GRAVITATIONAL WAVES and BINARY BLACK HOLES

Thibault Damour

Institut des Hautes Etudes Scientifiques

Advances in Mathematics and Theoretical Physics

Accademia Nazionale dei Lincei Roma, Italy, 19-22 September 2017

$$m_1 = 36^{+5}_{-4} M_{\odot}$$
$$m_2 = 29^{+4}_{-4} M_{\odot}$$
$$\chi_{\text{eff}} = -0.06^{+0.17}_{-0.18}$$
$$D_{\text{L}} = 410^{+160}_{-180} \text{Mpc}$$

LIGO-Virgo data analysis

Various levels of search and analysis: online/offline ; unmodelled searches/matched-filter searches online: triggers offline: searches + significance assessment of candidate signals + parameter estimation

Online trigger searches: CoherentWaveBurst Time-frequency (Wilson, Meyer, Daubechies-Jaffard-Journe, Klimenko et al.) Omicron-LALInference sine-Gaussians Gabor-type wavelet analysis (Gabor,...,Lynch et al.) Matched-filter: PyCBC (f-domain), gstLAL (t-domain)

Offline data analysis:

Generic transient searches Binary coalescence searches

Here: focus on matched-filter definition

(crucial for high SNR, significance assessment, and parameter estimation)

GW150914, [LVT151012,]GW151226 and GW170104: incredibly small signals lost in the broad-band noise

Pioneering the GWs from coalescing compact binaries

Freeman Dyson 1963

Einstein 1918 + Landau-Lifshitz 1941

Freeman Dyson's challenge: describe the intense flash of GWs emitted by the last orbits and the merger of a binary BH, when v~c and r~GM/c^2

Long History of the GR Problem of Motion

Einstein 1912 : geodesic principle

Einstein 1913-1916 post-Minkowskian

Einstein, Droste : post-Newtonian

$$-\int m\sqrt{-g_{\mu\nu}} \, dx^{\mu} \, dx^{\nu}$$
$$g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x) , \ h_{\mu\nu} \ll 1$$
$$h_{00} \sim h_{ij} \sim \frac{v^2}{c^2} , \ h_{0i} \sim \frac{v^3}{c^3} , \ \partial_0 h \sim \frac{v}{c} \partial_i h$$

Weakly self-gravitating bodies:

$$\nabla_{\nu} T^{\mu\nu} = 0 \quad ; \quad T^{\mu\nu} = \rho' u^{\mu} u^{\nu} + p g^{\mu\nu} \Rightarrow \nabla_{u} u^{\mu} = O(\nabla p)$$

Einstein-Grossmann '13,

1916 post-Newtonian: Droste, Lorentz, Einstein (visiting Leiden), De Sitter ; Lorentz-Droste '17, Chazy '28, Levi-Civita '37,

Eddington' 21, ..., Lichnerowicz '39, Fock '39, Papapetrou '51, ... Dixon '64, Bailey-Israël '75, Ehlers-Rudolph '77....

Strongly Self-gravitating Bodies (NS, BH)

 Multi-chart approach and matched asymptotic expansions: necessary for strongly self-gravitating bodies (NS, BH) Manasse (Wheeler) '63, Demianski-Grishchuk '74, D'Eath '75, Kates '80, Damour '82

Useful even for weakly self-gravitating bodies, i.e."relativistic celestial mechanics", Brumberg-Kopeikin '89, Damour-Soffel-Xu '91-94

Skeletonization : $T_{\mu\nu} \rightarrow$ point-masses (Mathisson '31) delta-functions in GR : Infeld '54, Infeld-Plebanski '60 justified by Matched Asymptotic Expansions (« Effacing Principle » Damour '83)

QFT's analytic (Riesz '49) or dimensional regularization (Bollini-Giambiagi '72, t'Hooft-Veltman '72) imported in GR (Damour '80, Damour-Jaranowski-Schäfer '01, ...)

Foffa-Sturani '11 '13, Levi-Steinhoff '14, '15, Foffa-Mastrolia-Sturani-Sturm'16,

Damour-Jaranowski '17

Reduced (Fokker 1929) Action for Conservative Dynamics

Needs gauge-fixed* action and time-symmetric Green function G. *E.g. Arnowitt-Deser-Misner Hamiltonian formalism or harmonic coordinates. Perturbatively solving (in dimension D=4 - eps) Einstein's equations to get the equations of motion and the action for the conservative dynamics

Beyond 1-loop order needs to use PN-expanded Green function for explicit computations. Introduces IR divergences on top of the UV divergences linked to the point-particle description. UV is (essentially) finite in dim.reg. and IR is linked to 4PN non-locality (Blanchet-Damour '88).

$$\Box^{-1} = (\Delta - \frac{1}{c^2}\partial_t^2)^{-1} = \Delta^{-1} + \frac{1}{c^2}\partial_t^2\Delta^{-2} + \dots$$

Recently (Damour-Jaranowski '17) found errors in the EFT computation (by Foffa-Mastrolia-Sturani-Sturm'16) of some of the static 4-loop contributions, and found a way of analytically computing a 2-point 4-loop master integral previously only numerically computed (Lee-Mingulov '15)

Post-Newtonian Equations of Motion [2-body, wo spins]

- 1PN (including v²/c²) [Lorentz-Droste '17], Einstein-Infeld-Hoffmann '38
- 2PN (inc. v⁴/c⁴) Ohta-Okamura-Kimura-Hiida '74, Damour-Deruelle '81 Damour '82, Schäfer '85, Kopeikin '85
- 2.5 PN (inc. v⁵/c⁵) Damour-Deruelle '81, Damour '82, Schäfer '85, Kopeikin '85
- 3 PN (inc. v⁶/c⁶) Jaranowski-Schäfer '98, Blanchet-Faye '00, Damour-Jaranowski-Schäfer '01, Itoh-Futamase '03, Blanchet-Damour-Esposito-Farèse' 04, Foffa-Sturani '11
- 3.5 PN (inc. v⁷/c⁷) lyer-Will '93, Jaranowski-Schäfer '97, Pati-Will '02, Königsdörffer-Faye-Schäfer '03, Nissanke-Blanchet '05, Itoh '09
- 4PN (inc. v⁸/c⁸) Jaranowski-Schäfer '13, Foffa-Sturani '13,'16 Bini-Damour '13, Damour-Jaranowski-Schäfer '14, Bernard et al'16

New feature : non-locality in time

2-body Taylor-expanded N + 1PN + 2PN Hamiltonian

$$H_{\rm N}(\mathbf{x}_a, \mathbf{p}_a) = \frac{\mathbf{p}_1^2}{2m_1} - \frac{1}{2} \frac{Gm_1m_2}{r_{12}} + (1 \leftrightarrow 2)$$

$$\begin{split} c^{2}H_{1\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{1}{8}\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{3}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(-12\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + 2\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &+ \frac{1}{4}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G(m_{1}+m_{2})}{r_{12}} + (1 \leftrightarrow 2), \end{split}$$

$$\begin{split} c^{4}H_{2\mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{1}{16} \frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{5}} + \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left(5\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} - \frac{11}{2} \frac{\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + 5\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &- 6\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2}\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right) \\ &+ \frac{1}{4}\frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(m_{2}\left(10\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19\frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}}\right) - \frac{1}{2}(m_{1}+m_{2})\frac{27(\mathbf{p}_{1}\cdot\mathbf{p}_{2}) + 6(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ &- \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G^{2}(m_{1}^{2} + 5m_{1}m_{2} + m_{2}^{2})}{r_{12}^{2}} + (1 \Leftrightarrow 2), \end{split}$$

11

2-body Taylor-expanded 3PN Hamiltonian [JS 98, DJS 01]

$$\begin{split} \mathbf{c}^{6} H_{3\mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{5}{128} \frac{(\mathbf{p}_{1}^{2})^{4}}{m_{1}^{2}} + \frac{1}{32} \frac{Gm_{1}m_{2}}{r_{12}} \left(-14 \frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{6}} + 4 \frac{((\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2} + 4\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 6 \frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{4}m_{2}^{2}} \\ &\quad -10 \frac{(\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2} + \mathbf{p}_{2}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 24 \frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{4}m_{2}^{2}} \\ &\quad +2 \frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{3}} + \frac{(7\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 10(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{3}} \\ &\quad + \frac{(\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 2(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{3}} + 15 \frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{3}} \\ &\quad -18 \frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{3}} + 5 \frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}} + \frac{17}{16} \frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{2}}{(\mathbf{h}_{1}(\mathbf{n}_{1}-\mathbf{27}m_{2})\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}}} \\ &\quad -\frac{115}{16}m_{1} \frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}} + \frac{1}{48}m_{2} \frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2} + 371\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{1}^{2}} + \frac{17}{16} \frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}}{m_{1}^{3}m_{2}}} + \frac{5}{12} \frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}}{m_{1}^{3}m_{2}} \\ &\quad -\frac{1}{8}m_{1} \frac{(\mathbf{155}\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2}) + 11(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{1}\cdot\mathbf{p}_{1})(\mathbf{n}_{1}\cdot\mathbf{p}_{1})}{m_{1}^{3}m_{2}}} + \frac{10}{3}m_{2} \frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &\quad +\frac{1}{18}(220m_{1}+193m_{2})\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{1}^{2}}} \\ &\quad -\frac{1}{48}(220m_{1}+193m_{2})\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} + \frac{10}{13}m_{2} \frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{1})^{2}}{m_{1}m_{2}}} \frac{\mathbf{p}_{1}^{2}}{m_{1}m_{2}}} \\ &\quad +\frac{1}{16}\left(21(m_{1}^{2}+m_{$$

•

2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014]

(A3)

$$\begin{split} c^{8}H_{4\mathrm{PN}}^{\mathrm{local}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{7(\mathbf{p}_{1}^{2})^{5}}{256m_{1}^{6}} + \frac{Gm_{1}m_{2}}{r_{12}}H_{48}(\mathbf{x}_{a},\mathbf{p}_{a}) + \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}m_{1}H_{46}(\mathbf{x}_{a},\mathbf{p}_{a}) \\ &+ \frac{G^{3}m_{1}m_{2}}{r_{12}^{3}}(m_{1}^{2}H_{441}(\mathbf{x}_{a},\mathbf{p}_{a}) + m_{1}m_{2}H_{442}(\mathbf{x}_{a},\mathbf{p}_{a})) \\ &+ \frac{G^{4}m_{1}m_{2}}{r_{12}^{4}}(m_{1}^{3}H_{421}(\mathbf{x}_{a},\mathbf{p}_{a}) + m_{1}^{2}m_{2}H_{422}(\mathbf{x}_{a},\mathbf{p}_{a})) \\ &+ \frac{G^{5}m_{1}m_{2}}{r_{12}^{4}}H_{40}(\mathbf{x}_{a},\mathbf{p}_{a}) + (1 \Leftrightarrow 2). \end{split}$$

H (n n)-	$45(\mathbf{p}_1^2)^4 = 9(\mathbf{n}_{12})^4$	$(\mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2$	$(r^{2})^{2}$, $15(n_{12}\cdot p_{2})^{2}(r^{2})^{2}$	$(\mathbf{p}_1^2)^3 = 9(\mathbf{n}_{12} \cdot \mathbf{p}_1)$	$(n_{12} \cdot p_2)(p_1^2)^2(p_1)$	· p ₂)
$m_{48}(\mathbf{x}_a, \mathbf{p}_a)$	128m ⁸	$64m_1^6m_2^2$	64m ⁶ ₁ m ² ₂	-	16m ⁶ ₁ m ² ₂	
	$3(\mathbf{p}_1^2)^2(\mathbf{p}_1 \cdot \mathbf{p}_2)^2$	$15(n_{12}\cdot p_1)^2(p_1^2)$	$)^{2}p_{1}^{2} 21(p_{1}^{2})^{3}p_{2}^{2}$	$35(n_{12}\cdot p_1)^5(n_1$	$(2 \cdot \mathbf{p}_2)^3$	
	$32m_1^6m_2^2$	$64m_1^6m_2^2$	$64m_1^6m_2^2$	256m ⁵ ₁ m ³ ₂		
	$25(\mathbf{n}_{12}\cdot\mathbf{p}_1)^3(\mathbf{n}_{12}\cdot\mathbf{p}_1)^3$	$(\mathbf{p}_2)^3 \mathbf{p}_1^2 + 33(\mathbf{n}_{12})^3 \mathbf{p}_1^2$	$(\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)^3(\mathbf{p}_2)$	$(2)^2 85(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4$	$(n_{12} \cdot p_2)^2 (p_1 \cdot p_2)$)
	128m ⁵ ₁ m	100	$256m_1^5m_2^3$	25	$56m_1^5m_2^3$	
	$45(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{n}_{12})$	$(\mathbf{p}_2)^2 \mathbf{p}_1^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)$	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2 (\mathbf{p}_$	$p_1 \cdot p_2$, 25($n_{12} \cdot p_2$)	$(\mathbf{p}_1)^3 (\mathbf{n}_{12} \cdot \mathbf{p}_2) (\mathbf{p}_1 \cdot \mathbf{p}_2)$	$(p_2)^2$
	1280	1 ⁵ ₁ m ³ ₂	256m ³ ₁ m ³ ₂		$64m_1^3m_2^3$	
	$7(n_{12}\cdot p_1)(n_{12}\cdot p_1)$	$(\mathbf{p}_2)\mathbf{p}_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 = 3$	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)$	3 , $3\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{3}$	$55(n_{12} \cdot p_1)^5(n_1)$	2· p ₂) p ₂ ²
	64m ³	m2	$64m_1^5m_2^3$	$64m_1^5m_2^3$	256m ³ ₁ m	3
	$7(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3$	$p_2)p_1^2p_2^2 = 25(n_{12}$	$(\mathbf{p}_1)(\mathbf{n}_{12},\mathbf{p}_2)(\mathbf{p}_1^2)$	${}^{2}p_{2}^{2} = 23(n_{12} \cdot p_{1})$	$^{4}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})\mathbf{p}_{2}^{2}$	
	128m ⁵ ₁ m	3.2	$256m_1^5m_2^3$	256#	m ² ₁ m ² ₂	
	$7(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2 (\mathbf{p}_1)^2 \mathbf{p}_1^2 $	$(\mathbf{p}_2)\mathbf{p}_2^2 - 7(\mathbf{p}_1^2)^2$	$p_1 \cdot p_2) p_2^2 = 5(n_{12}$	$(\mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^4 \mathbf{p}_1^2$	7(n12·p2)4(p)2
	$128m_1^5m_2$	256	$m_1^5 m_2^3$	$64m_1^4m_2^4$	$64m_1^4m_2^4$	
	$(n_{12} \cdot p_1)(n_{12} \cdot p_2)$	$)^{3}\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})$, (n	$(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)$	$(2 5(n_{12} \cdot p_1)^4)$	12·p2)2p2 21(n	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 \mathbf{p}_2^2$
	$4m_1^4m_2^4m_2^4m_2^4m_2^4m_2^4m_2^4m_2^4m_2$	12	16m ⁴ ₁ m ⁴ ₂	64m ⁴ ₁ x	M ⁴ ₂	$64m_1^4m_2^4$
	$3(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2$	$\mathbf{p}_{2}^{2} (\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{3} (\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{3}$	$(\mathbf{p}_1 \cdot \mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2)\mathbf{p}_2^2$	$(n_{12} \cdot p_1)(n_{12} \cdot p_2)$	$_{2})\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{2}^{2}$	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2 \mathbf{p}_2^2$
	$32m_1^4m_2^4$	4	$m_1^4 m_2^4$	16m	⁴ ₁ m ⁴ ₂	$16m_1^4m_2^4$
	$p_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 \mathbf{p}_2^2$	$7(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4 (\mathbf{p}_2^2)^2$	$3(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2 (\mathbf{p}_2)^2$	$\frac{3}{2}^{2} - \frac{7(\mathbf{p}_{1}^{2})^{2}(\mathbf{p}_{2}^{2})^{2}}{7(\mathbf{p}_{1}^{2})^{2}(\mathbf{p}_{2}^{2})^{2}}$		(A4a)
	32m ⁴ m ⁴	$64m_{1}^{4}m_{2}^{4}$	32m ⁴ m ⁶	$128m^4m^4$		(it it only

$H_{46}(\mathbf{x}_a, \mathbf{p}_a) =$	$\frac{369(\mathbf{n}_{12} \cdot \mathbf{p}_1)^6}{160m_1^6} = \frac{889}{160m_1^6}$	$\frac{\partial (\mathbf{n}_{12} \cdot \mathbf{p}_1)^4 \mathbf{p}_1^2}{192m_1^6} + \frac{46}{2}$	$\frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{p}_1^2)^2}{16 m_1^6}$	$\frac{-63(\mathbf{p}_1^2)^3}{64m_1^6}$ = 549	$\frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^5 (\mathbf{n}_{12}}{128 m_1^3 m_2}$	· p ₂)		
	$67(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3$	$p_2)p_1^2 = 167(n_{12} \cdot n_{12})$	$(\mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)(\mathbf{p}_1^2)$	² 1547(n ₁₂ ·p	$({\bf p}_1)^4({\bf p}_1\cdot{\bf p}_2) = 8$	$851(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2$	$(p_1 \cdot p_2)$	
	16m ⁵ ₁ m ₂	1	$28m_1^3m_2$	256.0	r ⁵ ₁ m ₂	128m ⁵ ₁ m ₂		
	$1099(\mathbf{p}_1^2)^2(\mathbf{p}_1 \cdot \mathbf{p}_2)$	$3263(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4$	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2$, 106	$7(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{n}_{12})$	$(\mathbf{p}_2)^2 \mathbf{p}_1^2 = 456$	$7(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2$	2	
	256m ⁵ ₁ m ₂	1280m	m2	$480m_1^4m_2^2$		$3840m_1^4m_2^2$		
	$3571(\mathbf{n}_{12}\cdot\mathbf{p}_1)^3(\mathbf{n}_{12}\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_2) \ , \ 3073(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)\mathbf{p}_1^2(\mathbf{p}_1\cdot\mathbf{p}_2) \ , \ 4349(\mathbf{n}_{12}\cdot\mathbf{p}_1)^2(\mathbf{p}_1\cdot\mathbf{p}_2)^2 \mathbf{p}_1^2(\mathbf{p}_1\cdot\mathbf{p}_2)^2 \mathbf{p}_1^2(\mathbf{p}_1\cdot\mathbf{p}_2$							
~	320m ⁴	m ² ₂	480m	m2	1280	hm ⁴ ₁ m ² ₂		
	$3461p_1^2(p_1 \cdot p_2)^2$	$1673(n_{12} \cdot p_1)^4 p_1$	1999(n ₁₂ ·p ₁)	² p ² p ² p ² , 2081(p	$p_1^2)^2 p_2^2 = 13(n_1$	$(\mathbf{p}_1 \cdot \mathbf{p}_1)^3 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^3$	3	
	3840m ⁴ ₁ m ² ₂	1920m ⁴ ₁ m ² ₂	3840m ⁴ ₁ n	13 3840	n ⁴ ₁ m ² ₂	$8m_1^3m_2^3$		
	$191(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_1)$	$p_2)^3 p_1^2 = 19(n_{12} \cdot$	$(\mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1)^2 (\mathbf{p}_2)^2 (\mathbf{p}_2)$	· · p ₂) 5(n ₁₂ · j	$(\mathbf{p}_2)^2 \mathbf{p}_1^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)$)		
	192m ³ ₁ m ³ ₂		$384m_1^3m_2^3$	3	$84m_1^3m_2^3$	-		
	$11(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_1)$	$(\mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2)^2$, 77($(p_1 \cdot p_2)^3$, 233(m	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3 (\mathbf{n}_{12} \cdot \mathbf{p}_2)$)p ² ₂ 47(n ₁₂ .	$p_1)(n_{12} \cdot p_2)p_1^2p_1$	2	
	192m ³ ₁ n	r2 96	im ³ m ³	96m ³ ₁ m ² ₂		32m ³ ₁ m ³ ₂		
	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)$	p2 185p2(p1 · p2	$p_2^2 = 7(n_{12} \cdot p_1)$	$(n_{12} \cdot p_2)^4$, 7($n_{12} \cdot p_2)^4 p_1^2$			
	384m ³ ₁ m ³ ₂	384m ³ ₁ m	4.01	m ⁴ ₂	$4m_1^2m_2^4$			
	$7(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)$	$)^{3}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})$, 21(n	$(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2$	$7(n_{12} \cdot p_1)^2(n_{12} \cdot p_1)^2$	$(\mathbf{p}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_2^2$, 4	$(9(n_{12} \cdot p_2)^2 p_1^2 p_2^2)$		
2	$2m_1^2m_2^4$	+	$16m_1^2m_2^4$	6m ² /	w ⁴ ₂ + -	$48m_1^2m_2^4$		
2	$\frac{133(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)}{24m_1^2}$	$\frac{\mathbf{p}_2}{n_2^4} (\mathbf{p}_1 \cdot \mathbf{p}_2) \mathbf{p}_2^2 - \frac{7}{n_2^4}$	$\frac{7(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 \mathbf{p}_2^2}{96m_1^2 m_2^4} + \frac{1}{2}$	$\frac{97(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{p}_2^2)}{96m_1^2m_2^4}$	$\frac{(1)^2}{48m_1^2m_2^2}$	$\frac{(1)^2}{4} + \frac{13(\mathbf{p}_2^2)^3}{8m_2^6}$.	(A4b)	

$H_{441}(\mathbf{x}_a, \mathbf{p}_a) =$	$\frac{5027(\mathbf{n}_{12}\cdot\mathbf{p}_1)^4}{384m_1^4}-$	22993(n ₁₂ ·) 960m ⁴	$(p_1)^2 p_1^2$	$\frac{6695(\mathbf{p}_1^2)^2}{1152m_1^4}$	3191($\frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12} \cdot \mathbf{p}_2)}{640m_1^3m_2}$	
	$+\frac{28561(n_{12} \cdot p_1)}{28561(n_{12} \cdot p_1)}$	$(n_{12} \cdot p_2)p_1^2$	8777($({\bf n}_{12} \cdot {\bf p}_1)^2 ({\bf p}_1)$	· p ₂) +	$752969p_1^2(p_1 \cdot p_2)$	
	1920m ³ ₁ m ₂		384m ₁ ³ m ₂		1020	28800m ³ m ₂ 103057(n = n)(n = n)(n = n)	
	- 10481(n ₁₂ · p ₁ 960m	m ² /m ² +	48	00m ² m ²	- 1059	$\frac{2400m_1^2m_2^2}{2400m_1^2m_2^2}$	1 · P ₂)
	$+\frac{791(\mathbf{p}_1\cdot\mathbf{p}_2)^2}{400m_1^2m_2^2}$	$\frac{26627(\mathbf{n}_{12} \cdot \mathbf{n}_{12})}{1600m_1^2}$	$\frac{\mathbf{p}_1)^2 \mathbf{p}_2^2}{m_2^2}$	118261p1p 4800m1m2	$\frac{2}{2} + \frac{105}{32}$	$\frac{(\mathbf{p}_2^2)^2}{2m_2^4}$,	(A4c

$$\begin{split} H_{442}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \left(\frac{2749\pi^{2}}{8192} - \frac{211189}{19200}\right) \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} + \left(\frac{63347}{1600} - \frac{1059\pi^{2}}{1024}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2} \mathbf{p}_{1}^{2}}{m_{1}^{4}} + \left(\frac{375\pi^{2}}{8192} - \frac{23533}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{4}}{m_{1}^{4}} \\ &+ \left(\frac{10631\pi^{2}}{8192} - \frac{1918349}{57600}\right) \frac{(\mathbf{p}_{1} \cdot \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{13723\pi^{2}}{16384} - \frac{2492417}{57600}\right) \frac{\mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} \\ &+ \left(\frac{1411429}{19200} - \frac{1059\pi^{2}}{512}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2} \mathbf{p}_{1}^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{248991}{6400} - \frac{6153\pi^{2}}{2048}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} \\ &- \left(\frac{30383}{960} + \frac{36405\pi^{2}}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{1243717}{14400} - \frac{40483\pi^{2}}{16384}\right) \frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{2}m_{2}} \\ &+ \left(\frac{2369}{60} + \frac{35655\pi^{2}}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{3}(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{m_{1}^{3}m_{2}} + \left(\frac{43101\pi^{2}}{16384} - \frac{391711}{6400}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})\mathbf{p}_{1}^{2}}{m_{1}^{3}m_{2}} \\ &+ \left(\frac{56955\pi^{2}}{16384} - \frac{1646983}{19200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{3}m_{2}}, \end{split}$$
(A4d)

$$H_{421}(\mathbf{x}_{a}, \mathbf{p}_{a}) = \frac{64861\mathbf{p}_{1}^{2}}{4800m_{1}^{2}} - \frac{91(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{8m_{1}m_{2}} + \frac{105\mathbf{p}_{2}^{2}}{32m_{2}^{2}} - \frac{9841(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}}{1600m_{1}^{2}} - \frac{7(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{2m_{1}m_{2}}, \quad (A4e)$$

$$\begin{split} H_{422}(\mathbf{x}_{\sigma},\mathbf{p}_{\sigma}) &= \left(\frac{1937033}{57600} - \frac{199177\pi^2}{49152}\right) \frac{\mathbf{p}_1^2}{m_1^2} + \left(\frac{176033\pi^2}{24576} - \frac{2864917}{57600}\right) \frac{(\mathbf{p}_1 \cdot \mathbf{p}_2)}{m_1 m_2} + \left(\frac{282361}{19200} - \frac{21837\pi^2}{8192}\right) \frac{\mathbf{p}_2^2}{m_2^2} \\ &+ \left(\frac{698723}{19200} + \frac{21745\pi^2}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{m_1^2} + \left(\frac{63641\pi^2}{24576} - \frac{2712013}{19200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)}{m_1 m_2} \\ &+ \left(\frac{3200179}{57600} - \frac{28691\pi^2}{24576}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m_2^2}, \end{split}$$
(A44)

$$H_{40}(\mathbf{x}_{a}, \mathbf{p}_{a}) = -\frac{m_{1}^{4}}{16} + \left(\frac{6237\pi^{2}}{1024} - \frac{169799}{2400}\right)m_{1}^{3}m_{2} + \left(\frac{44825\pi^{2}}{6144} - \frac{609427}{7200}\right)m_{1}^{2}m_{2}^{2}.$$
 (A4g)

$$H_{4\text{PN}}^{\text{nonloc}}(t) = -\frac{1}{5} \frac{G^2 M}{c^8} I_{ij}^{(3)}(t) \times \text{Pf}_{2r_{12}/c} \int_{-\infty}^{+\infty} \frac{\mathrm{d}v}{|v|} I_{ij}^{(3)}(t+v),$$
 13

Perturbative Theory of the Generation of Gravitational Radiation

Einstein '16, '18 (+ Landau-Lifshitz 41, and Fock '55) : h_+ , h_x and quadrupole formula Relativistic, multipolar extensions of LO quadrupole radiation :

Sachs-Bergmann '58, Sachs '61, Mathews '62, Peters-Mathews '63, Pirani '64 Campbell-Morgan '71,

Campbell et al '75,

nonlinear effects:

Bonnor-Rotenberg '66, Epstein-Wagoner-Will '75-76 Thorne '80, .., Will et al 00 MPM Formalism:

Blanchet-Damour '86,

Damour-Iyer '91,

Blanchet '95 '98

Combines multipole exp., Post Minkowkian exp., analytic continuation, and PN matching

MULTIPOLAR POST-MINKOWSKIAN FORMALISM

(BLANCHET-DAMOUR-IYER)

Decomposition of space-time in various overlapping regions:

- 1. near-zone: r << lambda : PN theory
- 2. exterior zone: r >> r_source: MPM expansion

3. far wave-zone: Bondi-type expansion

followed by matching between the zones

in exterior zone, iterative solution of Einstein's vacuum field equations by means of a double expansion in non-linearity and in multipoles, with crucial use of analytic continuation (complex B) for dealing with formal UV divergences at r=0

$$g = \eta + Gh_1 + G^2h_2 + G^3h_3 + \dots,$$

$$\Box h_1 = 0,$$

$$\Box h_2 = \partial \partial h_1 h_1,$$

$$\Box h_3 = \partial \partial h_1 h_1 h_1 + \partial \partial h_1 h_2,$$

$$h_1 = \sum_{\ell} \partial_{i_1 i_2 \dots i_{\ell}} \left(\frac{M_{i_1 i_2 \dots i_{\ell}}(t - r/c)}{r} \right) + \partial \partial \dots \partial \left(\frac{\epsilon_{j_1 j_2 k} S_{k j_3 \dots j_{\ell}}(t - r/c)}{r} \right),$$

$$h_2 = FP_B \Box_{\text{ret}}^{-1} \left(\left(\frac{r}{r_0} \right)^B \partial \partial h_1 h_1 \right) + \dots,$$

$$h_3 = FP_B \Box_{\text{ret}}^{-1} \dots$$

Link radiative multipoles <-> source variables

(Blanchet-Damour '89'92, Damour-Iyer'91, Blanchet '95...)

$$\begin{split} U_{ij}(U) &= M_{ij}^{(2)}(U) + \frac{2GM}{c^3} \int_0^{+\infty} d\tau \, M_{ij}^{(4)}(U - \tau) \left[\ln \left(\frac{c\tau}{2r_0} \right) + \frac{11}{12} \right] \qquad \text{tail} \\ &+ \frac{G}{c^5} \left\{ -\frac{2}{7} \int_0^{+\infty} d\tau \, M_{a(i}^{(3)}(U - \tau) M_{j)a}^{(3)}(U - \tau) \qquad \text{memory} \\ &- \frac{2}{7} M_{a(i}^{(3)} M_{j)a}^{(2)} - \frac{5}{7} M_{a(i}^{(4)} M_{j)a}^{(1)} + \frac{1}{7} M_{a(i}^{(5)} M_{j)a} + \frac{1}{3} \varepsilon_{ab(i} M_{j)a}^{(4)} S_b \right\} \qquad \text{instant.} \\ &+ \frac{2G^2 M^2}{c^6} \int_0^{+\infty} d\tau \, M_{ij}^{(5)}(U - \tau) \left[\ln^2 \left(\frac{c\tau}{2r_0} \right) + \frac{57}{70} \ln \left(\frac{c\tau}{2r_0} \right) + \frac{124627}{44100} \right] \qquad \text{tail-of-tail} \\ &+ \mathcal{O} \left(\frac{1}{c^7} \right) . \qquad \Sigma = \frac{\overline{\tau}^{00} + \overline{\tau}^{ii}}{c^2} \\ M_{ij} = I_{ij} - \frac{4G}{c^5} \left[W^{(2)} I_{ij} - W^{(1)} I_{ij}^{(1)} \right] + \mathcal{O} \left(\frac{1}{c^7} \right) \qquad \Sigma_i = \frac{\overline{\tau}^{0i}}{c^2} , \\ I_L(u) = \mathcal{FP} \int d^3 \mathbf{x} \int_{-1}^1 dz \left\{ \delta_l \hat{x}_L \Sigma - \frac{4(2l+1)}{c^2(l+1)(2l+3)} \delta_{l+1} \hat{x}_{iL} \Sigma_{ij}^{(2)} \right\} (\mathbf{x}, u + z |\mathbf{x}|/c), \qquad (85) \\ J_L(u) = \mathcal{FP} \int d^3 \mathbf{x} \int_{-1}^1 dz \, \left\{ \delta_l \hat{x}_{L-1} a\Sigma_b - \frac{2l+1}{c^2(l+2)(2l+3)} \delta_{l+1} \hat{x}_{L-1} a\Sigma_{bc} \Sigma_{ij}^{(1)} \right\} (\mathbf{x}, u + z |\mathbf{x}|/c). \end{split}$$

Perturbative computation of GW flux from binary systems

- lowest order : Einstein 1918 Peters-Mathews 63
- $1 + (v^2/c^2)$: Wagoner-Will 76
- ... + (v^3/c^3) : Blanchet-Damour 92, Wiseman 93
- ... + (v^4/c^4) : Blanchet-Damour-Iyer Will-Wiseman 95
- ... + (v⁵/c⁵) : Blanchet 96
- ... + (v⁶/c⁶) : Blanchet-Damour-Esposito-Farèse-Iyer 2004
- ... + (v^7/c^7) : Blanchet

$$\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$$

$$x = \left(\frac{v}{c}\right)^2 = \left(\frac{G(m_1 + m_2)\Omega}{c^3}\right)^{\frac{2}{3}} = \left(\frac{\pi G(m_1 + m_2)f}{c^3}\right)^{\frac{2}{3}}$$

$$\begin{split} \mathcal{F} &= \frac{32c^5}{5G}\nu^2 x^5 \bigg\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12}\nu \right) x + 4\pi x^{3/2} \\ &\quad + \left(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2 \right) x^2 + \left(-\frac{8191}{672} - \frac{583}{24}\nu \right) \pi x^{5/2} \\ &\quad + \left[\frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\rm E} - \frac{856}{105}\ln(16x) \right. \\ &\quad + \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2 \right) \nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3 \right] x^3 \\ &\quad + \left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2 \right) \pi x^{7/2} + \mathcal{O}\left(\frac{1}{c^8} \right) \bigg\} \,. \end{split}$$

Analytical GW Templates for BBH Coalescences ?

PN corrections to Einstein's quadrupole frequency « chirping » from PN-improved balance equation dE(f)/dt = - F(f)

$$\frac{d\phi}{d\ln f} = \frac{\omega^2}{d\omega/dt} = Q_{\omega}^N \widehat{Q}_{\omega}$$
$$Q_{\omega}^N = \frac{5c^5}{48\nu v^5}; \ \widehat{Q}_{\omega} = 1 + c_2 \left(\frac{v}{c}\right)^2 + c_3 \left(\frac{v}{c}\right)^2$$

$$\frac{v}{c} = \left(\frac{\pi G(m_1 + m_2)f}{c^3}\right)^{\frac{1}{3}}$$
$$\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$$

Cutler et al. '93:

 $\ensuremath{\overset{\scriptstyle <}{_{\scriptstyle \sim}}}$ slow convergence of PN $\ensuremath{\overset{\scriptstyle >}{_{\scriptstyle \sim}}}$

Brady-Creighton-Thorne'98:

inability of current computational
 techniques to evolve a BBH through its last
 ~10 orbits of inspiral » and to compute the
 merger

Damour-Iyer-Sathyaprakash'98: use resummation methods for E and F

Buonanno-Damour '99-00: novel, resummed approach: Effective-One-Body analytical formalism

Effective One Body (EOB) Method

Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001 (SEOB) [developped by: Barausse, Bini, Buonanno, Damour, Jaranowski, Nagar, Pan, Schaefer, Taracchini, ...]

Resummation of perturbative PN results —>>> description of the coalescence + addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 1972) [+ CLAP (Price-Pullin'94)]

Buonanno-Damour 2000

Predictions as early as 2000 :

continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final mass

Real dynamics versus Effective dynamics

TWO-BODY/EOB "CORRESPONDENCE":

THINK QUANTUM-MECHANICALLY (J.A. WHEELER)

$$H_{\rm N}(\mathbf{x}_a, \mathbf{p}_a) = \frac{\mathbf{p}_1^2}{2m_1} - \frac{1}{2} \frac{Gm_1m_2}{r_{12}} + (1 \leftrightarrow 2)$$

$$\begin{split} c^{2}H_{1\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{1}{8}\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{3}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(-12\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + 2\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &+ \frac{1}{4}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G(m_{1}+m_{2})}{r_{12}} + (1 \leftrightarrow 2), \end{split}$$

$$\begin{split} c^{4}H_{2\mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{1}{16}\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{5}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}} \left(5\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} - \frac{11}{2}\frac{\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + 5\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &- 6\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2}\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right) \\ &+ \frac{1}{4}\frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(m_{2}\left(10\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19\frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}}\right) - \frac{1}{2}(m_{1}+m_{2})\frac{27(\mathbf{p}_{1}\cdot\mathbf{p}_{2}) + 6(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &- \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G^{2}(m_{1}^{2} + 5m_{1}m_{2} + m_{2}^{2})}{r_{12}^{2}} + (1 \leftrightarrow 2), \end{split}$$

н

2-body Taylor-expanded 3PN Hamiltonian [JS 98, DJS 01]

$$\begin{split} c^{\delta} H_{3\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{5}{128} \frac{(\mathbf{p}_{1}^{2})^{4}}{m_{1}^{2}} + \frac{1}{32} \frac{Gm_{1}m_{2}}{r_{12}} \left(-14\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{6}} + 4\frac{((\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2} + 4\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 6\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{4}m_{2}^{2}} \\ &\quad -10\frac{(\mathbf{p}_{1}^{2}(\mathbf{n}_{2}\cdot\mathbf{p}_{2})^{2} + \mathbf{p}_{2}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 24\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{4}m_{2}^{2}} \\ &\quad +2\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{3}} + \frac{(7\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 10(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{3}} \\ &\quad +\frac{(\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 2(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{3}} + 15\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{3}} \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{3}} + 5\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{3}} + \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(\frac{1}{16}(m_{1} - 27m_{2})\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{1})}{m_{1}^{3}m_{2}^{3}} + 5\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}} + \frac{17\mathbf{p}_{1}^{2}\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{2}}{r_{1}^{2}} \left(\frac{1}{16}(m_{1} - 27m_{2})\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} \\ &\quad -\frac{1}8\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}} + \frac{1}{48}m_{2}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \frac{17\mathbf{p}_{1}^{2}\mathbf{p}_{1}(\mathbf{n}_{1}\cdot\mathbf{p}_{1}}{m_{1}^{3}} + \frac{5}{12}\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{4}}{m_{1}^{3}} \\ &\quad -\frac{1}8m_{1}\frac{(\mathbf{15}\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2}) + \frac{1}{48}m_{2}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} + \frac{1}{16}\frac{1}{6}\frac{\mathbf{n}_{1}\cdot\mathbf{p}_{1}^{2}}{m_{1}^{3}} \\ &\quad -\frac{1}8m_{1}\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} + \frac{1}{1}\frac{1}{48}m_{2}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{2}} \\ &\quad +\frac{1}8m_{1}\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m$$

• ``

2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014]

(A3)

$$\begin{split} c^{8}H_{4\mathrm{PN}}^{\mathrm{local}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{7(\mathbf{p}_{1}^{2})^{5}}{256m_{1}^{9}} + \frac{Gm_{1}m_{2}}{r_{12}}H_{48}(\mathbf{x}_{a},\mathbf{p}_{a}) + \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}m_{1}H_{46}(\mathbf{x}_{a},\mathbf{p}_{a}) \\ &+ \frac{G^{3}m_{1}m_{2}}{r_{12}^{3}}\left(m_{1}^{2}H_{441}(\mathbf{x}_{a},\mathbf{p}_{a}) + m_{1}m_{2}H_{442}(\mathbf{x}_{a},\mathbf{p}_{a})\right) \\ &+ \frac{G^{4}m_{1}m_{2}}{r_{12}^{4}}\left(m_{1}^{3}H_{421}(\mathbf{x}_{a},\mathbf{p}_{a}) + m_{1}^{2}m_{2}H_{422}(\mathbf{x}_{a},\mathbf{p}_{a})\right) \\ &+ \frac{G^{5}m_{1}m_{2}}{r_{12}^{5}}H_{40}(\mathbf{x}_{a},\mathbf{p}_{a}) + (1 \Leftrightarrow 2), \end{split}$$

$$\begin{split} H_{48}(\mathbf{x}_{a},\mathbf{p}_{a}) = & \frac{45(\mathbf{p}_{1}^{2})^{4}}{128m_{1}^{4}} - \frac{9(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}^{2})^{2}}{64m_{1}^{6}m_{2}^{2}} + \frac{15(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}^{2})^{3}}{64m_{1}^{6}m_{2}^{2}} - \frac{9(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}^{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{16m_{1}^{6}m_{2}^{2}} \\ & - \frac{3(\mathbf{p}_{1}^{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{32m_{1}^{6}m_{2}^{2}} + \frac{15(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{p}_{1}^{2})^{2}\mathbf{p}_{2}^{2}}{64m_{1}^{6}m_{2}^{2}} - \frac{21(\mathbf{p}_{1}^{2})^{3}\mathbf{p}_{2}^{2}}{256m_{1}^{3}m_{2}^{2}} - \frac{35(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{5}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{128m_{1}^{6}m_{2}^{2}} + \frac{15(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{256m_{1}^{3}m_{2}^{3}} - \frac{256m_{1}^{2}m_{2}^{3}}{256m_{1}^{2}m_{2}^{3}} - \frac{256m_{1}^{2}m_{2}^{3}}{256m_{1}^{2}m_{2}^{3}} + \frac{25(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{128m_{1}^{3}m_{2}^{3}} - \frac{266m_{1}^{2}m_{2}^{3}}{256m_{1}^{3}m_{2}^{3}} - \frac{256m_{1}^{2}m_{2}^{3}}{64m_{1}^{3}m_{2}^{3}} - \frac{256m_{1}^{2}m_{2}^{3}}{256m_{1}^{3}m_{2}^{3}} + \frac{25(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{128m_{1}^{3}m_{2}^{3}} - \frac{3(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{3}}{256m_{1}^{3}m_{2}^{3}} + \frac{25(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{266m_{1}^{3}m_{2}^{3}} - \frac{23(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{256m_{1}^{5}m_{2}^{3}} - \frac{23(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{256m_{1}^{5}m_{2}^{3}} - \frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{256m_{1}^{5}m_{2}^{3}} - \frac{23(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{256m_{1}^{5}m_{2}^{3}} - \frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{256m_{1}^{5}m_{2}^{3}} - \frac{23(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{256m_{1}^{5}m_{2}^{3}} - \frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{256m_{1}^{5}m_{2}^{3}} - \frac{23(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}($$

$$\begin{split} H_{46}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{369(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{6}}{160m_{1}^{6}} - \frac{889(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}\mathbf{p}_{1}^{2}}{192m_{1}^{6}} + \frac{49(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{p}_{1}^{2})^{2}}{64m_{1}^{6}} - \frac{549(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{128m_{1}^{5}m_{2}} \\ &+ \frac{67(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}}{16m_{1}^{5}m_{2}} - \frac{167(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}^{2})^{2}}{128m_{1}^{5}m_{2}} + \frac{1547(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{256m_{1}^{5}m_{2}} - \frac{851(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{128m_{1}^{4}m_{2}^{2}} \\ &+ \frac{1099(\mathbf{p}_{1}^{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{256m_{1}^{5}m_{2}} + \frac{3263(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{1280m_{1}^{4}m_{2}^{2}} + \frac{1067(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}\mathbf{p}_{1}^{2}}{480m_{1}^{4}m_{2}^{2}} - \frac{4567(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{3840m_{1}^{4}m_{2}^{2}} \\ &- \frac{3571(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{5}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{320m_{1}^{4}m_{2}^{2}} + \frac{3073(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{480m_{1}^{4}m_{2}^{2}} + \frac{4349(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{1280m_{1}^{4}m_{2}^{2}} \\ &- \frac{3461\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{320m_{1}^{4}m_{2}^{2}} + \frac{1673(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}\mathbf{p}_{1}^{2}}{1920m_{1}^{4}m_{2}^{2}} - \frac{1999(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}\mathbf{p}_{1}^{2}\mathbf{p}_{1}^{2}}{3840m_{1}^{4}m_{2}^{2}} - \frac{13(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{8m_{1}^{3}m_{2}^{3}} \\ &+ \frac{191(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{192m_{1}^{4}m_{2}^{2}} - \frac{19(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{384m_{1}^{4}m_{2}^{3}} \\ &+ \frac{10(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{192m_{1}^{4}m_{2}^{3}} + \frac{77(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{96m_{1}^{3}m_{2}^{3}} - \frac{5(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{384m_{1}^{3}m_{2}^{3}} \\ &+ \frac{191(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{364m_{1}^{3}m_{2}^{3}} - \frac{185\mathbf{p$$

$H_{441}(\mathbf{x}_a, \mathbf{p}_a) =$	$\frac{5027(\mathbf{n}_{12}\cdot\mathbf{p}_1)^4}{384m_1^4} - \frac{2}{384m_1^4}$	$\frac{22993(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{960m_1^4}$	$\frac{\mathbf{p}_1^2}{1152m_1^4} = \frac{6695(\mathbf{p}_1^2)^2}{1152m_1^4} =$	$\frac{3191(\mathbf{n}_{12}\cdot\mathbf{p}_1)^3(\mathbf{n}_{12}\cdot\mathbf{p}_2)}{640m_1^3m_2}$	
	$+\frac{28561(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_1)}{(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_1)}$	$(n_{12} \cdot p_2)p_1^2 + \frac{87}{12}$	$77(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{p}_1 \cdot \mathbf{p}_1)^2$	$(\mathbf{p}_2) + \frac{752969\mathbf{p}_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2)}{752969\mathbf{p}_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2)}$	
	$1920m_1^2$ $16481(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2$	$(n_{12} \cdot p_2)^2 = 944$	$384m_1^3m_2$ $33(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2\mathbf{p}_1^2$	$28800m_1^3m_2$ 103957(n ₁₂ · p ₁)(n ₁₂ · p ₂)(p ₁ · p ₂)	
	960m2n	12 +	4800m ² ₁ m ² ₂	2400m ² ₁ m ² ₂	
	$+\frac{791(\mathbf{p}_1\cdot\mathbf{p}_2)^2}{400m_1^2m_2^2}+\frac{1}{4}$	$\frac{26627(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{1600m_1^2m_2^2}$	$\frac{\mathbf{p}_2^2}{4800m_1^2m_2^2} = \frac{118261\mathbf{p}_1^2\mathbf{p}_2^2}{4800m_1^2m_2^2}$	$+\frac{105(\mathbf{p}_2^2)^2}{32m_2^4}$,	(A4c)

$$\begin{split} H_{442}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \left(\frac{2749\pi^{2}}{8192} - \frac{211189}{19200}\right) \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} + \left(\frac{63347}{1600} - \frac{1059\pi^{2}}{1024}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2} \mathbf{p}_{1}^{2}}{m_{1}^{4}} + \left(\frac{375\pi^{2}}{8192} - \frac{23533}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{4}}{m_{1}^{4}} \\ &+ \left(\frac{10631\pi^{2}}{8192} - \frac{1918349}{57600}\right) \frac{(\mathbf{p}_{1} \cdot \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{13723\pi^{2}}{16384} - \frac{2492417}{57600}\right) \frac{\mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} \\ &+ \left(\frac{1411429}{19200} - \frac{1059\pi^{2}}{512}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2} \mathbf{p}_{1}^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{248991}{6400} - \frac{6153\pi^{2}}{2048}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} \\ &- \left(\frac{30383}{960} + \frac{36405\pi^{2}}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{1243717}{14400} - \frac{40483\pi^{2}}{16384}\right) \frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{2}m_{2}} \\ &+ \left(\frac{2369}{60} + \frac{35655\pi^{2}}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{3}(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{m_{1}^{3}m_{2}} + \left(\frac{43101\pi^{2}}{16384} - \frac{391711}{6400}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})\mathbf{p}_{1}^{2}}{m_{1}^{3}m_{2}} \\ &+ \left(\frac{56955\pi^{2}}{16384} - \frac{1646983}{19200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{3}m_{2}}, \end{split}$$

$$H_{421}(\mathbf{x}_{a}, \mathbf{p}_{a}) = \frac{64861\mathbf{p}_{1}^{2}}{4800m_{1}^{2}} - \frac{91(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{8m_{1}m_{2}} + \frac{105\mathbf{p}_{2}^{2}}{32m_{2}^{2}} - \frac{9841(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}}{1600m_{1}^{2}} - \frac{7(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{2m_{1}m_{2}}.$$
 (A4e)

$$\begin{split} H_{422}(\mathbf{x}_{\sigma},\mathbf{p}_{\sigma}) &= \left(\frac{1937033}{57600} - \frac{199177\pi^2}{49152}\right) \frac{\mathbf{p}_1^2}{m_1^2} + \left(\frac{176033\pi^2}{24576} - \frac{2864917}{57600}\right) \frac{(\mathbf{p}_1 \cdot \mathbf{p}_2)}{m_1 m_2} + \left(\frac{282361}{19200} - \frac{21837\pi^2}{8192}\right) \frac{\mathbf{p}_2^2}{m_2^2} \\ &+ \left(\frac{698723}{19200} + \frac{21745\pi^2}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{m_1^2} + \left(\frac{63641\pi^2}{24576} - \frac{2712013}{19200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)}{m_1 m_2} \\ &+ \left(\frac{3200179}{57600} - \frac{28691\pi^2}{24576}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m_2^2}, \end{split}$$
(A4f)

$$H_{40}(\mathbf{x}_{a}, \mathbf{p}_{a}) = -\frac{m_{1}^{4}}{16} + \left(\frac{6237\pi^{2}}{1024} - \frac{169799}{2400}\right)m_{1}^{3}m_{2} + \left(\frac{44825\pi^{2}}{6144} - \frac{609427}{7200}\right)m_{1}^{2}m_{2}^{2}.$$
 (A4g)

$$H_{4\text{PN}}^{\text{nonloc}}(t) = -\frac{1}{5} \frac{G^2 M}{c^8} I_{ij}^{(3)}(t) \times \text{Pf}_{2r_{12}/c} \int_{-\infty}^{+\infty} \frac{\mathrm{d}v}{|v|} I_{ij}^{(3)}(t+v),$$
 13

Resummed (non-spinning) 4PN EOB interaction potentials

$$M = m_1 + m_2, \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}, \qquad \nu = \frac{m_1 m_2}{(m_1 + m_2)^2} = \frac{\mu}{M} \qquad u \equiv \frac{GM}{R c^2}$$
$$ds_{\text{eff}}^2 = -A(r;\nu) dt^2 + B(r;\nu) dr^2 + r^2 \left(d\theta^2 + \sin^2\theta \, d\varphi^2\right) \qquad \bar{D} \equiv (A B)^{-1}$$

$$A(u) = 1 - 2u + 2\nu u^{3} + \left(\frac{94}{3} - \frac{41\pi^{2}}{32}\right)\nu u^{4} + \left(\left(\frac{2275\pi^{2}}{512} - \frac{4237}{60} + \frac{128}{5}\gamma_{\rm E} + \frac{256}{5}\ln^{2}\right)\nu + \left(\frac{41\pi^{2}}{32} - \frac{221}{6}\right)\nu^{2} + \frac{64}{5}\nu\ln u\right)u^{5},$$

$$A^{\rm EOB}(u) = {\rm Pade}_{4}^{1}[A^{PN}(u)]$$

$$\begin{split} \bar{D}(u) &= 1 + 6\nu u^2 + (52\nu - 6\nu^2)u^3 + \left(\left(-\frac{533}{45} - \frac{23761\pi^2}{1536} + \frac{1184}{15}\gamma_{\rm E} - \frac{6496}{15}\ln 2 + \frac{2916}{5}\ln 3 \right) \nu \\ &+ \left(\frac{123\pi^2}{16} - 260 \right) \nu^2 + \frac{592}{15}\nu \ln u \right) u^4, \end{split}$$

$$\begin{aligned} \hat{Q}(\mathbf{r}',\mathbf{p}') &= \left(2(4-3\nu)\nu u^2 + \left(\left(-\frac{5308}{15} + \frac{496256}{45}\ln 2 - \frac{33048}{5}\ln 3\right)\nu - 83\nu^2 + 10\nu^3\right)u^3\right)(\mathbf{n}'\cdot\mathbf{p}')^4 \\ &+ \left(\left(-\frac{827}{3} - \frac{2358912}{25}\ln 2 + \frac{1399437}{50}\ln 3 + \frac{390625}{18}\ln 5\right)\nu - \frac{27}{5}\nu^2 + 6\nu^3\right)u^2(\mathbf{n}'\cdot\mathbf{p}')^6 + \mathcal{O}[\nu u(\mathbf{n}'\cdot\mathbf{p}')^8]. \end{aligned}$$

Spinning EOB effective Hamiltonian

$$H_{\rm eff} = H_{\rm orb} + H_{\rm so} \rightarrow H_{\rm EOB} = Mc^2 \sqrt{1 + 2\nu \left(\frac{H_{\rm eff}}{\mu c^2} - 1\right)}$$

$$\hat{H}_{\text{orb}}^{\text{eff}} = \sqrt{A\left(1 + B_p p^2 + B_{np} (\boldsymbol{n} \cdot \boldsymbol{p})^2 - \frac{1}{1 + \frac{(\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2}{r^2}} \frac{(r^2 + 2r + (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2)}{\mathcal{R}^4 + \Delta (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2} ((\boldsymbol{n} \times \boldsymbol{p}) \cdot \boldsymbol{\chi}_0)^2 + Q_4\right)}.$$

 $H_{\rm so} = G_S \boldsymbol{L} \cdot \boldsymbol{S} + G_{S^*} \boldsymbol{L} \cdot \boldsymbol{S}^*,$

$$\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2; \ \mathbf{S}_* = \frac{m_2}{m_1} \mathbf{S}_1 + \frac{m_1}{m_2} \mathbf{S}_2,$$

Gyrogravitomagnetic ratios (when neglecting spin² effects)

$$r^{3}G_{S}^{\rm PN} = 2 - \frac{5}{8}\nu u - \frac{27}{8}\nu p_{r}^{2} + \nu \left(-\frac{51}{4}u^{2} - \frac{21}{2}up_{r}^{2} + \frac{5}{8}p_{r}^{4}\right) + \nu^{2}\left(-\frac{1}{8}u^{2} + \frac{23}{8}up_{r}^{2} + \frac{35}{8}p_{r}^{4}\right)$$

$$\begin{aligned} r^3 G_{S_*}^{\rm PN} &= \frac{3}{2} - \frac{9}{8}u - \frac{15}{8}p_r^2 + \nu \left(-\frac{3}{4}u - \frac{9}{4}p_r^2 \right) - \frac{27}{16}u^2 + \frac{69}{16}up_r^2 + \frac{35}{16}p_r^4 + \nu \left(-\frac{39}{4}u^2 - \frac{9}{4}up_r^2 + \frac{5}{2}p_r^4 \right) \\ &+ \nu^2 \left(-\frac{3}{16}u^2 + \frac{57}{16}up_r^2 + \frac{45}{16}p_{\S 1}^4 \right) \end{aligned}$$

EOB, scattering amplitudes, etc.

Post-Minkowskian (PM) approximation: expansion in Gⁿ keeping all orders in v/c

could recently exploit 'old' results by Bel-Martin '75-'81, Portilla '79, Westpfahl-Goller '79, Portilla '80, Bel-Damour-Deruelle-Ibanez-Martin'81, Westpfahl '85 to compute some pieces of the EOB dynamics to all orders in v/c.

Damour '16: two-body relativistic scattering to O(G) is equivalent to geodesic motion of particle of mass mu in a linearized Schwarzschild metric of mass M, via the (exact) energy map

$$\rightarrow H_{\rm EOB} = Mc^2 \sqrt{1 + 2\nu \left(\frac{H_{\rm eff}}{\mu c^2} - 1\right)}$$

Bini-Damour '17, Vines '17: all orders in v/c values of spin-orbit coupling coefficients

$$g_{S}^{1\text{PM}}(\mathbf{p}^{2},\nu) = \frac{(1+2w_{p})\left(\sqrt{1+2\nu(w_{p}-1)}+2w_{p}\right)-1}{w_{p}(1+w_{p})\sqrt{1+2\nu(w_{p}-1)}(1+\sqrt{1+2\nu(w_{p}-1)})}$$
$$g_{S_{*}}^{1\text{PM}}(\mathbf{p}^{2},\nu) = \frac{(1+2w_{p})}{w_{p}(1+w_{p})\sqrt{1+2\nu(w_{p}-1)}} \cdot \qquad w_{p} = \sqrt{1+\mathbf{p}^{2}}$$

Opens possibility to exploit results on scattering amplitudes: Amati-Ciafaloni-Veneziano; Bern-..., Bjerrum-Bohr-..., Cachazo-..., Carrasco,...

Resummed EOB waveform

(Damour-Iyer-Sathyaprakash 1998) Damour-Nagar 2007, Damour-Iyer-Nagar 2008

$$h_{\ell m} \equiv h_{\ell m}^{(N,\epsilon)} \hat{h}_{\ell m}^{(\epsilon)} \hat{h}_{\ell m}^{\text{NQC}}$$
$$\hat{h}_{\ell m}^{(\epsilon)} = \hat{S}_{\text{eff}}^{(\epsilon)} T_{\ell m} e^{i\delta_{\ell m}} \rho_{\ell m}^{\ell}$$
$$T_{\ell m} = \frac{\Gamma(\ell + 1 - 2i\hat{k})}{\Gamma(\ell + 1)} e^{\hat{\pi k}} e^{2i\hat{k}\ln(2kr_0)}$$

$$\begin{split} \rho_{22}(x;\nu) &= 1 + \left(\frac{55\nu}{84} - \frac{43}{42}\right)x + \left(\frac{19583\nu^2}{42336} - \frac{33025\nu}{21168} - \frac{20555}{10584}\right)x^2 \\ &+ \left(\frac{10620745\nu^3}{39118464} - \frac{6292061\nu^2}{3259872} + \frac{41\pi^2\nu}{192} - \frac{48993925\nu}{9779616} - \frac{428}{105} \text{eulerlog}_2(x) + \frac{1556919113}{122245200}\right)x^3 \\ &+ \left(\frac{9202}{2205} \text{eulerlog}_2(x) - \frac{387216563023}{160190110080}\right)x^4 + \left(\frac{439877}{55566} \text{eulerlog}_2(x) - \frac{16094530514677}{533967033600}\right)x^5 + \mathcal{O}(x^6), \end{split}$$

$$\mathcal{F}_{\varphi} \equiv -\frac{1}{8\pi\Omega} \sum_{\ell=2}^{\ell_{\max}} \sum_{m=1}^{\ell} (m\Omega)^2 |Rh_{\ell m}^{(\epsilon)}|^2$$

EOB

 $h_{\ell m}^{\rm EOB} = \theta(t_m - t)h_{\ell m}^{\rm insplunge}(t) + \theta(t - t_m)h_{\ell m}^{\rm ringdown}(t)$

First complete waveforms for BBH coalescences: analytical EOB

Numerical Relativity (NR)

Mathematical foundations :

Darmois 27, Lichnerowicz 43, Choquet-Bruhat 52-

Breakthrough:

Pretorius 2005 generalized harmonic coordinates, constraint damping, excision

Moving punctures:

Campanelli-Lousto-Maronetti-Zlochover 2006 Baker-Centrella-Choi-Koppitz-van Meter 2006

Excision + generalized harmonic coordinates (Friedrich, Garfinkle)

$$C_a \equiv g_{ab} \left(H^a - \Box x^a \right) = 0.$$

+ Constraint damping (Brodbeck et al., Gundlach et al., Pretorius, Lindblom et al.)

The first EOB vs NR comparison

Buonanno-Cook-Pretorius 2007

FIG. 21 (color online). We compare the NR and EOB frequency and $\text{Re}[_{-2}C_{22}]$ waveforms throughout the entire inspiral-merger-ring-down evolution. The data refers to the d = 16 run.

Numerical Relativity Waveform (Caltech-Cornell, SXS)

SXS COLLABORATION NR CATALOG

A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy [PRL 111 (2013) 241104]

Abdul H. Mroué,¹ Mark A. Scheel,² Béla Szilágyi,² Harald P. Pfeiffer,¹ Michael Boyle,³ Daniel A. Hemberger,³ Lawrence E. Kidder,³ Geoffrey Lovelace,^{4, 2} Sergei Ossokine,^{1, 5} Nicholas W. Taylor,² Anıl Zenginoğlu,² Luisa T. Buchman,² Tony Chu,¹ Evan Foley,⁴ Matthew Giesler,⁴ Robert Owen,⁶ and Saul A. Teukolsky³

FIG. 3: Waveforms from all simulations in the catalog. Shown here are h_+ (blue) and h_x (red) in a sky direction parallel to the initial orbital plane of each simulation. All plots have the same horizontal scale, with each tick representing a time interval of 2000*M*, where *M* is the total mass.

But each NR waveform takes ~ 1 month, while 250.000 templates were needed and used...

EOB[NR]: Damour-Gourgoulhon-Grandclement '02, Damour-Nagar '07-16, Buonnano-Pan-Taracchini-....'07-16

NR-completed resummed 5PN EOB radial A potential

«We think, however, that a suitable "numerically fitted" and, if possible, "analytically extended" EOB Hamiltonian should be able to fit the needs of upcoming GW detectors.» (TD 2001)

here Damour-Nagar-Bernuzzi '13, Nagar-etal '16; alternative: Taracchini et al '14, Bohe et al '17

4PN analytically complete + 5 PN logarithmic term in the A(u, nu) function,

With u = GM/R and $nu = m1 m2 / (m1 + m2)^2$

[Damour 09, Blanchet et al 10, Barack-Damour-Sago 10, Le Tiec et al 11, Barausse et al 11, Akcay et al 12, Bini-Damour 13, Damour-Jaranowski-Schäfer 14, Nagar-Damour-Reisswig-Pollney 15]

$$\begin{aligned} A(u;\nu,a_{6}^{c}) &= P_{5}^{1} \left[1 - 2u + 2\nu u^{3} + \nu \left(\frac{94}{3} - \frac{41}{32} \pi^{2} \right) u^{4} \\ u &= \frac{GM}{c^{2} R} + \nu \left[-\frac{4237}{60} + \frac{2275}{512} \pi^{2} + \left(-\frac{221}{6} + \frac{41}{32} \pi^{2} \right) \nu + \frac{64}{5} \ln(16e^{2\gamma}u) \right] u^{5} \\ \nu &= \frac{m_{1}m_{2}}{(m_{1} + m_{2})^{2}} \\ + \nu \left[a_{6}^{c}(\nu) - \left(\frac{7004}{105} + \frac{144}{5} \nu \right) \ln u \right] u^{6} \right] \\ a_{6}^{c \,\text{NR-tuned}}(\nu) = 81.38 - 1330.6 \,\nu + 3097.3 \,\nu^{2} \end{aligned}$$

MAIN RADIAL EOB POTENTIAL A(R)

EOB / NR Comparison

EOB VS NR

waveform (Damour-Nagar 09, Buonanno et al), energetics (Nagar-Damour-Reisswig-Pollney 16), periastron precession (LeTiec-Mroue-Barack-Buonanno-Pfeiffer-Sago-Tarachini 11, Hinderer et al 13); and scattering angle (Damour-Guercilena-Hinder-Hopper-Nagar-Rezzolla 14)

Schw EOB

GSFv

GSFq PN

0.035

lass

03.

nce

1.8

MATCHED FILTERING SEARCH AND DATA ANALYSIS

O1: precomputed bank of ~ 200 000 EOB templates for inspiralling and coalescing BBH GW waveforms: m1, m2, chi1=S1/m1^2, chi2=S2/m2^2 for m1+m2> 4Msun; + ~ 50 000 PN inspiralling templates for m1+m2< 4 Msun;

O2: ~ 325 000 EOB templates + 75 000 PN templates

Search template bank made of SpinningEOB[NR] templates (Buonanno-Damour99,Damour'01...,Taracchini et al. 14) in ROM form (Puerrer et al.'14); Recently improved (Bohé et al '17) by including leading 4PN terms (Bini-Damour '13), spindependent terms (Pan-Buonnano et al. '13), and calibrating against 141 NR simulations. [post-computed NR waveform for GW151226 took three months and 70 000 CPU hours !]

FIG. 1. The four-dimensional search parameter space covered by the template bank shown projected into the component-mass plane, using the convention $m_1 > m_2$. The lines bound mass regions with different limits on the dimensionless aligned-spin parameters χ_1 and χ_2 . Each point indicates the position of a template in the bank. The circle highlights the template that best matches GW150914. This does not coincide with the best-fit parameters due to the discrete nature of the template bank.

+ auxiliary bank of Phenom[EOB+NR] templates (Ajith...'07, Hannam...'14, Husa...'16, Khan...'16)

47

A POSTERIORI WAVEFORM CHECKS USING NR SIMULATIONS

SXS simulation

GW150914 Abbott et al 16a

48

GW151226: only detected via accurate matched filters

GR tests from LIGO GW data

First observation of GWs in the wave zone

[NB: Binary pulsars -> direct proof of gravity propagation at v=c between two pulsars] [not yet good LIGO tests of the quadrupolar, transverse nature of GWs]

Quasi-direct experimental proof of the existence of black holes [96% consistency with GR for GW150914; PRL116,221101 (2016)]

Phenomenological constraints on the GW phase evolution vs frequency during inspiral (notably the tail effect [Blanchet-Sathyaprakash'95]; 10% with GW151226; PRX6,041015 (2016))

NEAR FUTURE: NSNS AND BHNS GW

Tidal extension of EOB (TEOB) [Damour-Nagar 09]

$$A(r) = A_r^0 + A^{\text{tidal}}(r)$$

$$A^{\text{tidal}}(r) = -\kappa_2^T u^6 \left(1 + \bar{\alpha}_1 u + \bar{\alpha}_2 u^2 + \dots\right) + \dots$$

TEOB[NR] A(R) potential (Bernuzzi et al. 2015)

MULTI-MESSENGER (GRB ?) + PROBING THE NUCLEAR EOS FROM LATE INSPIRAL TIDAL EFFECTS IN NSNS OR BHNS

(Damour-Nagar-Villain, Agathos-DelPozzo-vandenBroeek, Bernuzzi et al, Hotokezaka et al.,...)

FARTHER FUTURE

When adLIGO+adVirgo will reach their design sensitivity (O3): probably one BBH coalescence per day [Belczynski et al 2010] BNS coalescences: 1/ 10 days

2023-2025: LIGO A+ sensitivity x 1.7 -> event rate x 5

Then: extension of ground network, LISA, PTA, CMB, new generations of ground-based detectors,... -> possibly 10^5 BBH/an; 5 mn

A lot of astrophysics (up to z ~10) Possibly new discoveries in fundamental physics: SNR>>1 -> tests of GR cosmic strings ? cosmological GW backgound ? SMBBH ?

Conclusions

• Several aspects of Analytical Relativity have played a key role in the recent discovery, interpretation and parameter estimation of coalescing BBH: perturbative theory of motion, perturbative theory of GW generation, EOB formalism.

• The analytical EOB method had predicted in 2000 the complete GW signal emitted by the coalescence of two black holes. This was confirmed, and refined, starting in 2005 by Numerical Relativity.

Numerical-Relativity-completed Analytical Templates (and particularly EOB[NR]) have been crucial for computing the ~ 200, 000 [325 000] theoretical GW templates $h(t;m_1, m_2, S_1, S_2)$ which have been used in O1 [O2] for extracting the GW signals from the noise by matched filtering, for assessing their physical significance, and for measuring the source parameters. One expects most of the BBH (and BNS) signals to be detected only by means of such analytical templates (as was the case for GW151226).

• Analytical approaches will also be crucial for future GW detectors: space detectors, second generation ground-based detectors. In particular, the union of EOB and Self-Force methods promises to help computing accurate waveforms for LISA-type sources.