure on the BM, and, due to the longitudinal tilt of OHCs,
forces acting on the cilia at x cause OHCs to push at a point x + d downstream on the BM
qðxþ d; tÞ ¼ aðu; x; tÞpBM ¼ aðu; x; tÞðpðx; tÞ þ qðx; tÞÞ; ð9Þ
where pBM is the total pressure on the BM and a = a(u,x, t) is a nonlinear non-local gain factor, which depends on the BM dis-
placement u in a cochlear region around the considered position x. Here we assume that d = KDx, K P 1 integer.

The underlying continuous feed-forward model can be resumed as below
@2

@x2 pðx;0; tÞ ¼ 2 q
H

@2

@t2 uðx; tÞ;
pðx;0;tÞþqðx;tÞ

rbm
¼ @2

@t2 uþ cBM
@
@t uþx2

BMu; 0 6 x 6 L;

qðxþ KDx; tÞ ¼ aðx;u; tÞðpðx; 0; tÞ þ qðx; tÞÞ; 0 6 x 6 L� KDx;

qðx; tÞ ¼ 0; 0 6 x 6 KDx;

8>>>><>>>>: ð10Þ
including initial (8) and boundary conditions (4)–(7).
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A fruitful from the physiological point of view modification of the feed-forward dynamics is based on evaluating the ef-
fects of an additional OHCs force acting as an antidamping and directly proportional to the basilar membrane transversal
velocity
qðx; tÞ ¼ �aðx;u; tÞcBM
@

@t
u; ð11Þ
proposed in Sisto et al. [16]. We call this variant feed-diagonal model.
For the gain function a we use a variant of the integral expression proposed by Kim and Xin in [11]:
aðu; x; tÞ ¼ a0gðhuðx; tÞ2iÞ; ð12Þ
where
huðx; tÞ2i ¼ 1ffiffiffiffiffiffi
kp
p

Z L

0
exp �ðx� x0Þ2

k

 !
uðx0; tÞ2
� �

dx0; ð13Þ
where c is a dimensionless parameter controlling the strength of the non-local terms, and
ffiffiffi
k
p

is a characteristic length (a
constant in a scale-invariant cochlea), representing the longitudinal range of the non-local interaction.

For the feed-forward model, we choose the following nonlinear gain function g:
gðhuðx; tÞ2iÞ ¼ 1� tanh
hðuðx; tÞ � u0Þ2i

u2
nl

 !
;

where unl is the OHC gain saturation, which approximately matches the nonlinear gain function by Kim and Xin [11] and by
Lim and Steele [12], where unl is a transverse BM displacement scale for the nonlinear saturation of the OHCs gain, and u0 is a
parameter controlling the vertical asymmetry of the OHCs gain (in our setting unl = 10�8 m and u0 = 0).

More discussions on these models can be found in [13] and in [16].
The inclusion of a more complete description of the physiology would increase the computational complexity of the

numerical solution of the problem. On the other hand, our approach seems to reproduce results in good agreement with
the cochlear physiology.

3. The semidiscrete and discrete models

Unfortunately, a particular solution of the model (10) that can be useful for simulations, cannot be generated by analytical
methods. We produce first a semidiscrete approximation of (10) with (4)–(7), i.e., another model that is still continuous in
time but without partial derivatives with respect to the space variables, usually a sequence of systems of differential equa-
tions. Therefore, we get a fully discrete problem by providing time-step integration for the semidiscrete one.

Semidiscretization, i.e., the process of discretization of partial derivatives with respect to the space only in an evolution-
ary partial differential equation can be found, e.g., in [10].

3.1. The semidiscrete models

In the style of [13], we divide the cochlea in N partitions of length Dx regarding each partition as a single oscillator with
active amplification and nonlinear saturation terms as additional forces. Therefore, by discretizing with respect to the space
variable x, the coordinate on the cochlea, we get a system of N + 2 differential equations, where N is the number of partitions
on the rectified cochlea. Then, we use a time-step integrator to advance in time on an adaptive mesh.

By denoting with
PðtÞ ¼ ½pðx1;0; tÞ pðx2;0; tÞ . . . pðxN; 0; tÞ�T ;
the vector including pressure at each cochlear partition [xj�1,xj], j = 1,2, . . . ,N and similarly for Q(t),
N00ðtÞ ¼ @2

@t2 ½uðx1; tÞ uðx2; tÞ . . . uðxN; tÞ�T ;
the vector of the cochlear partition accelerations and with
F ¼ H

2qD2
x

� 3Dx
2H 2 Dx

H � Dx
2H

1 �2 1
. .

. . .
. . .

.

. .
. . .

. . .
.

1 �2 1
�2q D2

x
H

0BBBBBBBBBB@

1CCCCCCCCCCA
; ð14Þ



D. Bertaccini, R. Sisto / Journal of Computational Physics 230 (2011) 2575–2587 2579
a (N + 2) � (N + 2) constant matrix, from (3), (4), (7) for the first and last equations, respectively, we get
1 We
e.g., [8]
FPðtÞ ¼ @2

@t2 NðtÞ; ð15Þ
which is a second order discretization with respect to the space variable x of the continuous problem. A second order dis-
cretization of (3) for @2p/@x2, i.e., with respect to x only, is given by using standard centered differences with step Dx. On
the other hand, we can show that the Neumann boundary condition (4) needs a one-sided formula involving not only
p(x1,0, t) and p(x2,0, t) but p(x3,0, t) in order to fully get the properties:

� (15) is a second order discretization (with respect to the space variables) of (4);
� the right hand side of (15) is preserved (the expression (15) is used inside other formulas; see below);
� no fictitious points are necessary for this second order discretization.

We note that the discretizations with respect to the space variables of Neumann boundary condition (4) in [7] and [13]
are of first order only, generating a globally first order discretization of the models. Finally, the matrix F in (14) is still non-
singular and has a condition number1 in the euclidean norm j2(F) = kFk2kF�1k2 that is very similar to the one of the matrix F
generated by using first order approximations for the boundary condition, i.e., less than 3D2

x=2; see Section 4.1 for more details.
In the style of [13], let us write the continuous model (10) in compact form by the matrices AE, BE, CE used in [13] and

recalled below.
AE ¼

A1

A2

. .
.

AN

0BBBB@
1CCCCA

2N�2N

;

A1 ¼
�cow �x2

ow

1 0

 !
2�2

; Ai ¼
�cbm �x2

bm

1 0

 !
2�2

; i ¼ 2; . . . ;N � 1;

ð16Þ
while AN is a 2 � 2 null matrix; BE and CE are 2N � N and N � 2N block diagonal matrices whose ith blocks are
Bi ¼
1=rbm

0

� �
; Cið1 0Þ; i ¼ 2; . . . ;N � 1; B1 ¼

1=row

0

� �
;

respectively, and AN = 0, BN = 0. A matrix DE was also defined which is the same of matrix CE but with the poition of 0 and 1
inverted so that it could pick up the velocity component in the state-space vector and which is also proportional to the pas-
sive damping term:
DEi ¼ cbmð0 1Þ; i ¼ 2; . . . ;N � 1;
From (5) and (6) and the expression of AE, BE and CE we can write
@

@t
UðtÞ ¼ AEUðtÞ þ BEðPðtÞ þ QðtÞ þ SðtÞÞ; ð17Þ

@

@t
NðtÞ ¼ CEUðtÞ; ð18Þ
where S(t) is a 2N vector whose only nonzero component is the first one: CmePdr(t).

3.2. The feed-forward semidiscrete model

For the feed-forward model in [13], the expression of vector function Q(t) can be deduced from the system
Bðu; tÞQðtÞ ¼ Cðu; tÞPðtÞ; ð19Þ
a compact form of the third expression in (10), where B and C are N � N matrix functions defined as in [2] as lower bidiagonal
matrices. In particular, B has ones and C has zeros on the main diagonal, respectively, and
Bðiþ K; iÞ ¼ �aðxi;u; tÞ; Cðiþ K; iÞ ¼ aðxi;u; tÞ; i ¼ 2; . . . ;N � K; ð20Þ
i.e., B = I � C. Therefore, (19) can be uniquely solved.
By solving (15) with respect to P(t) and inserting in (17) together with the expression of the vector function Q(t) from (19)

and again (15), we get the approximation of the continuous model with the infinite sequence of initial value problems, each
one parametrized by Dx
recall that the condition number j(T) of a matrix T is a measure of the sensitivity to the perturbations during the solution of linear systems Tx = b; see,
for more details.
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ðI � BEðI þ B�1CÞF�1CEÞÞ
@

@t
UðtÞ ¼ AEUðtÞ þ BESðtÞ; Uð0Þ assigned; ð21Þ
where the second derivatives of N is substituted by differentiating (18). The mass matrices Mfeed�forward of the sequence (21)
are not constant, non linear and nonlocal by the presence of the gain factor a in the entries of matrices B and C:
Mfeed�forward ¼ I � BEðI þ B�1CÞF�1CE ¼ I � BEB�1F�1CE; ð22Þ
while the Jacobian matrices of the initial value problems (21) are all equal to
J ¼ AE; ð23Þ
and are constant.

3.3. The feed-diagonal semidiscrete model

Analogously, for the feed-diagonal model considered in [16] (i.e., such that (11) holds), we get the following expression for
the mass matrix
Mdiagonal ¼ I � BEF�1CE � BEDDE; ð24Þ
where D is a diagonal matrix such that
Dði; iÞ ¼ aðxi;u; tÞ; i ¼ 1; . . . ;N:
From here on, the pedices to the mass matrices will be neglected and the model used will be clear from the context.

3.4. The discrete model and time-step integration

The initial value problems (21) are stiff (see [9]) but are not differential algebraic equations, or DAE for short (see [9] for a
definition) with the parameter chosen in [7,13] and here, i.e., the mass matrix M (22) or (24) is not singular. In particular, for
the feed-forward model (9), (10), the Jacobian J (23) and the transfer matrices
M�1 � J; ð25Þ
have eigenvalues with negative real parts spread in the interval [�2.5�103, �l] with l > 0 and imaginary parts varying in
absolute value from 0 to more than 105; see Figs. 2 and 3.

Therefore, the semidiscrete model (21) reflects the behavior of the continuous one. No unstable modes are present. The
presence of eigenvalues with large imaginary parts for the Jacobian and the transfer matrices suggests that the discretization
in time requires small time steps and adaptivity with respect to the time discretization; see Section 5. The use of packages for
time-step integration with a finite region of stability, like one based on explicit formulas, are not appropriate here because.

� the presence of a nontrivial mass matrix, changing at each step, suggests to avoid the transformation in a problem with
the mass matrix equal to the identity as explicit time-step integrators do;
� the problem is stiff and the stiffness increases as the maximum value of the gain function a increases, provided it is less

than one, otherwise the nature of the problem can change and other phenomena can take place (see Section 4.1) similarly
to what observed in [2], even if the model considered in the latter research is different.
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Fig. 2. Typical behavior of the eigenvalues for the Jacobian matrix (23) J for N = 200 and N = 400, feed-forward model.



−2500 −2000 −1500 −1000 −500 0
−1.5

−1

−0.5

0

0.5

1

1.5
x 105 Spectrum of Mnl

−1⋅ J

Re

Im

−2500 −2000 −1500 −1000 −500 0
−1.5

−1

−0.5

0

0.5

1

1.5
x 105 Spectrum of Mnl

−1⋅ J

Re

Im

Fig. 3. Typical behavior of the eigenvalues for the ‘‘transfer’’ matrix Mass�1J for N = 200 and N = 400, feed-forward model.
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Time-step integration of the underlying semidiscrete systems (21) is performed here by modifying the code using itera-
tive linear algebraic solvers proposed in [4] based on Mathworks’ Matlab �

Ode15s package. We recall that Ode15s is a var-
iable-step, variable-order (here the maximum order is kept limited to 2) solver based on backward differentiation formulas
(BDF) and other with similar properties (we force the use of BDFs for our simulations), implicit schemes based on linear mul-
tistep formulas which have an infinite region of absolute stability. For more on the nature of the formulas used in the package,
the error estimation strategy for adaptive stepsize and the solution of the algebraic nonlinear equations see [17]. See [4] for
another version of Ode15s with an iterative solver for the algebraic linear systems applied to a 3D nonlinear reaction–dif-
fusion model but where the mass matrix is trivial.
4. A multistage solver for the large scale algebraic systems

Time-step integrators based on implicit linear multistep formulas require, at each integration step, the solution of alge-
braic nonlinear systems that are usually solved by quasi-Newton algorithms. The latters require to solve linear systems
whose matrices can be written as
Mv ¼ b; M¼ ðM � aDtJÞ; ð26Þ
where a is a constant and Dt is the time-step. We stress that most of the overall computing time is spent on the solution of
linear systems such as (26). This is a crucial issue for reliable and fast simulation. In particular, as observed in [13], the mass
matrix, and thereforeM, is full, i.e., all of its entries are different from zero (and therefore the underlying differential equa-
tions are fully coupled) because B�1, F�1 in (22) are full matrices even if B and F are banded, with nonzero entries in few
diagonals only. On the other hand, iterative Krylov subspace solver like GMRES or BiCGstab (see, e.g., [14]) do not require
to form matrixM explicitly to solve (26). They just need to perform matrix to vector products of the formM� v . This aspect
is crucial in order to avoid inversion of matrices B and F, which is computationally expensive and unfeasible if N is large. We
stress that F is constant but, in the feed-forward model, there is a component in the mass matrix, B�1, that changes at each
step because depends on a (and therefore on u(t)) and the matrix inversion costs O(N3) flops. A similar argument can be ap-
plied for other models whenever the feedback matrix B is not diagonal. On the other hand, in the feed-diagonal model (s), the
matrix D in (24) is updated at each step but it is diagonal, therefore the cost of the inversion at each step is linear with N.
Performing matrix–vector products with the matrix M require the solution of two auxiliary linear systems with narrow
band matrices. The structure of B and F and the fact that the considered models are one dimensional in space suggest the
use of band-Gaussian elimination (see, e.g., [8]) because it is a direct method and, in this case, its cost is optimal (linear
in the dimension of the rows of the matrices).

In order to let our ‘‘implicit’’ decoupling of the differential systems (17) be reliable, we need to consider the following
issues:

� character of the mass and of the transfer matrices M�1J;
� invertibility and conditioning of matrices B and F;
� convergence of iterations of the Krylov subspace solver;
� preconditioning the Krylov subspace solver.

The first issue is discussed in Section 3.4, the others below.
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4.1. Conditioning of matrices B and F

The expression of the mass matrix (22) of the initial value problem (21) includes the inverses of the square matrices B as
in (20) and both(22), (24) include the matrix F (14). Therefore, invertibility and conditioning of B and F are crucial in order to
generate efficient and reliable simulations of (10) by the semidiscrete models (21). We recall that the former is a function of
the BM displacement while the latter is constant. Despite this, as suggested in previous section, inversion and storage of F�1

should be avoided whenever N is large.
The matrix B. For what concerns matrix B, we observe that the lower bound on the condition number of B in [2, Proposition

1] is of no use here. In particular, the model studied in [2] uses in principle the same matrix function B as in (20), but with a
different function a (see [2, formula (21)]), and while in [2] a can be greater than one, here the values of the gain factor a are
always less than 1. This provide a well conditioned matrix.

Proposition 1. Let us assume that amax = max{a} < 1, where a = a(xs,u, t) is the gain factor defined as in (13). fore, the matrix B is
well conditioned and its condition number can be bounded independently from the number of the mesh points on the basilar
membrane,
jðBÞ ¼ kBkkB�1k < 1þ amax

1� amax
:

Proof 1. In order to give an upper bound for kB�1k, we recall that the columns of B�1, c(k), k = 1,2, . . . ,N, are the solutions of
the linear systems
BcðkÞ ¼ eðkÞ; k ¼ 1;2; . . . ;N;
where N is the number of rows of B and e(k) is the kth unit vector of Rn. By using an induction argument, if the jth entry of the
kth column of B�1 is denoted by cðkÞj , we get that
cðkÞj ¼
Yj

s¼1þk

aðxs;u; tÞ; k ¼ 1; . . . ;N; j ¼ 1; . . . ;N;
with the convention that
Q

s; ¼ 1. Therefore, by
kB�1k1 ¼ 1þ
XN�3

r¼0

YN

s¼2þr

aðxs;u; tÞ
 !

6 1þ
XN�3

r¼0

YN

s¼2þr

amax

 !

and by recalling that jamaxj < 1, we get
kB�1k1 6 1þ
XN�1

r¼1

ar
max ¼

XN�1

r¼0

ar
max ¼

1� aN
max

1� amax
<

1
1� amax

;

and therefore, by observing that kBk1 = 1 + amax, we get
j1ðBÞ <
1þ amax

1� amax
: �
As predicted by the bound, the condition number of the matrix B is of the order of 2 both in the Euclidean and in the infin-
ity norm whenever max{a} = 0.36, as is the case of normal hearing.

On the other hand, the proposed techniques can work even if max{a} > 1. In this case, B can be severely ill-conditioned, as
observed in [2, Proposition 1].

The matrix F. Matrix F as in (14) connects the discrete versions of the differential pressure and cochlear partition accel-
eration; see Eq. (15). An analysis of its spectral properties is more difficult with respect to the first order version of F of
the model proposed in [7], the latter can be easily proved nonsingular by using Gerschgorin’s Theorems; see, e.g., [18, Chap-
ter IV]. The localization technique based on the field of values is not useful here as well because the symmetric part of F, i.e.,
(F + FT)/2, is indefinite. By using the difference equation approach proposed in [3], we get that matrix F as in (14) is nonsin-
gular and its eigenvalues are in the right half plane. Moreover, the condition numbers of F in the Euclidean norm are very
much the same with respect of those of the matrix F in [7] and in [13]; see Table 1. We note that j2(F) increases slightly
more (by a factor of less than 3/2) with N with respect to the condition number of the corresponding Toeplitz matrix eF
Table 1
Condition number and minimum and maximum eigenvalues of matrix F.

N j2(F) kmin(F) kmax(F)

100 3�104 �61.7 �3.05�10�3

200 1.6�105 �247.1 �3.08�10�3

400 8.4�105 �988.4 �3.09�10�3

800 4.6�106 �3953.8 �3.10�10�3
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resulting from F by removing its first and last rows. We recall that the condition number in the Euclidean norm for eF is
OðD�2

x Þ, Dx the mesh width on the rectified cochlea. Indeed, eF is the usual second order centered difference discretization
of the one dimensional Laplacian operator; see, e.g., [10].
4.2. Convergence of iterations of the Krylov subspace solver

As expected by the clustered (with respect to the mesh width parameter (Dx)) spectra observed for the matrices M in
Fig. 4, we experience a fast convergence of the Krylov subspace iterative solver GMRES solving the linear systems (26) for
both the feed-forward and the feed-diagonal models; see Tables 2 and 3. It is interesting to see that these values are almost
insensitive with respect to variations of the OHC gain parameter c in (13) and thus with a. On the other hand, the matrixM
of the algebraic linear systems arising at each step of the time-step integrator are nonsymmetric. Therefore, to predict the
convergence behavior of the iterative solver used for the linear systems (26) necessary for the quasi Newton update step, we
need in principle to know more information such as departure from symmetry or the condition number of the matrix of
eigenvectors, the pseudospectra, etc.; see, e.g., the convergence analysis of GMRES in [14] and the comments in [5,6]. On
the other hand, in our numerical tests, we found that very often eigenvalues can give realistic insights for the underlying
nonsymmetric problem. In view of this, we will not consider this issue any further here.
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Fig. 4. Typical behavior of the eigenvalues for iteration matrices Mass � ahJ for N = 200 and N = 400.

Table 2
Average and total number of iterations (for the iterative Krylov subspace solver) and number of LU
factorizations (for the direct solver) of the matrix M (26), feed-forward model, c = 0.36, stimulus:
distortion product of two frequencies f1 and f2, f1 = 2 kHz and f2 = 2.44 kHz , c = 0.36, Qf = 5.

N Avg iters Total iters Factorizations

100 42 86756 135
200 46 100915 383
400 47 109104 649
800 48 115787 427
1600 47 115361 499

Table 3
Average and total number of iterations (for the iterative Krylov subspace solver) and number of LU
factorizations (for the direct solver) of the matrix M (26), feed-diagonal model, c = 0.36, stimulus:
distortion product of two frequencies f1 and f2, f1 = 2 kHz and f2 = 2.44 kHz , c = 0.36, Qf = 5.

N Avg iters Total iters Factorizations

100 42 87695 535
200 46 100954 607
400 47 110132 520
800 47 115333 575
1600 47 116088 538
3200 47 125454 601
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4.3. Preconditioning the Krylov subspace solver

Whenever N, the number of grid points on the basilar membrane is reasonably large enough, we suggest iterative solution
of algebraic linear systems with matrices (26). With both the feed-forward and the feed-diagonal models considered here
and the parameters in Section 5.1, we observe that the number of GMRES iterations are of the order of 42 � 48 and precon-
ditioning strategies based, e.g., on incomplete factorizations produce an additional computational cost that is not compen-
sated by a substantial reduction of the number of linear iterations. On the other hand, we do not exclude that future
generalizations of the underlying models require a greater number of iterations for the convergence of the iterative part
of the proposed hybrid iterative/direct strategy. In this case, a possible preconditioner for the feed-forward model can be
based, e.g., on the following constant approximation of the matrix M as in (26):
P ¼ ðI � BEF�1CEÞ � a~hJ;
i.e., the matrix G(U) is approximated by the identity (or by another constant matrix) and ~h is an average of the typical step
sizes used by the time-step integrator. In order to avoid working with a full preconditioner (because F�1 is a full matrix), we
need to apply P implicitly. In particular, we recall that the matrix P can act through matrix–vector product only because of
the use of the Krylov subspace solver. Therefore, the application of the (left) preconditioner operator P for the matrix vector
product w ¼Mv , i.e., w ¼ P�1Mv required by GMRES algorithm, can be realized with the mathematically equivalent two
steps: (1) compute ~w ¼Mv; (2) solve the linear system Pw ¼ ~w for w.

A more accurate preconditioner should approximate step by step the matrix M that changes with h and U. In order to
avoid recomputing a new approximation operator from scratch at each step, we suggest the use of the updating strategy
for preconditioners proposed in [1].
5. Simulations and performances

In this section we report some numerical experiments with the proposed packages. All tests were performed on a Intel�-

CoreTM2 Duo Mobile Processor T9550 2.66 Ghz clock L2 Cache Size 6 Mb, L2 Cache Speed 2.66 GHz, bus speed 1066 MHz,
4 Gb Ram running Linux Fedora 12/64 bit running Matlab R2009a 64 bit. The second core is enabled during test sessions
devoted to report timings but its contribution to the computation is negligible.

5.1. The parameters

The main parameters we consider are mostly the same of those in [13] and in [16].
L
 3.5�10�2 m
 Length of the cochlea

H
 10�10�3 m
 Height of the cochlea

N
 500 � 20000
 Number of cochlea discrete partitions

q
 103 kg m�3
 Fluid density

k0
 3.1�103 m�1
 Cochlear geometrical wavenumber

x0
 2.08�104�2p s�1
 Greenwood’s map frequency coefficient

x1
 �145�2p s�1
 Greenwood map’s frequency offset

rBM
 5.5�10�2 kg m�2
 BM density

kx
 1.382�102 m�1
 Greenwood map’s inverse length scale

c0
 5.035�103 s�1
 Cochlear damping map coefficient

c1
 100 s�1
 Cochlear damping map offset

kC
 1.382�102 m�1
 Cochlear damping map inverse length scale

Kow
 2�108 N m�3
 Effective middle ear-oval window stiffness

cow
 5�103s�1
 Effective middle ear-oval window damping

row
 2 kg m�2
 Effective middle ear-oval window density

unl
 10�8 m
 BM displacement saturation length scale

c
 0.36
 OHC gain parameter

k
 3.4641�10�4 m2
 OHC nonlocal interaction range
5.2. The numerical results

In the sequel, we show a comparison of the timings for both the feed-diagonal and the feed-forward models with an input
based on two primary tones f1 = 2000Hz and f2 = 2440Hz, whose level differ by 10 dB with the level of f2 equal to 60 dB SPL,
where SPL means sound pressure level. This kind of input generates the so called distortion product at the frequency
fDP = 2f1 � f2. The spectral line corresponding to this distortion product, along with the others at frequencies that are different
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linear combinations of the primary frequencies, may be observed in the spectrum of the cochlear response estimated at the
stapes (the first partition of the model) in Fig. 5.

We compare the standard direct and our hybrid iterative/direct solution of the linear system of the quasi Newton correc-
tion step in the Matlab package for time-step integration Ode15s. Global timings (see Figs. 6 and 7) show that there is a
tradeoff mesh size in space, i.e., there exist Dx and N such that, for Dx 6 Dx or, equivalently, for N P N, the hybrid
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iterative/direct strategy proposed in Section 4 is computationally more convenient with respect to our implementation of
the direct solution of linear systems as in (26). From the tradeoff point on, as the mesh get refined, the performance of
the underlying iterative solution get greater. Moreover, there exists also a sort of ‘‘cut-off point’’ dependent on the machine
main memory, i.e., beyond this point, the direct solution of the semidiscretized model cannot be performed at all without
resorting to the disk swap memory space, which is typically slower with a factor of 1000 � 10000 with respect to the
RAM and the timings increase unacceptably for a reasonable use of the simulation (e.g., days instead of minutes). We note
that the tradeoff point is different for the two variants of the active cochlear model considered here. In particular, even if the
semi discrete system of differential Eq. (17) is still fully coupled for all models, the feed-diagonal model does not require a
new N � N matrix inversion at each time-step as the feed-forward does by using a direct solver for (26). Therefore, as
expected, we observe that the advantages of our hybrid iterative/direct strategy over our implementation of the direct
solution of (26) by using Gaussian elimination is much greater for the feed-forward model. Similar results would be observed
for, e.g., a feed-backward model and other variants using a non diagonal feedback matrix.

We conclude by observing that, in order to get a simulation from zero to 20 ms with stimuli from 2 kHz–3 kHz, a relative
error tolerance of 10�3 requires a time-step from 5�10�6 to 10�5, thus generating approximately from 3000 to 4000 steps. Of
course, different stimuli can show different computational costs, but the distortion product is a good benchmark with
respect to simpler stimuli such as the click or the single exponentially decaying sinusoid. On the other hand, timings are
almost insensitive to changes of parameters such as the OHC gain factor c, and thus on a, provided a < 1.

We verify the convergence of the proposed scheme by checking ratios
kuN � u2Nk=ku2N � u4Nk2;
finding that the scheme is globally of second order. We recall that the discretization with respect to the space variable is of
order two while with respect to time is up to order five.
6. Conclusions

We considered a full second order time-step package for some recently proposed nonlinear, nonlocal models for inner ear
is analyzed here. An analysis of the discrete counterparts of the feed-forward and of the feed-diagonal models were
performed. The convergence of an hybrid iterative/direct solver for the large scale algebraic linear systems generated by
the discretization of the underlying models were studied in view of the parameters of the continuous model, founding that
conditioning and timings are relatively insensitive to changes of the gain factor parameters. On the other hand, we observe
that the implicit decoupling realized by our hybrid solver for the semidiscretized model is essential in order to provide a
computational cost within O(N) and O(NlogN), N the number of mesh subdivisions on the rectified cochlea, instead of O(N3).
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The guidelines proposed here can be used for other variant of full active cochlear models in the style of those proposed in
[7,13,16]. In particular, we expect that multidimensional generalizations of the proposed nonlinear and nonlocal cochlear
models will even more greatly benefit by the use of the proposed approaches.
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