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Thermal equilibrium states

Thermodynamics concerns heat and temperature and their relation
to energy and work. A primary role is played by the equilibrium
distribution.

Gibbs states

Finite quantum system: A matrix algebra with Hamiltonian H and
evolution τt = Ade itH . Equilibrium state ϕ at inverse temperature
β is given by the Gibbs property

ϕ(X ) =
Tr(e−βHX )

Tr(e−βH)

What are the equilibrium states at infinite volume where there is
no trace, no inner Hamiltonian?



KMS states (HHW, Baton Rouge conference 1967)

Infinite volume. A a C ∗-algebra, τ a one-par. automorphism group
of A. A state ϕ of A is KMS at inverse temperature β > 0 if for
X ,Y ∈ A ∃ FXY ∈ A(Sβ) s.t.

(a) FXY (t) = ϕ
(
X τt(Y )

)
(b) FXY (t + iβ) = ϕ

(
τt(Y )X

)
where A(Sβ) is the algebra of functions analytic in the strip
Sβ = {0 < =z < β}, bounded and continuous on the closure S̄β.

(Note: it is sufficient to check (a) and (b) for X ,Y in a dense
∗-subalgebra B.)

KMS states have been so far the central objects in Equilibrium
Quantum Statistical Mechanics, for example in the analysis of
phase transition.



Modular theory and Connes cocycles

Let M be a von Neumann algebra and ϕ a normal faithful state on
M. The Tomita-Takesaki theorem gives a canonical evolution:

t ∈ R 7→ σϕt ∈ Aut(M)

By a remarkable historical coincidence, Tomita announced the
theorem at the 1967 Baton Rouge conference. Soon later Takesaki
charcterised the modular group by the KMS condition.

The Connes Radon-Nikodym cocycle relates the modular groups of
different states

ut = (Dψ : Dϕ)t ∈M , σψt = utσ
ϕ
t (·)u∗t

a first step towards the celebrated Connes classification of factors.



Non-equilibrium thermodynamics

Non-equilibrium thermodynamics: study physical systems not in
thermodynamic equilibrium but basically described by thermal
equilibrium variables. Systems, in a sense, near equilibrium; but, in
general, the system is non-uniform in space and time.

Non-equilibrium thermodynamics has been effectively studied for
decades with important achievements, yet the general theory is still
missing. The framework is even more incomplete in the quantum
case, non-equilibrium quantum statistical mechanics.

We aim provide a general, model independent scheme for the above
situation in the context of quantum, two dimensional Conformal
Quantum Field Theory. As we shall see, we provide the general
picture for the evolution towards a non-equilibrium steady state.



Figure: Non-equilibrium steady state



A typical frame described by Non-Equilibrium Thermodynamics:

R1

β1

probe. . . . . . R2

β2

Two infinite reservoirs R1, R2 in equilibrium at their own
temperatures T1 = β−1

1 , T2 = β−1
2 , and possibly chemical

potentials µ1, µ2, are set in contact, possibly inserting a probe.

As time evolves, the system should reach a non-equilibrium steady
state.

This is the situation we want to analyse. As we shall see the
Operator Algebraic approach to CFT provides a model independent
description, in particular of the asymptotic steady state, and exact
computation of the expectation values of the main physical
quantities.



Non-equilibrium steady states (Ruelle)

A non-equilibrium steady state NESS ϕ of A satisfies property (a)
in the KMS condition, for all X ,Y in a dense ∗-subalgebra of B,
but not necessarily property (b).

For any X ,Y in B the function

FXY (t) = ϕ
(
X τt(Y )

)
is the boundary value of a function holomorphic in Sβ.

Example: the tensor product of two KMS states at temperatures
β1, β2 is a NESS with β = min(β1, β2).

Problem: describe the NESS state ω and show that the initial
state ψ evolves towards ω

lim
t→+∞

ψ · τt = ω



Möbius covariant nets (Haag-Kastler nets on S1)
A local Möbius covariant net A on S1 is a map

I ∈ I → A(I ) ⊂ B(H)

I ≡ family of proper intervals of S1, that satisfies:

I A. Isotony. I1 ⊂ I2 =⇒ A(I1) ⊂ A(I2)

I B. Locality. I1 ∩ I2 = ∅ =⇒ [A(I1),A(I2)] = {0}
I C. Möbius covariance. ∃ unitary rep. U of the Möbius group

Möb on H such that

U(g)A(I )U(g)∗ = A(gI ), g ∈ Möb, I ∈ I.

I D. Positivity of the energy. Generator L0 of rotation subgroup
of U (conformal Hamiltonian) is positive.

I E. Existence of the vacuum. ∃! U-invariant vector Ω ∈ H
(vacuum vector), and Ω is cyclic for

∨
I∈I A(I ).



Consequences

I Irreducibility:
∨

I∈I A(I ) = B(H).

I Reeh-Schlieder theorem: Ω is cyclic and separating for each
A(I ).

I Bisognano-Wichmann property (KMS property of ω|A(I )):
The modular operator/conjugation ∆I and JI of (A(I ),Ω) are

U(δI (2πt)) = ∆−itI , t ∈ R, dilations

U(rI ) = JI reflection

(Fröhlich-Gabbiani, Guido-L.)

I Haag duality: A(I )′ = A(I ′)

I Factoriality: A(I ) is III1-factor (in Connes classification)



Local conformal nets
Diff(S1) ≡ group of orientation-preserving smooth diffeomorphisms of S1.

Diff I (S1) ≡ {g ∈ Diff(S1) : g(t) = t ∀t ∈ I ′}.

A local conformal net A is a Möbius covariant net s.t.

F. Conformal covariance. ∃ a projective unitary representation U
of Diff(S1) on H extending the unitary representation of Möb s.t.

U(g)A(I )U(g)∗ = A(gI ), g ∈ Diff(S1),

U(g)xU(g)∗ = x , x ∈ A(I ), g ∈ Diff I ′(S1),

−→ unitary representation of the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm,n

−→ stress-energy tensor:

T (z) =
∑
n∈Z

Lnz−n−2



Representations

A (DHR) representation ρ of local conformal net A on a Hilbert
space H is a map I ∈ I 7→ ρI , with ρI a normal rep. of A(I ) on H
s.t.

ρĨ �A(I ) = ρI , I ⊂ Ĩ , I , Ĩ ⊂ I .

Index-statistics relation (L.):

d(ρ) =
[
ρI ′
(
A(I ′)

)′
: ρI
(
A(I )

)] 1
2

DHR dimension =
√

Jones index



(Complete) rationality (Kawahigashi, Müger, L.)

µA ≡
[(
A(I1) ∨ A(I3)

)′
:
(
A(I2) ∨ A(I4)

)]
<∞

=⇒
µA =

∑
i

d(ρi )
2

The representations of A form a modular tensor category.

(Feng Xu in the loop group case)



Circle and real line picture

-1

∞

P 
P'

z 7→ i
z − 1

z + 1

We shall frequently switch between the two pictures.



KMS and Jones index

Kac-Wakimoto formula (conjecture)

Let A be a conformal net, ρ representations of A, then

lim
t→0+

Tr(e−tL0,ρ)

Tr(e−tL0)
= d(ρ)

Analog of the Kac-Wakimoto formula (theorem)

ρ a representation of A:

(ξ, e−2πKρξ) = d(ρ)

where Kρ is the generator of the dilations δI and ξ is any vector
cyclic for ρ(A(I ′)) such that (ξ, ρ(·)ξ) is the vacuum state on
A(I ′).



Basic conformal nets

U(1)-current net

In the real line picture A is given by

A(I ) ≡ {W (f ) : f ∈ C∞R (R), supp f ⊂ I}′′

where W is the representation of the Weyl commutation relations

W (f )W (g) = e−i
∫
fg ′W (f + g)

associated with the vacuum state ω

ω(W (f )) ≡ e−||f ||
2
, ||f ||2 ≡

∫ ∞
0

p|f̃ (p)|2dp

where f̃ is the Fourier transform of f .



W (f ) = exp
(
− i

∫
f (x)j(x)dx

)
,
[
j(f ), j(g)

]
= i

∫
fg ′dx

with j(x) the U(1)-current.

There is a one parameter family {γq, q ∈ R} of irreducible sectors
and all have index 1 (Buchholz, Mack, Todorov)

γq(W (f )) ≡ e i
∫
Ff W (f ), F ∈ C∞,

1

2π

∫
F = q .

q is the called the charge of the sector.



Virasoro nets

The positive energy, irr. unitary representations of the Virasoro
algebra are indexed by the central charge c and the lowest weight
h ≥ 0. They correspond to irr. reps of Diff (S1).

For every possible value of c , let Uc the irreducible rep. of Diff(S1)
with h = 0.

Virc(I ) ≡ Uc(DiffI (S1))′′

Universal property of the Virasoro net Virc : By diffeomorphism
covariance, Virc is contained in every conformal net.



A classification of KMS states (Camassa, Tanimoto,
Weiner, L.)

Rational case

Only one KMS state (w.r.t. translations) β = 2π

exp: net on R A → restriction of A to R+

exp �A(I ) = AdU(η)

η diffeomorphism, η�I = exponential

ϕgeo geometric KMS state on A(R), ω vacuum state on A(R+)

ϕgeo = ω ◦ exp

Scaling with dilation, we get the unique KMS state at any given
β > 0.



Non-rational case: U(1)-current model

The primary (locally normal) KMS states of the U(1)-current net
are in one-to-one correspondence with real numbers q ∈ R;

Geometric KMS state: ϕgeo = ϕ0

Any primary KMS state:

ϕq = ϕgeo ◦ γq.

where
γq(W (f )) = e iq

∫
f (x)dxW (f )

γq is equivalent to the BMT q-sector.



Virasoro net c ≥ 1

(With c < 1 there is only one KMS state: the net is rational)

Extremal KMS states of the Virc net determined by the value on
the stress-energy tensor T :

ϕ|q| (T (f )) =

(
π

12β2
+

q2

2

)∫
f dx .

and the geometric KMS state corresponds to q = 1
β

√
π(c−1)

6 and
energy density πc

12β2 .



Chemical potential (cf. AHKT)

A a local conformal net on R and ϕ an extremal β-KMS state on
A ≡ ∪I⊂RA(I ) w.r.t. the time translation group τ and ρ an
irreducible DHR localised endomorphism of A. Assume that ρ is
normal and d(ρ) <∞ (automatic in rational case).

U time translation unitary covariance cocycle in A:

AdU(t) · τt · ρ = ρ · τt , t ∈ R ,

(unique by Möb covariance).

U is equal up to a phase to a Connes Radon-Nikodym cocycle:

U(t) = e−i2πµρ(ϕ)td(ρ)−iβ
−1t
(
Dϕ · Φρ : Dϕ

)
−β−1t

.

µρ(ϕ) ∈ R is the chemical potential of ϕ w.r.t. the charge ρ.



Here Φρ is the left inverse of ρ.

The geometric β-KMS state ϕ0 has zero chemical potential.

By the holomorphic property of the Connes Radon-Nikodym
cocycle:

e2πβµρ(ϕ) = anal. cont.
t−→ iβ

ϕ
(
U(t)

)/
anal. cont.

t−→ iβ
ϕ0

(
U(t)

)
.

Example, BMT sectors:

With ϕβ,q the β-state associated with the charge q, the chemical
potential w.r.t. the charge q is given by

µp(ϕβ,q) = qp/π

By linearity µp is determined at p = 1, so we may put
µ(ϕβ,q) = q/π.



2-dimensional CFT

M = R2 Minkowski plane.(
T00 T10

T01 T11

)
conserved and traceless stress-energy tensor.

As is well known, T+ = 1
2 (T00 + T01) and T− = 1

2 (T00 − T01) are
chiral fields,

T+ = T+(t + x), T− = T−(t − x).

Left and right movers.



Ψk family of conformal fields on M: Tij + relatively local fields
O = I × J double cone, I , J intervals of the chiral lines t ± x = 0

A(O) = {e iΨk (f ), suppf ⊂ O}′′

then by relative locality

A(O) ⊃ AL(I )⊗AR(J)

AL,AR chiral fields on t ± x = 0 generated by TL,TR and other
chiral fields

Rational case: AL(I )⊗AR(J) ⊂ A(O) has finite Jones index.



Phase boundaries (Bischoff, Kawahigashi, Rehren, L.)

ML ≡ {(t, x) : x < 0}, MR ≡ {(t, x) : x > 0} left and right half
Minkowski plane

A transpartent phase boundary is given by specifying two local
conformal nets BL and BR on ML/R on the same Hilbert space H;

ML ⊃ O 7→ BL(O) ; MR ⊃ O 7→ BR(O) ,

BL and BR both contain a common Virasoro or larger chiral net A
and by causality:[

BL(O1),BR(O2)
]

= 0, O1 ⊂ ML, O2 ⊂ MR , O1 ⊂ O ′2

i.e. a Connes bimodule with symmetries.



We consider the von Neumann algebras

D(O) ≡ BL(O) ∨ BR(O) , O ∈ K .

In the rational case, A(O) ⊂ D(O) has finite Jones index, so the
center of D(O) is finite dimensional; we may cut down by a
minimal projection of the center (a defect) and assume D(O) to
be a factor.

Universal construction and classification (rational case) is
done by considering the braided product of the Q-systems
associated with A+ ⊗A− ⊂ BL and A+ ⊗A− ⊂ BR .

Cf. Fröhlich, Fuchs, Runkel, Schweigert (Euclidean setting)



Non-equilubrium states in CFT (S. Hollands, R.L.)
Two local conformal nets BL and BR on the Minkowski plane M,
both containing the same chiral net A = A+ ⊗A−. For the
moment BL/R is rational, so the KMS state is unique, later we deal
wih chemical potentials.

Before contact. The two systems BL and BR are, separately, each

in a thermal equilibrium state. KMS states ϕ
L/R
βL/R

on BL/R at

inverse temperature βL/R w.r.t. τ , possibly with βL 6= βR .

BL and BR live independently in their own half plane ML and MR

and their own Hilbert space. The composite system on ML ∪MR is
given by

ML ⊃ O 7→ BL(O) , MR ⊃ O 7→ BR(O)

with C ∗-algebra BL(ML)⊗BR(MR) and state

ϕ = ϕL
βL
|BL(ML) ⊗ ϕR

βR
|BR(MR) ;

ϕ is a stationary but not KMS.



Soon after contact.

At time t = 0 we put the two systems BL on ML and BR on MR in
contact through a totally transmissible phase boundary. We are in
the phase boundary case, BL and BR are now nets on M acting on
a common Hilbert space H; the algebras BL(WL) and BR(WR)
commute.

We want to describe the initial state ψ of the global system at
time t = 0. As above, we set

D(O) ≡ BL(O) ∨ BR(O)

ψ should be a natural state on the global algebra D that satisfies

ψ|BL(WL) = ϕL
βL
|BL(WL), ψ|BR(WR) = ϕR

βR
|BR(WR) .



Since BL(ML) and BR(MR) are not independent, the existence of
such state ψ is not obvious.

∃ a state ψ ≡ ψβL,βR on D s.t. ψ|B(WL/R) is ϕ
L/R
βL/βR

the initial state ψ is normal, natural on WL and WR , essentially
arbitrary on the probe.

The state ψ is given by ψ ≡ ϕ · αλL,λR , where ϕ is the geometric
state on D (at inverse temperature 1) and α = αλL,λR is the above
doubly scaling automorphism with λL = β−1

L , λR = β−1
R (local

diffeomorphism construction)





The large time limit. After a large time we expect the global
system to reach a non equilibrium steady state ω.

The final state ω: Let ϕβL , ϕβR be the geometric KMS states
respectively on A+ and A− with inverse temperature βL and βR ;
we define

ω ≡ ϕβL ⊗ ϕβR · ε ,

so ω is the state on D obtained by extending ϕβL ⊗ϕβR from A to
D by the conditional natural expectation ε : D→ A. Clearly ω is a
stationary state, indeed:

ω is a NESS on D with β = min{βL, βR}.



We now want to show that the evolution ψ · τt of the initial state
ψ of the composite system approaches the non-equilibrium steady
state ω as t → +∞.

Note that:
ψ|D(O) = ω|D(O) if O ∈ K(V+)

We have:

For every Z ∈ D we have:

lim
t→+∞

ψ
(
τt(Z )

)
= ω(Z ) .

Indeed, if Z ∈ D(O) with O bounded and t > tO , we have
τt(Z ) ∈ D(V+) as said, so

ψ
(
τt(Z )

)
= ω

(
τt(Z )

)
= ω(Z ) , t > tO ,

because of the stationarity property of ω.





Case with chemical potential

In this case have chiral U(1)-currents J± (non rational, c = 1
case).

Initial state ψ:

ψ|BL(WL) = ϕβL,qL |BL(WL) , ψ|BR(WR) = ϕβR ,qR |BR(WR) .

Final NESS state ω = ϕβL,qL ⊗ ϕβR ,qR · ε

ϕβL,qL
(
J+(0)

)
= qL , ϕβR ,qR

(
J−(0)

)
= qR .

and for every Z ∈ D we have:

lim
t→+∞

ψ
(
τt(Z )

)
= ω(Z ) .



We can explicitly compute the expected value of the asymptotic
NESS state ω on the stress energy tensor and on the current

In presence of chemical potentials µL/R = 1
πqL/R , the large time

limit of the two dimensional current density expectation value
(x-component of the current operator Jµ) in the state ψ is, with
Jx(t, x) = J−(t + x)− J+(t − x)

lim
t→+∞

ψ
(
Jx(t, x)

)
= ϕ−βL,qL

(
J−(0)

)
−ϕ+

βR ,qR

(
J+(0)

)
= −π(µL−µR) ,

whereas on the stress energy tensor

lim
t→+∞

ψ
(
Ttx(t, x)

)
= ϕ+

βL,qL

(
T +(0)

)
− ϕ−βR ,qR

(
T−(0)

)
=

π

12

(
β−2
L − β

−2
R

)
+
π2

2

(
µ2
L − µ2

R

)
,

(cf. Bernard-Doyon)



Happy birthday again
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