Operator Algebras, Non-Equilibrium Thermodynamics and Conformal Field Theory

Roberto Longo

Noncommutative Geometry: State of the Art and Future Prospects

Alain Connes' 70th birthday

Shanghai, March-April 2017

Based on a joint work with S. Hollands

and previous works with Bischoff, Kawahigashi, Rehren and Camassa, Tanimoto, Weiner

Thermal equilibrium states

Thermodynamics concerns heat and temperature and their relation to energy and work. A primary role is played by the equilibrium distribution.

Gibbs states

Finite quantum system: \mathfrak{A} matrix algebra with Hamiltonian H and evolution $\tau_t = \mathrm{Ad} e^{itH}$. Equilibrium state φ at inverse temperature β is given by the Gibbs property

$$\varphi(X) = rac{\operatorname{Tr}(e^{-eta H}X)}{\operatorname{Tr}(e^{-eta H})}$$

What are the equilibrium states at infinite volume where there is no trace, no inner Hamiltonian?

KMS states (HHW, Baton Rouge conference 1967)

Infinite volume. \mathfrak{A} a C^* -algebra, τ a one-par. automorphism group of \mathfrak{A} . A state φ of \mathfrak{A} is KMS at inverse temperature $\beta > 0$ if for $X, Y \in \mathfrak{A} \exists F_{XY} \in A(S_{\beta})$ s.t.

(a) $F_{XY}(t) = \varphi(X\tau_t(Y))$ (b) $F_{XY}(t+i\beta) = \varphi(\tau_t(Y)X)$

where $A(S_{\beta})$ is the algebra of functions analytic in the strip $S_{\beta} = \{0 < \Im z < \beta\}$, bounded and continuous on the closure \overline{S}_{β} .

(Note: it is sufficient to check (a) and (b) for X, Y in a dense *-subalgebra \mathfrak{B} .)

KMS states have been so far the central objects in <u>Equilibrium</u> Quantum Statistical Mechanics, for example in the analysis of phase transition.

Modular theory and Connes cocycles

Let \mathcal{M} be a von Neumann algebra and φ a normal faithful state on \mathcal{M} . The Tomita-Takesaki theorem gives a *canonical evolution*:

 $t \in \mathbb{R} \mapsto \sigma_t^{\varphi} \in \operatorname{Aut}(\mathcal{M})$

By a remarkable historical coincidence, Tomita announced the theorem at the 1967 Baton Rouge conference. Soon later Takesaki charcterised the modular group by the KMS condition.

The Connes Radon-Nikodym cocycle relates the modular groups of different states

$$u_t = (D\psi: D\varphi)_t \in \mathcal{M} \ , \quad \sigma_t^\psi = u_t \sigma_t^\varphi(\cdot) u_t^*$$

a first step towards the celebrated Connes classification of factors.

Non-equilibrium thermodynamics

Non-equilibrium thermodynamics: study physical systems not in thermodynamic equilibrium but basically described by thermal equilibrium variables. Systems, in a sense, near equilibrium; but, in general, the system is <u>non-uniform</u> in space and time.

Non-equilibrium thermodynamics has been effectively studied for decades with important achievements, yet the general theory is still missing. The framework is even more incomplete in the quantum case, *non-equilibrium quantum statistical mechanics*.

We aim provide a general, model independent scheme for the above situation in the context of quantum, two dimensional *Conformal Quantum Field Theory*. As we shall see, we provide the general picture for the evolution towards a *non-equilibrium steady state*.

Figure: Non-equilibrium steady state

A typical frame described by Non-Equilibrium Thermodynamics:

Two infinite reservoirs R_1 , R_2 in equilibrium at their own temperatures $T_1 = \beta_1^{-1}$, $T_2 = \beta_2^{-1}$, and possibly chemical potentials μ_1 , μ_2 , are set in contact, possibly inserting a probe.

As time evolves, the system should reach a non-equilibrium steady state.

This is the situation we want to analyse. As we shall see the *Operator Algebraic approach to CFT* provides a model independent description, in particular of the asymptotic steady state, and exact computation of the expectation values of the main physical quantities.

Non-equilibrium steady states (Ruelle)

A non-equilibrium steady state NESS φ of \mathfrak{A} satisfies property (a) in the KMS condition, for all X, Y in a dense *-subalgebra of \mathfrak{B} , but not necessarily property (b).

For any X, Y in \mathfrak{B} the function

 $F_{XY}(t) = \varphi \big(X \tau_t(Y) \big)$

is the boundary value of a function holomorphic in S_{β} .

Example: the tensor product of two KMS states at temperatures β_1 , β_2 is a NESS with $\beta = \min(\beta_1, \beta_2)$.

Problem: describe the NESS state ω and show that the initial state ψ evolves towards ω

$$\lim_{t \to +\infty} \psi \cdot \tau_t = \omega$$

Möbius covariant nets (Haag-Kastler nets on S^1) A local Möbius covariant net A on S^1 is a map

$$I \in \mathcal{I}
ightarrow \mathcal{A}(I) \subset \mathcal{B}(\mathcal{H})$$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

- ▶ **A.** *Isotony.* $I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$
- ▶ **B.** Locality. $I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$
- ► C. Möbius covariance. ∃ unitary rep. U of the Möbius group Möb on H such that

$$U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), g \in \mathrm{M\"ob}, I \in \mathcal{I}.$$

- D. Positivity of the energy. Generator L₀ of rotation subgroup of U (conformal Hamiltonian) is positive.
- E. Existence of the vacuum. ∃! U-invariant vector Ω ∈ H (vacuum vector), and Ω is cyclic for V_{I∈T} A(I).

Consequences

- Irreducibility: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = B(\mathcal{H}).$
- Reeh-Schlieder theorem: Ω is cyclic and separating for each A(I).
- Bisognano-Wichmann property (KMS property of ω|_{A(I)}): The modular operator/conjugation Δ_I and J_I of (A(I), Ω) are

$$U(\delta_I(2\pi t)) = \Delta_I^{-it}, \ t \in \mathbb{R},$$
 dilations
 $U(r_I) = J_I$ reflection

(Fröhlich-Gabbiani, Guido-L.)

- Haag duality: $\mathcal{A}(I)' = \mathcal{A}(I')$
- ► Factoriality: A(I) is III₁-factor (in Connes classification)

Local conformal nets $Diff(S^1) \equiv group \text{ of orientation-preserving smooth diffeomorphisms of } S^1$

$$\operatorname{Diff}_{I}(S^{1}) \equiv \{g \in \operatorname{Diff}(S^{1}) : g(t) = t \,\,\forall t \in I'\}.$$

A local conformal net \mathcal{A} is a Möbius covariant net s.t.

F. Conformal covariance. \exists a projective unitary representation U of $\text{Diff}(S^1)$ on \mathcal{H} extending the unitary representation of Möb s.t.

$$egin{aligned} U(g)\mathcal{A}(I)U(g)^* &= \mathcal{A}(gI), \quad g\in \mathrm{Diff}(S^1), \ U(g)xU(g)^* &= x, \quad x\in \mathcal{A}(I), \ g\in \mathrm{Diff}_{I'}(S^1), \end{aligned}$$

 \longrightarrow unitary representation of the Virasoro algebra

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m,n}$$

 \longrightarrow stress-energy tensor:

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$$

Representations

A (DHR) representation ρ of local conformal net \mathcal{A} on a Hilbert space \mathcal{H} is a map $I \in \mathcal{I} \mapsto \rho_I$, with ρ_I a normal rep. of $\mathcal{A}(I)$ on \mathcal{H} s.t.

$$ho_{\widetilde{I}} \upharpoonright \mathcal{A}(I) =
ho_{I}, \quad I \subset \widetilde{I}, \quad I, \widetilde{I} \subset \mathcal{I} \;.$$

Index-statistics relation (L.):

$$d(\rho) = \left[\rho_{I'}(\mathcal{A}(I'))':\rho_{I}(\mathcal{A}(I))\right]^{\frac{1}{2}}$$

DHR dimension = $\sqrt{\text{Jones index}}$

(Complete) rationality (Kawahigashi, Müger, L.)

The representations of A form a *modular tensor category*. (Feng Xu in the loop group case)

Circle and real line picture

We shall frequently switch between the two pictures.

KMS and Jones index

Kac-Wakimoto formula (conjecture)

Let ${\mathcal A}$ be a conformal net, ρ representations of ${\mathcal A},$ then

$$\lim_{t\to 0^+} \frac{\operatorname{Tr}(e^{-tL_{0,\rho}})}{\operatorname{Tr}(e^{-tL_0})} = d(\rho)$$

Analog of the Kac-Wakimoto formula (theorem)

 ρ a representation of \mathcal{A} :

$$(\xi, e^{-2\pi K_{\rho}}\xi) = d(\rho)$$

where K_{ρ} is the generator of the dilations δ_{I} and ξ is any vector cyclic for $\rho(\mathcal{A}(I'))$ such that $(\xi, \rho(\cdot)\xi)$ is the vacuum state on $\mathcal{A}(I')$.

Basic conformal nets

U(1)-current net

In the real line picture \mathcal{A} is given by

 $\mathcal{A}(I) \equiv \{W(f) : f \in C^{\infty}_{\mathbb{R}}(\mathbb{R}), \text{ supp } f \subset I\}''$

where W is the representation of the Weyl commutation relations

$$W(f)W(g) = e^{-i\int fg'}W(f+g)$$

associated with the vacuum state $\boldsymbol{\omega}$

$$\omega(W(f)) \equiv e^{-||f||^2}, \quad ||f||^2 \equiv \int_0^\infty p|\widetilde{f}(p)|^2 \mathrm{d}p$$

where \tilde{f} is the Fourier transform of f.

$$W(f) = \exp\left(-i\int f(x)j(x)dx\right), \quad [j(f),j(g)] = i\int fg'dx$$

with j(x) the U(1)-current.

There is a one parameter family $\{\gamma_q, q \in \mathbb{R}\}$ of irreducible sectors and all have index 1 (Buchholz, Mack, Todorov)

$$\gamma_q(W(f)) \equiv e^{i\int Ff}W(f), \quad F\in C^\infty, \quad rac{1}{2\pi}\int F=q \; .$$

q is the called the charge of the sector.

The positive energy, irr. unitary representations of the Virasoro algebra are indexed by the central charge c and the lowest weight $h \ge 0$. They correspond to irr. reps of $Diff(S^1)$.

For every possible value of c, let U_c the irreducible rep. of Diff (S^1) with h = 0.

 $Vir_c(I) \equiv U_c(Diff_I(S^1))''$

Universal property of the Virasoro net Vir_c : By diffeomorphism covariance, Vir_c is contained in every conformal net.

A classification of KMS states (Camassa, Tanimoto, Weiner, L.)

Rational case

Only one KMS state (w.r.t. translations) $\beta = 2\pi$ exp: net on $\mathbb{R} \ \mathcal{A} \rightarrow$ restriction of \mathcal{A} to \mathbb{R}^+

 $\exp \restriction \mathcal{A}(I) = \operatorname{Ad} U(\eta)$

 η diffeomorphism, $\eta{\restriction} l={\rm exponential}$

 $arphi_{ ext{geo}}$ geometric KMS state on $\mathcal{A}(\mathbb{R}), \omega$ vacuum state on $\mathcal{A}(\mathbb{R}^+)$

 $\varphi_{\text{geo}} = \omega \circ \exp$

Scaling with dilation, we get the unique KMS state at any given $\beta > 0$.

Non-rational case: U(1)-current model

The primary (locally normal) KMS states of the U(1)-current net are in one-to-one correspondence with real numbers $q \in \mathbb{R}$;

Geometric KMS state: $\varphi_{\text{geo}} = \varphi^{0}$

Any primary KMS state:

 $\varphi^{\boldsymbol{q}} = \varphi_{\text{geo}} \circ \gamma_{\boldsymbol{q}}.$

where

$$\gamma_q(W(f)) = e^{iq \int f(x)dx} W(f)$$

 γ_q is equivalent to the BMT q-sector.

(With c < 1 there is only one KMS state: the net is rational)

Extremal KMS states of the Vir_c net determined by the value on the stress-energy tensor T:

$$\varphi^{|q|}\left(T\left(f\right)\right) = \left(\frac{\pi}{12\beta^2} + \frac{q^2}{2}\right)\int f\,dx.$$

and the geometric KMS state corresponds to $q = \frac{1}{\beta} \sqrt{\frac{\pi(c-1)}{6}}$ and energy density $\frac{\pi c}{12\beta^2}$.

Chemical potential (cf. AHKT)

 \mathcal{A} a local conformal net on \mathbb{R} and φ an extremal β -KMS state on $\mathfrak{A} \equiv \overline{\bigcup_{I \subset \mathbb{R}} \mathcal{A}(I)}$ w.r.t. the time translation group τ and ρ an irreducible DHR localised endomorphism of \mathfrak{A} . Assume that ρ is normal and $d(\rho) < \infty$ (automatic in rational case).

U time translation unitary covariance cocycle in \mathfrak{A} :

$$\operatorname{Ad} U(t) \cdot \tau_t \cdot \rho = \rho \cdot \tau_t , \quad t \in \mathbb{R} ,$$

(unique by Möb covariance).

U is equal up to a phase to a Connes Radon-Nikodym cocycle:

$$U(t) = e^{-i2\pi\mu_{\rho}(\varphi)t} d(\rho)^{-i\beta^{-1}t} (D\varphi \cdot \Phi_{\rho} : D\varphi)_{-\beta^{-1}t}$$

 $\mu_{\rho}(\varphi) \in \mathbb{R}$ is the *chemical potential* of φ w.r.t. the charge ρ .

Here Φ_{ρ} is the left inverse of ρ .

The geometric β -KMS state φ_0 has zero chemical potential. By the holomorphic property of the Connes Radon-Nikodym cocycle:

 $e^{2\pi\beta\mu_
ho(arphi)} = {
m anal.\,cont.\,} arphiig(U(t)ig)ig/{
m anal.\,cont.\,} arphi_0ig(U(t)ig) \;.$

Example, BMT sectors:

With $\varphi_{\beta,q}$ the β -state associated with the charge q, the chemical potential w.r.t. the charge q is given by

 $\mu_p(\varphi_{\beta,q}) = qp/\pi$

By linearity μ_p is determined at p = 1, so we may put $\mu(\varphi_{\beta,q}) = q/\pi$.

2-dimensional CFT

 $M = \mathbb{R}^2$ Minkowski plane.

 $\begin{pmatrix} T_{00} & T_{10} \\ T_{01} & T_{11} \end{pmatrix}$ conserved and traceless stress-energy tensor.

As is well known, $T_+ = \frac{1}{2}(T_{00} + T_{01})$ and $T_- = \frac{1}{2}(T_{00} - T_{01})$ are chiral fields,

$$T_+ = T_+(t+x), \quad T_- = T_-(t-x).$$

Left and right movers.

 Ψ_k family of conformal fields on *M*: T_{ij} + relatively local fields $\mathcal{O} = I \times J$ double cone, *I*, *J* intervals of the chiral lines $t \pm x = 0$

$$\mathcal{A}(\mathcal{O}) = \{e^{i\Psi_k(f)}, \mathrm{supp} f \subset \mathcal{O}\}''$$

then by relative locality

$$\mathcal{A}(\mathcal{O}) \supset \mathcal{A}_L(I) \otimes \mathcal{A}_R(J)$$

 $\mathcal{A}_L, \mathcal{A}_R$ chiral fields on $t \pm x = 0$ generated by $\mathcal{T}_L, \mathcal{T}_R$ and other chiral fields

Rational case: $\mathcal{A}_L(I) \otimes \mathcal{A}_R(J) \subset \mathcal{A}(\mathcal{O})$ has finite Jones index.

Phase boundaries (Bischoff, Kawahigashi, Rehren, L.)

 $M_L \equiv \{(t,x): x < 0\}, M_R \equiv \{(t,x): x > 0\}$ left and right half Minkowski plane

A transpartent phase boundary is given by specifying two local conformal nets \mathcal{B}^L and \mathcal{B}^R on $M_{L/R}$ on the same Hilbert space \mathcal{H} ;

 $M_L \supset O \mapsto \mathcal{B}^L(O) ; \qquad M_R \supset O \mapsto \mathcal{B}^R(O) ,$

 \mathcal{B}^L and \mathcal{B}^R both contain a common Virasoro or larger chiral net \mathcal{A} and by causality:

 $\left[\mathcal{B}^{L}(O_{1}),\mathcal{B}^{R}(O_{2})
ight]=0, \quad O_{1}\subset M_{L}, \ O_{2}\subset M_{R}, \ O_{1}\subset O_{2}'$

i.e. a Connes bimodule with symmetries.

We consider the von Neumann algebras

$$\mathcal{D}(O) \equiv \mathcal{B}^L(O) \lor \mathcal{B}^R(O) \;, \quad O \in \mathcal{K} \;.$$

In the rational case, $\mathcal{A}(O) \subset \mathcal{D}(O)$ has finite Jones index, so the center of $\mathcal{D}(O)$ is finite dimensional; we may cut down by a minimal projection of the center (a defect) and assume $\mathcal{D}(O)$ to be a factor.

Universal construction and classification (rational case) is done by considering the *braided product* of the *Q*-systems associated with $\mathcal{A}_+ \otimes \mathcal{A}_- \subset \mathcal{B}_L$ and $\mathcal{A}_+ \otimes \mathcal{A}_- \subset \mathcal{B}_R$.

Cf. Fröhlich, Fuchs, Runkel, Schweigert (Euclidean setting)

Non-equilubrium states in CFT (S. Hollands, R.L.)

Two local conformal nets \mathcal{B}^L and \mathcal{B}^R on the Minkowski plane M, both containing the same chiral net $\mathcal{A} = \mathcal{A}_+ \otimes \mathcal{A}_-$. For the moment $\mathcal{B}^{L/R}$ is rational, so the KMS state is unique, later we deal wih chemical potentials.

Before contact. The two systems \mathcal{B}^L and \mathcal{B}^R are, separately, each in a thermal equilibrium state. KMS states $\varphi_{\beta_{L/R}}^{L/R}$ on $\mathfrak{B}^{L/R}$ at inverse temperature $\beta_{L/R}$ w.r.t. τ , possibly with $\beta_L \neq \beta_R$. \mathcal{B}^L and \mathcal{B}^R live independently in their own half plane M_L and M_R

and their own Hilbert space. The composite system on $M_L \cup M_R$ is given by

 $M_L \supset O \mapsto \mathcal{B}^L(O), \qquad M_R \supset O \mapsto \mathcal{B}^R(O)$

with C^* -algebra $\mathfrak{B}^L(M_L)\otimes\mathfrak{B}^R(M_R)$ and state

$$\varphi = \varphi_{\beta_L}^L|_{\mathfrak{B}^L(M_L)} \otimes \varphi_{\beta_R}^R|_{\mathfrak{B}^R(M_R)};$$

 φ is a stationary but not KMS.

Soon after contact.

At time t = 0 we put the two systems \mathcal{B}^L on M_L and \mathcal{B}^R on M_R in contact through a totally transmissible phase boundary. We are in the phase boundary case, \mathcal{B}^L and \mathcal{B}^R are now nets on M acting on a common Hilbert space \mathcal{H} ; the algebras $\mathfrak{B}^L(W_L)$ and $\mathfrak{B}^R(W_R)$ commute.

We want to describe the *initial state* ψ of the global system at time t = 0. As above, we set

$$\mathcal{D}(O) \equiv \mathcal{B}^{L}(O) \vee \mathcal{B}^{R}(O)$$

 ψ should be a natural state on the global algebra ${\mathfrak D}$ that satisfies

$$\psi|_{\mathfrak{B}^{L}(W_{L})} = \varphi_{\beta_{L}}^{L}|_{\mathfrak{B}^{L}(W_{L})}, \quad \psi|_{\mathfrak{B}^{R}(W_{R})} = \varphi_{\beta_{R}}^{R}|_{\mathfrak{B}^{R}(W_{R})}.$$

Since $\mathfrak{B}^L(M_L)$ and $\mathfrak{B}^R(M_R)$ are not independent, the existence of such state ψ is not obvious.

 \exists a state $\psi \equiv \psi_{\beta_L,\beta_R}$ on \mathfrak{D} s.t. $\psi|_{\mathfrak{B}(W_{L/R})}$ is $\varphi_{\beta_L/\beta_R}^{L/R}$

the initial state ψ is *normal, natural* on W_L and W_R , essentially arbitrary on the probe.

The state ψ is given by $\psi \equiv \varphi \cdot \alpha_{\lambda_L,\lambda_R}$, where φ is the geometric state on \mathfrak{D} (at inverse temperature 1) and $\alpha = \alpha_{\lambda_L,\lambda_R}$ is the above doubly scaling automorphism with $\lambda_L = \beta_L^{-1}$, $\lambda_R = \beta_R^{-1}$ (local diffeomorphism construction)

Figure 1: Spacetime diagram of our setup. The initial state ψ is set up in the shaded region before the system is in causal contact with the phase boundaries. In the shaded regions to the left/right of the probe, we have a thermal equilibrium state at inverse temperatures β_L/β_R . In the diamond shaped shaded region O, we have an essentially arbitrary probe state.

The large time limit. After a large time we expect the global system to reach *a non equilibrium steady state* ω .

The final state ω : Let φ_{β_L} , φ_{β_R} be the geometric KMS states respectively on \mathfrak{A}_+ and \mathfrak{A}_- with inverse temperature β_L and β_R ; we define

 $\omega \equiv \varphi_{\beta_L} \otimes \varphi_{\beta_R} \cdot \varepsilon \; ,$

so ω is the state on \mathfrak{D} obtained by extending $\varphi_{\beta_L} \otimes \varphi_{\beta_R}$ from \mathfrak{A} to \mathfrak{D} by the conditional natural expectation $\varepsilon : \mathfrak{D} \to \mathfrak{A}$. Clearly ω is a stationary state, indeed:

 ω is a NESS on \mathfrak{D} with $\beta = \min\{\beta_L, \beta_R\}$.

We now want to show that the evolution $\psi \cdot \tau_t$ of the initial state ψ of the composite system approaches the non-equilibrium steady state ω as $t \to +\infty$.

Note that:

$$\psi|_{\mathcal{D}(\mathcal{O})} = \omega|_{\mathcal{D}(\mathcal{O})} \text{ if } \mathcal{O} \in \mathcal{K}(V_+)$$

We have:

For every $Z \in \mathfrak{D}$ we have:

$$\lim_{t\to+\infty}\psi(\tau_t(Z))=\omega(Z)\;.$$

Indeed, if $Z \in \mathcal{D}(O)$ with O bounded and $t > t_O$, we have $\tau_t(Z) \in \mathfrak{D}(V_+)$ as said, so

$$\psi(au_t(Z)) = \omega(au_t(Z)) = \omega(Z) , \quad t > t_O ,$$

because of the stationarity property of ω .

Figure 2: Spacetime diagram of simplified setup. There is just one phase boundary and no probe. Every time-translated diamond will eventually enter the future lightcone V^+ .

Case with chemical potential

In this case have chiral U(1)-currents J^{\pm} (non rational, c = 1 case).

Initial state ψ :

$$\psi|_{\mathfrak{B}^{L}(W_{L})} = \varphi_{\beta_{L},q_{L}}|_{\mathfrak{B}^{L}(W_{L})}, \qquad \psi|_{\mathfrak{B}^{R}(W_{R})} = \varphi_{\beta_{R},q_{R}}|_{\mathfrak{B}^{R}(W_{R})}.$$

Final NESS state $\omega = \varphi_{\beta_L, q_L} \otimes \varphi_{\beta_R, q_R} \cdot \varepsilon$

$$\varphi_{\beta_L,q_L}(J^+(0)) = q_L , \qquad \varphi_{\beta_R,q_R}(J^-(0)) = q_R .$$

and for every $Z \in \mathfrak{D}$ we have:

$$\lim_{t\to+\infty}\psi\bigl(\tau_t(Z)\bigr)=\omega(Z)\;.$$

We can explicitly compute the expected value of the asymptotic NESS state ω on the stress energy tensor and on the current

In presence of chemical potentials $\mu_{L/R} = \frac{1}{\pi}q_{L/R}$, the large time limit of the two dimensional current density expectation value (x-component of the current operator J^{μ}) in the state ψ is, with $J^{x}(t,x) = J^{-}(t+x) - J^{+}(t-x)$

 $\lim_{t\to+\infty}\psi(J^{\mathsf{x}}(t,x))=\varphi_{\beta_{L},q_{L}}^{-}(J^{-}(0))-\varphi_{\beta_{R},q_{R}}^{+}(J^{+}(0))=-\pi(\mu_{L}-\mu_{R}),$

whereas on the stress energy tensor

$$\lim_{t \to +\infty} \psi (T_{tx}(t,x)) = \varphi_{\beta_L,q_L}^+ (T^+(0)) - \varphi_{\beta_R,q_R}^- (T^-(0))$$
$$= \frac{\pi}{12} (\beta_L^{-2} - \beta_R^{-2}) + \frac{\pi^2}{2} (\mu_L^2 - \mu_R^2) ,$$

(cf. Bernard-Doyon)

Happy birthday again