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Quantum TheoryQuantum Theory



Observables: ∗-algebra, e.g. von Neumann algebra M ⊂ B(HM )
States: ωM : M → C positive normalized linear functional

Marcel Bischoff (Ohio University) Symmetries in QFT beyond Groups 07/22/2017



Observables: ∗-algebra, e.g. von Neumann algebra M ⊂ B(HM )
States: ωM : M → C positive normalized linear functional

The right maps between (M,ωM ) and (N,ωN ) are φ : M → N , such that

1. linear φ(m+ λm′) = φ(m) + λφ(m′)

2. unital φ(1M ) = 1N

3. completely positive, i.e. the amplified maps

φn = φ⊗ id : M ⊗Matn(C)→ N ⊗Matn(C)

are positive.
◮ E.g. ∗-homomorphisms ρ : M → N
◮ ∃ a representation π : M → B(K) and an isometry V : HN → K, such

that φ( · ) = V ∗π( · )V . In particular, φ(m∗) = φ(m)∗

4. stochastic ωN (φ(m)) = ωM (m) for all m ∈M .
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Global Symmetries in QFTGlobal Symmetries in QFT



Quantum Field Theory
Idea:

A(O) = {φ(f) : supp(f) ⊂ O}′′ H = ∪OA(O)Ω
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Quantum Field Theory
Idea:

A(O) = {φ(f) : supp(f) ⊂ O}′′ H = ∪OA(O)Ω

Abstractly, net of von Neumann algebras: (O 7→ A(O),H,Ω ∈ H)
◮ O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

◮ O1, O2 spacelike separated ⇒ A(O1) an A(O2) commute

◮ ω( · ) = (Ω, ·Ω) vacuum state.
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Quantum Field Theory
Idea:

A(O) = {φ(f) : supp(f) ⊂ O}′′ H = ∪OA(O)Ω

Abstractly, net of von Neumann algebras: (O 7→ A(O),H,Ω ∈ H)
◮ O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

◮ O1, O2 spacelike separated ⇒ A(O1) an A(O2) commute

◮ ω( · ) = (Ω, ·Ω) vacuum state.

A gauge automorphism/inner symmetry α ∈ Aut(A) is a compatible
family α = {O 7→ αO}, where αO is an automorphism of (A(O), ω).
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Quantum Field Theory
Idea:

A(O) = {φ(f) : supp(f) ⊂ O}′′ H = ∪OA(O)Ω

Abstractly, net of von Neumann algebras: (O 7→ A(O),H,Ω ∈ H)
◮ O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

◮ O1, O2 spacelike separated ⇒ A(O1) an A(O2) commute

◮ ω( · ) = (Ω, ·Ω) vacuum state.

A gauge automorphism/inner symmetry α ∈ Aut(A) is a compatible
family α = {O 7→ αO}, where αO is an automorphism of (A(O), ω).

Remark

We get a unitary Uα by UαmΩ = αO(m)Ω, which implements α, i.e.
αO( · ) = Uα · U∗

α for all O and Uα commutes with space-time symmetries.
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Doplicher–Haag–Roberts superselection theory

If A is a nice QFT net of observables, then

◮ ∃! (G, k) with G a compact group and k ∈ Z(G) and involution

◮ ∃! F ⊃ A a (possible Z2-graded) local field net with DHR(F) trivial
and G ≤ Aut(F), such that

A = FG , DHR(A)
br∼= Repk(G)

Marcel Bischoff (Ohio University) Symmetries in QFT beyond Groups 07/22/2017



Doplicher–Haag–Roberts superselection theory

If A is a nice QFT net of observables, then

◮ ∃! (G, k) with G a compact group and k ∈ Z(G) and involution

◮ ∃! F ⊃ A a (possible Z2-graded) local field net with DHR(F) trivial
and G ≤ Aut(F), such that

A = FG , DHR(A)
br∼= Repk(G)

Subnets of observables:

◮ If B ⊂ A an irreducible subnet, then ∃! H ≥ G and B = FH .

◮ If G = N ≤ H normal, then B = AH/N
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Doplicher–Haag–Roberts superselection theory

If A is a nice QFT net of observables, then

◮ ∃! (G, k) with G a compact group and k ∈ Z(G) and involution

◮ ∃! F ⊃ A a (possible Z2-graded) local field net with DHR(F) trivial
and G ≤ Aut(F), such that

A = FG , DHR(A)
br∼= Repk(G)

Subnets of observables:

◮ If B ⊂ A an irreducible subnet, then ∃! H ≥ G and B = FH .

◮ If G = N ≤ H normal, then B = AH/N

Slogan

Global symmetries and superselection rules are completely described by
(super-)groups.

Most of this fails for low-dimensional QFT.
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Quantum SymmetryQuantum Symmetry

Can we orbifold by something more general than a group?Can we orbifold by something more general than a group?



A local (conformal) net on S1 ∼= R ∪ {∞} is a map

R ⊃ I 7−→ A(I) ⊂ B(H)

fulfilling a bunch of axioms including:

◮ Isotony: A(I) ⊂ A(J) for I ⊂ J
◮ Haag duality: A(I ′) = A(I)′, where I ′ = R \ I ; locality:

[A(I),A(J)] = {0} for I ⊂ J ′.

◮ Covariance: U : G→ U(H), s.t. U(g)A(I)U(g)∗ = A(gI).
◮ Vacuum: Unique (up to phase) G-invariant unit vector Ω ∈ H, s.t.
∨IA(I)Ω = H.
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A local (conformal) net on S1 ∼= R ∪ {∞} is a map

R ⊃ I 7−→ A(I) ⊂ B(H)

fulfilling a bunch of axioms including:

◮ Isotony: A(I) ⊂ A(J) for I ⊂ J
◮ Haag duality: A(I ′) = A(I)′, where I ′ = R \ I ; locality:

[A(I),A(J)] = {0} for I ⊂ J ′.

◮ Covariance: U : G→ U(H), s.t. U(g)A(I)U(g)∗ = A(gI).
◮ Vacuum: Unique (up to phase) G-invariant unit vector Ω ∈ H, s.t.
∨IA(I)Ω = H.

Motivation

◮ axiomatizes Unitary Chiral Conformal Field Theory

◮ describes edge of Topological Phases of Matter, Topological Quantum
Computing

◮ 3-manifold invariants, 3-2-1 Topological Field Theories, 2+1d
Quantum Gravity (Witten)
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QuOp(A)

A quantum operation φ ∈ QuOp(A) on A is a family
φ = {φI : A(I)→ A(I)} with

◮ Compatible: φJ ↾ A(I) = φI for I ⊂ J
◮ Unital completely positive, i.e. φI(1) = 1 and
φI ⊗ id : A(I)⊗Mn(C)→ A(I)⊗Mn(C) is positive for all n ∈ N.

◮ Vacuum preserving (Ω, aΩ) = (Ω, φI(a)Ω) for a ∈ A(I).
◮ Extremal, i.e. φI = λψ1 + (1− λ)ψ2 for some λ ∈ (0, 1) and ψ1, ψ2

vpucp then ψ1 = ψ2 = φI .

◮ Ω-Markov: there is an Ω-adjoint φ♯I with

(φ♯I(a)Ω, bΩ) = (aΩ, φI(b)Ω) for a, b ∈ A(I).
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QuOp(A)

A quantum operation φ ∈ QuOp(A) on A is a family
φ = {φI : A(I)→ A(I)} with

◮ Compatible: φJ ↾ A(I) = φI for I ⊂ J
◮ Unital completely positive, i.e. φI(1) = 1 and
φI ⊗ id : A(I)⊗Mn(C)→ A(I)⊗Mn(C) is positive for all n ∈ N.

◮ Vacuum preserving (Ω, aΩ) = (Ω, φI(a)Ω) for a ∈ A(I).
◮ Extremal, i.e. φI = λψ1 + (1− λ)ψ2 for some λ ∈ (0, 1) and ψ1, ψ2

vpucp then ψ1 = ψ2 = φI .

◮ Ω-Markov: there is an Ω-adjoint φ♯I with

(φ♯I(a)Ω, bΩ) = (aΩ, φI(b)Ω) for a, b ∈ A(I).

Generalization of the group of global gauge automorphisms:

Aut(A) = QuOp(A)× ⊂ QuOp(A)
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Notation:

◮ Q = {φ0, . . . , φn} finite set, CQ free vector space over K

◮ Conv(Q) = {
∑n

i=0 λiφi ∈ CQ : λi ∈ [0, 1] and
∑n

i=0 λi = 1}
◮ φi ≺

∑n
k=0 λkφk ∈ Conv(Q) if and only if λi > 0.
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Notation:

◮ Q = {φ0, . . . , φn} finite set, CQ free vector space over K

◮ Conv(Q) = {
∑n

i=0 λiφi ∈ CQ : λi ∈ [0, 1] and
∑n

i=0 λi = 1}
◮ φi ≺

∑n
k=0 λkφk ∈ Conv(Q) if and only if λi > 0.

Definition

A (finite) hypergroup is a set Q = {φ0, . . . , φn} with an evolution i 7→ ī
and a structure of an associative unital ∗-algebra structure on CQ:

φi ◦ φj =
n
∑

k=0

Ck
ijφk , φ∗i = φī , with identity φ0 = 1, such that
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Notation:

◮ Q = {φ0, . . . , φn} finite set, CQ free vector space over K

◮ Conv(Q) = {
∑n

i=0 λiφi ∈ CQ : λi ∈ [0, 1] and
∑n

i=0 λi = 1}
◮ φi ≺

∑n
k=0 λkφk ∈ Conv(Q) if and only if λi > 0.

Definition

A (finite) hypergroup is a set Q = {φ0, . . . , φn} with an evolution i 7→ ī
and a structure of an associative unital ∗-algebra structure on CQ:

φi ◦ φj =
n
∑

k=0

Ck
ijφk , φ∗i = φī , with identity φ0 = 1, such that

◮ Normalization: φi ◦ φk ∈ Conv(K)
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Notation:

◮ Q = {φ0, . . . , φn} finite set, CQ free vector space over K

◮ Conv(Q) = {
∑n

i=0 λiφi ∈ CQ : λi ∈ [0, 1] and
∑n

i=0 λi = 1}
◮ φi ≺

∑n
k=0 λkφk ∈ Conv(Q) if and only if λi > 0.

Definition

A (finite) hypergroup is a set Q = {φ0, . . . , φn} with an evolution i 7→ ī
and a structure of an associative unital ∗-algebra structure on CQ:

φi ◦ φj =
n
∑

k=0

Ck
ijφk , φ∗i = φī , with identity φ0 = 1, such that

◮ Normalization: φi ◦ φk ∈ Conv(K)

◮ Antipode: φ0 ≺ φi ◦ φj if and only if j = ī.

Marcel Bischoff (Ohio University) Symmetries in QFT beyond Groups 07/22/2017



Notation:

◮ Q = {φ0, . . . , φn} finite set, CQ free vector space over K

◮ Conv(Q) = {
∑n

i=0 λiφi ∈ CQ : λi ∈ [0, 1] and
∑n

i=0 λi = 1}
◮ φi ≺

∑n
k=0 λkφk ∈ Conv(Q) if and only if λi > 0.

Definition

A (finite) hypergroup is a set Q = {φ0, . . . , φn} with an evolution i 7→ ī
and a structure of an associative unital ∗-algebra structure on CQ:

φi ◦ φj =
n
∑

k=0

Ck
ijφk , φ∗i = φī , with identity φ0 = 1, such that

◮ Normalization: φi ◦ φk ∈ Conv(K)

◮ Antipode: φ0 ≺ φi ◦ φj if and only if j = ī.

Then wk = (C0
kk̄
)−1 ≥ 1 is called weight and D(Q) =

∑

k wk global
weight.
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Examples of hypergroups:

◮ G finite group with g∗ = g−1, w• ≡ 1 and D(G) = |G|.
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Examples of hypergroups:

◮ G finite group with g∗ = g−1, w• ≡ 1 and D(G) = |G|.
◮ L ≤ K then the double quotient K//L is a hypergroup.
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Examples of hypergroups:

◮ G finite group with g∗ = g−1, w• ≡ 1 and D(G) = |G|.
◮ L ≤ K then the double quotient K//L is a hypergroup.

◮ Character hypergroup K(G) = {cπ : φ ∈ Irrep(G)} (Frobenius 1896)

cπ1
◦ cπ2

=
∑

π∈Irrep(Ĝ)

dimHomG(π1 ⊗ π2, π)
dπ

dπ1dπ2
· cπ

with wπ = dim(π)2 and D(K) = |G|.
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Examples of hypergroups:

◮ G finite group with g∗ = g−1, w• ≡ 1 and D(G) = |G|.
◮ L ≤ K then the double quotient K//L is a hypergroup.

◮ Character hypergroup K(G) = {cπ : φ ∈ Irrep(G)} (Frobenius 1896)

cπ1
◦ cπ2

=
∑

π∈Irrep(Ĝ)

dimHomG(π1 ⊗ π2, π)
dπ

dπ1dπ2
· cπ

with wπ = dim(π)2 and D(K) = |G|.
◮ Similarly, fusion hypergroup, i.e. normalized Grothendieck ring KF

for fusion category F , e.g. KRep(G) = K(G).
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Examples of hypergroups:

◮ G finite group with g∗ = g−1, w• ≡ 1 and D(G) = |G|.
◮ L ≤ K then the double quotient K//L is a hypergroup.

◮ Character hypergroup K(G) = {cπ : φ ∈ Irrep(G)} (Frobenius 1896)

cπ1
◦ cπ2

=
∑

π∈Irrep(Ĝ)

dimHomG(π1 ⊗ π2, π)
dπ

dπ1dπ2
· cπ

with wπ = dim(π)2 and D(K) = |G|.
◮ Similarly, fusion hypergroup, i.e. normalized Grothendieck ring KF

for fusion category F , e.g. KRep(G) = K(G).

◮ One parameter deformation Z
q
2 = {1, φ} of Z2 with q ∈ [0, 1)

φ ◦ φ = (1− q) · 1 + q · φ w = q−1

1 φ

1

(w−1)/w

w−1
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Theorem ((B. ’16))

Let K ⊂ QuOp(A), then AK(I) = {a ∈ A(I) : φI(a) = a for all φ ∈ K}
defines a subnet AK ⊂ A.
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Theorem ((B. ’16))

Let K ⊂ QuOp(A), then AK(I) = {a ∈ A(I) : φI(a) = a for all φ ∈ K}
defines a subnet AK ⊂ A.

Theorem (Galois correspondence for Conformal Nets (B. ’16))

Let A be a local conformal net. There is a one-to-one correspondence

B ⊂ A
finite index

←→ Q ⊂ QuOp(A)
hypergroup

via Q 7−→ AQ.

◮ Order reversing and L ≤ Q and B = AL then AQ = BQ//L

◮ Jones’ index [A : AQ] = D(Q) :=
∑

φ∈Qwφ
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Theorem ((B. ’16))

Let K ⊂ QuOp(A), then AK(I) = {a ∈ A(I) : φI(a) = a for all φ ∈ K}
defines a subnet AK ⊂ A.

Theorem (Galois correspondence for Conformal Nets (B. ’16))

Let A be a local conformal net. There is a one-to-one correspondence

B ⊂ A
finite index

←→ Q ⊂ QuOp(A)
hypergroup

via Q 7−→ AQ.

◮ Order reversing and L ≤ Q and B = AL then AQ = BQ//L

◮ Jones’ index [A : AQ] = D(Q) :=
∑

φ∈Qwφ

Corollary ((B. ’16))

If H finite Hopf algebra acting on A, then H = CG for a finite group G.
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Superselection TheorySuperselection Theory



Subfactors
Conformal Field
Theory (CFT)

Tensor
Categories

Topological
Field Theory

TFT

Planar Algebras

Algebraic QFT

In binding together elements long-known but heretofore scattered and
appearing unrelated to one another, it suddenly brings order where
there reigned apparent chaos — Henri Poincaré
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A representation π of a net I 7→ A(I) is a family of representations

π = {πI : A(I)→ B(Hπ)} ,

which is compatible: πJ ↾ A(I) = πI for I ⊂ J .
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A representation π of a net I 7→ A(I) is a family of representations

π = {πI : A(I)→ B(Hπ)} ,

which is compatible: πJ ↾ A(I) = πI for I ⊂ J .

Example

The vacuum representation: id = {idA(I) : A(I)→ B(H)}.
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Doplicher–Haag–Roberts supserselection sectors

π is a DHR (Doplicher–Haag–Roberts) representation if it fulfills the:
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Doplicher–Haag–Roberts supserselection sectors

π is a DHR (Doplicher–Haag–Roberts) representation if it fulfills the:
Selection Criterion: π ↾ I ′ ∼= id ↾ I ′ for any I, i.e. there is a unitary
UI : Hπ → H, such that

UIπJ(a) = aUI for a ∈ A(J), J ⊂ I ′

J I
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Doplicher–Haag–Roberts supserselection sectors

π is a DHR (Doplicher–Haag–Roberts) representation if it fulfills the:
Selection Criterion: π ↾ I ′ ∼= id ↾ I ′ for any I, i.e. there is a unitary
UI : Hπ → H, such that

UIπJ(a) = aUI for a ∈ A(J), J ⊂ I ′

J I

K

◮ ρI ∼= π with ρIJ = AdUI ◦ πJ is localized in I,
Haag duality ; ρIK(A(K)) ⊂ A(K) for all K ⊃ I.
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Doplicher–Haag–Roberts supserselection sectors

π is a DHR (Doplicher–Haag–Roberts) representation if it fulfills the:
Selection Criterion: π ↾ I ′ ∼= id ↾ I ′ for any I, i.e. there is a unitary
UI : Hπ → H, such that

UIπJ(a) = aUI for a ∈ A(J), J ⊂ I ′

J I

K

◮ ρI ∼= π with ρIJ = AdUI ◦ πJ is localized in I,
Haag duality ; ρIK(A(K)) ⊂ A(K) for all K ⊃ I.

◮ Unitary equivalence class [π] is a superselection sector = charge
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Doplicher–Haag–Roberts supserselection sectors

π is a DHR (Doplicher–Haag–Roberts) representation if it fulfills the:
Selection Criterion: π ↾ I ′ ∼= id ↾ I ′ for any I, i.e. there is a unitary
UI : Hπ → H, such that

UIπJ(a) = aUI for a ∈ A(J), J ⊂ I ′

J I

K

◮ ρI ∼= π with ρIJ = AdUI ◦ πJ is localized in I,
Haag duality ; ρIK(A(K)) ⊂ A(K) for all K ⊃ I.

◮ Unitary equivalence class [π] is a superselection sector = charge
◮ localized endomorphisms can be composed ↔ ⊗-product structure ;

“addition” of irreducible charges:

ρ ◦ σ ∼=
⊕

τ

N τ
ρ,στ , N τ

ρ,σ ∈ {0, 1, 2, . . .}

where N τ
ρ,σ ∈ {0, 1, 2, . . .} and [ρ], [σ], [τ ] are irreducible charges.
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Braiding due to (Fredenhagen–Rehren–Schroer ’89)

It holds ρI ◦ σJ = σJ ◦ ρI for I < J or (J < I).

J I
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Braiding due to (Fredenhagen–Rehren–Schroer ’89)

It holds ρI ◦ σJ = σJ ◦ ρI for I < J or (J < I).

J I

Then there is a natural family {ερ,σ ∈ Hom(ρ ◦ σ, σ ◦ ρ)}

ερ,σ ρ ◦ σ( · ) = ρ ◦ σ( · ) ερ,σ
fixed by asking ερI ,σJ = 1 for I > J .

σ

σρ

ρ

ρ

ρ
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Braiding due to (Fredenhagen–Rehren–Schroer ’89)

It holds ρI ◦ σJ = σJ ◦ ρI for I < J or (J < I).

J I

Then there is a natural family {ερ,σ ∈ Hom(ρ ◦ σ, σ ◦ ρ)}

ερ,σ ρ ◦ σ( · ) = ρ ◦ σ( · ) ερ,σ
fixed by asking ερI ,σJ = 1 for I > J .

σ

σρ

ρ

ρ

ρ
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Braiding due to (Fredenhagen–Rehren–Schroer ’89)

It holds ρI ◦ σJ = σJ ◦ ρI for I < J or (J < I).

J I

Then there is a natural family {ερ,σ ∈ Hom(ρ ◦ σ, σ ◦ ρ)}

ερ,σ ρ ◦ σ( · ) = ρ ◦ σ( · ) ερ,σ
fixed by asking ερI ,σJ = 1 for I > J .

σ

σρ

ρ

ρ

ρ

; Yang–Baxter relation, braid group representations, . . .
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◮ A net A is called rational if it has only finitely many irreducible
equivalence classes (sectors) Irr(Rep(A)) with finite quantum
dimension, i.e. Rep(A) is a unitary fusion category.
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◮ A net A is called rational if it has only finitely many irreducible
equivalence classes (sectors) Irr(Rep(A)) with finite quantum
dimension, i.e. Rep(A) is a unitary fusion category.

◮ (Kawahigashi–Longo–Müger ’01) ; Rep(A) is a unitary modular tensor
category with global dimension:

Dim(Rep(A)) :=
∑

ρ∈Irr(Rep(A))

dim(ρ)2 =
[

A(E′) : A(E)
]
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◮ A net A is called rational if it has only finitely many irreducible
equivalence classes (sectors) Irr(Rep(A)) with finite quantum
dimension, i.e. Rep(A) is a unitary fusion category.

◮ (Kawahigashi–Longo–Müger ’01) ; Rep(A) is a unitary modular tensor
category with global dimension:

Dim(Rep(A)) :=
∑

ρ∈Irr(Rep(A))

dim(ρ)2 =
[

A(E′) : A(E)
]

◮ A net A is called holomorphic if the only irreducible sector is the

vacuum sector, i.e. Rep(A)
br∼= Vect.
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◮ A net A is called rational if it has only finitely many irreducible
equivalence classes (sectors) Irr(Rep(A)) with finite quantum
dimension, i.e. Rep(A) is a unitary fusion category.

◮ (Kawahigashi–Longo–Müger ’01) ; Rep(A) is a unitary modular tensor
category with global dimension:

Dim(Rep(A)) :=
∑

ρ∈Irr(Rep(A))

dim(ρ)2 =
[

A(E′) : A(E)
]

◮ A net A is called holomorphic if the only irreducible sector is the

vacuum sector, i.e. Rep(A)
br∼= Vect.

Theorem ((Kawahigashi–Longo–Müger ’01), (B. ’16))

A rational and Q ⊂ QuOp(A) finite hypergroup, then AQ is rational and
Dim(Rep(AQ)) = D(Q)2Dim(Rep(A)).
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Twisted representations (after Müger)

◮ Let α ∈ Aut(A). An α-twisted representation is a representation
which is α-localized in some interval I, i.e. for every I1 < I < I2 we
have

ρI1 = idA(I1) , ρI2 = αI2

◮ Let G ≤ Aut(A), then we have the category G–Rep(A) generated
by α-twisted representations with α ∈ G.

◮ (Müger ’05) This category has an action of G and we can form the
equivariantization G–Rep(A)G which is braided equivalent to
Rep(AG).

◮ (Dijkgraaf–Pasquier–Roche ’90), (Müger ’10)

Let G ≤ Aut(A) a finite group, A holomorphic then
Rep(AG) ∼= Rep(Dω(G)) (twisted quantum double)
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Similarly, we can define Q–Rep(A) for every hypergroup Q ⊂ QuOp(A).

Theorem ((B. ’16))

If A is holomorphic, then Q–Rep(A) is a categorification of Q, i.e.
KQ–Rep(A)

∼= Q and superselection theory is given by Drinfel’d center
aka quantum double:

Rep(AQ)
br∼= Z(Q–Rep(A)) .
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Similarly, we can define Q–Rep(A) for every hypergroup Q ⊂ QuOp(A).

Theorem ((B. ’16))

If A is holomorphic, then Q–Rep(A) is a categorification of Q, i.e.
KQ–Rep(A)

∼= Q and superselection theory is given by Drinfel’d center
aka quantum double:

Rep(AQ)
br∼= Z(Q–Rep(A)) .

Interpretation: The category of Q-equivariant Q-twisted representations:

Rep(AQ)
br∼= (Q–Rep(A))Q .
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Similarly, we can define Q–Rep(A) for every hypergroup Q ⊂ QuOp(A).

Theorem ((B. ’16))

If A is holomorphic, then Q–Rep(A) is a categorification of Q, i.e.
KQ–Rep(A)

∼= Q and superselection theory is given by Drinfel’d center
aka quantum double:

Rep(AQ)
br∼= Z(Q–Rep(A)) .

Interpretation: The category of Q-equivariant Q-twisted representations:

Rep(AQ)
br∼= (Q–Rep(A))Q .

Question

Do all unitary fusion categories arises as Q–Rep(A) for some conformal
net A?
If true ; all unitary 3-2-1-0 extended TFTs come from Conformal Nets.
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Theorem ((B. ’16))

Let A be rational and Q ⊂ QuOp(A) hypergroup.
◮ Q ∼= KQ–Rep(A)//KRep(A) and

Z(Q–Rep(A))

Rep(A) Q–Rep(A)

forget
br

ι
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Theorem ((B. ’16))

Let A be rational and Q ⊂ QuOp(A) hypergroup.
◮ Q ∼= KQ–Rep(A)//KRep(A) and

Z(Q–Rep(A))

Rep(A) Q–Rep(A)

forget
br

ι

Drinfel’d center formula (⊗-categorical abstract non-sense) (Ocneanu,

Böckenhauer–Evans–Kawahigashi, Davydov–Müger–Nikshych–Ostrik):

; Z(Q–Rep(A))
br∼= Rep(AQ)⊠ Rep(A) ,
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Theorem ((B. ’16))

Let A be rational and Q ⊂ QuOp(A) hypergroup.
◮ Q ∼= KQ–Rep(A)//KRep(A) and

Z(Q–Rep(A))

Rep(A) Q–Rep(A)

forget
br

ι

Drinfel’d center formula (⊗-categorical abstract non-sense) (Ocneanu,

Böckenhauer–Evans–Kawahigashi, Davydov–Müger–Nikshych–Ostrik):

; Z(Q–Rep(A))
br∼= Rep(AQ)⊠ Rep(A) ,

Interpretation: Q–Rep(A) is a Q-hypergraded extension of Rep(A) and

Rep(AQ)
br∼= (Q–Rep(A))Q := Rep(A)′ ∩ Z(Q–Rep(A)) .

(Müger centralizer)
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Models and ApplicationsModels and Applications



Conformal net by example

Chiral Wess–Zumino–Witten model (χWZW) given by:
Loop group net of G at level k. G compact Lie group, LG = C∞(S1, G)

AGk
(I) = π0,k(LIG)

′′, LIG = {γ ∈ LG : supp γ ⊂ I}

gives a net on S1 and by restriction a net on R ∼= S1 \ {−1}.
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Example (Rep(ASU(2)k) (Wassermann))

Irreducible representations {0, 12 , 1, . . . , k2}:

[i]× [j] =

min(i+j,k−i−j)
⊕

n=|i−j|

[n]
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Example (Rep(ASU(2)k) (Wassermann))

Irreducible representations {0, 12 , 1, . . . , k2}:

[i]× [j] =

min(i+j,k−i−j)
⊕

n=|i−j|

[n]

Rep(ASU(2)k) is ⊗-generated by 1
2 -representation ρ 1

2

.

Ak+1 :
0

1
2 1 · · ·

k−1
2

k
2

Statistical dimension:

dρ 1

2

= 2 cos

(

π

k + 2

)

Braiding: given essentially by the Jones polynomial at some root of unity.
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Consider A = ASU(2)4 ⊂ B = ASU(2)4 ⋊ Z2 = ASU(3)1

D4 = 1Z3 :
β0

α 1
2

β1

β2

A5 :

ρ0
ρ 1
2

ρ1
ρ 3
2ρ2

ASU(2)4

ASU(3)1

∪
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Consider A = ASU(2)4 ⊂ B = ASU(2)4 ⋊ Z2 = ASU(3)1

D4 = 1Z3 :
β0

α 1
2

β1

β2

A5 :

ρ0
ρ 1
2

ρ1
ρ 3
2ρ2

ASU(2)4

ASU(3)1

∪

◮ βi are sectors of Rep(ASU(3)1) with Z3–fusion rules.

◮ α 1

2

is a soliton with dimension
√
3.

Theorem ((B.’16+))

All 1A tensor categories with A abelian group and |A| odd arise as
Z2–Rep(A) for some lattice (= torus loop group) conformal net ATn

L
.
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Quantum Galois Correspondence: E6 example

AE8,1

ASpin(16)1

ASpin(5)1×Spin(11)1 AD(E6)

ASU(2)10×Spin(11)1

• · · · ··

• · · · •·

• · · · •• • · • · •·

• • • • ••
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Defects/Phase boundaries

Definition

Let BL,BR ⊃ A. An A-topological BL–BR defect (or phase boundary)
are extensions A ⊂ BL,BR ⊂ D on the same Hilbert space:

[BL(I),D(J)] = {0} I < J BL is left local wrt D
[BR(K),D(J)] = {0} K > J BR is right local wrt D

=⇒ [BL(I),BR(K)] = {0} I < K BR is right local wrt BL

and D(J) = BL(J) ∨ BR(J)

I KJ

boundary

Describes a topological defect (invisible for A) between BL and BR.
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Let A be holomorphic.

◮ We say G ≤ Aut(A) if is anomaly free if the associated
[ω] ∈ H3(G,T) is trivial.

; We can form A⋊G (choice of H2(G,T)) which is an
AG–topological defect between A and A//G.
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Let A be holomorphic.

◮ We say G ≤ Aut(A) if is anomaly free if the associated
[ω] ∈ H3(G,T) is trivial.

; We can form A⋊G (choice of H2(G,T)) which is an
AG–topological defect between A and A//G.

Example

Let Γ be the Leech lattice, then there is a holomorphic conformal net
AΓ = AR24/Γ and the reflection gives anomaly free Z2 ≤ Aut(AΓ).
Moonshine net (Kawahigashi–Longo ’06)a

A♮ := AΓ//Z2

Aut(A♯) ∼= M the Monster group with |M| ≈ 8 · 1053

aassoc. w. the Frenkel–Lepowski–Meurman Moonshine Vertex Algebra V
♯
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Let A be holomorphic.

◮ We say G ≤ Aut(A) if is anomaly free if the associated
[ω] ∈ H3(G,T) is trivial.

; We can form A⋊G (choice of H2(G,T)) which is an
AG–topological defect between A and A//G.

Example

Let Γ be the Leech lattice, then there is a holomorphic conformal net
AΓ = AR24/Γ and the reflection gives anomaly free Z2 ≤ Aut(AΓ).
Moonshine net (Kawahigashi–Longo ’06)a

A♮ := AΓ//Z2

Aut(A♯) ∼= M the Monster group with |M| ≈ 8 · 1053

aassoc. w. the Frenkel–Lepowski–Meurman Moonshine Vertex Algebra V
♯

Mathematical Physics ; Pure Mathematics

〈[ω]〉 ∼= Z24 ≤ H3(M,T) (Johnson-Frey ’17) 〈[ω]〉 ?
= H3(M,T)
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If G is non-abelian then the “dual” Ĝ (more precisly (CG)∗) is only a
Hopf/Kac algebra. ∃ reverse twisted orbifold B//Ĝ with

A ( · )//G−−−−→ A//G =: B ( · )//Ĝ−−−−→ B//Ĝ = A ?
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If G is non-abelian then the “dual” Ĝ (more precisly (CG)∗) is only a
Hopf/Kac algebra. ∃ reverse twisted orbifold B//Ĝ with

A ( · )//G−−−−→ A//G =: B ( · )//Ĝ−−−−→ B//Ĝ = A ?

Definition

We say a finite-dim Hopf/Kac algebra H acts anomaly free on A if ∃
Q ≤ QuOp(A) with Q ∼= KCoRep(H) and Q–Rep(A)

⊗∼= Rep(H).
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If G is non-abelian then the “dual” Ĝ (more precisly (CG)∗) is only a
Hopf/Kac algebra. ∃ reverse twisted orbifold B//Ĝ with

A ( · )//G−−−−→ A//G =: B ( · )//Ĝ−−−−→ B//Ĝ = A ?

Definition

We say a finite-dim Hopf/Kac algebra H acts anomaly free on A if ∃
Q ≤ QuOp(A) with Q ∼= KCoRep(H) and Q–Rep(A)

⊗∼= Rep(H).

Theorem ((B. (unpublished)))

If H acts anomaly free on A ∃ holomorphic net A//H, such that A⋊H is
a AQ topological defect between A and A//H, namely

A//H(a, b) = (A⋊H)(a, b) ∩ (A⋊H)(−∞, a)′

Further, Ĥ acts anomaly free on A//H and A//H//Ĥ = A.
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Full CFTs

x

t

I2I1

O

One can define a conformal net on
Minkowski space by

A2(O) = A+(I1)⊗A−(I2)

where A± are conformal nets on R.

Full CFTs based on A± completely rational
are given by maximal local extensions

B2(O) ⊃ A+(I1)⊗A−(I2) ,

such that B2 has only the vacuum sector.

◮ Locality. [B2(O1),B2(O2)] = {0} if O1 and O2 are space like
separated.
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Full CFTs

x

t

I2I1

O

One can define a conformal net on
Minkowski space by

A2(O) = A+(I1)⊗A−(I2)

where A± are conformal nets on R.

Full CFTs based on A± completely rational
are given by maximal local extensions

B2(O) ⊃ A+(I1)⊗A−(I2) ,

such that B2 has only the vacuum sector.

◮ Locality. [B2(O1),B2(O2)] = {0} if O1 and O2 are space like
separated.

◮ Physically, the conformal net A2 describes (generalized) symmetries
of the full CFT B2.
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Full CFTs with Topological Defect Lines

O×

OL

OR







OL

O×

OR







7−→







BL(OL)
D(O×)
BR(OR)







⊃ (A2)(O•)

◮ Defect line invisible for the
subnet A2 (conserves
symmetries prescribed by A)

◮ Different realization ↔
different boundary conditions

◮ A-topological BL-BR defect
line.
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Theorem ((B–Kawahigashi–Longo–Rehren ’15),(B–Kawahigashi–Longo–Rehren ’16))

Let BL,BR maximal local extensions of A⊗A and A completely rational.
Then A⊗A–topological BL–BR phase boundaries can be classified from
the categorical data associated with Rep(A) as in
(Fröhlich–Fuchs–Runkel–Schweigert ’07)
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Theorem ((B–Kawahigashi–Longo–Rehren ’15),(B–Kawahigashi–Longo–Rehren ’16))

Let BL,BR maximal local extensions of A⊗A and A completely rational.
Then A⊗A–topological BL–BR phase boundaries can be classified from
the categorical data associated with Rep(A) as in
(Fröhlich–Fuchs–Runkel–Schweigert ’07)

Theorem ((B.))

Assume Q ⊂ QuOp(A) is a finite hypergroup and A rational conformal
net on S1.
Consider AQ ⊗A ⊂ A⊗A ⊂ B2, where A⊗A ⊂ B2 is the canonical
Longo–Rehren extension (Cardy case).
Then there is a one-to-one correspondence between AQ ⊗A-topological
B2-B2 defects and sectors in Q–Rep(A).
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Kramers–Wannier duality of the conformal Ising model:
The unique full CFT B2 ⊃ Vir1/2⊗Vir1/2 has a duality defect which gives
rise to the duality

(1, σ, ε)←→ (1, µ,−ε)

Marcel Bischoff (Ohio University) Symmetries in QFT beyond Groups 07/22/2017



Generalizes to a duality defect α 1

2

for B2 ⊃ AZ2

SU(3)1
⊗ ĀSU(3)1 :

(1, σχ1
, σχ2

, ε)←→ (1, µχ1
, µχ2

,−ε)

with Ẑ3 = {1, χ1, χ2}. Remember AZ2

SU(3)1
= ASU(2)4 ⊂ ASU(3)1

D4 = 1Z3 :
β0

α 1
2

β1

β2

A5 :

ρ0
ρ 1
2

ρ1
ρ 3
2ρ2

ASU(2)4

ASU(3)1

∪

More general, for every 1A (Tambara–Yamagami) fusion category.
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Outlook

Generalized Orbifolds

◮ Find all finite hypergroups in QuOp(AE8,1
), construct the

hypothetical Haagerup CFT of (Evans–Gannon ’11).

◮ Infinite, e.g. compact hypergroup actions ; analytical and
approximation properties

◮ Is QuOp(A) always a compact hypergroup and AQuOp(A) = VirA?

◮ What is Rep(Virc) for c ≥ 1 and can we classify all rational
conformal nets by a nice structure similar to Rep(TLJ)?

Reconstruction Program:

◮ Given algebraic data of planar algebra, fusion category or
subfactor construct a conformal net such that defects revover the
planar algebra, fusion category or subfactor, respectively.
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Thank you for your attention!
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