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Non linear PDE’s the NLS

One of the most studied non–linear PDE’s is the

non linear Schrödinger equation, NLS

− iut + ∆u = κ|u|2qu, q ≥ 1 ∈ N. (1)

Here ∆ is the Laplace operator. This is the completely resonant
form of the NLS
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The NLS equation and Waves

The NLS equation is used to model wave motion in water

The first thing to fix is the domain...
We are interested in bounded domains where we expect recurrent
behavior to be typical.
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Non linear PDE’s the NLS

I will discuss the periodic boundary conditions case, that is
the equation on a torus Tn.
Thus u := u(t, ϕ), ϕ ∈ Tn and ∆ is the Laplace operator.
The case q = 1 is of particular interest and is usually referred
to as the cubic NLS.

There is an extensive literature in dimension n = 1
In dimension n = q = 1 the NLS has special good properties, it is

completely integrable
our treatment is for all n and q with special enfasis to q = 1.
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Non linear PDE’s the NLS

In Fourier representation

u(t, ϕ) :=
∑

k∈Zn
uk(t)ei(k,ϕ) ,

we have to study the evolution of the Fourier coefficients.

For the homogeneous linear equation we have:

u̇(t, φ) = −i∆u(t, φ) → u̇k(t) = i|k|2uk

hence the formula of waves with integer frequencies:

uk(t) =
√
ξkei |k|2t , k ∈ Zn.
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Non linear PDE’s the NLS

We see that a solution which depends on finitely many frequencies

u(t) =
h∑

i=1

√
ξki ei |ki |2t , ki ∈ Zn.

is necessarily periodic, this is a form of resonance for the linear
NLS.

Notice also that |k|2 is constant on large sets of frequencies.
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Some interesting phenomena

1. Recurrent behavior

2. Energy transfer
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Some interesting phenomena

1. Recurrent behavior
Start from an initial datum which is essentially localized on a finite
number of Fourier modes...
the solution stays essentially localized on the same modes at all
times.

2. Energy transfer
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Some interesting phenomena

1. Recurrent behavior

2. Energy transfer
Start from an initial datum which is essentially localized on a finite
number of Fourier modes...
the Fourier support of the solution spreads to higher modes.
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Some interesting phenomena

1. Recurrent behavior

2. Energy transfer

One could also study

3. Shock waves.
Start with a smooth initial datum and after a finite time the
solution is not smooth any more

There is an enormous literature and very active research on these
topics!
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The NLS in Hamiltonian formalism

The NLS can be described as an infinite dimensional Hamiltonian
system where the Fourier coefficients are the symplectic
coordinates and with Hamiltonian (for q = 1)

H =
∑

k∈Zn
|k|2uk ūk +

∑
ki∈Zn:k1+k3=k2+k4

uk1 ūk2uk3 ūk4 ,

{uh, uk} = {ūh, ūk} = 0, {ūh, uk} = δh
k i

H Poisson commutes with

momentum M =
∑

k∈Zn
kuk ūk , mass L =

∑
k∈Zn

uk ūk .

This makes sense on Hilbert spaces of very regular functions with
exponential decay on Fourier coefficients
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The NLS in Hamiltonian formalism

The quadratic part K :=
∑

k∈Zn |k|2uk ūk

describes the linear waves which behave as infinitely many
independent oscillators! with integer frequencies

the non linear perturbation will deform these integer frequencies to
possibly Q–linearly independent frequencies or to cahotic
behaviour.
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Non linear PDE’s the NLS

When we add the non linear term we expect that typical solutions
are not periodic, but when we study small solutions we hope to be
able to treat the problem with the methods of perturbation theory
as in classical dynamical systems and hope to find special
solutions:

quasi–periodic solutions.

The reason why has a long story.
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WHY

QUASI PERIODIC ORBITS
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Why quasi–periodic

As soon as we have at least two degrees of freedom (like rotation
and revolution) each moving periodically the probability that the
joint motion be periodic is clearly zero,

it means that the two frequencies have a rational ratio!!

So we have to expect that n independent periodic motions
describe a dense orbit in the n–dimensional torus (Kronecker).
This is the notion of quasi periodic orbit.
This is the usual picture, in action–angle variables, of a
non degenerate completely integrable system.
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The ergodic hypothesis, a general system

The Fermi–Pasta–Ulam experiment

The ergodic hypothesis
For a long time, from qualitative considerations and from the ideas
of statistical mechanics, it was believed that in a small
perturbation of a completely integrable system almost all orbits
should be ergodic.

A surprise 1955 (a recurrent behaviour)
As soon as the first computers were available there was a famous
simulation by Fermi–Pasta–Ulam where they discovered, contrary
to their intuition, that a small non–linear perturbation of a system
of oscillators produced in long term, instead of an ergodic
behaviour, complicated quasi–periodic behaviour.
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The appearance of KAM theory

Small perturbation
The discovery of some (complicated) but large persistence of
quasi–periodic solutions for a small perturbation of a non
degenerate completely integrable system is the content of

KAM theory,
developed around 50 years ago by Kolmogorov, Arnold and Moser.

The theory is in a way constructive in the sense that the
quasi–periodic orbits are built by an algorithm.
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Birkhof normal form, a formal conjugacy Theorem

The KAM algorithm is a refinement of a purely algebraic procedure
called Birkhof normal form.
A formal algebraic Theorem

1 Hamilton equations can be used to define a formal group of
symplectic automorphisms of formal power series

2 Under this group a Hamiltonian of the form,
∑

i λi Ii + P
where P starts from degree 3 and the λi are linearly
independent over the rationals is equivalent to a formal series

H ∼ f (I1, . . . , In)

in the Poisson commuting elements Ii := (p2
i + q2

i )/2.
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Birkhof normal form, a formal conjugacy Theorem

A formal integrability
What this means is that formal perturbation theory brings the
Hamiltonian in a completely integrable form!

But of course
usually this is completely divergent.

We cannot expect a perturbation to behave as a completely
integrable systems!

What should we expect?
An answer is given by KAM theory.
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The answer of KAM theory

By introducing parameters for the orbits the previous algorithm
can be made convergent on complicated Cantor subsets of the
parameter space!
In a setting as before we should expect that, if P is small, lots of
stable tori will persist, but in a very complex fractal way.

With infinitely many holes in which the behavior of the system may
be quite complex and cahotic!
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SUMMARIZING

From an algorithmic viewpoint:

The appearance of Cantor sets
in the KAM algorithm we have parameters ξi . In the
algorithm we often divide by expressions in the ξi which may
vanish, giving infinitely many poles which have to be avoided.
These are small divisors and resonances so that the success of
the algorithm depends on suitable non degeneracy conditions
treated by a mixture of combinatorial and analytic methods.

A few years later similar approaches of KAM theory were
developed successfully by several authors in order to study non
linear PDE’s treated as infinite dimensional dynamical systems.
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The NLS in Hamiltonian formalism

The goal
We want to apply (infinite dimensional) KAM theory and prove the

existence of many quasi–periodic solutions.

The construction of quasi–periodic solutions is performed in four
steps (corresponding to 4 papers with Michela, the second also
with Nguyen Bich Van (her Ph.D. thesis)).

The plan
1 Construction of integrable normal forms, rectangle graph
2 Proof of non–degeneracy of the normal form, lots of algebra
3 q = 1, The quasi–Töpliz property and the KAM algorithm,

hard analysis
4 General q.
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Birkhof’s algorithm and rectangles in the NLS for q = 1

K :=
∑

k∈Zn |k|2uk ūk is the quadratic part of H

In each step of Birkhof’s algorithm one removes inductively the
terms of the Hamiltonian which do not Poisson commute with K .

We see that each monomial uaūbuc ūd is an eigenvector of the
operator {K ,−} (Poisson bracket) with eigenvalue

i(|a|2 − |b|2 + |c|2 − |d |2)
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Rectangles in the NLS

In particular the resonant monomials uaūbuc ūd which Poisson
commute with L,M,K have

a + c = b + d , |a|2 + |c|2 = |b|2 + |d |2.

That is the vectors a, b, c, d are the vertices of a rectangle.

a

c

d

b



Introduction The NLS qpo The graph Algebra

Birkhof for the NLS

In each step of Birkhof’s algorithm one removes all the terms of
the Hamiltonian which do not commute with K .
So after one step (an analytic change of variables) the Hamiltonian

H =
∑

k∈Zn
|k|2uk ūk +

∑
ki∈Zn:k1+k3=k2+k4

uk1 ūk2uk3 ūk4 ,

becomes

K +
∑

ki∈Zn :k1+k3=k2+k4
|k1|2+|k3|2=|k2|2+|k4|2

uk1 ūk2uk3 ūk4 + O(|u|6).
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Main remark
If we take the Hamiltonian in which we keep in the quartic part
only the resonant monomials,

resonant Hamiltonian K +
∑

ki∈Zn :k1+k3=k2+k4
|k1|2+|k3|2=|k2|2+|k4|2

uk1 ūk2uk3 ūk4 ,

this has lots of easily described finite dimensional invariant
subspaces where the Hamiltonian is completely integrable and non
degenerate as follows:

Tangential sites
choose some generic frequencies v1, . . . , vm called tangential sites,
set uj = 0, ∀j /∈ {v1, . . . , vm}. On this subspace all solutions are
quasi–periodic, they are ergodic on a family of tori.
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The linearization of the problem

The idea is to
linearize the Hamiltonian vector field on the family of the normal
bundles of these invariant tori.

This means in practice to choose polar coordinates on these tori
and usual symplectic coordinates on the normal spaces.

Then we keep only the linear part of the vector field or the
quadratic part of the Hamiltonian.
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Some technical details on the linearization

We put the variables corresponding to the frequencies vi in
polar coordinates and introduce parameters for the family of
tori so we set

uvi :=
√
ξi + yieixi =

√
ξi (1 + yi

2ξi
+ . . .)eixi

we call uk = zk for the normal frequencies, give degree 2 to
the yi and 1 to zk (and 0 to xi)
finally we collect the terms of degree 2 in the resulting
Hamiltonian, this is our normal form N.
What is left one can show can be treated as perturbation.
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We obtain thus the normal form Hamiltonian N

N = K +Q(x , z) , Sc := Zn \ {v1, . . . , vm}

where K :=
∑

1≤i≤m
(|vi |2 − 2ξi )yi +

∑
k∈Sc
|k|2|zk |2 (2)

and Q(x , z) = 4
∗∑

1≤i 6=j≤m
h,k∈Sc

√
ξiξjei(xi−xj )zhz̄k+ (3)

2
∗∗∑

1≤i<j≤m
h,k∈Sc

√
ξiξje−i(xi +xj )zhzk + 2

∗∗∑
1≤i<j≤m

h,k∈Sc

√
ξiξjei(xi +xj )z̄hz̄k .
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This is a non-integrable potentially very complicated infinite
dimensional quadratic Hamiltonian! Since the angle variables still
interact with the normal ones.

The remaining terms form the perturbation which indeed is
sufficiently small.

The symbols
∗∑ ∗∗∑

mean that the sum is restricted to the quadruples vi , vj , h, k or
vi , h, vj , k which are vertices of a rectangle.

The appearance of a graph
The combinatorics of these rectangles is given by a RECTANGLE
GRAPH.
The connection with the NLS N = K +Q(x , z) is to single out the
rectangles associated to the terms appearing in Q(x , z)
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The first MAIN GOAL

Theorem
For a generic S this Hamiltonian decomposes into an infinite sum
of non interacting finite blocks.

One can make a symplectic change of variables which eliminates all
the angles xi in the formulas! (that is N becomes integrable!)

4
∗∑

1≤i<j≤m
h,k∈Sc

√
ξiξjzhz̄k + 2

∗∗∑
1≤i<j≤m

h,k∈Sc

√
ξiξj(zhzk + z̄hz̄k).

This now is an integrable infinite dimensional quadratic
Hamiltonian but decomposed into infinitely many non interacting
finite dimensional blocks.
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Linear algebra

At this point the study of this Hamiltonian is a very complicated
problem of linear algebra, (canonical forms, eigenvalues).
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How did I get involved?

The rectangle graph
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A digression into geometry

My interest started when my daughter Michela proposed to me a
strange problem of elementary Euclidean Geometry.
At that time I had no idea of its analytic implications.
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The culprit Hokkaido 2009
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A strange problem: The rectangle graph ΓS

In Euclidean space Rn choose m distinct points S := {v1, . . . , vm}.
1 To this set S we associate a graph with vertices:

all the points of Rn.
2 Two points x , y are joined by an edge if we can complete

them with two points a = vi , b = vj ∈ S such that x , y , a, b
are the vertices of a rectangle.
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This can be done in 2 different ways:

a

b

c

d
e

f

H

S

m

l
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A colored and marked graph

In fact we have two different possibilities (two colors)

A black edge p
ei−ej q connects two points p, q which are

adjacent in the rectangle with vertices p, q, vj , vi .

A red edge p
−ei−ej q connects two points p, q which are

opposite in the rectangle with vertices p, vj , q, vi .

In fact we are interested only when S ⊂ Zn and on the part of the
graph with vertices in Sc = Zn \ S!! Call this graph ΓS .
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EXAMPLE: S is given by 4 points marked •

. . . . . . . . .

. . • . . . . . .

. . . . . . . • .

. . . . . . . . .

. . . . . . • . .

. . • . . . . . .
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EXAMPLE: points connected by edges
. •

��������������
, . . . . . .

. . . •

��������������
. . . . .

• . • . . •

��������������
. . .

. . • . . . . • .

• . . . • . . . .

. . . . . . • . .

. . • . . • . . .
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As explained, the connection with N = K +Q(x , z) is to single out
the rectangles associated to the terms appearing in Q(x , z)

in order to decouple it into non interacting blocks.

In fact a black edge corresponds to a term√
ξiξjei(xi−xj )zhz̄k or

√
ξiξjei(xj−xi )z̄hzk of

∑∗
and a red edge corresponds to a term√
ξiξjei(xi +xj )zhzk or

√
ξiξjei(xi +xj )z̄hz̄k of

∑∗∗.
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The Problem

The problem
The problem consists in the study of the connected components of
this graph ΓS for S generic.

Each connected component gives a block of Q(x , z), these blocks
do not interact with each other.

It is not hard to see that, for generic values of S, the set S is itself
a connected component which we call the special component.

In particular we are interested in the points of the graph with
integer coordinates (assuming S ⊂ Zn).
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The main combinatorial Theorem

Theorem
For generic choices of S the connected components of the graph
ΓS , different from the special component, are formed by

affinely independent points.
In particular each component has at most n + 1 points.

The proof is quite complex
it requires some algebraic geometry and a very long and difficult
combinatorial analysis.
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The next algebraic step

One can eliminate the angles xi by suitable rotations of the
variables zk !. Then
the new Hamiltonian is

4
∗∑

1≤i<j≤m
h,k∈Sc

√
ξiξjzhz̄k + 2

∗∗∑
1≤i<j≤m

h,k∈Sc

√
ξiξj(zhzk + z̄hz̄k),

each connected component of the graph
determines a matrix dependent on the variables ξ describing the
Hamiltonian in that block.

One wants to show that for generic values of ξ all eigenvalues
of all these infinitely many matrices are all non zero and
distinct! (This is the required non–degeneracy).
These properties are called Melnikov conditions.
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The matrices:

These infinitely many matrices are obtained from a
finite number of combinatorial matrices

by adding infinitely different scalar matrices, depending on the
various geometric blocks with the same combinatorial structure,
given by one of the possible combinatorial graphs.
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The combinatorial matrices: example

combinatorial
graph:

d
4,1

4,3 c

a 1,2 b

2,3

associated
matrix:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2
√
ξ2ξ1 0 −2

√
ξ1ξ4

−2
√
ξ2ξ1 ξ2 − ξ1 −2

√
ξ2ξ3 0

0 −2
√
ξ2ξ3 −ξ1 + ξ3 −2

√
ξ4ξ3

−2
√
ξ1ξ4 0 −2

√
ξ4ξ3 ξ4 − ξ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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With characteristic polynomial

−4 ξ3
1 ξ2 + 4 ξ2

1 ξ2 ξ3 − 4 ξ3
1 ξ4 + 8 ξ2

1 ξ2 ξ4 + 4 ξ2
1 ξ3 ξ4 − 8 ξ1 ξ2 ξ3 ξ4

+(ξ3
1−9 ξ2

1 ξ2−ξ2
1 ξ3+ξ1 ξ2 ξ3−9 ξ2

1 ξ4+9 ξ1 ξ2 ξ4+ξ1 ξ3 ξ4+7 ξ2 ξ3 ξ4) t

+(3 ξ2
1 − 6 ξ1 ξ2 − 2 ξ1 ξ3 − 3 ξ2 ξ3 − 6 ξ1 ξ4 + ξ2 ξ4 − 3 ξ3 ξ4) t2

+(3 ξ1 − ξ2 − ξ3 − ξ4) t3 + t4
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The combinatorial matrices: example

a
(1,2)

b
(i ,j)

c
(h,k)

d ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2
√
ξ2ξ1 0 0

−2
√
ξ2ξ1 ξ2 + ξ1 −2

√
ξiξj 0

0 −2
√
ξiξj −ξi + ξj + ξ2 + ξ1 −2

√
ξkξh

0 0 −2
√
ξhξh ξk − ξh − ξi + ξj + ξ2 + ξ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Discriminants and resultants

A priori to prove the condition that a polynomial has distinct roots
is given by the non vanishing of the discriminant.

The condition that two polynomials have distinct roots is given by
the non vanishing of their resultant.

For our matrices
this is impossible to verify directly. So we need a trick.
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MAIN THEOREM of Step 2

Main Theorem
The characteristic polynomials of the combinatorial matrices are all
irreducible and different from each other.

Implications
1 Eigenvalue separation
2 Validity of the Melnikov conditions.
3 Symplectic coordinates which diagonalize the Hamiltonian.
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The KAM algorithm

At this point one must show

Theorem
The KAM algorithm converges on some Cantor set of positive
measure in the parameters ξ producing the desired quasi–periodic
solutions.

This is based on the introduction of a norm on Hamiltonians, the
quasi–Töpliz norm, (a rather non trivial development of ideas
originated from Eliasson and Kuksin), then one has to show that
this norm controls the algorithm.
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An idea of the algebraic part of the proof

SOME ALGEBRA: the Cayley graphs

Given a group G and a set S ⊂ G with S = S−1

The Cayley graph has vertices the elements of G and edges the
pairs a, b such that ab−1 ∈ S.
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The graph ΛS associated to v1, . . . , vm

1 We start from the group G := Zm n Z/(2) = {(
∑

i niei ,±1)},
a semi–direct product.

2 In G consider the Cayley graph associated to the elements
(ei − ej , 1), (−ei − ej ,−1).

3 One next defines an energy function: Given
a =

∑
i νiei , σ = ±1 set

K ((a, σ)) := σ

2 (|
∑

i
aivi |2 +

∑
i
ai |vi |2). (4)

4 Finally ΛS is the subgraph of the Cayley graph in which each
edge preserves the energy.

The graph ΓS can be studied through ΛS .
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Components of ΛS

So components correspond to geometric–combinatorial graphs

Example (Combinatorial graph)

−e2 − e1 − µ −e2 − e3 − µ

−e2−e3
mmmmmmmmmmmmmmm

mmmmmmmmmmmmmmm

e4 − e5 + µ oo e4−e5
µ

−e2−e1

e4−e2
// µ+ e4 − e2

µ =
∑

i µiei ∈ Zm

In order to understand energy conservation we then pass to the
geometric graph mapping µ→ π(µ) =

∑
i µivi := −b and have

the corresponding
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Components of ΓS

geometric components satisfying a system of equations dependent
on the parameters vi :

Example (Geometric Avatar of previous graph)

e c

2,3�������

�������

a 5,4 b

2,1

2,4 d

a− b = v5− v4, e + b = v1 + v2, b + c = v2 + v3, b− d = v2− v4

|a|2 − |b|2 = |v5|2 − |v4|2, |e|2 + |b|2 = |v1|2 + |v2|2, . . .
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Another example, after eliminating the linear equations

Example
The equations that x has to satisfy are:

x − v1 + v3OO
2,1

x − v2 + v3

x
3,2

99tttttttttt��

1,3

�����������������

1,2 −x + v1 + v2

2,3

CCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCC1,3

QQQQQQQQQQQQ

QQQQQQQQQQQQ

(x , v2 − v3) = |v2|2 − (v2, v3)

|x |2 − (x , v1 + v2) = −(v1, v2)

(x , v1 − v3) = |v1|2 − (v2, v3)
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All the vector variables except 1 (for instance b) can be eliminated
by the linear equations.

Thus one needs to prove that certain resonant graphs which we
want to exclude produce a system of equations without real
solutions for generic values of the vi .

The lists of non generic vectors which instead satisfy some of the
equations give the resonant choices.

This turns out to be a very delicate combinatorial problem but it
has a nice positive solution.

Every graph with affinely dependent vertices is resonant and does
not appear for generic choices of vi .
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For the irreducibility of the characteristic polynomials one proceeds
by induction.

The idea is this
assume that all the polynomials relative to graphs with less then k
elements are irreducible.

For a given graph with k + 1 elements
by setting one of the ξi = 0 one removes
all edges where i appears in the marking.
The given polynomial specialyzes to a
product of polynomials, irreducible by
induction, for smaller graphs.
Doing this for different i one gets the result

This is a very long case analysis plus some basic inductive steps
done by computer.

(Ph. D. thesis of Nguyen Bich Van)
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Example

γ := a
(1,2)

b
(i ,j)

c
(h,k)

d ,

set ξi = 0 get

a
(1,2)

b c
(h,k)

d ,

set ξ1 = 0 get

a b
(i ,j)

c
(h,k)

d ,

so if the characteristic polynomial associated to γ is reducible, by
the first it must split into 2 quadratic irreducibes by the second
into a linear and a cubic. INCOMPATIBLE!
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