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What is different in quantum theory?

Heisenberg: “If there were to exist experiments
allowing for a simultaneous measurement of p and q
exceeding in precision what corresponds to the
uncertainty relation, then quantum theory would be
impossible.”



What is different in quantum theory?

Dirac: “It’s the phase.”



What is different in quantum theory?

Schrödinger: “I would not call [entanglement] one
but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure
from classical lines of thought”. [THIS TALK]



What is entanglement?

Entanglement

Entanglement concerns subsystems (usually two, called A and B) of an
ambient system. Roughly, one asks how much “information” one can extract
about the state of the total system by performing separately local,
coordinated operations in A and B.



What entanglement is not

Entanglement ̸= correlations

Entanglement is different in general from correlations between A and B
which can exist with or without entanglement!

Example of correlations: We prepare an ensemble of pairs of cards. For
each pair, both cards are either black or both are white. One card of each
pair goes to A, the other to B. A knows that if he uncovers one of his cards
at random, he will get black with probability p and white with probaility
1− p. But he knows with probability 1 that if the card uncovered is white,
then so is the corresponding card of B! Ensembles of A and B are maximally
correlated but not entangled!

⇒ “Classical correlations” but no entanglement



What is entanglement?

Standard “grammar” of quantum theory (w/o dynamics=“semantics”):

▶ observables: operators a on Hilbert space H
▶ states: ω ↔ statistical operator, ω(a) = Tr(ρa) = expectation value
▶ pure state: ρ = |Ω⟩⟨Ω|. Cannot be written as convex combination of

other states, otherwise mixed.
▶ independent systems A and B: HA ⊗HB , observables for A:

a⊗ 1B , observables for B: 1A ⊗ b
▶ measurement: possible outcomes of a are its eigenvalues λn.

pn = Probability of measuring λn =Tr(PnρPn)

Here Pn = eigenprojection of a corresponding to λn. Immediately
afterwards, state = 1

pn
PnρPn.

Separable states:

Convex combinations of product states (statistical operators ρA ⊗ ρB).



What is entanglement?

Classically: State on bipartite system ↔ probability density on phase space
ΓA × ΓB . Always separable! This motivates:

Entangled states

A state is called “entangled” if it is not separable.

Example: HA = HB = C2 spin-1/2 systems, Bell state ρ = |Ω⟩⟨Ω|
|Ω⟩ ∝ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩.

is (maximally) entangled.

Example: n dimensions HA = HB = Cn:

|Ω⟩ ∝
∑
j

|j⟩ ⊗ |j⟩

Example: ∞ dimensions:

|Ω⟩ ∝
∑
j

cj |j⟩ ⊗ |j⟩, cj → 0



What is entanglement?

Classically: State on bipartite system ↔ probability density on phase space
ΓA × ΓB . Always separable! This motivates:

Entangled states

A state is called “entangled” if it is not separable.

Example: HA = HB = C2 spin-1/2 systems, Bell state ρ = |Ω⟩⟨Ω|
|Ω⟩ ∝ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩.

is (maximally) entangled.

Example: n dimensions HA = HB = Cn:

|Ω⟩ ∝
∑
j

|j⟩ ⊗ |j⟩

Example: ∞ dimensions:

|Ω⟩ ∝
∑
j

e−2πEj/κ|j⟩ ⊗ |j⟩ (→ Killing horizons, Unruh effect)



How to distinguish entangled states?

ω entangled (across A and B) ⇒ ω correlated: There is a and b from the
subsystems such that

ω(ab) ̸= ω(a)ω(b).

But converse is not usually true: Intuitively: correlations can have entirely
“classical” origin, i.e. no relation with entanglement! Better measure:

Bell correlation:
If EB(ω) > 2 ⇒ ω entangled. Here

EB(ω) := max{ω(a1(b1 + b2) + a2(b1 − b2))} (1)

maximum over all self-adjoint elements ai (system A), bi (system B) such
that

− 1 ≤ ai ≤ 1, −1 ≤ bi ≤ 1 . (2)

Idea: Classical correlations “cancel out” in EB . [Bell 1964, Clauser, Horne, Shimony, Holt 1969,

Tsirelson 1980]



What to do with entangled states?

Now and then:
Then: EPR say (1935) Entanglement = “spooky action-at-a-distance”
Now: Entanglement = resource for doing new things!

Example: Teleportation of a state |β⟩ = cos θ
2 |0⟩+ eiϕ sin θ

2 |1⟩ from A to
B. [Bennett, Brassard, Crepeau, Jozsa, Perez, Wootters 1993].

BA

want

00, 01, 10, 11

can transmit

|1⟩

|0⟩ |β⟩ = cos θ
2 |0⟩+ eiϕ sin θ

2 |1⟩θ

ϕ

Figure: Teleportation of one q-bit.



Quantum teleportation

Lesson:
To teleport one “q-bit” |β⟩ need one Bell-pair entangled across A and B!
⇒ For lots of q-bits need lots of entanglement.



Quantum teleportation

How it works: Choose “Bell-basis” of HA ⊗HB ,

|Ψ00⟩ ∝ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩, |Ψ10⟩ ∝ |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩
|Ψ11⟩ ∝ |0⟩ ⊗ |0⟩ − |1⟩ ⊗ |1⟩, |Ψ01⟩ ∝ |0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩

1. The state |β⟩C ⊗ |Ω⟩AB for the combined system ABC is prepared.

2. Local operation (measurement) in AC : Some given observable of
AC with four Bell-eigenstates is measured (by A). Afterwards, system is
in one of the four states Ui|β⟩B ⊗ |Ψi⟩AC with i ∈ {00, 01, 10, 11}, and
Ui = unitaries from system B.

3. Local operation (unitary) + classical communication: A
communicates (classically) to B which of the four possibilities
i ∈ {00, 01, 10, 11} occurred (= two classical bits of info), and,
forgetting at this stage AC , B applies corresponding unitary U∗

i to
extract |β⟩B !



When is a state more entangled than another?

More/less entanglement:

We quantify entanglement by listing the set of operations ω 7→ F∗ω on
states which (by definition!) do not increase it. → partial ordering of states.

What are these “operations”? Single system (channel):
▶ Time evolution/gate: unitary transformation: F(a) = UaU∗

▶ Ancillae: n copies of system: F(a) = 1Cn ⊗ a

▶ v. Neumann measurement: F(a) = PaP , where P : H → H′

projection
▶ Arbitrary combinations = completely positive maps [Stinespring 1955]

Bipartite system:

Separable operations (“= channels + classical communications”):

Normalized sum of product channels,
∑

FA ⊗FB acting on operator
algebra AA ⊗ AB



Example: Teleportation

Stated more abstractly in terms of channels, Teleportation is a combination
of the following:

▶ Ancillae: a 7→ a⊗ 1B ⊗ 1C
▶ v. Neumann measurement: a⊗ b⊗ c = Pi(a⊗ c)Pi ⊗ b

▶ Unitary gate: a⊗ c⊗ b 7→ a⊗ c⊗ UibU
∗
i

▶ v. Neumann measurement: a⊗ c⊗ b 7→ ⟨Ω|a⊗ c|Ω⟩ b where |Ω⟩ =
Bell state.

Teleportation

If Fi : A → B is the channel defined by composing these separable
operations, i ∈ {00, 01, 10, 11}, then the sum

∑
Fi implements

teleportation (in “Heisenberg picture”).



Entanglement measures

Definition of entanglement measure is consistent with basic facts [Plenio, Vedral 1998]:
▶ No separable state can be mapped to entangled state by separable

operation
▶ Every entangled state can be obtained from maximally entangled state

(Bell state) by separable operation

An entanglement measure E on bipartite system should satisfy:

Minimum requirements for any entanglement measure:

▶ No increase “on average” under separable operations:∑
i

piE( 1
pi
F∗
i ω) ≤ E(ω)

for all states ω (NB: pi = F∗
i ω(1) = probability that i-th separable

operation is performed)
▶ E non-negative, E(ω) = 0 ⇔ ω separable
▶ (Perhaps) various other requirements



Examples of entanglement measures

Example: Relative entanglement entropy [Lindblad 1972, Uhlmann 1977, Plenio, Vedral 1998,...]:

ER(ρ) = inf
σ separable

H(ρ, σ) .

Here, H(ρ, σ) = Tr(ρ ln ρ− ρ lnσ) = Umegaki’s relative entropy [Araki 1970s]

Example: Distillable entanglement [Rains 2000]:

ED(ρ) = ln
(
max. number of Bell-pairs extractable

via separable operations from N copies of ρ
)/

copy

Example: Reduced v. Neumann entropy/mutual information [Schrödinger 1936?]:

EvN (ρ) = −Tr(ρA ln ρA). (3)

Reduced state ρA = TrHB
ρ (restriction to A, or similarly B) or

EI(ρ) = HvN(ρA) +HvN(ρB)−HvN(ρAB) (4)

are not a reasonable entanglement measure except for pure states!



Examples of entanglement measures

Example: Bell correlations [Bell 196?, Tsirelson 1980,...]: (before)

Example: Logarithmic dominance [SH, Sanders 2017, ...]:

EN (ρ) = ln
(
min{∥σ∥1 | σ ≥ ρ}

)

Example: Modular nuclearity [SH & Sanders 2017]:

EM (ρ) = ln νA,B (5)

where ν is the nuclearity index (“trace”) of the map a 7→ ∆1/4a|Ω⟩ where
a ∈ AA, |Ω⟩ is the GNS-vector representing ρ and ∆ is the modular
operator for the commutant of AB

Many other examples!



Non-uniqueness entanglement measures

In fact, for pure states one has basic fact [Donald, Horodecki 2002]:

Uniqueness

For pure states, basically all entanglement measures agree with v. Neumann
entropy of reduced state.

For mixed states, uniqueness is lost. In QFT, we are always in this situation!



Relationships

Measure Properties Relationships E(ω+
n )

EB OK
√
2

ED OK ED ≤ ER, EN , EM , EI lnn

ER OK ED ≤ ER ≤ EN , EM , EI lnn

EN OK ED, ER ≤ EN ≤ EM lnn

EM mostly OK ED, ER, EN ≤ EM
3
2 lnn

EI not OK for mixed ED, ER ≤ EI 2 lnn



Entanglement measures in QFT

In QFT, systems are tied to spacetime location, e.g. system A

A

time slice = Cauchy surface C

OA

C

Figure: Causal diamond OA associated with A.

Set of observables measurable within OA is an algebra AA = “quantum fields
localized at points in OA”. If A and B are regions on time slice (Einstein
causality) [Haag, Kastler 1964]

[AA,AB] = {0} .

The algebra of all observables in A and B is called AA ∨ AB = v. Neumann
algebra generated by AA and AB .



Entanglement measures in QFT

Unfortunately[Buchholz, Wichmann 1986, Buchholz, D‘Antoni, Longo 1987, Doplicher, Longo 1984, ... :

[AA,AB] = {0} does not always imply AA ∨ AB
∼= AA ⊗ AB .

This will happen due to boundary effects if A and B touch each other
(algebras are of type III1 in Connes classification):

Basic conclusion

a) If A and B touch, then there are no (normal) product states, so no
separable states, and no basis for discussing entanglement!

b) If A and B do not touch, then there are no pure states (without
firewalls)!

Therefore, if we want to discuss entanglement, we must leave a safety
corridor between A and B, and we must accept b).

=⇒ no unique entanglement measure!
In the rest of talk, I explain results obtained for relative entanglement
entropy ER for various concrete states/QFTs [Hollands, Sanders 2017, 104pp]



Entanglement in QFT

Natural application of entanglement ideas: Spacetimes with “bifurcate Killing
horizons”. Quantum state is strongly entangled (in a particular way!)
between a “system A” and a “system B” across bifurcation surface:

system Bsystem A

bifurcation surface



Bifurcate Killing horizons

Such geometries are a generalization of familiar BH spacetimes such as the
extended Schwarzschild(-deSitter) spacetime, containing as essential
geometric feature one (or several) pairs of intersecting horizons:

infinity I −

infinity I +

infinity I −

infinity I +

ev
en
tH

A

eventH
B

eventH
B

ev
en
tH

A

BH

BH

co
sm
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H

A
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H

A

cosmicH
B

cosmicH
B

bifurcation surfaces



Kay and Wald [Kay & Wald 1991] have shown

Hawking-Unruh effect

Any quantum state ω which is invariant under “boost” symmetry and
“regular” across horizon necessarily has to be a thermal state at precisely the
Hawking-temperature,

THawking =
κ

2π
(6)

The surface gravity, κ characterizes the geometry of the bifurcation surface
(“horizon”). Related to [Bisognano, Wichmann 1972, Hawking 1975, Unruh 1976, Sewell 1982]

Consequences:
▶ A thermal state at a different temperature necessarily must have a

singular behavior of the stress tensor ω(Tab) → ∞ on the horizons HA

and HB , i.e. an observer made out of the quantum field (or coupled to
it) will burn when he/she crosses the horizon (“firewall”).

▶ ω must be (infintely) entangled across bifurcation surface!



Overview

Results obtained in [Hollands, Sanders 2017]:

1. 1 + 1-dimensional integrable models

2. d+ 1-dimensional CFTs

3. Area law

4. Free quantum fields

5. Charged states

6. General bounds for vacuum and thermal states



1) Integrable models

These models (i.e. their algebras AA) are constructed using an “inverse
scattering” method from their 2-body S-matrix, e.g.

S2(θ) =

2N+1∏
k=1

sinh θ − i sin bk
sinh θ + i sin bk

,

by [Schroer, Wiesbrock 2000, Buchholz,Lechner 2004, Lechner 2008, Allazawi,Lechner 2016, Cadamuro,Tanimoto 2016].
bi = parameters specifying model, e.g. sinh-Gordon model (N = 0).

t

xr
2− r

2
AB

OAOB

Figure: The regions A,B.



Results
For vacuum state ρ0 = |0⟩⟨0| and mass m > 0:

ER(ρ0) ≲ C∞e−mr(1−k) .

for mr ≫ 1. The constant depends on the scattering matrix S2, and k > 0.

The proof partly relies on estimates of [Lechner 2008, Allazawi,Lechner 2016]

Conjecturally (i.e. modulo one unproven estimate)

ER(ρ0) ≲ C0 | ln(mr)|α ,

for mr ≪ 1, with constants C0, α depending on S2.



2) CFTs in 3 + 1 dimensions

B

A

xA−

xA+

xB+

xB−

Figure: Nested causal diamonds.

Define conformally invariant cross-ratios u, v by

u =
(xB+ − xB−)

2(xA+ − xA−)
2

(xA− − xB−)2(xA+ − xB+)2
> 0

(v similarly) and set

θ = cosh−1

(
1√
v
− 1√

u

)
, τ = cosh−1

(
1√
v
+

1√
u

)
.



Results
For vacuum state ρ0 = |0⟩⟨0| in any 3 + 1 dimensional CFT with local
operators {O} of dimensions dO and spins sO, s

′
O :

ER(ρ0) ≤ ln
∑
O

e−τdO
sinh 1

2(sO + 1)θ sinh 1
2(s

′
O + 1)θ

sinh2(12θ)
.

A

B

r

R

Figure: The regions A and B.

For concentric diamonds with radii
R ≫ r this gives

ER(ρ0) ≲ NO

( r

R

)dO
,

where O = operator with the
smallest dimension dO and NO = its
multiplicity.

Tools: Hislop-Longo theorem [Brunetti, Guido, Longo 1994], Tomita-Takesaki theory



3) Area law in asymptotically free QFTs

A and B regions separated by a
thin corridor of diameter ε > 0
in d+ 1 dimensional Minkowski
spacetime, vacuum ρ0 = |0⟩⟨0|.

ε

BiB

AiA

Figure: The the systems A,B

Result (“area law”)

Asymptotically, as ε → 0

ER(ρ0) ≳
{
D2 · |∂A|/εd−1 d > 1,

D2 · ln min(|A|,|B|)
ε d = 1,

where D2 = distillable entropy ED of an elementary “Cbit” pair

Tools: Strong super additivity of ED , bounds [Donald, Horodecki 2002], also [Verch, Werner 2005, Wolf, Werner 2001,HHorodecki 1999]



4) Free massive QFTs

A and B regions in a static time
slice in ultra-static spacetime,
ds2 = −dt2 + h(space); lowest
energy state: ρ0 = |0⟩⟨0|.
Geodesic distance: r

A

B

r

Figure: The the systems A,B

Results (decay + area law)

Dirac field: As r → 0

ER(ρ0) ≲ C0| ln(mr)|
∑

j≥d−1

r−j

∫
∂A

aj

where aj curvature invariants of ∂A. Lowest order =⇒ area law.
Klein-Gordon field: As r → ∞ decay

ER(ρ0) ≲ C∞e−mr/2

(Dirac: [Islam, to appear])



We expect our methods to yield similar results to hold generally on
spacetimes with bifurcate Killing horizon, as studied by Kay and Wald in 1991
paper:

ho
riz
on

H
+

horizon
H

−

H
+

H
−

system OBsystem OA

inf
ini
ty

I
−

infinity I −

bifurcation surface

r

Figure: Spacetime with bifurcate Killing horizon.



5) Charged states

A and B regions, ω any normal
state in a QFT in d+ 1 dim.
χ∗ω state obtained by adding
“charges” χ in A or B.

A

B

charges χi

Figure: Adding charges to state in A

Result

0 ≤ ER(ω)− ER(χ
∗ω) ≤ ln

∏
i

dim(χi)
2ni ,

ni: # irreducible charges χi type i, and

dim(χi) = quantum dimension =
√

Jones index

Tools: Index-statistics theorem [Longo 1990], Jones subfactor theory, Doplicher-Haag-Roberts theory



Examples

Example: d = 1, Minimal model type (p, p+ 1), χ irreducible charge of
type (n,m)

0 ≤ ER(ω)− ER(χ
∗ω) ≤ ln

sin
(
π(p+1)m

p

)
sin

(
πpn
p+1

)
sin

(
π(p+1)

p

)
sin

(
πp
p+1

) .

Example: d > 1, general QFT, irreducible charge χ with Young tableaux

statistics
8 6 5 4 2 1
5 3 2 1
1

.

0 ≤ ER(ω)− ER(χ
∗ω) ≤ 2 ln 5, 945, 940



6) Decay in general QFTs

A and B regions in a time slice
of Minkowski. Distance: r. QFT
satisfies nuclearity condition a la
Buchholz-Wichmann

A

B

r

Figure: The the systems A,B

Results (Decay)

Vacuum state in massive theory:

ER(ρ0) ≲ C0e
−(mr)k ,

for any given k < 1 (our C0 diverges when k → 1)
Thermal state:

ER(ρβ) ≲ Cβr
−α+1 ,

for α > 1 a constant in nuclearity condition. Similar for massless theory.



In this talk, I have
▶ Explained what entanglement is, and how it can be used.
▶ Explained what an entanglement measure is, and given concrete

examples
▶ Explained how entanglement arises in Quantum Field Theory, and why

there always has to be a finite safety corridor between the systems.
▶ Evaluated (in the sense of upper and lower bounds) a particularly

natural entanglement measure in several geometrical setups, quantum
field theories and states of interest.

▶ Shown how the “area law” emerges.

I think that our entanglement measure deserves to be studied further,
especially its relation with the considerable literature on v. Neumann entropy
in the theoretical physics literature! Especially:

▶ 2d CFTs Calbrese, Cardy, Nozaki, Numasawa,Takayanagi,...

▶ 2d integrable models Cardy, Doyon,...

▶ Modular theory, c-theorems: Casini, Huerta,...

▶ Holographic methods Hubeny, Myers, Rangamani, Ryu, Takayanagi,...


