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The interest of inner ear research towards the cochlear simulation is due to the lack
of imaging techniques for human noninvasive investigation. Unfortunately, in case of
Sensorineural Hearing Loss (SHL), the majority of the models developed in the literature do
not take into consideration all the complex audiological phenomena occurring in the Organ
of Corti. In this paper we show that a realistic analysis of recruitment and hyperacusis
can be effectively reproduced by nonlinear modeling. The latter fact is in contrast to the
classical assumption that an impaired ear with a moderate SHL can be effectively described
by a passive linear model. In order to deal with the active role performed by the Outer
Hair Cells (OHC), recent models based on integro-differential equations were introduced in
the literature. However, the discretization and the computational methods present some
issues. In this work we suggest the utilization of a variable-step-variable order package to
advance in time in order to preserve the character of the continuous solution. Moreover,
we illustrate that, in case of SHL, the fixed-point approach for the linear algebraic system
generated by the discretization can be inappropriate. Since preliminary experiences show
that the matrices involved in the model present clustered eigenvalues, we propose Krylov
methods. Numerical tests are included in order to confirm the effectiveness of the proposal.

© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Cochlear modeling represents an important research tool in the study of inner ear disease and pathology. In the last
decades several mathematical models were introduced in the literature with the main aim of investigating the microscopic
details of this “inaccessible” structure of the sensorineural part of the auditive system (see, f.i. [3,5–7]). In particular, a three-
dimensional model was described in [12] in order to obtain a realistic simulation of the complex processes taking place in
the Organ of Corti. More recently, a remarkable and operational two-dimensional model was introduced in [10], by coupling
the classical second order linear Partial Differential Equations (PDE) for the Basilar Membrane (BM) with a nonlinear active
and discrete feed-forward Outer Hair Cells (OHC) model.

We emphasize that the complete model is based on a system of integro-differential equations presenting many difficulties
from a numerical point of view. The discretization scheme and the corresponding algorithm utilized in [10] is certainly
extremely interesting, but, unfortunately, has some disadvantages.

Firstly, the discretized systems strongly depend on the expansion of some truncated series. Secondly, the time step �t
should be chosen small enough in order to achieve the convergence of the fixed point iteration algorithm, thereby implying
a possible waste of computational resources. A more efficient procedure can be implemented by a numerical approach with
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adaptive meshes in time using projective iterative methods to solve the discrete problem at each step and, therefore, with a
potentially more robust strategy.

Moreover, it must be stressed that, due to anatomical reasons, the processing of the auditive signals is a discrete system,
since it takes place in the tonotopic sites of the cochlea. Modeling the Organ of Corti with continuous integro-differential
equations is quite useful from a mathematical point of view, but it is, in fact, a stylization of the reality. Hence, the discrete
approximation associated to the numerical solution has to take into account this fundamental anatomical feature.

It is also important to point out that the paper [10] was mainly oriented to the modeling of patients with normal hearing
or, more precisely, without a Sensorineural Hearing Loss (SHL). The convergence of the corresponding numerical method was
in fact guaranteed by assuming that the gain factor α(x, u) of the active part of the model could be efficiently described by
an integral function of the BM displacement u(x, t) and maxu{α(x, u)} be everywhere less than one with a suitably small
time step.

In [11] the model was extended to the case of patients with several levels of SHL in order to investigate the possible
medical applications. As a matter of fact, the principal goal of the latter paper was to enhance the ability of impaired
hearing by a sound amplification method, which is a fundamental problem in the optimization of the digital performances
of the last generation hearing aids.

The main difficulty of a realistic modeling of the impairment due to a SHL with a damage limited to OHC is the correct
simulation of a phenomenon called recruitment and the consequent hyperacusis. Patients with intact Inner Hair Cells (IHC)
and a complete loss of OHC show in fact a deafness characterized by a SHL of 50–60 decibel or, for short, dB, a dramatic
deficit of frequency discrimination and a painful hyperacusis above a sound level of 80–90 dB, particularly in the high
frequencies (see [14,15]).

Thus, a strong reduction of the dynamical auditive range is one of the most important consequences of SHL. From a
mathematical point of view, this type of SHL can be effectively reproduced only by suitable nonlinear modeling. Therefore,
the fact that an impaired ear with a damage limited to the OHC has a complete lack of the compressive nonlinearity of a normal ear
does not correspond to the reality and the auditive behavior in the latter case cannot be described by a linear passive model.

Hyperacusis, in particular, plays a crucial role in SHL and represents a critical constraint in the adaptive gain strategy
of the hearing aids. Audiological experience shows that many patients with steep slope audiograms cannot obtain a real
benefit from hearing aids, in contrast to the theoretical amplification curves computed by the digital models implemented
in the acoustic laboratories [9].

In this paper we have tried to modify the model described in [11], by introducing a gain factor α̂ that should be able to
reproduce the auditive phenomena of an impaired ear with a loss limited to the OHC. We underline that this type of SHL is
the most frequent one, since it is typical of presbyacusis, noise damage or acoustic trauma [14].

From a numerical point of view it is important to notice that recruitment and hyperacusis can be seen as a sort of
numerical ill-conditioning of the integro-differential equations. More precisely, in this work we show that the matrices in-
volved in the computational scheme can be ill-conditioned since our new gain factor α̂ can now assume values greater than
one. Due to the cited intrinsic discrete nature of OHC processing, this numeric interpretation of recruitment and hyperacusis
seems to be promising and deserves further investigation.

2. From the continuous to the discrete model

An advanced operational model for the Organ of Corti couples classical linear partial differential equations for the Basilar
Membrane (BM) (i.e. the mathematical translation of classical Von Bèkèsy’s model [17]) with nonlinear and nonlocal integro-
differential equations for the OHC, thereby properly describing the active role of these fundamental cells.

Firstly, we summarize the model introduced in [10].
In the latter model the forces applied by OHC on the BM are assumed proportional to the total force acting on the BM

(OHC act like piezo-electric actuators that push BM). The force applied on the BM is transmitted to the OHC, which act on
the cilia and back on the BM.

Let p(x,0, t) and Fcell(x, t) be the pressure across the BM and the force transmitted by OHC, respectively.
Therefore, the total force on the BM FBM is given by:

FBM = p(x,0, t) + Fcell(x, t).

Due to the longitudinal tilt of OHC, forces acting on the cilia at x cause OHC to push at a point x + � downstream on
the BM. Hence:

Fcell(x + �, t) = α(u, x, t)FBM = α(u, x, t)
(

p(x,0, t) + Fcell(x, t)
)

α, i.e. the gain factor, has an integral form shown in the next paragraph (see 3.5).
OHC saturate as the BM motion increases in magnitude, thus α has in fact a nonlocal and nonlinear expression which

depends on the history of u(x, t), i.e. the BM displacement (see [10], Fig. 3).
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By modeling BM motion as a spring-mass system and setting Fcell(x, t) =: q(x, t), the active model becomes:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�p(x, z, t) = 0, (x, z) ∈ [0, L] × [0, H],
p(x,0, t) + q(x, t) = mutt + rut + s(x)u, 0 � x � L,

q(x + �, t) = α(x, u, t)
(

p(x,0, t) + q(x, t)
)
, 0 � x � L − �,

q(x, t) = 0, 0 � x � �,

(1)

where � is the Laplacian operator, and the initial-boundary conditions are the same of the classical passive model.
More precisely, the external stimulus is present in

px(0, z, t) = 2ρTmspinput(t), 0 � z � H,

where Tmspinput includes medium ear’s mechanical effects. Moreover, being the equations in p coupled through u, i.e. the
BM displacement, it follows

pz(x,0, t) = 2ρutt(x, t), 0 � x � L.

The other two boundary conditions are

∂ p(x, H, t)/∂z = 0, 0 � x � L

a homogeneous Neumann bc because the upper wall is rigid;

p(L, z, t) = 0, 0 � z � H .

The initial conditions are

u(x,0) = 0,
∂

∂t
u(x,0) = 0, 0 � x � L.

3. The existing discrete 2D–1D model with a nonlocal gain factor

The semidiscrete model discussed here is considered in [10] and is a 2D model reduced to a 1D one by concentrating
the attention on the movement of BM. The authors consider a uniform mesh on the rectified model of the BM with N + 1
nodes xi , i = 0, . . . , N and xi = i · �x so that u(xi, t) represents u(i�x, t), i = 0, . . . , N , �x = L/N , being L the length of the
BM.

By expanding p by the eigenfunctions of the Laplacian and after posing

Q (t) = [
q(x0, t) . . .q(xN , t)

]T
, P (t) = [

p(x0, t) . . . p(xN , t)
]T

,

F (t) = 2ρTm pt(t)
[
(L − x0) . . . (L − xN )

]T
,

and some manipulation on (1) (see [10]) the model (1) can be reduced to a semidiscrete one, a sequence of initial value
problem based on systems of N + 1 second order differential equations parametrized by �x:

M
∂

∂t2
U = r

∂

∂t
U + SU + (

B−1C + I
)

F , U (0) and
∂

∂t
U (0) given, (2)

where r is the resistance and the (N + 1) × (N + 1) mass matrix M is given by

M = M(U ) = (
B−1C + I

)
A − mI, B = B(U ), C = C(U ), (3)

being m the BM density, S a diagonal matrix given by the BM stiffness per unit length in the form

s(x) = 4π2m
(
0.456 exp

(
4.83(1 − x/L)

) − 0.45
)2

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1
.
.
.

. . .

.

.

.
. . .

. . .

−α(x0, u) 1
. . . 0 1

. . .
. . .

−α(x , u) 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)
N−K
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i.e., Bi+K ,i = −α(xi, u, t), i = 0, . . . , N − K , K = 1 in [10] and in our settings, C = −B + I and A = (ai, j) is the nonsymmetric
matrix generated by the Laplacian eigenfunction expansion

ai, j =
m∑

n=1

−4ρ cos(ξnxi) cos(ξnx j)

Lξn tanh(ξn H)
d( j)�x, i, j = 0, . . . , N, (5)

d( j) = 1 on interior points and 1/2 at the end points, H is the height of the cochlea, ξn = π(n − 0.5)/L. The gain factor
α = α(x, u, t) is a nonlocal nonlinear function that in [10] is defined as

α(x, u, t) = γ√
λπ

L∫
0

exp

(
− (x − x′)2

λ

)
g
(
u(x′, t)

)
dx′, (6)

where λ, γ are constants and g is a nonlinear function; see [10] for details. In this paper we propose an extension to this
function. Note that the entries of A do not change and depend only on the mesh.

In [10] the authors reduce (2) to a system of 2(N + 1) first order equations and by using the well known 2-step BDF
formula (see, e.g., [8]), they derive two systems of N + 1 difference equations

Un+2 = 4

3
Un+1 − 1

3
Un + 2

3
�tV n+2, (7)

V n+2 = 4

3
V n+1 − 1

3
Un + 2

3
�t

(
Mn+2)−1(

rV n+2 + SUn+2 + ((
Bn+2)−1

C + I
)

F n+2), (8)

where, incidentally, also M , B and C do depend on Un+2.
By using (7) in (8) one obtains:

(
Mn+2 − 2

3
�t r I −

(
2

3
�t

)2

S

)
V n+2

= Mn+2
(

4

3
V n+1 − 1

3
V n

)
+ 2

3
�t

(
S

(
4

3
Un+1 − 1

3
Un

)
+ ((

Bn+2)−1
C + I

)
F n+2

)
. (9)

Therefore, the mass matrix is given by

M̃n+2 := Mn+2 − 2

3
�t r I −

(
2

3
�t

)2

S = (
Bn+2)−1

A − D̃, (10)

where Bn+2 is a 2-band matrix (lower bidiagonal if K = 1, the choice in [10] and here), A is a (fixed once �x is fixed) full
matrix and D̃ is a diagonal matrix:

D̃ = mI + 2

3
�t r I +

(
2

3
�t

)2

S

and only Bn+2 depends on u via the gain factor α.

4. Our proposal to adapt the discrete model to patients with SHL

In the next paragraphs we propose some changes to the strategies in [10] in order to get a discrete model that can

• describe more accurately SHL and hyperacusis with unconditional convergence to an approximate solution;
• be computationally robust and efficient.

Simulations and more details on the computational methods will be considered in Section 5.

4.1. Time marching schemes

Instead of using 2-step BDF, we suggest two options. The first one is a scheme to be used with constant stepsize, see
Section 4.1.1. The second one is a variable step with variable order package for time-step integration based on Matlab’s
ode15s. Indeed, we modified the latter algorithm in order to accommodate the use of an iterative solver for the linear
algebraic systems and to consider the peculiar structure of the mass matrix of the semidiscrete model; see Section 4.1.2.
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4.1.1. Constant stepsize and order time stepping
We propose using an order two difference scheme for (2) (reduced to a first order sequence of differential equation

parametrized by �t), i.e. Crank–Nicolson (CN). Our proposal tries to contribute for two main reasons:

• CN is A-stable and does not smooth unstable modes as L-stable methods as 2-step BDF do (see, e.g., [8]);
• is a one-step method, therefore change of the stepsize is more natural.

Applying CN to (2) after some manipulations gives

Un+1 = Un + 1

2
�t

(
V n + V n+1), (11)

M V n+1 = M V n + 1

2
�t

{
r
(

V n + V n+1) + S
(
Un + Un+1) + (

Bn)−1
F n + (

Bn+1)−1
F n+1}. (12)

By substituting (11) in (12) and by recalling that B−1C + I = B−1, gives
(

M − 1

2
�t r I −

(
1

2
�t

)2

S

)
V n+1 =

{
M + 1

2
�t(r I + S)

}
V n + �t Un + 1

2
�t S

((
Bn)−1

F n + (
Bn+1)−1

F n+1). (13)

Now the mass matrix is given by

M̃n+1 := Mn+1 − 1

2
�t r I −

(
1

2
�t

)2

S = (
Bn+1)−1

A − D̃, (14)

where the changes with other multistep schemes are confined in the diagonal term D̃ in (14).
The discrete problem (13) can be reduced to a linearized one by approximating the values of the gain factor α(u(x, t))

in B (and then in C too) by using Taylor series expansion:

Un+1 = Un + �t V n + 1

2
�t

(
V n − V n−1) + O

(
(�t)3), n = 1,2, . . . , (15)

by including in the first step a first order expansion as Un+1 = Un + �t V n in order to start the process.

4.1.2. Variable stepsize and order time stepping
In order to get a more effective time-step integration, we modified the variable step, variable order (from order 1 to five)

package ode15s based on NDF formulas included in release 2008b of Matlab; see [18]. For details of iterative solution of
the algebraic linear systems in ode15s see [2]. In order to use the above strategy, we perform three steps:

• reduce (2) to first order system of differential equations;
• reduce the solution of each 2(N + 1) linear algebraic system to the solution of one N + 1 linear system;
• use an iterative Krylov solver for the solution of the latter system.

We first reduced the second order system (2) to a first order one(
I 0
0 M

)(
U
V

)′
=

(
0 I
S r I

)(
U
V

)
+

(
0

B−1 F (t)

)
(16)

where we recall that the mass matrix M is given by

B−1 A − mI

and every operation requires a full matrix computation because of A. On the other hand, the Jacobian matrix of (16) is
sparse and constant. In particular, it can be viewed as a 2 × 2-block matrix whose four blocks are N + 1 × N + 1 diagonal or
null. In order to avoid the solution of linear(ized) systems of 2(N + 1) equations, we can observe that the matrices of these
algebraic systems can be written as

A = M − �t · a · J , (17)

where M, J are the mass and the Jacobian matrix in (16), respectively and �t , a are scalars, i.e. the stepsize and a
parameter that can be different for each time step. Therefore, with the notation

A =
(

A1 A2
A3 A4

)
(18)

we immediately get that A1, A2 and A3 are N + 1 × N + 1 diagonal matrices, while A4 is N + 1 × N + 1 and full. Moreover,
after a few manipulations, we get that the solution of linear systems whose matrices have same structure as A is given by
solving the system(

A4 − A3 A−1 A2
)
x2 = b2 − A3 A−1b1 (19)
1 1
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Table 1
dB SPL–dB HL conversion formula.

kHz dB SPL dB HL

0.25 11.7 0
0.5 3.5 0
1 0 0
2 0 0
3 0 0
4 0 0
6 0 0
8 5 0

and then by computing directly

x1 = A−1
1 b1 − A−1

1 A2x2, (20)

where x1, b1 and x2, b2 are the first N + 1 and the last N + 1 entries of the solution vector x and of the right hand side
b of the linear system Ax = b, respectively. It is worth to note that the matrix inversions of A1 in (20) and (19) are trivial
because A1 is diagonal.

Due to the special spectral properties of the matrix A of the underlying linear systems, in order to reduce the compu-
tational complexity (both in space and time), we can use a Krylov subspace iterative solver instead of a direct one for (19)
whenever N is large, as detailed in Section 4.3 (see also [2]).

4.2. A gain factor tuned for SHL with OHC damage

As observed in the Introduction, we will show here that the gain factor α = α(x, u, t) can assume values greater than
one in case of hypoacusia due to OHC damage with intact IHC and, in particular, whenever recruitment and hyperacusis act
in suitable dB-ranges.

The crucial point is that a realistic reproduction of the SHL in the latter situation cannot be described by the expres-
sion (6). More precisely, the profile of α vs. the BM displacement u and the associated SHL curves for the corresponding
values of the gain constant γ in (6) (see [11], Fig. 1 to Fig. 4) can be applied only to patients with normal hearing (γ = 0.52)
or, at most, with mild SHL (γ � 0.4). As a matter of fact, the medical experience (see [14]) clearly shows that a deafness
characterized by intact IHC induces a maximum SHL of 50–60 dB and a painful hyperacusis above a sound level of 80–
90 dB. We stress that, since the model in [11] does not take into consideration IHC, severe SHL (even if limited to the high
frequencies!) cannot be investigated by the latter model.

Furthermore, it is important to emphasize that, although a great amount of the compressive nonlinearity of a normal ear
is destroyed in an impaired ear with moderate SHL, the real behavior of the auditive perception cannot be described by a
linear model based only on the BM displacement vs. the input level, i.e. the passive model (see [11], Fig. 2).

In case of moderate or mild to moderate SHL (� 60 dB HL), the main effect is, in fact, a strong reduction of the dynamical
auditive range from 0–100 dB HL of normal hearing to 25–30 dB above hearing threshold of an impaired ear.

From a medical point of view, it is not clear the origin of hyperacusis in an impaired ear with a moderate SHL. There
are several theories trying to explain the latter phenomenon by an abnormal reaction of the central auditive pathways and,
more precisely, by considering the neural connections of the so-called cochlear nuclei with a strong subjective component.
Sound enrichment therapies are in fact useful in many cases to deal with this pathology.

On the other hand, other interpretations are referred to in the literature and include hyperactivity of afferent and/or
efferent connections, over-reactions of residual OHC or even sudden vibrations of BM often associated to subjective tinnitus
(see [13] and the cited references). Since no appropriate imaging techniques are available for the human ear, we assume
that hyperacusis can be measured by a BM-displacement in nm-equivalent.

Hence, in case of a complete loss of OHC (γ = 0) and by considering the same input frequencies chosen in [11], Fig. 2,
i.e. 0.5 kHz, 2 kHz, 6 kHz, the following values can be deduced by medical experience (see Fig. 1):

(a) by assuming a SHL of 50 dB at 2 kHz and a SHL of 60 dB at 6 kHz, hyperacusis starts around 85–90 dB SPL in both
cases,

(b) recruitment is already present at 75–80 dB SPL in both frequencies,
(c) at 0.5 kHz with a SHL of 35 dB SPL recruitment is practically absent and hyperacusis starts at 95 dB SPL, i.e. it is almost

equivalent to the recruitment of loudness of a sensible normal ear.

The (linear) conversion formula from dB HL to dB SPL is displayed in Table 1.
Therefore, the theoretical gain factor α is affected by an amplification factor induced both by hyperacusis and by recruit-

ment. In conclusion, audiological experience shows that an impaired ear with a SHL � 60 dB is definitely a nonlinear and active
system at least in a suitable range of values.

From a mathematical point of view, hyperacusis can be described by the nonlinear gain factor α̃. More precisely,
α̃(x, u(x,dB(t)) is a sigmoid function both of the tonotopic site x and of the BM-displacement u in nm-equivalent, asso-
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Fig. 1. BM-displacement for normal (line-circle, γ = 0.52) and impaired (line-plus, γ = 0) ears.

ciated to the input level of the signal in dB SPL. The latter assumption can be explained by interpreting hyperacusis as
a sort of overreaction to a neural excitation. The analysis of samples of audiological data confirms that a realistic model
of recruitment and hyperacusis can be obtained by adding to the gain factor α(x, u, t) in (6) a new nonlinear component
α̃ = α̃(x, u(x,dB(t)) depicted in Fig. 2 for the tonotopic sites x associated to 2 kHz and 6 kHz.

So, the total gain factor α̂ is given by:

α̂(x, u, t) = γ√
λπ

L∫
0

exp

(
− (x − x′)2

λ

)
g
(
u(x′, t)

)
dx′ + α̃

(
x, u

(
x,dB(t)

))
(21)

where λ = 0.01 cm2 and γ is the gain constant associated to the level of SHL.
We point out that when u(x,dB(t)) > 250 nm the theoretical local gain factor α = 0, thereby implying α̂ = α̃ (see [11],

Fig. 1). Moreover, by applying (21), we can immediately deduce that α̃ > 1 in a suitable range of values of the input signal,
depending on the frequency associated to the tonotopic site x.

By utilizing the line-plus curves depicted in Fig. 1, referred to the frequencies 0.5 kHz, 2 kHz, 6 kHz and by denoting
with IL the input level, one can obtain the following results (see Fig. 2):

(i) at 0.5 kHz, since hyperacusis starts at 95 dB, α̃ < 1 for IL < 100 dB,
(ii) at 2 kHz and 6 kHz 0 < α̃ < 1 for 70 < IL � 85 dB, α̃ > 1 for IL > 85 dB,

(iii) the growth of α̃ for IL > 85 dB is much stronger at 6 kHz than at 2 kHz (α̃ > 4.5 for IL = 100 dB).

4.3. Krylov subspace methods for the system of algebraic equations

Solving the solution of the discrete models we consider in this paper requires the solution of a linear system for each
time step, see (11), (12), (19). Differently to [10], we propose the use of projection methods like BiCGStab and GMRES; see,
e.g., [16] for a review.

Krylov subspace methods are used here as iterative solvers, i.e., given an initial approximate solution x0, these algorithms
compute a sequence of approximations. Krylov subspace iterative linear solvers at each iteration seek a new approximate
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Fig. 2. α̃ vs BM-displacement for 2 kHz (line-circle) and 6 kHz (line-cross).

solution in the affine subspace x0 + Km , where x0 is an initial guess and Km is the Krylov subspace of R
n of dimension

m � n:

Km = span
{

v, M̃ v, M̃2 v, . . . , M̃m−1 v
}
.

Here M̃ is the coefficient matrix of the linear system that we want to solve and v is a vector related to the initial residual
vector. The (unique) approximation xm at step m is computed by using an orthonormal basis for Km determined during
the iteration steps. More specifically, the next residual vector is constrained to be orthogonal to m linearly independent
vectors defining a subspace Lm of dimension m, which is called the subspace of constraints. The choice of subspaces varies
for different Krylov subspace linear system solvers. This framework is known as the Petrov–Galerkin conditions (see [16,
Chapter 6] for details).

We recall that projection methods can converge faster whenever the matrix of the underlying linear system presents
a cluster of eigenvalues in one of the half complex plane (see, e.g., [4]). Indeed, we experienced that the matrix of linear
systems in (19) shows a cluster of eigenvalues in the left half plane; see Figs. 3 and 4. Moreover, differently to the fixed
point iterative method proposed in [10], we have unconditional convergence, in particular with respect to the time step and
to the values of α without artificial restrictions. This is very important in order to

• allow the use of adaptive time steps not limited by stability reasons;
• converge even when hyperacusis is acting, i.e. in the case α̃ > 1.

4.4. Hyperacusis and ill-conditioning of the discrete model

In this paragraph we will prove that hyperacusis can imply the ill-conditioning of matrix B in (14) and (16) (and of course
in (10) and (19)) in a nonempty (discrete) frequencies interval. We stress that the latter matrix is of crucial importance in
the computation in the framework proposed in [10]. Moreover, the solution of linear systems containing the matrix B must
be carefully dealt with from a computational point of view. The generation of the matrix–vector product with M or M̃ ,
i.e. at each iteration of projective algorithms like Krylov subspace methods, is in fact a critical problem. In Section 4.2 it
was shown that the new gain factor α̃ can assume values greater than one in the tonotopic sites associated to frequencies
greater or equal to 2 kHz and for suitable dB-ranges.

In order to obtain a numerical interpretation of a sensorineural overreaction we must take into account some anatomical
characteristics of the Organ of Corti. In absence of appropriate imaging techniques a natural way to describe the complex
phenomena associated to hyperacusis is to assume that the electromechanical processing performed by OHC in an impaired ear
can be considered equivalent to an unstable parassitary term affecting the true solution of a normal ear.

By utilizing the strategies suggested in the present paper, the following questions arise: does hyperacusis imply a sort
of numerical instability of (2) and, consequently, of the corresponding approximation? In the affirmative, is the matrix B
involved in the computation ill-conditioned?
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Fig. 3. (From left to right.) Spectrum of matrix in (19), N = 150 and N = 300.

Fig. 4. (From left to right.) Spectrum of matrix in (19), N = 600 and N = 1200.

Let us suppose that B , which is a lower bidiagonal matrix, be reducible, i.e., there exist zero entries in its nontrivial
subdiagonal so that we can write B as

B =
⎛
⎝ Ik

B22
IN+1−k−s

⎞
⎠ . (22)

We get that

κp(B) = ‖B22‖p
∥∥(B22)

−1
∥∥ ,
p
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where κp(B) is the condition number of B with respect to the p-norm, ‖ · ‖p is an operator norm and B22 can be written as

B22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
ak+1 1

ak+2 1
. . .

. . .

. . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B22 is the submatrix of B corresponding to the interval

x ∈ [xk, xk+s−1] ∈ [0, L],
I∗ are identity matrices of suitable order. Therefore, without leading generality, we can assume that B is an (N +1)× (N +1)

irreducible lower bidiagonal matrix with a j > 0 for all j = 0, . . . , N .

Proposition 1.

κp(B) � c
∏
j∈J

a j, (23)

where J is the set of indexes such that ∀ j ∈ J ⊆ {0,1,2, . . . , N}, a j > 1 and c is a constant.

Proof. Let us suppose α̂ > 0 for all x ∈ [0, L], otherwise we can split B as in (22). Moreover, let xk be the first point of the
mesh on the BM where α̃ is greater than one. By writing out the N + 1 equations in Bx = b where

b = [0 . . . 0 1 0 . . . 0]T

is the k-vector of the canonical basis of R
N+1 we get

x0 = 0, a1x0 + x1 = 0, . . . , akxk−1 + xk = 1, ak+1xk + xk+1 = 0, aN xN−1 + xN = 0

and therefore

x1 = 0, . . . , xk = 1, . . . , xk+1 = ak+1, xk+2 = ak+1ak+2, . . . .

From Bx = b

‖x‖ �
∥∥B−1

∥∥ · ‖b‖ ⇒ ∥∥B−1
∥∥ � ‖x‖

‖b‖ ,

and, if J is the set of indexes such that ∀ j ∈ J ⊆ {0,1,2, . . . , N} we have a j > 1,

‖x‖∞ �
∏
j∈J

a j . (24)

This, since ‖b‖ = 1, reads
∥∥B−1

∥∥∞ �
∏
j∈J

a j .

The proof is completed by including in a constant c in (23) the p-norm of B and a weight factor dependent on the operator
norm used. �

We stress that ill-conditioning is with respect to the mesh parameter �x refinements. In Tables 2–4 we give a sample of
the condition numbers related to three different situations. As expected, condition numbers of the matrices

• B as in (4),
• the mass matrix M = G A − mI as in (3),
• the matrix C = A4 − A3 A−1

1 A2 of the linear system (19),

grow fast with max{α̃}. This suggests to build up another new model for a cochlea affected by a sensorineural hearing
loss. We plan to take care of this in a future work. Values greater than 1/eps are not reported in Table 4 for N = 200 and
N = 500, where eps is the machine precision.
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Table 2
Condition number of matrix B as in (4) and mass matrix M = G A − mI as in (3) for max{α̃} � 1.

N K∞(B) K∞(M) K∞(C)

50 13 4787 4600
100 17 5130 12 600
200 22 6680 20 370
500 28 8800 35 140

Table 3
Condition number of matrix B as in (4) and mass matrix M = G A − mI as in (3) for max{α̃} � 1.2.

N K∞(B) K∞(M) K∞(C)

50 45 11 470 32 100
100 129 22 240 93 876
200 713 110 880 746 920
500 70 774 9 310 690 103 602 500

Table 4
Condition number of matrix B as in (4) and mass matrix M = G A − mI as in (3) for max{α̃} � 2.4.

N K∞(B) K∞(M) K∞(C)

50 4.5 × 106 5.44 × 108 1.47 × 109

100 1.19 × 1012 1.6 × 1014 7.14 × 1014

200 – – –
500 – – –

Fig. 5. BM displacement with input stimulus 4 kHz at 90 dB for an impaired ear.

5. Numerical experiments

In this section some preliminary numerical experiments are reported by using a variable step-variable order Matlab
package based on implicit formulas modified in part in the style of [2] with iterative solution of the linear algebraic systems.
Moreover, we adapt the package for the use with system with a nontrivial 2 × 2 block mass matrix showing the structure
discussed in Section 4.1.2. To compare results with those given in [10], we considered α̃ depending only on x. In Fig. 5 we
can see an example of BM displacement for impaired ear; see Section 4.2 for details on the gain factor. The input signal is
sinusoidal, frequency is 4 kHz at 90 dB. The simulation was performed by using N = 500 discrete points on the BM, but no
appreciable difference is shown with, e.g., N = 250 or N = 2000. The maximum value of the gain factor α̃ is greater than 1
and hyperacusis is in force. This is in agreement with the clinical data.

In order to speed up the proposed numerical methods, we used Krylov subspace solvers. In particular, both GMRES
and BiCGStab were considered with similar results; see [16] for details on these iterative methods. The convergence to the
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Table 5
Convergence ratios in L2 and L∞ norms.

N ‖uN − u2N ‖/‖u2N − u4N ‖2 ‖uN − u2N‖/‖u2N − u4N‖∞
250 4.12 3.76
500 4 3.9

prescribed tolerance of the former and the latter were reached in a number of iteration not increasing with N , as expected
by the clustered spectra observed in Section 4.3, typically 30–50 without preconditioning for a tolerance with respect to the
relative residual of 10−9. However, a preconditioning strategy can be designed by using updated incomplete factorizations
described in [1]. We experienced a computing time of less than 10’ minutes (compare with 25’ of [10]) on a Pentium IV
laptop for N = 700, continuous input frequency of 4 kHz and a relative error estimate in 2-norm solution (i.e. w.r.t. the
solution of (16)) of 10−3 (no error estimation in [10]). In particular, the average time step �t was of the order of 10−5 to
get a 30/40 ms simulation. We stress that this time can be reduced by implementing efficiently our strategies in a compiled
language. However, this is beyond the scope of this presentation.

We test the convergence of the proposed scheme by showing ratios ‖uN − u2N‖/‖u2N − u4N‖2 for N = 250 and N = 500.
It is worth to remind that, differently to the tests performed in [10], we are using an automatic variable step and order
package in our numerical experiments. Table 5 confirms that the scheme is a globally second order one for the discretization
with respect to the space variables. This upper limit is mainly caused by the use of the trapezoidal rule, which is a second
order quadrature formula, to form matrix A as in (5); see [10].

As a final note, the convergence of the whole scheme does not depend on the size of α̃ or α or on the step sizes,
differently to the strategy proposed in [10], where the fixed point iterative solver was proved to converge only if α < 1, and
if the stepsize in time was small enough; see [10, page 689]. On the other hand, values of α that are larger than 1 give
ill-conditioning for mass and B matrices. This is certainly a limit of the model proposed in [10] and extended here for an
impaired inner ear.

6. Conclusions

In this work we have shown that the numerical solution of integro-differential equations associated to the modeling of
an impaired ear with OHC damage presents several difficulties.

First, although a great amount of the nonlinearity is lost in case of moderate SHL, the classical linear passive model
cannot be applied in the latter situation.

Second, fixed time-step integration algorithm requires quite small time steps in order to ensure the convergence and
the same precision that can be reached by an adaptive time-step integration, as the one we suggest in Section 4.1.2. Con-
sequently, there is a risk of a significant waste of computational resources. The use of a Matlab package based on implicit
formulas for time-step integration suitably modified for the use of iterative solvers can be recommended for the nature of
the considered model, robust and relatively simple to accommodate the changes of an external user.

Moreover, when the number of mesh points N is large, in order to avoid matrix factorizations, an iterative linear algebraic
system solver can be more appropriate than a direct one for solving discrete problems generated by implicit time stepping.
However, the use of a fixed point iterative algorithm gives conditional convergence, thereby suggesting the utilization of
projection methods.

Third, recruitment and hyperacusis can imply the ill-conditioning of the discrete model at least in a suitable range of
dB-values.

Preliminary numerical results and simulations, illustrated in Section 5, confirm the theoretical unconditional convergence
of the computational scheme and the expected behavior in case of hyper/hypoacusia. We plan to give more simulations and
results in a forthcoming paper.
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